
AGL Upstream Investments Pty Ltd

# Waukivory Pilot Project Surface Water and Groundwater Monitoring Report to 30 September 2015

26 November 2015





### **Document information**

Client: AGL Upstream Investments Pty Ltd

Title: Waukivory Pilot Project

Surface Water and Groundwater Monitoring Report to 30 September 2015

Document No: 2268523A-WAT-REP-004 RevB

Date: 26 November 2015

| Rev | Date       | Details   |
|-----|------------|-----------|
| Α   | 30/10/2015 | 1st Draft |
| В   | 26/11/2015 | Final     |

| Author, Reviewer and Approver details |               |                  |            |           |  |  |  |  |
|---------------------------------------|---------------|------------------|------------|-----------|--|--|--|--|
| Prepared by:                          | Becky Rollins | Date: 26/11/2015 | Signature: | fAlottin= |  |  |  |  |
| Reviewed by:                          | David Whiting | Date: 26/11/2015 | Signature: | Don't KAR |  |  |  |  |
| Approved by:                          | Sean Daykin   | Date: 26/11/2015 | Signature: | Lyle      |  |  |  |  |

### **Distribution**

AGL Upstream Investments Pty Ltd, Parsons Brinckerhoff file, Parsons Brinckerhoff Library

### ©Parsons Brinckerhoff Australia Pty Limited 2015

Copyright in the drawings, information and data recorded in this document (the information) is the property of Parsons Brinckerhoff. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by Parsons Brinckerhoff. Parsons Brinckerhoff makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information.

### **Document owner**

Parsons Brinckerhoff Australia Pty Limited

ABN 80 078 004 798

Level 27 Ernst & Young Centre 680 George Street Sydney NSW 2000 GPO Box 5394 Sydney NSW 2001

Australia

Tel: +61 2 9272 5100 Fax: +61 2 9272 5101 www.pbworld.com

Certified to ISO 9001, ISO 14001, OHSAS 18001

# Contents

|     |         |                                              | Page number |
|-----|---------|----------------------------------------------|-------------|
| Glo | ssary   |                                              | vi          |
| Abb | oreviat | ions                                         | хi          |
| Uni | tsxiii  |                                              |             |
| Exe | ecutive | summary                                      | xiv         |
| 1.  | Intro   | duction                                      | 1           |
|     | 1.1     | Gloucester Gas Project                       | 1           |
|     | 1.2     | Waukivory Pilot Project                      | 1           |
|     | 1.3     | Pilot well testing                           | 2           |
|     | 1.4     | Objectives                                   | 3           |
|     | 1.5     | Scope of works                               | 3           |
| 2.  | Site    | characterisation                             | 7           |
|     | 2.1     | Site location                                | 7           |
|     | 2.2     | Rainfall                                     | 7           |
|     | 2.3     | Surface hydrology                            | 9           |
|     | 2.4     | Geological setting                           | 9           |
|     | 2.5     | Hydrogeological setting                      | 13          |
| 3.  | Wau     | ıkivory pilot project                        | 15          |
|     | 3.1     | Introduction                                 | 15          |
|     | 3.2     | Waukivory pilot schedule and water volumes   | 15          |
|     | 3.3     | Monitoring network                           | 19          |
|     | 3.4     | Water monitoring                             | 23          |
|     | 3.5     | Key analytes: fracture stimulation additives | 27          |
|     | 3.6     | Assessment criteria and trigger response     | 29          |
| 4.  | Wate    | er levels                                    | 31          |
|     | 4.1     | Pilot well water levels                      | 31          |
|     | 4.2     | Groundwater levels                           | 33          |
|     | 4.3     | Surface water levels                         | 44          |
| 5.  | Wate    | er quality                                   | 46          |

|             | 5.1     | Introduction                                                                                                               | 46          |
|-------------|---------|----------------------------------------------------------------------------------------------------------------------------|-------------|
|             | 5.2     | Fracture stimulation fluid                                                                                                 | 46          |
|             | 5.3     | Pilot well (flowback) water quality                                                                                        | 47          |
|             | 5.4     | AST2 water quality                                                                                                         | 54          |
|             | 5.5     | Groundwater quality                                                                                                        | 57          |
|             | 5.6     | Surface water quality                                                                                                      | 57          |
| 6.          | Flowb   | ack                                                                                                                        | 62          |
| 7.          | Benef   | icial use                                                                                                                  | 64          |
| 8.          | Concl   | usions                                                                                                                     | 66          |
| 9.          | Stater  | nent of limitations                                                                                                        | 69          |
| 10.         | Refere  |                                                                                                                            | 70          |
| 10.         | 1701016 |                                                                                                                            | 70          |
| Lict        | of ta   | blos                                                                                                                       |             |
| LIST        | UI la   |                                                                                                                            | Page number |
| T-1-1-      | 0.4     | Otrationary by of the Oleverton Paris                                                                                      | 40          |
| Table Table |         | Stratigraphy of the Gloucester Basin  Four hydrogeological units – Gloucester Basin                                        | 10<br>13    |
| Table       |         | Flowback volumes recovered up to 30 September 2015                                                                         | 18          |
| Table       | 3.2     | Perforation and fracture stimulation intervals                                                                             | 20          |
| Table       | 3.3     | Current groundwater monitoring network                                                                                     | 21          |
| Table       | 3.4     | Surface water monitoring network                                                                                           | 23          |
| Table       |         | Monitoring schedule                                                                                                        | 24          |
| Table       |         | Comprehensive suite of analytes                                                                                            | 26          |
| Table       |         | Fracture stimulation additives and breakdown constituents                                                                  | 28          |
| Table       |         | Adopted thresholds for BTEX and hydrogen sulphide at AST2                                                                  | 29          |
| Table Table |         | Water level response triggers Summary of fracture stimulation fluid concentrations                                         | 35<br>47    |
| Table       |         | Comparison of the EWMA to the 5 <sup>th</sup> and 95 <sup>th</sup> percentile for the current reporting                    |             |
|             |         | period                                                                                                                     | 59          |
| Table       | 5.3     | Summary of trends in water quality data up to 30 September 2015                                                            | 60          |
| Table       |         | Surface water monitoring sites and analytes that trigger further review                                                    | 61          |
| Table       |         | Flowback volumes recovered up to 30 September 2015                                                                         | 62          |
| Table       |         | Generalised beneficial use matrix, based on salinity and yield                                                             | 64          |
| Table       | 1.2     | Summary statistics for electrical conductivity during baseline, fracture stimulation and flowback water quality monitoring | on<br>65    |
| l ist       | of fig  | nures                                                                                                                      |             |
| _100        |         | jai 00                                                                                                                     | Page number |
| Figure      | e 1.1   | Regional location                                                                                                          | 4           |
| Figure      | e 1.2   | Regional groundwater and surface water monitoring network                                                                  | 5           |

| Figure 1.3 Waukivory groundwater and surface water monitoring network  Figure 2.1 Long-term annual rainfall and cumulative deviation from annual mean (CDFM) | 6  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2.1 Long-term applied rainfall and cumulative deviation from applied mean (CDEM)                                                                      |    |
| rigure 2.1 Long-term annual rannali and cumulative deviation nom annual mean (CDI W)                                                                         |    |
| rainfall at Gloucester Post Office BoM station 060015 (BoM 2015)                                                                                             | 8  |
| Figure 2.2 Monthly rainfall and cumulative deviation from the monthly mean (CDFM) rainfall at                                                                |    |
| the AGL Gloucester station since installation in July 2011 (AGL 2015b)                                                                                       | 8  |
| Figure 2.3 Geological map of the Gloucester Basin                                                                                                            | 11 |
| Figure 2.4 Waukivory interpreted seismic section (from Parsons Brinckerhoff 2015d) (line of                                                                  |    |
| section is shown on Figure 1.3)                                                                                                                              | 12 |
| Figure 3.1 Schematic of pilot wells, water gathering lines and storage tanks                                                                                 | 17 |
| Figure 3.2 Dates of operation of the pilot wells                                                                                                             | 18 |
| Figure 3.3 Cumulative flowback volumes from the pilot wells                                                                                                  | 18 |
| Figure 3.4 Waukivory water quality sampling frequency                                                                                                        | 25 |
| Figure 4.1 Water levels and flowback volumes at the Waukivory pilot wells                                                                                    | 32 |
| Figure 4.2 Groundwater levels and rainfall at the Waukivory monitoring bores                                                                                 | 37 |
| Figure 4.3 Groundwater and trigger levels at the Waukivory alluvial and interburden                                                                          |    |
| monitoring bores                                                                                                                                             | 38 |
| Figure 4.4 Groundwater and trigger levels at the Waukivory shallow rock monitoring bores                                                                     | 38 |
| Figure 4.5 Schematic comparison of WK13 perforated intervals and WKMB05 monitored                                                                            |    |
| intervals                                                                                                                                                    | 40 |
| Figure 4.6 Groundwater levels and rainfall at multizone monitoring well WKMB05 compared to                                                                   |    |
| water levels at WK13                                                                                                                                         | 41 |
| Figure 4.7 Groundwater and trigger levels at multizone monitoring well WKMB05                                                                                | 42 |
| Figure 4.8 Groundwater levels and rainfall at vibrating wire piezometer PL03                                                                                 | 43 |
| Figure 4.9 Surface water levels and rainfall at the Waukivory stream gauges                                                                                  | 45 |
| Figure 5.1 Sodium, boron and BTEX vs TDS for formation water, fracture stimulation fluid and                                                                 |    |
| flowback water                                                                                                                                               | 49 |
| Figure 5.2 Laboratory electrical conductivity (EC) measurements and flowback volumes at the                                                                  |    |
| Waukivory pilot wells                                                                                                                                        | 51 |
| Figure 5.3 Monoethanolamine concentrations and flowback volumes at the Waukivory pilot                                                                       |    |
| wells                                                                                                                                                        | 52 |
| Figure 6.1 Laboratory electrical conductivity measurements and flowback volumes at the                                                                       |    |
| Waukivory pilot wells                                                                                                                                        | 63 |
|                                                                                                                                                              |    |

### List of appendices

| Appendix A | Sampling dates, locations and rationale                                                |
|------------|----------------------------------------------------------------------------------------|
| Appendix B | Parsons Brinckerhoff sampling procedure and AGL pilot well and AST2 sampling procedure |
| Appendix C | Laboratory QC reports                                                                  |
| Appendix D | Summary results of water quality                                                       |
| Appendix E | Pilot well analyte time-series hydrographs                                             |
| Appendix F | AST2 analyte time-series hydrographs                                                   |
| Appendix G | Groundwater and surface water analyte time-series hydrographs                          |
| Appendix H | ALS and Envirolab Services laboratory reports                                          |
| Appendix I | Groundwater and surface water trend analysis                                           |

# Glossary

Acid Wash A technique to enhance formation permeability through the use of acid to dissolve

sediments that may be blocking fractures and inhibiting permeability.

Unconsolidated sediments (clays, sands, gravels and other materials) deposited Alluvium

by flowing water. Deposits can be made by streams on river beds, floodplains, and

alluvial fans.

Alluvial aquifer Permeable zones that store and produce groundwater from unconsolidated alluvial

sediments. Shallow alluvial aguifers are generally unconfined aguifers.

Aquifer Rock or sediment in a formation, group of formations, or part of a formation that is

saturated and sufficiently permeable to transmit economic quantities of water.

Baseline sampling A period of regular water quality and water level measurements that are carried

out over a period long enough to determine the variability in groundwater

conditions.

Bore A structure drilled below the surface to obtain water from an aquifer or series of

aquifers.

Coal A sedimentary rock derived from the compaction and consolidation of vegetation

or swamp deposits to form a fossilised carbonaceous rock.

Coal seam A layer of coal within a sedimentary rock sequence.

Coal seam gas

(CSG)

Coal seam gas is a form of natural gas (predominantly methane) that is extracted

from coal seams.

Concentration The amount or mass of a substance present in a given volume or mass of sample,

usually expressed as microgram per litre (water sample) or micrograms per

kilogram (sediment sample).

Conceptual model A simplified and idealised representation (usually graphical) of the physical

> hydrogeologic setting and the hydrogeological understanding of the essential flow processes of the system. This includes the identification and description of the geologic and hydrologic framework, media type, hydraulic properties, sources and sinks, and important aquifer flow and surface water-groundwater interaction

processes.

Confining layer Low permeability strata that may be saturated, however will not allow water to

move through it under natural hydraulic gradients.

Datalogger A digital recording instrument that is inserted in monitoring and pumping bores to

record pressure measurements and water level variations.

**Detection limit** The concentration below which a particular analytical method cannot determine,

with a high degree of certainty, a concentration.

Drawdown A lowering of the water table in an unconfined aquifer or the pressure surface of a

confined aquifer caused by pumping of groundwater from bores and wells.

Ion

Lithology

Electrical A measure of a fluid's ability to conduct an electrical current and is an estimation of conductivity (EC) the total ions dissolved. It is often used as a measure of water salinity. Flowback water The return to surface of fracture stimulation fluids before transition to natural formation water (groundwater), after which water flowing from the well is termed produced water. Fracture Breakage in a rock or mineral along a direction or directions that are not cleavage or fissility directions. Fracture stimulation Fracture stimulation involves pumping a fluid under pressure through the perforated interval into the coal seam to open cracks or fractures, increasing the connectivity and enabling the flow of water and gas. Fracture stimulation The fluid is typically a mixture of sand, water (raw water) and additives. fluid Fractured rock These occur in sedimentary, igneous and metamorphosed rocks which have been aquifer subjected to disturbance, deformation, or weathering, and which allow water to move through joints, bedding planes, fractures and faults. Although fractured rock aguifers are found over a wide area, they generally contain much less groundwater than alluvial and porous sedimentary rock aquifers. Groundwater The water contained in interconnected pores or fractures located below the water table in the saturated zone. Groundwater level The water level measured in a bore; this may be at or close to the water table in unconfined aquifers, or represent the average piezometric level across the screened interval in confined aquifers. Hydraulic The rate at which water of a specified density and kinematic viscosity can move through a permeable medium (notionally equivalent to the permeability of an conductivity aquifer to fresh water). Hydraulic fracturing See fracture stimulation. Hydraulic gradient The change in total hydraulic head with a change in distance in a given direction. Hydraulic head A specific measurement of water pressure above a datum. It is usually measured as a water surface elevation, expressed in units of length. In an aquifer, it can be calculated from the depth to water in a monitoring bore. The hydraulic head can be used to determine a hydraulic gradient between two or more points. Hydrogeology The study of the interrelationships of geologic materials and processes with water, especially groundwater. Hydrology The study of the occurrence, distribution, and chemistry of all surface waters.

