AGL UPSTREAM INVESTMENTS PTY LTD CAMDEN GAS PROJECT

Monthly Flare Pit Water Quality Monitoring Report

Reporting Period: December 2021

AGL Upstream Investments Pty Ltd

ABN 58 115 063 744

Locked Bag 3013, Australia Square, NSW 1215

200 George Street, Sydney NSW 2000

Telephone: 02 9921 2999 Facsimile: 02 9921 2472

Complaints Line (24 hours): 1800 039 600

Foreword

PREMISES Rosalind Park Gas Plant

Lot 35 Medhurst Road

GILEAD NSW 2560

LICENCE DETAILS <u>Environment Protection Licence 12003</u>

LICENCEE AGL Upstream Investments Pty Limited (AGL)

LICENCEE'S ADDRESS Locked Bag 14120, Melbourne, VIC 8001

MONITORING DATE December 2021 (08 December 2021)

MONITORING BY AGL

ANALYSIS BY

ALS Laboratory, Smithfield (Work order Number: ES2144751)

DATE DATA OBTAINED 16 December 2021

REPORT DATE 16 December 2021

REPORT PREPARED BY

Aaron Clifton, Environment Program and Project Lead

1. Introduction

Rosalind Park Gas Plant, located approximately 60km south west of Sydney, is a natural gas processing and treatment plant, used to process coal seam natural gas from the Camden Gas Project. The premises are covered by Environment Protection Licence 12003 which includes all gas wells, gas gathering, reticulation systems, trunk lines and associated effluent storage areas and work areas of the Camden Gas Project.

This Monitoring Report relates to those water monitoring activities specified in Part 5, Monitoring and Recording Conditions, of the Environment Protection Licence, specifically monitoring point 16 (Rosalind Park Gas Plant Flare Pit) (Table 1). The Licence conditions stipulate water monitoring is required to be carried out at the locations, at the frequency and using the test methods as set out in Table 2.

Table 3 presents the results of this month's water monitoring. This report is prepared in accordance with the Requirements for Publishing Pollution Monitoring Data (EPA, October, 2013) (**Publication Requirements**).

The water quality samples are analysed by an external NATA certified laboratory (ALS Environmental, Smithfield), in accordance with the EPA Approved Methods Publication "Approved Methods for the Sampling and Analysis of Water Pollutants in New South Wales" (EPA, 2004), with the exception of phenols and PAHs, which were analysed with an alternate method following written approval from the EPA (EPA, 2014) (refer to Table 2 for analytical methodology).

Table 1 – Flare Pit water quality monitoring point location

EPA monitoring point	Location	Latitude	Longitude
16	RPFP	34°07'17.0"S	150°46'08.1"E

Coordinate reference system: Map Grid of Australia 1994 Zone 56

Table 2 – Analytes monitored, Frequency (as per EPL 12003) and methodology

Analyte	Units of measure	Frequency	Sampling Method	Analytical method
Electrical Conductivity	Microsiemens per centimetre	Monthly	Grab sample	APHA (1998) section 2510 B
Total Suspended Solids	milligrams per litre	Monthly	Grab sample	APHA 2540 D
Total Organic Carbon	milligrams per litre	Monthly	Grab sample	APHA 5310 B
Oil and Grease	milligrams per litre	Monthly	Grab sample	APHA 5520 B
Biochemical Oxygen Demand (BOD)	milligrams per litre	Monthly	Grab sample	APHA 5210 B using APHA 4500- O G for the determination of dissolved oxygen
Total petroleum hydrocarbons	micrograms per litre	Monthly	Grab sample	USEPA (1996h) method 8015B
Phenols	micrograms per litre	Monthly	Grab sample	USEPA (1996a) method 8270 D
Total PAH's	micrograms per litre	Monthly	Grab sample	USEPA (1996a) method 8270 D

Table 3 – Flare Pit water Monitoring Results

		Monitoring Point	16
		Location	RPFP
		Sampled Date	08/12/2021
		Data Obtained	16/12/2021
Analyte	Units	Limit of Reporting	
Electrical Conductivity	μS/cm	1	7120
Total Suspended Solids	mg/L	5	47
Total Organic Carbon	mg/L	1	31
Oil and Grease	mg/L	5	< 5
Biochemical Oxygen Demand (BOD)	mg/L	2	14
Total Petroleum Hydrocarbons			
C6 - C9 Fraction	μg/L	20	< 20
C10 - C14 Fraction	μg/L	50	< 50
C15 - C28 Fraction	μg/L	100	< 100
C29 - C36 Fraction	μg/L	50	< 50
C10 - C36 Fraction (sum)	μg/L	50	< 50
PhenoIs			
Phenol	μg/L	1	< 1.0
2-Chlorophenol	μg/L	1	< 1.0
2-Methylphenol	μg/L	1	< 1.0
3- & 4-Methylphenol	μg/L	2	< 2.0
2-Nitrophenol	μg/L	1	< 1.0
2.4-Dimethylphenol	μg/L	1	< 1.0
2.4-Dichlorophenol	μg/L	1	< 1.0
2.6-Dichlorophenol	μg/L	1	< 1.0
4-Chloro-3-methylphenol	μg/L	1	< 1.0
2.4.6-Trichlorophenol	μg/L	1	< 1.0
2.4.5-Trichlorophenol	μg/L	1	< 1.0
Pentachlorophenol	μg/L	2	< 2.0

Monitoring Point	16	
Location	RPFP	
Sampled Date	08/12/2021	
Data Obtained	16/12/2021	

		Data Obtained	16/12/2021
Analyte	Units	Limit of Reporting	
Total PAH's			
Naphthalene	μg/L	1	< 1.0
Acenaphthylene	μg/L	1	< 1.0
Acenaphthene	μg/L	1	< 1.0
Fluorene	μg/L	1	< 1.0
Phenanthrene	μg/L	1	< 1.0
Anthracene	μg/L	1	< 1.0
Fluoranthene	μg/L	1	< 1.0
Pyrene	μg/L	1	< 1.0
Benz(a)anthracene	μg/L	1	< 1.0
Chrysene	μg/L	1	< 1.0
Benzo(b+j)fluoranthene	μg/L	1	< 1.0
Benzo(k)fluoranthene	μg/L	1	< 1.0
Benzo(a)pyrene	μg/L	0.5	< 0.5
Indeno(1.2.3.cd)pyrene	μg/L	1	< 1.0
Dibenz(a.h)anthracene	μg/L	1	< 1.0
Benzo(g.h.i)perylene	μg/L	1	< 1.0
Sum of polycyclic aromatic hydrocarbons	μg/L	0.5	< 0.5
Benzo(a)pyrene TEQ (zero)	μg/L	0.5	< 0.5

References

Environment Protection Authority (EPA), 2014. Letter correspondence to AGL Upstream Investments Pty Ltd., titled: *Environment Protection Licence 12003*, EPA reference: EF13/2522:DOC14/95163-07:CK, dated 28 August 2014, signed: Greg Newman (Acting Manager Illawarra).

Environment Protection Authority (EPA), 2004. Approved Methods for the Sampling and Analysis of Water Pollutants in New South Wales, The Department of Environment and Conservation, Sydney, Australia. Available online: http://www.environment.nsw.gov.au/resources/water/approvedmethods-water.pdf

The State of NSW and Environment Protection Authority (EPA), 2013. Requirements for publishing pollution monitoring data. Environment Protection Authority, Sydney, Australia. Available online:

http://www.epa.nsw.gov.au/resources/licensing/130742reqpubpmdata.pdf