An ion is an atom or molecule where the total number of electrons is not equal to

the total number of protons, giving it a net positive or negative electrical charge.

The study of rocks and their depositional or formational environment on a large

specimen or outcrop scale.

Major ions Constituents commonly present in concentrations exceeding 10 milligram per litre.

Dissolved cations generally are calcium, magnesium, sodium, and potassium; the major anions are sulphate, chloride, fluoride, nitrate, and those contributing to

alkalinity, most generally assumed to be bicarbonate and carbonate.

Methane (CH<sub>4</sub>) An odourless, colourless, flammable gas, which is the major constituent of natural

gas. It is used as a fuel and is an important source of hydrogen and a wide variety

of organic compounds.

Micro Siemens per centimetre (µS/cm)

A measure of water salinity commonly referred to as EC (see also electrical conductivity). Most commonly measured in the field with calibrated field meters.

Monitoring bore A non-pumping bore, is generally of small diameter that is used to measure the

elevation of the water table and/or water quality. Bores generally have a short well

screen against a single aquifer through which water can enter.

Oxidation-reduction potential (ORP)

The redox potential is a measure (in volts) of the affinity of a substance for electrons – its electronegativity – compared with hydrogen (which is set at 0). Substances more strongly electronegative than (i.e. capable of oxidising) hydrogen have positive redox potentials. Substances less electronegative than (i.e. capable of reducing) hydrogen have negative redox potentials. Also known as reduction

potential.

Percentile The value below which a given percentage of observations fall. For example, the

5th percentile is the value below which five percent of observations are found.

Perforation For pilot wells, perforation is holes punctured in the casing of a pilot well to gain

access to the gas and water associated with the coal.

Permeable material Material that permits water to move through it at perceptible rates under the

hydraulic gradients normally present.

Permian The last period of the Palaeozoic era that finished approximately 252 million years

before present.

Petroleum

**Exploration Licence** 

(PEL)

A Petroleum Exploration Lease (PEL) allows a company to exclusively explore a defined area for petroleum, including undertaking desktop studies, collecting

samples and drilling.

Petroleum Production Lease

(PPL)

A Petroleum Production Lease (PPL) allows a company exclusive rights to extract the resource within the area defined by the PPL. A PPL is only granted after a demonstration to the NSW Government that the resource is of benefit to the State and can be extracted safely and without damage to the environment or heritage

areas and infrastructure.

pH Potential of Hydrogen; the logarithm of the reciprocal of hydrogen-ion

concentration in gram atoms per litre; provides a measure on a scale from 0 to 14 of the acidity or alkalinity of a solution (where 7 is neutral, greater than 7 is alkaline

and less than 7 is acidic).

Piezometric pressure

See hydraulic head.

Produced water Natural groundwater generated from coal seams during flow testing and

production dewatering.

Pump The period over which pumps are installed and tested, following fracture

commissioning stimulation.

Raw water Source water used in the fracture stimulation fluid mixture.

Recharge The process which replenishes groundwater, usually by rainfall infiltrating from the

ground surface to the water table and by river water reaching the water table or

exposed aquifers. The addition of water to an aquifer.

Recharge area A geographic area that directly receives infiltrated water from surface and in which

> there are downward components of hydraulic head in the aquifer. Recharge generally moves downward from the water table into the deeper parts of an aquifer then moves laterally and vertically to recharge other parts of the aquifer or deeper

aquifer zones.

Recovery The difference between the observed water level during the recovery period after

cessation of pumping and the water level measured immediately before pumping

stopped.

Salinity The concentration of dissolved salts in water, usually expressed in EC units

(μS/cm) or milligrams of total dissolved solids per litre (mg/L TDS).

Fresh water quality – water with a salinity <800 µS/cm. Salinity classification

Marginal water quality – water that is more saline than freshwater and generally

waters between 800 and 1,600 µS/cm.

Brackish quality – water that is more saline than freshwater and generally waters

between 1,600 and 4,800 μS/cm.

Slightly saline quality – water that is more saline than brackish water and generally

waters with a salinity between 4,800 and 10,000 µS/cm.

Moderately saline quality – water that is more saline than slightly saline water and

generally waters between 10,000 and 20,000 µS/cm.

Saline quality – water that is almost as saline as seawater and generally waters

with a salinity greater than 20,000 µS/cm.

Seawater quality – water that is generally around 55,000 µS/cm.

Sandstone Sandstone is a sedimentary rock composed mainly of sand-sized minerals or rock

grains (predominantly quartz).

A type of bore lining or casing of special construction, with apertures designed to Screen

permit the flow of water into a bore while preventing the entry of aquifer or filter

pack material.

Sedimentary rock

aquifer

These occur in consolidated sediments such as porous sandstones and

conglomerates, in which water is stored in the intergranular pores, and limestone, in which water is stored in solution cavities and joints. These aguifers are generally located in sedimentary basins that are continuous over large areas and may be tens or hundreds of metres thick. In terms of quantity, they contain the largest

volumes of groundwater.

Shut-in A well is 'shut-in' when it is closed by operators to stop gas flow, either by closing

valves at the surface or downhole.

A fine-grained rock of sedimentary origin composed mainly of silt-sized particles Siltstone

(0.004 to 0.06 mm).

Stratigraphy The depositional order of sedimentary rocks in layers.

Surface watergroundwater interaction

This occurs in two ways: (1) streams gain water from groundwater through the streambed when the elevation of the water table adjacent to the streambed is greater than the water level in the stream; and (2) streams lose water to groundwater through streambeds when the elevation of the water table is lower

than the water level in the stream.

Total dissolved solids (TDS)

A measure of the salinity of water, usually expressed in milligrams per litre (mg/L).

Trace element An element found in only minor amounts (concentrations less than 10 milligram

per litre) in water or sediment; includes heavy metals arsenic, cadmium,

chromium, copper, lead, mercury, nickel, and zinc.

Geological strata that are saturated with groundwater, however not of sufficient Water bearing zone

permeability to be called an aquifer.

Term used to describe the chemical, physical, and biological characteristics of Water quality

water, usually in respect to its suitability for a particular purpose.

Water quality data Chemical, biological, and physical measurements or observations of the

> characteristics of surface and ground waters, atmospheric deposition, potable water, treated effluents, and waste water and of the immediate environment in

which the water exists.

Water table The top of an unconfined aquifer. It is at atmospheric pressure and indicates the

level below which soil and rock are saturated with water.

Well Pertaining to a gas exploration well or gas production well.

### **Abbreviations**

AGL AGL Upstream Investments Pty Ltd

**ANZECC** Australian and New Zealand Environment Conservation Council

ALS Australian Laboratory Services

**AST** Above ground storage tank

**BTEX** Benzene, toluene, ethyl-benzene and xylenes

BoM **Bureau of Meteorology** 

BP Before Present

**CDFM** Cumulative deviation from mean

CSG Coal seam gas

DO Dissolved oxygen

EC Electrical conductivity

**EPA Environment Protection Authority** 

**EPL Environment Protection Licence** 

**EWMA** Exponentially weighted moving average

**GDE Groundwater Dependent Ecosystems** 

**GFDA** Gas Field Development Area

**GGP** Gloucester Gas Project

**GMWL** Global Meteoric Water Line

**GRL** Gloucester Resources Limited

 $H_2O$ Water

 $H_2S$ Hydrogen Sulphide

**LMWL** Local Meteoric Water Line

LoR Limit of reporting

LTA Long term average

MEA Monoethanolamine MGA Map grid of Australia

**NEPM** National Environment Protection Measures

**NOW** NSW Office of Water (Department of Primary Industries (DPI) Water from 1 July

2015)

**OCSG** Office of Coal Seam Gas

**ORP** Oxidation-reduction potential

PEL Petroleum Exploration Licence

PPL Petroleum Production Lease

**PQL** Practical quantification limit

QA/QC Quality assurance/quality control

**SGMP** Surface water and groundwater management plan

**THPS** Tetrakis (hydroxymethyl) phosphonium sulphate

TPH Total petroleum hydrocarbons

TRH Total recoverable hydrocarbons

TDS Total dissolved solids

TOC Total organic carbon

UHS Unionised hydrogen sulphide

UV Ultraviolet

### **Units**

°C degrees Celsius

μg/L micrograms per litre

μS/cm microSiemens per centimetre

% percent

kL kilolitres

km kilometres

km<sup>2</sup> square kilometres

kPa kilopascal

L/s litres per second

m metres

m/d metres per day

m<sup>3</sup>/s cubic metres per second

mAHD metres Australian Height Datum

mbgl metres below ground level

mg/L milligram per litre

ML megalitres

mm millimetres

mmol/L millimol per litre

pCM percent modern carbon

TU tritium unit

V volt

yrs BP years before present

## **Executive summary**

This report presents the groundwater and surface water monitoring results and their interpretation for the Waukivory Pilot Project (the Project) (exploration) activities within the Stage 1 area of the Gloucester Gas Project (GGP) from 1 July to 30 September 2015 (reporting period). This report is the fourth monitoring report for the Project and provides results of monitoring data from the water monitoring network and flowback water quality and volumes recovered from the four Waukivory (WK) pilot wells: WK11, WK12, WK13 and WK14.

The reporting of this monitoring data is a requirement of Petroleum Exploration Licence (PEL) 285 and Environment Protection Licence (EPL) 20358. The monitoring program and subsequent reporting meets the requirements of the Surface and Groundwater Management Plan (SGMP) (AGL 2015a) and relevant sections of EPL 20358.

The scope of work for this report included:

- Interpretation of water level and water quality trends
- Assessment as to whether these trends are naturally occurring or potentially attributed to Project
  activities through the use of an analytical methodology that is consistent with the design requirements
  outlined in ANZECC (2000) and the SGMP (AGL 2015a)
- Assessment of key analytes associated with fracture stimulation additives defined in the SGMP.

The groundwater monitoring network at the Waukivory site consists of seven groundwater monitoring bores, one multizone monitoring well (six zones monitored), and one vibrating wire piezometer location (two zones monitored). There are three surface water monitoring sites at Waukivory located on the Avon River and Waukivory Creek.

Key results and conclusions from this program from 1 July 2015 to 30 September 2015 are as follows:

### Pilot well water levels

The pilot well water levels showed an initial decline of between 450 and 800 m in response to recommencement of flowback on 29 June 2015. Water levels within the wells then remained relatively steady with fluctuations of approximately 50 to 100 m.

### Pilot well water quality

During the current reporting period, the water quality data from WK11, WK12 and WK13 shows produced water characteristics (as depicted by produced water from CR06 and WK03), most notably stable salinity (EC).

EC data at WK14 continues to show a rising trend, which may indicate some residual dilution due to WK14 being one of the most recent wells to commence flowback, and has currently recovered a smaller fraction of the total volume injected compared to the other pilot wells

The salinity (EC) of the flowback water from all pilot wells is greater than the 5000  $\mu$ S/cm trigger for the transition from flowback to produced water as described in the SGMP (AGL 2015a).

BTEX concentrations in the flowback water from WK11, WK13 and WK14 are greater than those found in the produced water from CR06 and WK03 and this is likely due to the deeper target formations at the Waukivory site. The sum of BTEX concentrations in WK12 remains very low as this well is perforated at shallower intervals compared to WK11, WK13 and WK14.

Waukivory pilot well samples showed unionised hydrogen sulphide (UHS) concentrations below the Limit of Reporting (LoR), with the exception of three detections of UHS in the flowback water at WK12 and WK14 on 2 July and 3 July 2015, which were at the LoR of 0.1 mg/L. Such concentrations are considered insufficient to compromise well integrity due to corrosion.

### Pilot well water volumes

The total flowback water volumes recovered from each well as of 30 September 2015 range from 271,240 to 1,093,255 L and water recovery as a percentage of total volume injected during fracture stimulation for individual wells ranges from 58.1% to 87.3%.

### AST2 water quality

The sum of BTEX concentrations at AST2 ranged from non-detect to 42  $\mu$ g/L during the current reporting period with BTEX concentrations less than the detection level throughout September 2015.

The concentration of BTEX compounds are several orders of magnitude below the adopted threshold values relating to human and environmental health (SGMP Table 6.2 (AGL 2015a)).

There were no detections of UHS at AST2 during the current reporting period.

### Groundwater levels

Groundwater levels in Waukivory monitoring bores targeting the alluvium, shallow rock and upper interburden including the thrust fault zone have shown no response attributable to fracture stimulation or flowback from the pilot wells during the current reporting period.

The variation in groundwater levels has not exceeded the adopted triggers as defined in the SGMP (AGL 2015a) i.e. 2 m (outside of the normal range) decline in aquifers less than 75 m from the ground surface and 5 m (outside of the normal range) decline for deeper (non-coal) monitoring zones.

Groundwater levels in alluvial monitoring bores GR-P3 and WKMB06A show an overall decrease of approximately 0.3 m, and groundwater levels in the shallow rock monitoring bores WKMB01, WKMB02 and WKMB06B show an overall decrease of 0.1 to 0.3 m in response to the relatively dry conditions throughout July and August 2015.

Groundwater levels in monitoring bore WKMB03, screened in the interburden (and thrust fault zone), appear to show a subdued and delayed response to seasonal climatic variations most likely attributable to the very low hydraulic conductivity of the interburden/thrust fault zone. During the current reporting period groundwater levels at WKMB03 show a slight increasing trend.

Both WKMB03 and WKMB06B are screened across the thrust fault zone, and WKMB06A is screened within the alluvium above the thrust fault zone. Hydrographs from these three monitoring bores show no anomalous water level responses and therefore provide no evidence of connectivity between the fracture stimulation zones and the shallow groundwater system via the thrust fault zone.

It is possible that the slight decrease in piezometric level at WKMB05 sensor 2 (Cloverdale Coal Seam) represents a pressure response to flowback at WK13. The piezometric level at sensor 1 (Interburden) shows no net change since flowback commenced in December 2014.

WKMB05 sensors 3 and 4 continued to show a gradual decline until mid-August before increasing towards the end of the reporting period. This response is not considered to be attributable to flowback pumping as a decline in pressure has been observed throughout periods when flowback pumping has not occurred. There is uncertainty as to whether the piezometric levels in WKMB05 sensors 5 and 6 have reached equilibration following installation; this will be reviewed as additional monitoring data becomes available.

### Groundwater quality

During the current reporting period there was no water quality sampling from groundwater monitoring sites as per the sampling frequency stipulated in the EPL.

### Surface water levels

Water levels at stream gauge sites WKSW01 (Avon River upstream of the Project site), WKSW02 (Waukivory Creek upstream of the Project site) and WKSW03 (Avon River downstream of the Project site) show no change in water levels attributable to fracture stimulation or flowback from the pilot wells during the current reporting period.

Surface water levels showed a very gradual decline during the dry conditions experienced in July and August. Towards the end of the reporting period, surface water levels have shown a gradual increase with response to individual rainfall events.

### Surface water quality

Surface water quality data shows that there were no adverse trends associated with Project activities.

### Water Beneficial Use Conditions

Water beneficial use categories of domestic, stock, industrial and irrigation are based on yield and salinity characteristics. There has been no change in the beneficial use classification for the groundwater systems.

### Actions to correct identified adverse trends

Analysis of monitoring results has not identified adverse trends that require corrective action.

### Introduction

This report presents groundwater and surface water level and quality data collected during the Waukivory Pilot Project (the Project) between 1 July and 30 September 2015, and includes analysis of flowback water from the pilot wells. The Project is an exploration activity as distinct from broader activities associated with the development phase of the Gloucester Gas Project (GGP).

### 1.1 Gloucester Gas Project

AGL Upstream Investments Pty Ltd (AGL) is proposing to build the GGP which comprises several stages of development facilitating the extraction of coal seam gas (CSG) from the Gloucester Basin. Concept Plan and Project Approval (Part 3A Approval) for the Stage 1 Gas Field Development Area (GFDA) was granted on 22 February 2011 under Part 3A of the Environmental Planning and Assessment Act (1979) (EP&A Act). In addition the project received approval under the Environment Protection and Biodiversity Conservation Act (1999) (EPBC Act) (EPBC Approval) on 11 February 2013.

AGL holds Petroleum Exploration Licence (PEL) 285, under the Petroleum (Onshore) Act 1991, covering the whole of the Gloucester Basin, approximately 100 km north of Newcastle, NSW. PEL 285 expired on 15 April 2012 and was renewed on 6 August 2014. The Stage 1 GFDA in relation to the PEL 285 boundary is shown in Figure 1.1. The Stage 1 GFDA with AGL owned properties and the water monitoring network is shown in Figure 1.2.

The GGP will involve the depressurisation of deep groundwater and the extraction of gas from multiple coal seams within the Gloucester Coal Measures. Target coal seam depths will vary from site to site with an expected range of 250 to 1,000 metres below ground level (mbgl). The Stage 1 GFDA includes the construction, operation, and decommissioning of 110 CSG wells and associated infrastructure, including gas and water gathering lines.

A dedicated water monitoring network is in place which has enabled the collection of baseline water level and water quality data for the different groundwater and surface water systems within the Gloucester Basin. There are now more than 50 dedicated water monitoring locations and more than four years of baseline monitoring (water levels and water quality) across the Gloucester Basin.

### Waukivory Pilot Project 1.2

AGL received approval for the Project from the NSW Office of Coal Seam Gas (OCSG) on 6 August 2014. The approval was included with the renewal of PEL 285 and permitted AGL to fracture stimulate and flow test four existing pilot wells located within the Stage 1 GFDA of the GGP (AGL 2015a). These four pilot wells were installed between 2 October and 24 November 2012. Fracture stimulation commenced on 27 October 2014, with the final fracture stimulation on 26 November 2014. The flowback phase (process of commissioning pumps and returning fracture stimulation fluids back to the surface) commenced on 16 December 2014.

The pilot wells (Waukivory 11 (WK11), Waukivory 12 (WK12), Waukivory 13 (WK13), and Waukivory 14 (WK14)) are located in the northern part of the Stage 1 GFDA on properties leased from Gloucester Resources Limited (GRL) (Figure 1.3). The four wells have been perforated and fracture stimulated within target coal seams ranging from approximately 370 to 960 mbgl.

A surface water and groundwater management plan (SGMP) was prepared by AGL (AGL 2015a) for the Project and approved by the OCSG and NSW Office of Water (NOW) prior to the commencement of the

Project. Accompanying the renewal of PEL 285, the NSW Environment Protection Authority (EPA) issued Environment Protection Licence (EPL) 20358 for the Gloucester Coal Seam Gas Project on 6 August 2014, the current version of the EPL is dated 17 September 2015. The SGMP provides a framework which describes how surface water and groundwater in the local Waukivory area will be monitored and assessed during fracture stimulation and flow testing (which includes dewatering) of the deep coal seams. EPL 20358 requires the monitoring of the concentration of analytes and pollutants at prescribed monitoring locations at given frequencies using appropriate sampling methods.

DPI Water (previously NOW) and EPA requirements for groundwater and surface water monitoring of CSG activities, applicable to this report, include:

- Establishment of baseline conditions
- Collection of periodic water level, water quality and volumetric data
- Reporting of data and trends.

This report complies with the reporting requirements outlined in Section 7.2 of the SGMP and addresses the general requirements of EPL 20358, Condition R5.3. There are some differences in the monitoring requirements (locations, frequencies and analytes) identified in the SGMP compared to those stipulated in the EPL. This technical report focuses on the requirements of the SGMP.

### 1.3 Pilot well testing

Pilot testing is an exploration activity that identifies potential gas resources by testing the composition, flow rate, and volume of gas in target coal seams. Pilot testing also assesses water production volumes (as the wells are depressurised to allow gas flow) and potential connectivity between shallow aquifers and the water bearing zones of the deep coal seams.

The following phases of testing are referred to in this report:

- Baseline sampling was undertaken to characterise the pre-Project groundwater and surface water conditions at the Waukivory site. The baseline sampling comprised four sampling events in March, June, September and October 2014 (prior to Pilot fracture stimulation).
- Fracture stimulation involves pumping a fluid under pressure through a zone of perforated steel well casing into the coal seam to open cracks or fractures, increasing the hydraulic conductivity and enabling the flow of water and gas (27 October 2014 to 26 November 2015). The fluid is typically a mixture of sand, water and additives.
- Flowback water is the return to surface (by pumping) of fracture stimulation fluids before transition to natural formation water (groundwater), after which, water flowing from the well is termed produced water. Flowback water includes water and fluids extracted during the short period of pump commissioning (ongoing since 27 November 2014).
- Produced water is formation water which is co-produced with gas, and follows the removal of the fracture stimulation fluid (flowback). Pumping groundwater from a coal seam reduces the pressure and allows the gas and 'produced' groundwater to flow into the well and up to the surface. The flow rate of produced water typically decreases over time.

The SGMP (Section 6.1, pages 33 – 34) states that:

- The flowback water period is deemed to be finished when 100% of the volume of fracture stimulation fluids injected at each well is recovered AND a salinity trigger of 5,000 µS/cm is reached (and maintained) for the return waters; and
- Produced water is deemed to be all deep groundwater that is pumped to surface after the flowback water trigger is achieved.

It should however be noted that the chemical characteristics of the flowback water will start to migrate toward the characteristics of produced water prior to the volume criterion being met.

### 1.4 **Objectives**

The objectives of the quarterly reporting of water monitoring data for the Project are to meet the commitments stated in the approved SGMP (Section 7.2, pages 60 – 64), as follows:

"The quarterly reports will include:

- Analysis and interpretation of monitoring results including trends; and
- Details of any triggers requiring specific management and actions to be undertaken."

This report is the fourth monitoring report for the Project, covering the period 1 July to 30 September 2015. Monitoring results include data obtained from groundwater and surface water monitoring points, and pilot well discharge (flowback water).

### Scope of works 1.5

This quarterly report includes the following:

- Description of the monitoring program undertaken to 30 September 2015, which includes a description of the monitoring network, frequency of monitoring events, suite of analytes measured, sampling techniques, assessment criteria and quality assurance
- Presentation of groundwater and surface water levels and surface water quality data collected to 30 September 2015
- Presentation of water quality data collected from the flowback water from each pilot well during the
- Presentation of key analyte concentrations for monitoring fracture stimulation additives and comparison with background concentrations and fracture stimulation fluid
- Identification of trends associated with natural variations or Project activities
- Assessment of any changes to beneficial use of waters during baseline and pilot well activities as a trigger response for the Project
- Identification of exceedance of triggers, including adverse trends from pilot well activities and recommendations for management actions to be taken.

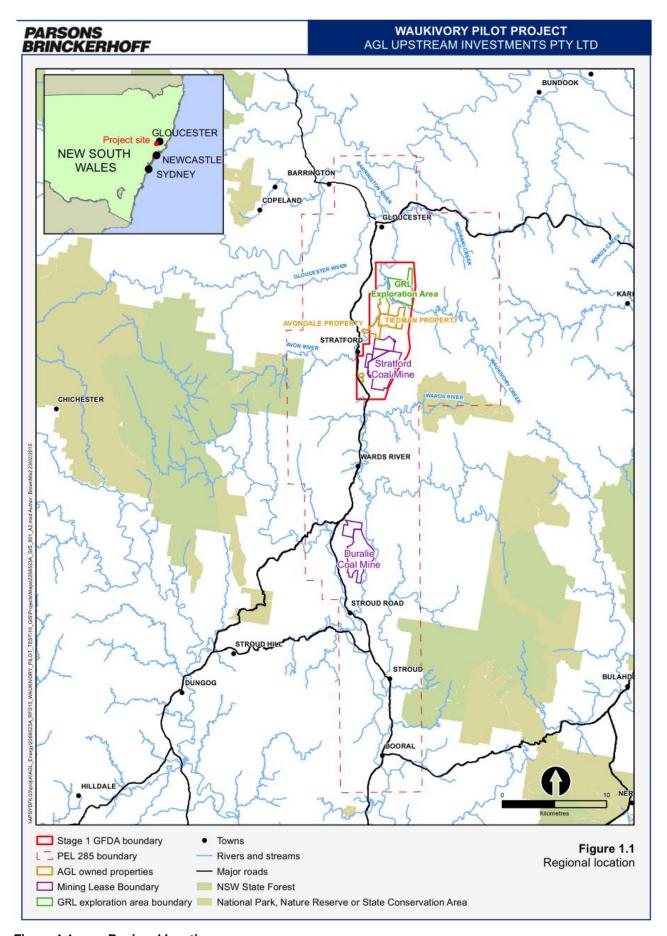



Figure 1.1 **Regional location** 

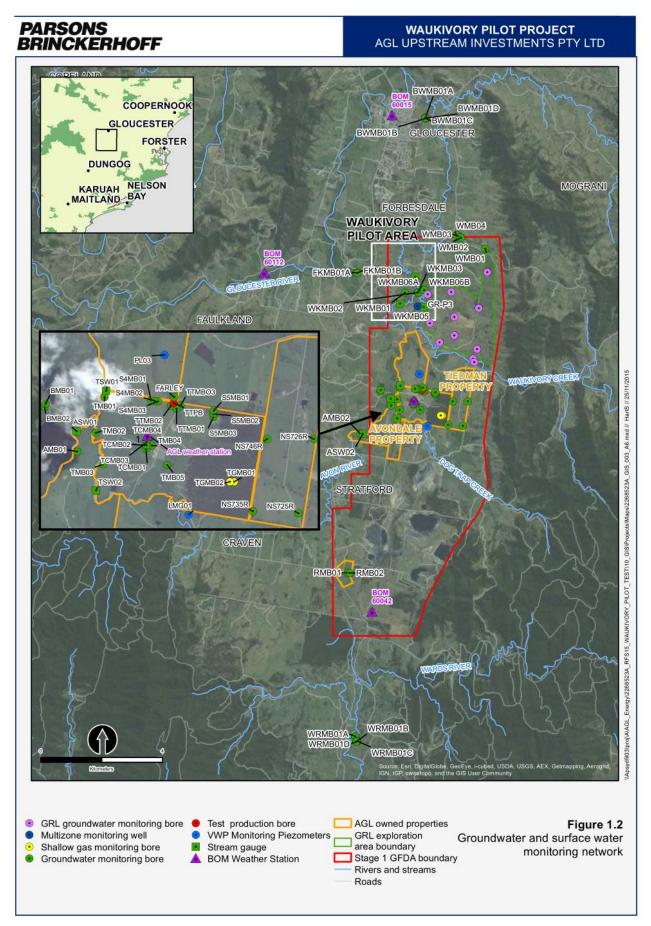



Figure 1.2 Regional groundwater and surface water monitoring network

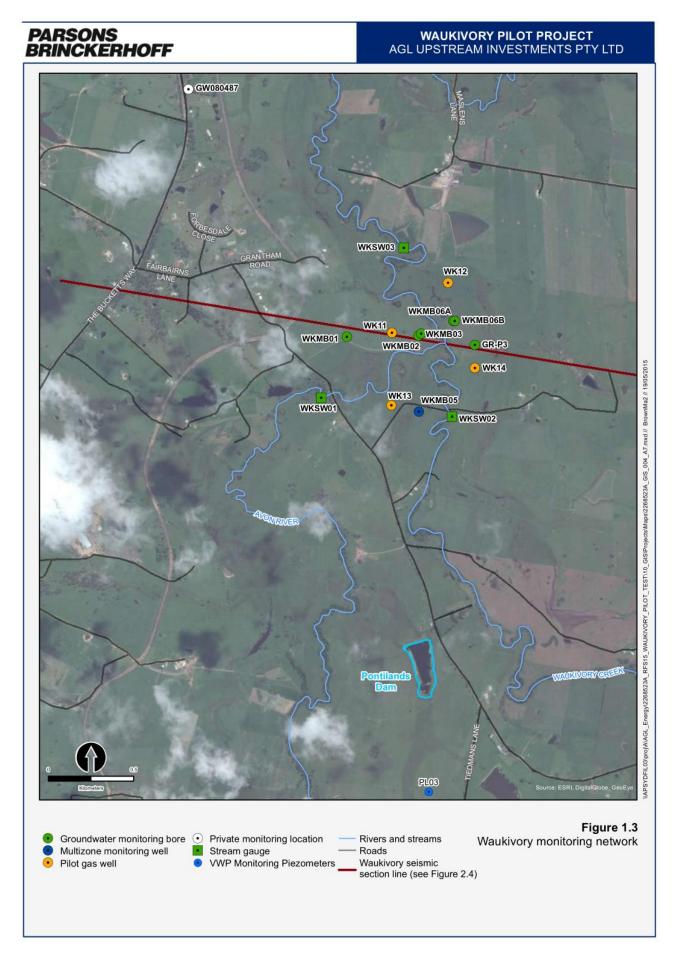



Figure 1.3 Waukivory groundwater and surface water monitoring network

### Site characterisation

#### 2.1 Site location

The Project site is located approximately 6 km south of Gloucester, NSW, at 176 Fairbairns Lane, Forbesdale. The site is adjacent to the flood plain of the Avon River and is characterised by paddocks used for low intensity cattle grazing. The Avon River flows in a northerly direction through the Project site. The confluence of the Avon River and its eastern tributary, Waukivory Creek, is located toward the centre of the site (Figure 1.3).

#### 2.2 Rainfall

AGL has operated a weather station on the Tiedman property just south of the Project site since July 2011. The closest Bureau of Meteorology (BoM) weather station to the Waukivory site, at Gloucester Post Office (60015), has been operational since 1888. The locations of the weather stations are shown in Figure 1.2.

Long-term average annual rainfall (1888 to 2014) at Gloucester Post Office is 981 mm. Rainfall is seasonal, with the highest mean monthly rainfall occurring in the summer months between January and March.

The long-term, annual cumulative deviation from mean (CDFM) rainfall for Gloucester Post Office is plotted in Figure 2.1. The long-term cumulative rainfall residual plots are formulated by subtracting the average annual rainfall for the recorded period from the actual annual rainfall and then accumulating these residuals over the assessment period. Periods of below average rainfall are represented as downward trending slopes while periods of above average rainfall are represented as upward trending slopes.

The cumulative deviation plot for Gloucester Post Office (Figure 2.1) shows that over the last 60 years, short (2 to 3 year) drought periods have occurred about every 10 to 15 years. However there have been no longterm deviations from mean conditions, such as the prolonged drought periods that characterised the first half of last century.

Rainfall data from the AGL weather station for the period July 2011 (installation) to September 2015 are presented in Figure 2.2. During the reporting period, rainfall was below the monthly average in July and August 2015 and above the monthly average in September 2015. Total annual rainfall in 2014 was 720 mm which is significantly below the long-term average for Gloucester.



Figure 2.1 Long-term annual rainfall and cumulative deviation from annual mean (CDFM) rainfall at Gloucester Post Office BoM station 060015 (BoM 2015)

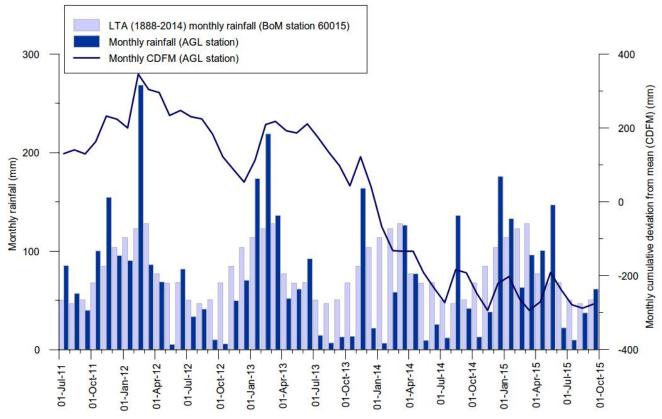



Figure 2.2 Monthly rainfall and cumulative deviation from the monthly mean (CDFM) rainfall at the AGL Gloucester station since installation in July 2011 (AGL 2015b)

### 2.3 Surface hydrology

The Gloucester Basin is a narrow, north-south trending, elongated geological basin approximately 40 km long and 10 km wide, extending from Gloucester in the north to Stroud in the south. The Gloucester Basin is located in the upper Manning River and Karuah River coastal catchments. The area occupied by the sedimentary rocks of the Basin (about 217 km<sup>2</sup>) is small in comparison to the size of these catchments.

There is a surface water divide between the Wards River catchment (part of the Karuah River catchment) and the Avon River catchment (part of the Manning River catchment). In the northern Avon River catchment, surface water flow is generally to the north. In the southern Wards River catchment, surface water flow is generally to the south.

The Avon River includes the tributaries of Dog Trap Creek and Waukivory Creek within the Stage 1 GFDA (Figure 1.2). The Gloucester River joins the Avon River in the north of the Gloucester Basin. Wards River flows to the south, and is located outside of the Stage 1 GFDA (Figure 1.2).

### 2.4 Geological setting

The Gloucester Basin comprises a thick succession of Permian sedimentary rocks representing deposition in both terrestrial and marine environments during a complex period of subsidence, uplift and relative sea level change (marine transgression and regression).

The Basin is a synclinal intermontane structure formed in part of the New England Fold Belt between a major Permian plate margin and the Sydney-Gunnedah Basin (Lennox 2009). The north-south trending synclinal nature of the Gloucester Basin resulted from the collision between the East Australian and Pacific Plates.

Following a period of extension during the Early Permian, the Gloucester Basin has undergone periods of normal and reverse faulting, with large scale tilting associated with late stage compressional movements towards the end of the Permian (Hughes 1984). Reverse faults dominate present day structure. A comparison with the contemporary horizontal stress field map (Hillis et al 1998) indicates the Basin is likely to be under compression in an east-west orientation.

The stratigraphy dips steeply (up to 90°) on the flanks of the Basin, dipping towards the north-south trending synclinal basin axis and flattening toward the centre of the Basin. Early Permian and Carboniferous hard resistive volcanics form the ridgelines of the Basin: the Mograni Range to the east; and the Gloucester and Barrington Tops to the west.

Overlying the Permian stratigraphy is a thin sequence of surficial Quaternary sedimentary deposits and regolith. The Quaternary sediments are non-uniform in thickness, and comprise unconsolidated alluvial sediments (sand, gravel, silt and clay) along the drainage channels and colluvial deposits across the rest of the floodplain sourced from the surrounding outcropping Permian deposits.

The Gloucester Basin is divided into three major Permian stratigraphic units each representing a distinct depositional setting: the Gloucester Coal Measures, the Dewrang Group, and the basal Alum Mountain Volcanics. The generalised stratigraphy of the Basin is summarised in Table 2.1. A geological map is shown in Figure 2.3. The development in the Stage 1 GFDA is targeting the intermediate and deep coal seams in the Gloucester Coal Measures generally below depths of 250 m to around 1,000 m.

The fault zones identified at the Project site are mostly reverse faults where older rock strata are thrust over younger strata. Figure 2.4 shows the trace of the major faults identified on a seismic section through the Waukivory pilot area.

Table 2.1 **Stratigraphy of the Gloucester Basin** 

| Period        | Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sub-<br>group                        | Formation                   | Approx. thickness<br>(m) | Coal seam            | Depositional environment                       | Tectonic events                                                              |  |  |       |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------|--------------------------|----------------------|------------------------------------------------|------------------------------------------------------------------------------|--|--|-------|--|--|
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Craven                               | Crowthers Road Conglomerate | 350                      |                      | Marine regression,                             | Uplift to west of Gloucester Basin                                           |  |  |       |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Leloma                      | 585                      | Linden               | pro-gradation of alluvial fans                 |                                                                              |  |  |       |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                             |                          | JD                   |                                                |                                                                              |  |  |       |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                             |                          | Bindaboo             |                                                |                                                                              |  |  |       |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                             |                          | Deards               |                                                |                                                                              |  |  |       |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Jilleon                     | 175                      | Cloverdale           | -                                              |                                                                              |  |  |       |  |  |
|               | sə.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                             |                          | Roseville            |                                                |                                                                              |  |  |       |  |  |
|               | asur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                             |                          | Tereel/Fairbairns    | -                                              |                                                                              |  |  |       |  |  |
|               | ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | Wards River Conglomerate    | Variable                 |                      |                                                |                                                                              |  |  |       |  |  |
| an            | Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gloucester Coal Measures Speldon For | Wenham 23.9                 | 23.9                     | Bowens Road          |                                                |                                                                              |  |  |       |  |  |
| Upper Permian | ester (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                             |                          | Bowens Road<br>Lower |                                                |                                                                              |  |  |       |  |  |
| pper          | onc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Speldon Formation                    |                             |                          |                      | Marine transgression                           | Extension (normal                                                            |  |  |       |  |  |
|               | ច                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Avon                                 | Dog Trap Creek              | 126                      | Glenview             | but also some progradation of                  | fault development)<br>and regional<br>subsidence. Uplift to<br>west of Basin |  |  |       |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Waukivory Creek             | 326                      | Avon                 | alluvial fans in the<br>west related to uplift |                                                                              |  |  |       |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                             |                          | Triple               |                                                |                                                                              |  |  |       |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                             |                          |                      |                                                | 1                                                                            |  |  | Rombo |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                             |                          | Glen Road            | 7                                              |                                                                              |  |  |       |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                             |                          |                      |                                                | Valley View                                                                  |  |  |       |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                             |                          | Parkers Road         |                                                |                                                                              |  |  |       |  |  |
|               | bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mammy Johi                           | nsons                       | 300                      | Mammy Johnsons       | Marine transgression,                          | Extension (normal                                                            |  |  |       |  |  |
|               | Dewrang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Weismantel                           |                             | 20                       | Weismantel           | regression and further marine transgression    | fault development) and regional                                              |  |  |       |  |  |
|               | De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Duralie Road                         |                             | 250                      |                      |                                                | subsidence                                                                   |  |  |       |  |  |
| an            | Alum Mou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | untain Volcanics                     | ;                           |                          | Clareval             | Arc-related rift                               | Rift?                                                                        |  |  |       |  |  |
| Lower         | Alum Mountain Volcanics  But I come I |                                      |                             |                          | Basal                |                                                |                                                                              |  |  |       |  |  |

Modified from AECOM (2009) and SRK (2005).

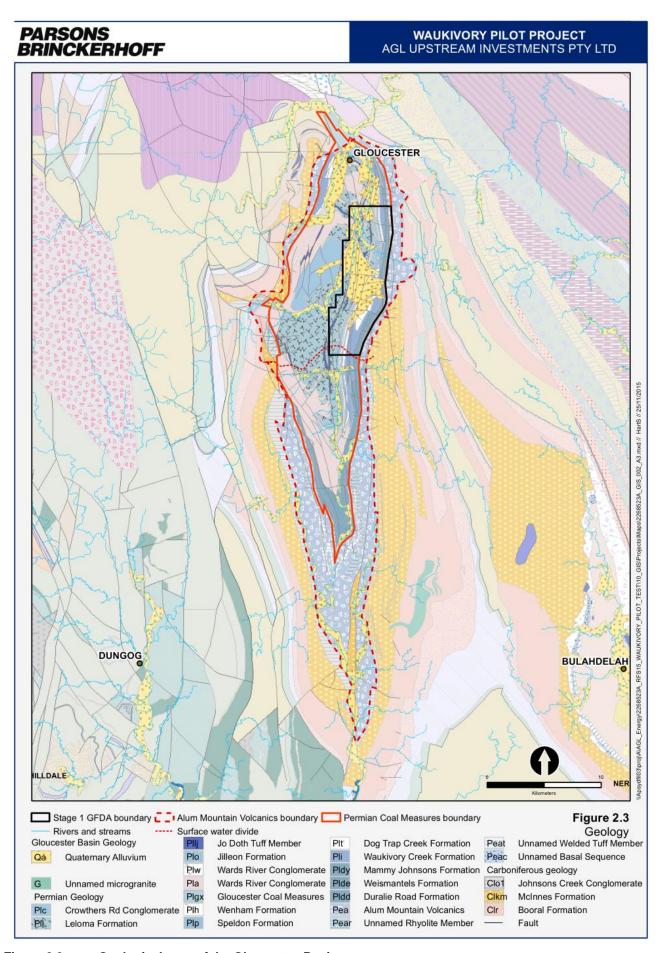



Figure 2.3 Geological map of the Gloucester Basin

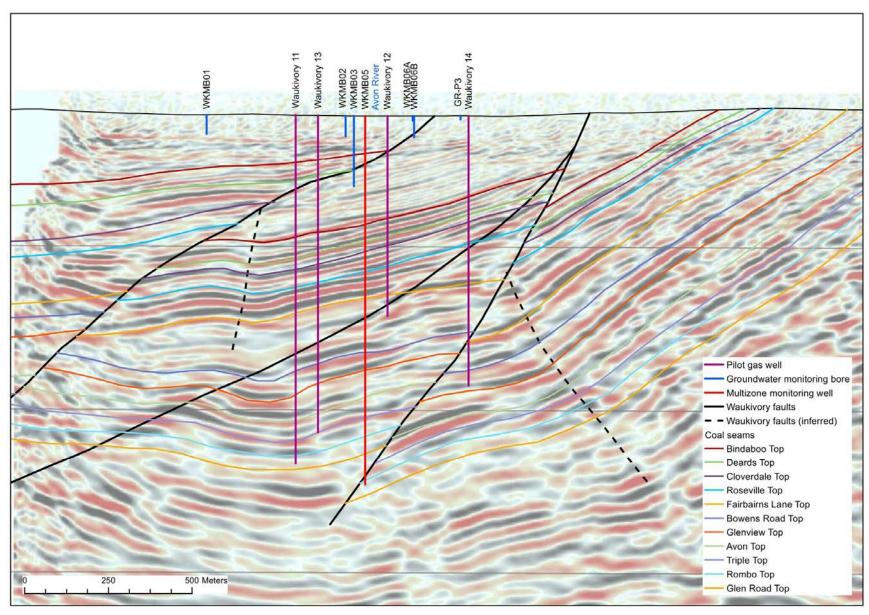



Figure 2.4 Waukivory interpreted seismic section (from Parsons Brinckerhoff 2015d) (line of section is shown on Figure 1.3)

### 2.5 Hydrogeological setting

Four broad hydrogeological units have been identified within the Gloucester Basin (Table 2.2). The permeability and groundwater flow characteristics of rocks within the Gloucester Basin are controlled by several factors including lithology, depth, and the degree of fracturing and faulting. In this sense hydrogeological units and flow systems do not always correspond with defined geological boundaries.

| Table 2.2 | Four hydrogeological units – Gloucester Basin |
|-----------|-----------------------------------------------|
|-----------|-----------------------------------------------|

| Unit                                    | Aquifer type                                           | Formation name                                                | General lithology                                                     | Hydraulic characteristics                                                                                |
|-----------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Alluvial<br>deposits                    | Semi-confined,<br>clay capped,<br>porous,<br>granular  | Quaternary<br>alluvium                                        | Clay/mixed gravels                                                    | Heterogeneous, highly variable permeability associated with varying lithology                            |
| Shallow Rock<br>(<150 m)                | Semi-confined, fractured rock                          | Upper Permian<br>Coal Measures,<br>Alum Mountain<br>Volcanics | Interbedded<br>sandstone/siltstone<br>with bedding plane<br>fractures | Heterogeneous, high and low<br>permeability domains<br>associated with fault zones<br>and fracturing     |
| Interburden of<br>deep coal<br>measures | Confined,<br>fractured rock,<br>aquitard               | Upper Permian<br>Coal Measures                                | Interbedded indurated sandstone/siltstone and claystone               | Low permeability associated with sparse fractures, permeability decreases with depth                     |
| Deep coal<br>Seams                      | Confined,<br>fractured rock,<br>water bearing<br>zones | Upper Permian<br>Coal Measures                                | Coal/shale                                                            | Low permeability associated with cleating and fractures in coal seams, permeability decreases with depth |

The four hydrogeological units are summarised as follows:

- Alluvial deposits adjacent to major creeks and rivers comprising unconsolidated sand, gravel, and clay. The deposits are typically 12 to 15 m thick. These systems are heterogeneous but generally permeable with rapid recharge, through-flow, and discharge associated with interactions with streams, and to a lesser extent with the underlying less permeable shallow rock. Hydraulic conductivity measurements range from 0.3 to 300 metres per day (m/d), averaging around 10 m/d.
- Shallow rock comprising variably weathered and fractured Permian rocks extending to approximately 150 m below the surface, across all sub-cropping Permian units. The shallow rock zone is heterogeneous with relatively impermeable domains separated by more permeable domains, but on the whole it is more permeable than the deeper coal measures. The domains of higher permeability are due to a higher density of fracturing associated with an irregular weathering profile and the near-surface expression of faulting. Aguifer zones observed during drilling occur within 75 m of the surface. Groundwater flow within this zone is more strongly controlled by weathering and fracturing than the attitude of geological strata. Hydraulic conductivity of the shallow rock ranges from 10 m/d to 1x10<sup>-6</sup> m/d at a depth of 150 m, but is typically in the order of  $10^{-3}$  to  $10^{-4}$  m/d.
- Deep coal measures interburden. Sandstone and siltstone units that form the interburden to coal seams are indurated and typically of very low permeability, forming aquitards and confining layers. The permeability of the interburden decreases with depth such that, at the maximum depth of CSG production, it is likely to be in the order of 10<sup>-5</sup> to 10<sup>-7</sup> m/d, or less.
- Deep coal seams. Coal seams tend to be slightly more permeable than interburden and commonly form weak water bearing zones at depth. Permeability and storage are provided by small fractures and cleats in the coal. As with interburden, drill-stem tests clearly show that the permeability of coal seams generally decreases with depth. At the maximum depth of CSG production, the permeability of coal seams is very low (10<sup>-4</sup> to 10<sup>-6</sup> m/d), but may be an order of magnitude higher than the interburden.

The Alum Mountain Volcanics underlie the Permian Coal Measures, and form the impermeable base of the Gloucester Basin. The Alum Mountain Volcanics outcrop in the eastern and western boundaries of the Basin, forming the elevated topography of the Gloucester and Barrington Tops to the west, and the Mograni Range to the east.

# Waukivory pilot project

#### Introduction 3.1

The following section provides an overview of pilot well activities and the monitoring program to date relating to the Waukivory Pilot Project. The monitoring program covers the following phases:

- Baseline sampling: Baseline sampling was undertaken to characterise the pre-Project groundwater and surface water conditions at the Waukivory site. The baseline sampling comprised four sampling events in March, June, September, and October 2014 (Parsons Brinckerhoff 2015a).
- Fracture stimulation: The fracture stimulation took place from 27 October 2014 to 26 November 2014 and the associated monitoring commitments were undertaken during November and December 2014 (Parsons Brinckerhoff 2015a).
- Flowback water: Flowback pumping commenced at WK12 and WK13 in December 2014 and flowback pumping commenced from WK11 and WK14 in January 2015 (Parsons Brinckerhoff 2015b).
- Produced water: The produced water phase had not commenced by 30 September 2015 according to the criteria outlined in the SGMP, which states the transition from flowback to produced water will be marked by a salinity (measured as electrical conductivity (EC)) of 5,000 µS/cm or above and a total return to surface of flowback water equal to the volume of fluids injected during fracture stimulation. It is possible that water chemistry can show that flowback water is chemically indiscernible from produced water prior to the volume and EC criteria being met.

### Waukivory pilot schedule and water volumes 3.2

Pumps were installed in each pilot well at the completion of fracture stimulation to enable flowback to surface of fracture stimulation fluids and later, produced water. Flowback water is transported from the well head in water gathering lines to an above ground storage tank (AST2) for storage and testing prior to disposal (Figure 3.1).

Flowback pumping commenced at WK12 and WK13 in December 2014 and flowback pumping commenced from WK11 and WK14 in January 2015. The periods of operation of the pumps in each pilot well to 30 September 2015 are shown in Figure 3.2. Pumps were periodically switched off for well workover interventions, maintenance and suspension of operations.

The details of the pumping schedule prior to 1 July 2015 are discussed in the preceding surface water and groundwater monitoring reports (Parsons Brinckerhoff 2015a, 2015b & 2015c).

AGL have engaged a third party contractor to transport flowback water stored in AST2 for disposal to a licenced facility.

At the start of the reporting period at 1 July 2015, all pilot wells were operational. WK11, WK13 and WK14 remained operational throughout the reporting period with only minor periods of pumping cessation, lasting less than a few days, which is consistent with standard pilot well operation. WK12 was suspended on 10 September 2015 for the remainder of the reporting period to conduct a well optimisation workover program designed to increase flow from the well by purging sediments from the fractures within the coal seams.

The volumes pumped from each pilot well to 30 September 2015 are shown in Figure 3.3. The total volume and percentage of flowback water recovered up to 30 September 2015 for each pilot well is provided in Table 3.1. The percentage recovered is relative to the total volume of fracture stimulation fluids injected at

each well. As of 30 September 2015, there was approximately 340,000 L of flowback water in storage in AST2 and 1,923,960 L (~1.92 ML) of flowback had been lawfully disposed offsite from AST2.

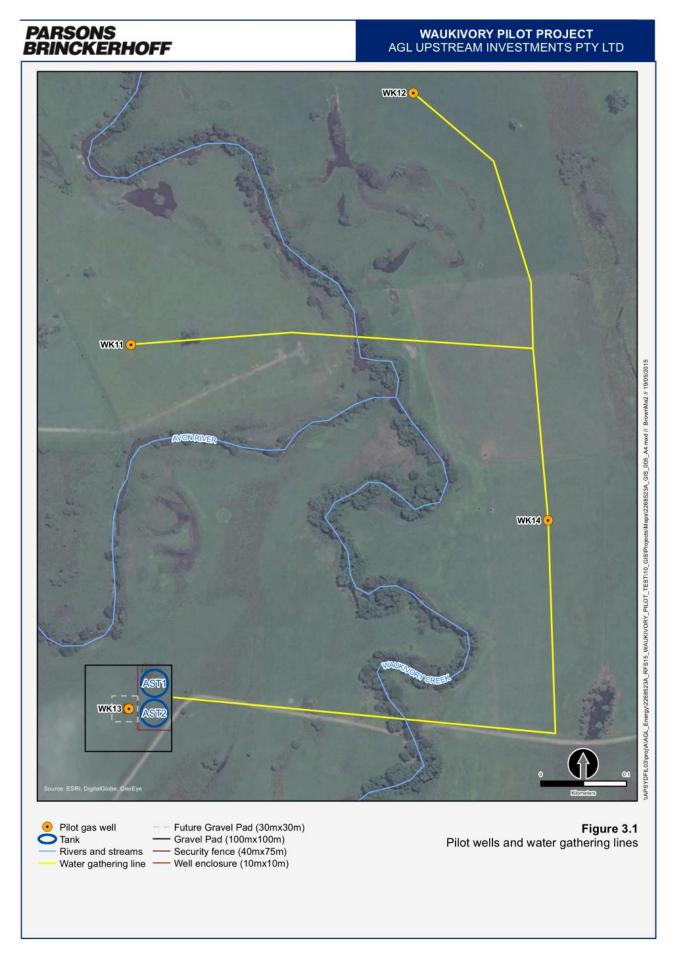



Figure 3.1 Schematic of pilot wells, water gathering lines and storage tanks

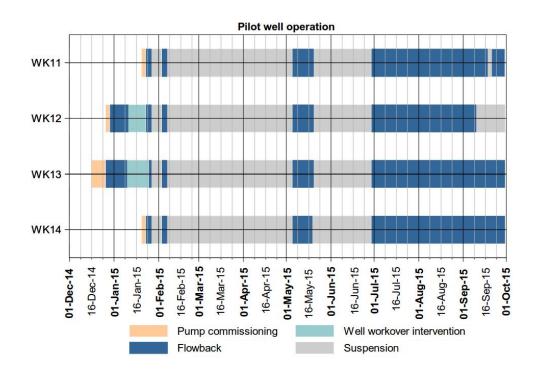



Figure 3.2 Dates of operation of the pilot wells

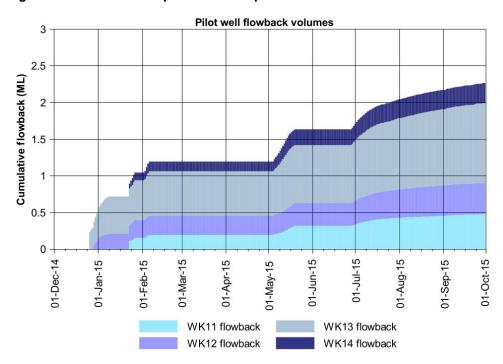



Figure 3.3 Cumulative flowback volumes from the pilot wells

Table 3.1 Flowback volumes recovered up to 30 September 2015

|                                     | WK11    |      | WK12    |      | WK13      |      | WK14    |      |
|-------------------------------------|---------|------|---------|------|-----------|------|---------|------|
|                                     | litres  | %    | litres  | %    | litres    | %    | litres  | %    |
| Volume recovered at 30 September 15 | 480,637 | 61.2 | 419,365 | 87.3 | 1,093,255 | 72.1 | 271,240 | 58.1 |

### 3.3 Monitoring network

AGL's groundwater and surface water monitoring network consists of more than 50 dedicated water monitoring locations across the Gloucester Basin, as shown in Figure 1.2. There are more than four years of baseline monitoring data (water levels and water quality), as reported in the 2014 Groundwater and Surface Water Monitoring Status report (Parsons Brinckerhoff 2014a). Samples are also collected from the pilot wells and storage tank AST2 as part of the Project; locations are shown in Figure 1.3.

#### 3.3.1 Pilot wells

The flowback sampling locations at the Project site (Figure 3.1) are:

- Pilot well WK11
- Pilot well WK12
- Pilot well WK13
- Pilot well WK14
- Storage tank AST2

Details of the perforation and fracture stimulation intervals in each of the pilot wells are provided in Table 3.2 and indicate which coal seams the flowback water (and subsequent produced water) is sourced from. Pilot well WK12 targets mostly shallow coal seams from 371 to 597 mbgl while the other three pilot wells target mostly deeper coal seams from 404 to 964 mbgl.

#### 3.3.2 Groundwater

The current groundwater monitoring network at the Project site (Figure 1.3) consists of:

- Five AGL groundwater monitoring bores (WKMB01, WKMB02, WKMB03, WKMB06A and WKMB06B)
- One AGL multizone monitoring well (WKMB05: six zones monitored)
- One AGL vibrating wire piezometer (PL03: two zones monitored)
- One GRL groundwater monitoring bore (GR-P3)
- One private groundwater monitoring bore (GW080487)

Details of the groundwater monitoring network are provided in Table 3.3. Construction logs for the AGL monitoring bores are provided in Parsons Brinckerhoff (2014b) and Parsons Brinckerhoff (2015a).

WKMB05 is a multizone groundwater monitoring well located 164 m east of WK13. The borehole was drilled to a depth of 1,100 m and initially installed with a geophone array to collect data during the fracture stimulation of WK13 to provide an understanding of fracture propagation.

Following the fracture stimulation of WK13, the geophone array was removed from WKMB05, six intervals were perforated, and an array of packers installed to isolate six horizons within the monitoring bore (Parsons Brinckerhoff 2015a). At each horizon a pressure transducer was installed to measure the piezometric level. The monitored horizons are provided in Table 3.3.

Table 3.2 Perforation and fracture stimulation intervals

| Zone             | Coal seam                       | Perforation interval (mbgl) | Net coal thickness (m) |
|------------------|---------------------------------|-----------------------------|------------------------|
| WK11             |                                 | ·                           |                        |
| 1                | Avon                            | 928.7 – 964.25              | 9.36                   |
| 2                | Glenview                        | 860.5 - 879.2               | 2.18                   |
| 3                | Bowens Road and Fairbairns Lane | 806.6 - 838.0               | 2.46                   |
| 4                | Fairbairns Lane                 | 709.1 – 741.9               | 2.06                   |
| WK12             |                                 |                             |                        |
| 1                | Fairbairns Lane                 | 590.4 – 597.0               | 1.33                   |
| 2                | Roseville (lower)               | 485.7 - 504.2               | 3.24                   |
| 3                | Roseville (upper)               | 406.0 - 424.1               | 2.93                   |
| 4                | Cloverdale                      | 371.3 – 385.0               | 2.42                   |
| WK13             |                                 |                             |                        |
| 1                | Triple                          | 934.2 – 946.3               | 0.91                   |
| 2                | Avon                            | 878.7 – 911.4               | 10.05                  |
| 3                | Glenview                        | 812.5 – 826.5               | 2.35                   |
| 4                | Glenview                        | Not perforated o            | r fracture stimulated  |
| 5                | Fairbairns Lane (lower)         | 694.1 – 738.3               | 2.75                   |
| 6                | Fairbairns Lane (upper)         | 612.2 – 628.8               | 5.93                   |
| 7                | Roseville (lower)               | 540.2 – 575.1               | 2.05                   |
| 8                | Roseville (upper)               | 514.5 – 523.3               | 2.79                   |
| 9                | Cloverdale                      | 451.4 – 474.0               | 2.23                   |
| 10               | Bindaboo                        | 404.5 – 408.4               | 0.75                   |
| WK14             |                                 |                             |                        |
| 1                | Avon                            | 774.5 – 805.8               | 7.5 <sup>(a)</sup>     |
| 2                | Fairbairns Lane (lower)         | 532.5 – 542.0               | 4.23                   |
| 3 <sup>(b)</sup> | Fairbairns Lane (upper)         | 473.8 – 490.8               | 3.81                   |
| 4 <sup>(b)</sup> | Roseville                       | 453.3 – 459.7               | 2.05                   |

<sup>(</sup>a) Estimated.

<sup>(</sup>b) WK14 zones 3 and 4 are acid wash intervals. The acid wash of zones 3 and 4 were conducted simultaneously.

Table 3.3 Current groundwater monitoring network

| Monitoring<br>location                 | Monitoring<br>type       | EPA<br>ID | Total<br>depth<br>(mbgl) | Monitored interval<br>(mbgl) | Lithology               | Formation                                      | Hydro-<br>geological<br>unit                   | Date<br>installed | Sampling<br>method <sup>(e)</sup> |  |
|----------------------------------------|--------------------------|-----------|--------------------------|------------------------------|-------------------------|------------------------------------------------|------------------------------------------------|-------------------|-----------------------------------|--|
| WKMB01                                 | Water levels and quality | 10        | 54.0                     | 47.0 – 53.0                  | Sandstone               | Leloma Formation (upthrust)                    | Shallow rock                                   | February<br>2012  | Micro-purge™                      |  |
| WKMB02                                 | Water levels and quality | 11        | 61.0                     | 51.0 – 60.0                  | Sandstone/<br>siltstone | Leloma Formation (upthrust)                    | Shallow rock                                   | June 2012         | Micro-purge™                      |  |
| WKMB03                                 | Water levels and quality | 12        | 210.0                    | 200.0 – 209.0                | Sandstone               | Leloma Formation                               | Interburden<br>(fault zone)                    | June 2012         | Micro-purge™                      |  |
| PL03 <sup>(a)</sup> Piezometric levels |                          | 14        | 966.3                    | Sensor 2: 496                | Coal                    | Wenham Formation –<br>Bowens Road Coal<br>Seam | Coal                                           | September<br>2013 | n/a                               |  |
|                                        |                          |           |                          | Sensor 3: 463                | Pebble conglomerate     | Wards River conglomerate                       | Interburden                                    |                   |                                   |  |
| WKMB05 <sup>(b)</sup> Piezomet levels  | Piezometric<br>levels    | 85        | 1,100.0                  | Sensor 1: 340.0 – 343.0      | Siltstone/<br>sandstone | Leloma Formation                               | Interburden<br>(aquitard)                      | November<br>2014  | n/a                               |  |
|                                        |                          |           |                          |                              | Sensor 2: 426.0 – 429.0 | Coal                                           | Jilleon Formation –<br>Cloverdale Coal<br>Seam | Coal seam         |                                   |  |
|                                        |                          |           |                          | Sensor 3: 584.0 - 587.0      | Siltstone/<br>sandstone | Jilleon Formation                              | Interburden<br>(aquitard)                      |                   |                                   |  |
|                                        |                          |           |                          | Sensor 4: 595.4 – 598.4      | Coal                    | Jilleon Formation –<br>Fairbairns Coal Seam    | Coal seam                                      |                   |                                   |  |
|                                        |                          |           |                          | Sensor 5: 698.5 – 701.5      | Siltstone/<br>sandstone | Jilleon Formation                              | Interburden<br>(aquitard)                      |                   |                                   |  |
|                                        |                          |           |                          | Sensor 6: 711.0 – 714.0      | Siltstone/<br>sandstone | Jilleon Formation                              | Interburden<br>(fault zone)                    |                   |                                   |  |
| WKMB06A                                | Water levels and quality | n/a       | 13.4                     | 6.4 – 12.4                   | Mixed gravels           | Alluvium                                       | Alluvium                                       | November<br>2014  | Submersible pump                  |  |
| WKMB06B                                | Water levels and quality | n/a       | 63.0                     | 52.0 – 61.0                  | Siltstone/<br>sandstone | Leloma Formation                               | Shallow rock<br>(fault zone)                   | November<br>2014  | Micro-purge™                      |  |

AGL Upstream Investments Pty Ltd Waukivory Pilot Project Surface Water and Groundwater Monitoring Report to 30 September 2015

| Monitoring<br>location | Monitoring<br>type       | EPA<br>ID | Total<br>depth<br>(mbgl) | Monitored interval<br>(mbgl) | Lithology     | Formation | Hydro-<br>geological<br>unit | Date<br>installed | Sampling<br>method <sup>(e)</sup> |
|------------------------|--------------------------|-----------|--------------------------|------------------------------|---------------|-----------|------------------------------|-------------------|-----------------------------------|
| GR-P3                  | Water levels and quality | 90        | 11.0                     | 5.0 – 9.0                    | Mixed gravels | Alluvium  | Alluvium                     | March<br>2011     | Submersible pump                  |
| GW080487               | Water levels and quality | 91        | 60.0                     | 48.0 – 60.0                  | Shale         | Leloma    | Shallow rock                 | n/a               | Submersible pump                  |

<sup>(</sup>a) PL03 is a vibrating wire piezometer. Piezometric level is measured at each sensor.

<sup>(</sup>b) WKMB05 is a multizone monitoring well. Each horizon is installed with a pressure transducer to measure the piezometric level.

#### 3.3.3 Surface water

The surface water monitoring network at the Project site consists of three AGL stream gauge locations (refer to Figure 1.3). Details of these stream gauge locations are provided in Table 3.4.

Table 3.4 Surface water monitoring network

| Stream<br>gauge | EPA<br>ID | Easting<br>(MGA, m) | Northing<br>(MGA, m) | Location  | Stream                     |
|-----------------|-----------|---------------------|----------------------|-----------|----------------------------|
| WKSW01          | 9         | 402002              | 6452208              | Waukivory | Avon River (upstream)      |
| WKSW02          | 8         | 402772              | 6452099              | Waukivory | Waukivory Creek (upstream) |
| WKSW03          | 7         | 402488              | 6453088              | Waukivory | Avon River (downstream)    |

MGA - Map Grid of Australia.

## Water monitoring 3.4

#### 3.4.1 Pilot wells

At the pilot wells, flow meters are installed to measure flow rates of the flowback water (and subsequently produced water) and datalogger instrumentation is installed to monitor water levels and salinity.

#### 3.4.2 Groundwater and surface water

Pressure transducers equipped with a datalogger are installed at all groundwater and surface water monitoring locations. Groundwater levels are recorded every six hours and surface water levels are recorded every 15 minutes. Data from a barometric datalogger are used to correct for the effects of changing barometric pressure on groundwater levels. To calibrate the level recorded by the dataloggers, manual level measurements are recorded prior to logger downloads, which occur every three months.

Dataloggers at the surface water monitoring locations and WKMB06A and WKMB06B also measure electrical conductivity (EC), which provide an indication of salinity, every 15 minutes. The logged EC measurements are checked for deviation in calibration every three months using a hand-held calibrated water quality meter.

Piezometric pressure is recorded every six hours at each of the six sensors in the multizone monitoring well WKMB05, and at the two vibrating wire piezometers in PL03.

Manual groundwater level measurements are recorded for private bore GW080487.

#### 3.4.3 Water quality sampling frequency

The water quality monitoring conditions as stipulated in EPL 20358 are provided in Table 3.5. AGL has adopted a broader analytical suite for most sites (including BTEX); details are provided in the SGMP (AGL 2015a). The frequency of groundwater, surface water and flowback water quality sampling undertaken since Project inception in 2014 is presented in Figure 3.4. The dates and rationale for the sampling at the surface water and groundwater monitoring locations is provided in Appendix A, Table A1.1. The dates and rationale for sampling at the pilot wells and AST2 is provided in Appendix A, Table A1.2.

Sampling associated with the flowback phase of the Project was undertaken during the period 1 July to 30 September 2015. For the purpose of trend analysis, all data from the baseline sampling, fracture stimulation and flowback phases are also presented.

Table 3.5 Monitoring schedule

| Timeframe                                                                                                                | Raw<br>(source)<br>water | Fracture<br>stimulation<br>fluid (raw<br>water plus<br>additives) | Surface<br>water | Shallow<br>ground-<br>water | Flowback<br>water | Produced<br>water |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------|------------------|-----------------------------|-------------------|-------------------|
| During fracture stimulation (each pilot well) <sup>(a)</sup>                                                             | ✓                        | ✓                                                                 |                  |                             |                   |                   |
| Within 24 hours of the completion of the fracture stimulation of each pilot well <sup>(a)</sup>                          |                          |                                                                   | <b>√</b>         | ✓                           |                   |                   |
| 1 week after the fracture stimulation of each pilot well <sup>(a)</sup>                                                  |                          |                                                                   | <b>✓</b>         |                             |                   |                   |
| 2 weeks after completion of the fracture stimulation program <sup>(a)</sup>                                              |                          |                                                                   |                  | ✓                           |                   |                   |
| 4 weeks after completion of the fracture stimulation program <sup>(a)</sup>                                              |                          |                                                                   |                  | <b>✓</b>                    |                   |                   |
| 6 months after the cessation of fracture stimulation <sup>(a)</sup> , then monthly for the next 12 months <sup>(b)</sup> |                          |                                                                   | <b>✓</b>         |                             |                   |                   |
| 6 monthly <sup>(c)</sup>                                                                                                 |                          |                                                                   |                  | ✓                           |                   |                   |
| Fortnightly from commencement of flowback for the first 8 weeks, then every 2 months <sup>(a)</sup>                      |                          |                                                                   |                  |                             | <b>✓</b>          |                   |
| Every 2 months from the transition to produced water to the cessation of the flow testing <sup>(a)</sup>                 |                          |                                                                   |                  |                             |                   | <b>√</b>          |

Stipulated in EPL dated 6 August 2014 a)

Stipulated in EPL dated 1 July 2015 b)

Stipulated in EPL dated 17 September 2015

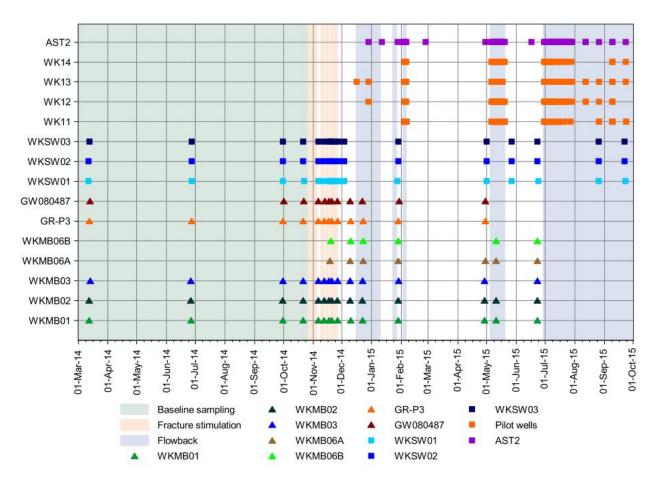



Figure 3.4 Waukivory water quality sampling frequency

#### 3.4.4 Pilot well and AST2 sampling techniques

The techniques, equipment and procedures for water quality sampling from the pilot wells and AST2 are described in detail in the Parsons Brinckerhoff sampling procedure and the AGL pilot well and AST2 sampling procedure shown in Appendix B.

All work undertaken within the hazardous zone at the well surface facilities is conducted under the supervision and instruction of AGL personnel.

#### 3.4.5 Groundwater and surface water sampling techniques

A range of methods is used to obtain groundwater quality samples from the monitoring bores. The most appropriate method for each bore has been selected based on the depth of the bore, the depth to groundwater, and the permeability of the screened formation. Higher yielding monitoring bores are purged and sampled using a submersible pump. Lower yielding bores are sampled using a low flow pump. Details of the sampling technique used at each monitoring location are provided in Table 3.3.

A telescopic sampler is used to collect grab samples from the surface water sites.

The following physico-chemical parameters of each water sample are measured in the field using calibrated hand-held devices:

- Electrical conductivity µS/cm
- Temperature °C
- Dissolved oxygen (DO) % saturation and mg/L

- Oxidation-reduction potential (ORP) mV
- pH pH units
- Total dissolved solids (TDS) mg/L (calculated from EC)
- Free and total residual chlorine were recorded using a Hach Pocket Colorimeter

All sampling from the groundwater and surface water monitoring sites is carried out in accordance with the Parsons Brinckerhoff sampling procedure shown in Appendix B.

#### Chemical analysis of water 3.4.6

Samples are analysed for the comprehensive suite of analytes listed in Table 3.6. The comprehensive suite includes all analytes prescribed for the relevant monitoring points in EPL 20358, and the expanded list in the approved SGMP (AGL 2015a).

Table 3.6 Comprehensive suite of analytes

| Category                                      | Suite of analytes                                                                                      |                                                                                          |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Physico-chemical parameters (Field)           | Electrical Conductivity (EC) Total Dissolved Solids (TDS) Temperature Free and total residual chlorine | pH<br>Redox potential (ORP)<br>Dissolved oxygen                                          |
| Physico-chemical parameters (lab)             | EC<br>TDS (measured)                                                                                   | pH<br>Total suspended solids                                                             |
| Major ions                                    | Calcium<br>Magnesium<br>Sodium<br>Potassium<br>Fluoride                                                | Chloride<br>Carbonate<br>Bicarbonate<br>Sulphate                                         |
| Dissolved metals and minor/<br>trace elements | Aluminium Antimony Arsenic Barium Beryllium Boron Bromine Cadmium Chromium Cobalt Copper               | Lead Manganese Mercury Molybdenum Nickel Selenium Strontium Tin Uranium Vanadium Zinc    |
| Other analytes                                | Total organic carbon (TOC)<br>Silica<br>Free and total residual chlorine                               | Monoethanolamine (MEA) Tetrakis (hydroxymethyl) phosphonium sulphate (THPS) <sup>a</sup> |
| Nutrients                                     | Nitrate<br>Nitrite<br>Total nitrogen                                                                   | Ammonia Total Kjeldahl Nitrogen Reactive and total phosphorus                            |
| Dissolved gases                               | Methane                                                                                                | Un-ionised hydrogen sulphide                                                             |
| Hydrocarbons                                  | Phenolic compounds Polycyclic aromatic hydrocarbons (PAH) Total petroleum hydrocarbons (TPH)           | Benzene, toluene, ethyl-benzene and xylenes (BTEX) Volatile organic compounds (VOC's)    |

Removed from the EPL as of July 2015

Samples were sent to the following laboratories under chain-of-custody protocols:

- Australian Laboratory Service (ALS) Environmental Pty Ltd, Smithfield, Sydney (NATA accredited laboratory) - chemistry analysis
- Envirolab Services, Sydney NSW (NATA accredited laboratory) THPS analysis.

#### 3.4.7 Quality assurance and quality control

## Data collection and data handling QA/QC

The quality assurance (QA) procedures during sampling and the quality control (QC) procedures during data handling are detailed in the Parsons Brinckerhoff sampling procedures and the AGL pilot well and AST2 sampling procedure shown in Appendix B. All sampling was undertaken in accordance with the Australia//New Zealand standards for water quality sampling (AS/NZS 5667).

## Laboratory QA/QC

The laboratories conduct their own internal QA/QC program to assess the accuracy and precision of the analysis and reporting procedures. These programs include analysis of laboratory sample duplicates, spike samples, certified reference standards, surrogate standards/spikes and laboratory blanks. Laboratory QC reports are provided in Appendix C.

## Key analytes: fracture stimulation additives 3.5

EPL 20358 currently specifies two compounds that may be present in fracture stimulation additives that are to be included in the analytical suite for all sites:

- Monoethanolamine (MEA) borate
- Sodium hypochlorite.

Sodium hypochlorite was not used as a fracture stimulation additive by AGL, however as discussed below, the constituents of sodium hypochlorite (free and total residual chlorine) were included in the analytical suite.

Choline chloride (clay stabiliser) was originally included in the list of fracture stimulation additives, however the EPA removed the compound from the EPL in November 2014 as choline chloride was not used as an additive in the fracture stimulation fluid for the Project.

THPS (bactericide, Tolcide) was also originally included in the list of fracture stimulation additives. This compound was removed from the EPL in July 2015 so there has been limited THPS data collection during the current reporting period.

A detailed discussion of the analytical method approval process for the key analytes is provided in the surface water and groundwater monitoring report to 31 March 2015 (Parsons Brinckerhoff 2015b). The analytical techniques and approval dates are summarised in Table 3.7.

Table 3.7 Fracture stimulation additives and breakdown constituents

| Analyte                   | Method<br>approved by<br>EPA | Laboratory<br>Limit of<br>Reporting | Rationale                                         | Limitations as Indicator                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------|------------------------------|-------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monoethanolamine<br>(MEA) | 1 December<br>2014           | 1 μg/L                              | Indicator of monoethanol-amine borate             | Used in several other applications in industry, for example surfactant, detergents and textiles. Ethanolamine is also used in herbicides and is present in urine secreted by mammals, thus native animals and grazing livestock may be a source of detectable background concentrations in surface water and groundwater.                                                              |
| Free chlorine             | Project commencement         | 0.2 mg/L                            | Indicator of sodium hypochlorite                  | Free and total residual chlorine concentrations within fracture stimulation mix may typically be below                                                                                                                                                                                                                                                                                 |
| Total residual chlorine   | Project<br>commencement      | 0.2 mg/L                            | Indicator of sodium hypochlorite                  | detection limits. Free chlorine and total residual chlorine are products associated with the chlorination of water supplies and may influence concentrations within surface stream monitoring points where this product has been introduced.                                                                                                                                           |
| THPS <sup>a</sup>         | 19 December<br>2014          | 50 μg/L<br>(±50 μg/L <sup>b</sup> ) | Compound –<br>fracture<br>stimulation<br>additive | THPS degrades rapidly (within 7 days) through hydrolysis, oxidation, and photo-degradation. Degradation time in flowback water and produced water (deep groundwater) is expected to be longer. Oxidation and photolysis will effectively degrade THPS in surface waters. New methodology for analysis of THPS with high level of uncertainty at the PQL level (±50 µg/L <sup>b</sup> ) |

Removed from the EPL as of July 2015 a)

Groundwater and surface water monitoring data collected during 2014 showed that MEA, THPS and free and total residual chlorine were naturally present in the surrounding environment (Parsons Brinckerhoff 2015a). The EPA subsequently conducted independent investigations (EPA 2015a, 2015b and 2015d) into the occurrence of these analytes; the key conclusions of which are as follows:

- "There is insufficient scientific information on monoethanolamine to determine whether the monoethanolamine concentrations recorded were due to natural or other causes. However the EPA did conclude that it was unlikely that the monoethanolamine detections were the result of hydraulic fracturing operations introducing the chemical to the groundwater"
- "It was unlikely that the sporadic THPS detections recorded were a result of contamination of aquifers and surface waters as a result of hydraulic fracturing operations"
- "it was concluded that although levels of THPS (as formaldehyde) were detected, this could not be attributed to actions by AGL"
- "There are many natural sources of formaldehyde (the immediate breakdown product of Tolcide [THPS] and detected by the method) due to breakdown of organic compounds in nature. The validation report indicates the water samples used for method validation already had a background of formaldehyde, at ~ 30, 12 and 20 µg/L in drinking, creek and groundwater, respectively"
- The apparent detections of sodium hypochlorite (as free residual chlorine and total chlorine) were recorded both upstream and downstream of AGLs activities and before during and after hydraulic fracturing.

Envirolab (2015)

The investigation confirmed the licensee did not use sodium hypochlorite (chlorine) in the hydraulic fracturing. The licensee had decided to use Tolcide [THPS] for this purpose.

Following these investigations, the EPL was revised to remove THPS and to remove the limits for MEA and sodium hypochlorite such that a detection does not constitute a license breach as MEA, chlorine and THPS are naturally occurring in the environment.

## Assessment criteria and trigger response 3.6

The criteria used for the assessment of monitoring data follows the protocols provided in the SGMP. Specific analyte trigger values at this stage in the Project are not considered appropriate due to the natural variability in groundwater and surface water quality at different locations across the site and at different depths in the geological strata. There are also insufficient sampling events to build up enough confidence/statistical sample pool to enable setting trigger threshold values as described in ANZECC (2000). Instead, general trigger criteria are used to assess monitoring sites as follows:

- Water quality trends associated with fracture stimulation additives or relevant breakdown/elemental constituents as key analytes within surface water and groundwater are monitored as part of the flowback and produced water monitoring program. The fracture stimulation additives readily dissolve and dissociate into intermediate products or elemental constituents.
- The water quality triggers are defined as a distinct deviation from typical observed trends in groundwater and surface water quality that can be related back to pilot well activities, the analytical technique developed to identify such deviations is described in Section 5.5.
- Water level response, i.e. drawdown, is attributed to depressurisation activities and provides a measure of potential connectivity between deep coal seams and the overlying shallow rock and alluvial water resources. The assessment of monitoring data against response triggers is provided in Section 4.2.1. The SGMP (AGL 2015a) details the water level response triggers as follows:
  - 'The adopted trigger is a water level decline of more than 2 m (outside of the normal range) in a monitoring bore in an aquifer less than 75 m from surface, or more than 5 m (outside of the normal range) for deeper (non-coal) monitoring zones. It is expected that at least three months of reliable water level data would be required to have confidence in any unusual water level trend.'
- Trigger levels for BTEX compounds and hydrogen sulphide at AST2 are based on the protection of human health and the environment, and are derived from an assessment of the latest water quality data, exposure pathways and chronic exposure levels. The trigger levels are shown in Table 3.8 and detailed in Table 6.2 of the SGMP (AGL 2015a).
- Change in beneficial use of an aquifer by applying the beneficial use matrix designed within the SGMP (AGL 2015a). The aquifer type refers to the alluvial and shallow fractured rock systems. The change in beneficial use is determined from a review of yield and EC (as an indicator of salinity) over the time period as detailed in Section 7.

Table 3.8 Adopted thresholds for BTEX and hydrogen sulphide at AST2

| Analyte           | Threshold for investigation (µg/L) | Threshold for action (μg/L) |  |  |
|-------------------|------------------------------------|-----------------------------|--|--|
| Benzene           | 1,900                              | 19,000                      |  |  |
| Toluene           | 360,000                            | 3,600,000                   |  |  |
| Ethyl benzene     | 160,000                            | 1,600,000                   |  |  |
| Xylenes           | 150,000                            | 1,500,000                   |  |  |
| Hydrogen sulphide | 2,000                              | 20,000                      |  |  |

Source: Surface and groundwater management plan for the Waukivory Pilot Program Table 6.2 (AGL 2015a)

The SGMP (AGL 2015a) provides trigger management response protocols to be adopted for confirmed or possible changes in water resources or associated water level/water quality impacts arising from pilot well activities.

## Water levels

#### Pilot well water levels 4.1

Water levels in the pilot wells are highly variable and dependent on pump operation, including fluctuating pumping rates and the build-up/release of gas pressure within the well casing above the water level. When pumping is taking place, water level declines (drawdown) are observed in the pilot wells and when pumping ceases the water levels re-equilibrate (recover) towards that of the target formations.

The pump commissioning and flowback phases comprise periods where the pumps have been in operation and periods where pumping has ceased (due to workover intervention or 'shut-in' during suspension). These periods and the corresponding water level response in the pilot wells are shown in Figure 4.1.

When the wells are shut-in the build-up of gas pressure within the casing above the water level can attenuate recovery or suppress water levels. The water level responses to the ongoing casing pressure management conducted by AGL are evident in the hydrographs presented in Figure 4.1 and discussed below.

At the start of the reporting period at 1 July 2015, water levels at all pilot wells had started to decline in response to the recommencement of flowback on 29 June 2015. Water levels declined approximately 800 m at WK11, 450 m at WK12, 600 m at WK13 and 500 m at WK14 by early/mid-July. From mid-July, water levels at all pilot wells have remained low in response to the continuation of flowback. Fluctuations in water levels of approximately 50 to 100 m are observed at all pilot wells throughout the reporting period.

The pilot wells remained on flowback at the end of the reporting period on 30 September 2015, with the exception of WK12. Flowback at WK12 was suspended on 10 September 2015 due to workover activities. The water level dataloggers were removed from WK12 for the duration of the workover.

Details of the pumping schedule and corresponding water levels prior to 1 July 2015 are discussed in the preceding surface water and groundwater monitoring reports (Parsons Brinckerhoff 2015a, 2015b & 2015c).

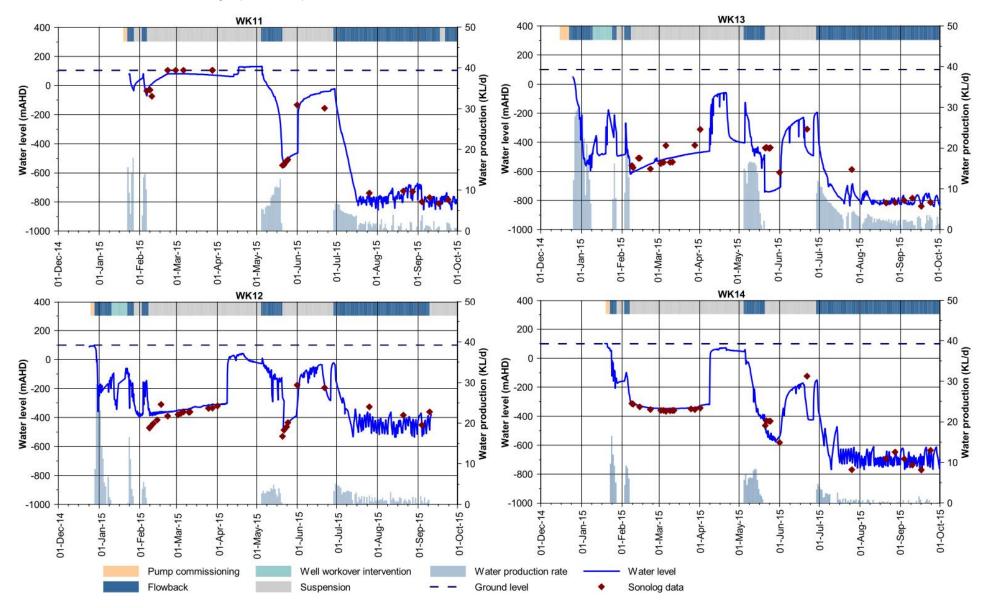



Figure 4.1 Water levels and flowback volumes at the Waukivory pilot wells

### Groundwater levels 4.2

The figures that correspond to the discussion on groundwater levels for the Waukivory monitoring locations are as follows:

- WKMB01, WKMB02, WKMB03, WKMB06A, WKMB06B, GR-P3 and GW080487 for the period March 2014 to September 2015, including baseline monitoring, fracture stimulation and flowback (Figure 4.2a).
- WKMB01, WKMB02, WKMB03, WKMB06A and WKMB06B, GR-P3 and GW080487 for the period December 2014 to September 2015 covering the flowback phase in detail (Figure 4.2b).
- Alluvial (GR-P3 and WKMB06A) and interburden (WKMB03) water level response triggers compared to groundwater levels for the period December 2014 to September 2015 (Figure 4.3).
- Shallow rock (WKMB01, WKMB02 and WKMB06B) water level response triggers compared to groundwater levels for the period December 2014 to September 2015 (Figure 4.4).
- WKMB05 monitoring intervals and WK13 perforated intervals (Figure 4.5).
- Piezometric levels in multizone monitoring well WKMB05 compared to water levels in WK13 for the period November 2014 (installation) to September 2015 (Figure 4.6).
- WKMB05 water level response triggers compared to piezometric levels for the period November 2014 (installation) to September 2015 (Figure 4.7).
- Piezometric levels in vibrating wire piezometer PL03 for the period March 2014 to September 2015, including baseline monitoring, fracture stimulation and flowback (Figure 4.8).

Spikes depicting rapid groundwater level decline followed by recovery on the hydrographs are associated with water sampling events that have taken place from March 2014. This water level response has been the subject of an investigation by the EPA, which confirmed that the fluctuations are the result of groundwater sampling (EPA, 2015d).

Water level response triggers are described in Section 4.2.1. A description of the variation in groundwater levels in the different hydrogeological units during the flowback phase is provided below.

#### 4.2.1 Water level response triggers

The SGMP (Section 6.4.1, pages 41 - 43) (AGL 2015a) states that:

'The adopted trigger is a water level decline of more than 2 m (outside of the normal range) in a monitoring bore in an aquifer that is less than 75 m from surface, or more than 5 m (outside the normal range) for deeper (non-coal) monitoring zones. It is expected that at least three months of reliable water level data would be required to have confidence in any unusual water level trend'.

Water level response triggers have been calculated as shown in Table 4.1. The normal range of water levels has been calculated based on the 5<sup>th</sup> and 95<sup>th</sup> percentile of historical data. Using these percentiles removes anomalous data that is outside of the normal range, for example, sampling events resulting in a decline in water levels are below the 5<sup>th</sup> percentile, and large rainfall events resulting in a significant increase in water levels are above the 95<sup>th</sup> percentile. The percentiles (and therefore water level response triggers) have been calculated for different historical date ranges for each monitoring bore based on the following rationale:

WKMB01, WKMB02, WKMB03 and GR-P3 percentiles have been calculated from water level data for the period from monitoring bore installation through to the start of fracture stimulation (27 October 2014).

- WKMB06A and WKMB06B percentiles have been calculated for the period from water level data from monitoring bore installation (18 November 2014) through to the end of the previous reporting period (30 June 2015).
- WKMB05 sensors 1 and 3 percentiles have been calculated from piezometric level data since equilibration following well installation (1 December 2014) through to the end of the previous reporting period (30 June 2015).
- WKMB05 sensors 2 and 4 are monitoring piezometric levels in coal zones, and therefore water level response triggers are not applicable according to the SGMP.
- There is uncertainty as to whether the piezometric levels in WKMB05 sensors 5 and 6 have reached equilibration following installation. Consequently, there is less than three months of reliable water level data to calculate the normal range with certainty. Therefore water level response triggers are not currently considered applicable for the existing monitoring dataset, and will be reviewed as additional monitoring data becomes available.

In order to determine if a water level response trigger has been reached at any of the monitoring locations during the last reporting period, the 5<sup>th</sup> percentile has been calculated from water level data between 1 July 2015 and 30 September 2015 (Table 4.1). Using the 5<sup>th</sup> percentile removes misrepresentative water levels that are the result of sampling events.

Groundwater levels compared to the water level response triggers are plotted in Figures 4.3, 4.4 and 4.7, and discussed in Sections 4.2.2 to 4.2.6.

Table 4.1 Water level response triggers

|                        | Hydro-<br>geological<br>unit         | Normal range              |                                               |                                     |                            | 1 Jul to<br>30 Sept<br>2015                  |                                                                                         |  |
|------------------------|--------------------------------------|---------------------------|-----------------------------------------------|-------------------------------------|----------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------|--|
| Monitoring<br>location |                                      | Date range                | 95 <sup>th</sup><br>percent<br>-ile<br>(mAHD) | 5 <sup>th</sup> percent -ile (mAHD) | Trigger<br>level<br>(mAHD) | 5 <sup>th</sup><br>percent-<br>ile<br>(mAHD) | Comments                                                                                |  |
| WKMB01                 | Shallow rock<br><75m                 | 9 Feb 12 –<br>27 Oct 14   | 96.0                                          | 95.3                                | 93.3                       | 95.5                                         | Trigger not reached, steady trend                                                       |  |
| WKMB02                 | Shallow rock<br><75m                 | 4 Jun 12 –<br>27 Oct 14   | 96.7                                          | 96.0                                | 94.0                       | 96.2                                         | Trigger not reached, decreasing trend                                                   |  |
| WKMB03                 | Interburden<br>(fault zone)<br>>75m  | 4 Oct 13 –<br>27 Oct 14   | 98.9                                          | 97.9                                | 92.9                       | 98.4                                         | Trigger not reached, increasing trend                                                   |  |
| WKMB06A                | Alluvium<br><75m                     | 18 Nov 14 –<br>30 June 15 | 97.5                                          | 96.2                                | 94.2                       | 96.8                                         | Trigger not reached, decreasing trend                                                   |  |
| WKMB06B                | Shallow rock<br>(fault zone)<br><75m | 18 Nov 14 –<br>30 June 15 | 97.3                                          | 96.4                                | 94.4                       | 97.1                                         | Trigger not reached, decreasing trend                                                   |  |
| GR-P3                  | Alluvium<br><75m                     | 10 Mar 11 –<br>27 Oct 14  | 98.1                                          | 96.7                                | 94.7                       | 97.1                                         | Trigger not reached, decreasing trend                                                   |  |
| WKMB05<br>sensor 1     | Interburden<br>>75m                  | 1 Dec 14 –<br>30 June 15  | 108.6                                         | 104.6                               | 99.6                       | 104.0                                        | Trigger not reached, steady trend                                                       |  |
| WKMB05<br>sensor 2     | Cloverdale<br>Coal Seam<br>>75m      | 1 Dec 14 –<br>30 June 15  | 108.0                                         | 102.6                               | n/a                        | 101.7                                        | Coal monitoring zone, therefore trigger not appropriate                                 |  |
| WKMB05<br>sensor 3     | Interburden<br>>75m                  | 1 Dec 14 –<br>30 June 15  | 113.0                                         | 112.2                               | 107.2                      | 111.8                                        | Trigger not reached, steady trend                                                       |  |
| WKMB05<br>sensor 4     | Fairbairns<br>Coal Seam<br>>75m      | 1 Dec 14 –<br>30 June 15  | 116.9                                         | 116.7                               | n/a                        | 116.6                                        | Coal monitoring zone, therefore trigger not appropriate                                 |  |
| WKMB05<br>sensor 5     | Interburden<br>>75m                  | 1 Feb 15 –<br>30 June 15  | 145.3                                         | 142.8                               | tbd                        | 141.9                                        | Initial equilibration<br>uncertain, <3 months<br>reliable water level<br>data available |  |
| WKMB05<br>sensor 6     | Interburden<br>>75m                  | 1 Feb 15 –<br>30 June 15  | 171.5                                         | 169.8                               | tbd                        | 168.5                                        | Initial equilibration<br>uncertain, <3 months<br>reliable water level<br>data available |  |

tbd - to be determined

#### 4.2.2 Alluvium

During the current reporting period (1 July 2015 to 30 September 2015) groundwater levels in alluvial monitoring bores GR-P3 and WKMB06A show a declining trend with an overall decrease of approximately 0.3 m in response to the relatively dry conditions experienced during July and August 2015. The rate of decline reduces towards the end of the reporting period due to the increase in rainfall during late August and September 2015, however a clear response to individual rainfall events is not apparent, which is likely to be due to a soil moisture deficit establishing during relatively dry periods and limiting the rate of recharge through the unsaturated zone.

Groundwater levels in alluvial monitoring bores GR-P3 and WKMB06A show no response attributable to flowback pumping. Groundwater levels in the alluvium do not exceed the water level response trigger (Table 4.1 and Figure 4.3).

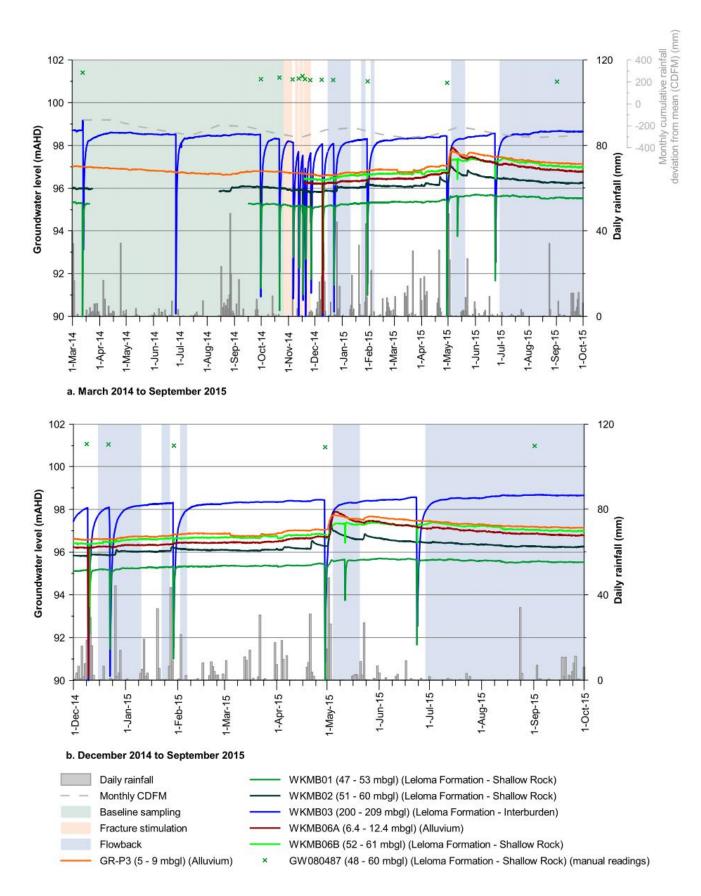
#### Shallow rock 4.2.3

During the current reporting period (1 July 2015 to 30 September 2015) groundwater levels in the shallow rock monitoring bores WKMB01, WKMB02 and WKMB06B show an overall decrease of approximately 0.1 to 0.3 m in response to the relatively dry conditions experienced during July and August 2015. Due to the increase in rainfall during late August and September 2015 the rate of decline reduced and at WKMB01 and WKMB02 the water levels remained relatively steady towards the end of the reporting period (Figure 4.2b).

Groundwater levels in monitoring bores WKMB01, WKMB02 and WKMB06B show no response attributable to flowback pumping. Groundwater levels in the shallow rock do not exceed the water level response trigger (Table 4.1 and Figure 4.4).

Manual groundwater measurements at private monitoring bore GW080487 screened in the shallow rock do not show a significant change in groundwater levels over the reporting period. Groundwater levels in GW080487 show no response attributable to flowback pumping (Figure 4.2b).

#### 4.2.4 Interburden of deeper coal measures


During the current reporting period (1 July 2015 to 30 September 2015) groundwater levels in monitoring bore WKMB03, screened in the interburden (and thrust fault zone), show a gradual increase of approximately 0.4 m (Figure 4.2b). The increasing trend in water levels is attributable to a delayed response to the higher than average rainfall during April and May 2015.

Groundwater levels at WKMB03 show a distinctive delayed recovery response to sampling events, which is indicative of very low hydraulic conductivity within the interburden/fault zone. Increasing groundwater levels at WKMB03 from January 2015 to September 2015 are due to a delayed recovery response after the high frequency groundwater sampling events carried out during the fracture stimulation period in late 2014 (Figure 4.2a).

Groundwater levels in monitoring bore WKMB03 show no response attributable to flowback pumping. Groundwater levels in the interburden do not exceed the water level response trigger (Table 4.1 and Figure 4.3).

#### 4.2.5 Thrust fault zone

Both WKMB03 and WKMB06B are screened across the thrust fault zone, and WKMB06A is screened within the alluvium above the thrust fault zone. Hydrographs from these three monitoring bores show no anomalous water level responses and therefore provide no evidence of connectivity between the fracture simulation zones and the shallow groundwater system via the thrust fault zone.



NB. Spikes depicting rapid groundwater level decline followed by recovery on the hydrographs are associated with water sampling events that have taken place from March 2014. This water level response has been the subject of an investigation by the EPA, which concluded that the fluctuations are the result of groundwater sampling (EPA 2015d).

Figure 4.2 Groundwater levels and rainfall at the Waukivory monitoring bores

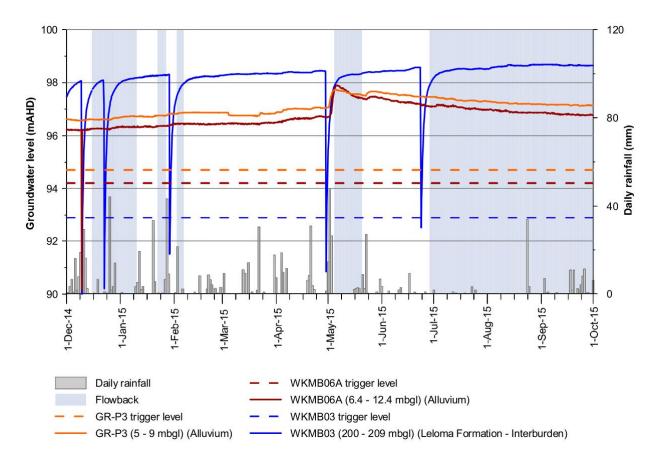



Figure 4.3 Groundwater and trigger levels at the Waukivory alluvial and interburden monitoring bores

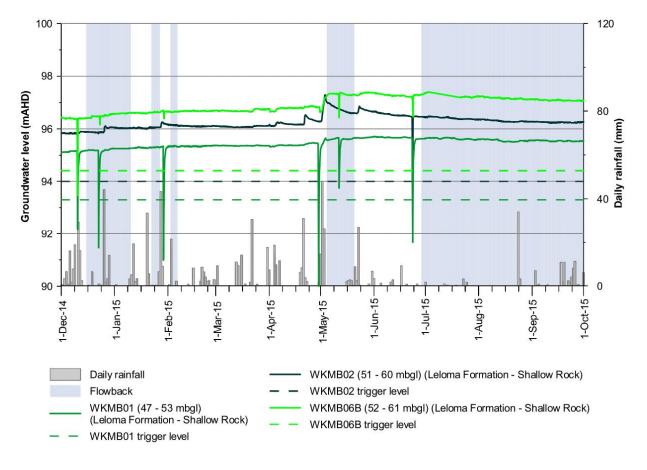



Figure 4.4 Groundwater and trigger levels at the Waukivory shallow rock monitoring bores

#### 4.2.6 Deep groundwater systems

Deep groundwater (>300 mbgl) is monitored by WKMB05 (multizone monitoring well) and PL03 (vibrating wire piezometer). The monitored intervals are both deep coal seam water bearing zones and overlying aquitards.

## WKMB05

A comparison of the WKMB05 monitored intervals to WK13 perforated intervals is shown in Figure 4.5. The westerly dip of geological strata is such that coal seams intersected by WKMB05 are intersected at a greater depth in WK13 which is located 164 m to the west.

Piezometric levels in WKMB05 for the period November 2014 (installation) to 30 September 2015 are shown in Figure 4.6. The rapid changes in the piezometric levels measured at all sensors on 25 November 2014 occurred during the commissioning of the packer system. There are divergent pressure trends at WKMB05 with different sensors showing downward and upward trends during the reporting period (1 July 2015 to 30 September 2015):

- Piezometric levels at sensor 1 decrease by about 0.6 m
- Piezometric levels at sensor 2 decrease by about 0.8 m
- Piezometric levels at sensor 3 decrease by about 0.05 m
- Piezometric levels at sensor 4 increase by about 0.5 m
- Piezometric levels at sensor 5 decrease by about 0.9 m
- Piezometric levels at sensor 6 decrease by about 1.2 m.

It is possible that the slight decrease in piezometric level at WKMB05 sensor 2 (Cloverdale coal seam) represents a pressure response to flowback at WK13. The piezometric level at sensor 1 has declined since March 2015; however, the piezometric level at the end of the current reporting period is similar to the piezometric level in December 2014. The variation in piezometric level at Sensor 1 during 2015 may be a natural occurrence and not a response to flowback since there has been almost no net change in piezometric level since flowback commenced in December 2014.

Sensors 3 and 4 continued to show a gradual decline until mid-August before increasing towards the end of the reporting period. This response is not considered to be attributable to flowback pumping because pumping continued until the end of September 2015 (Figure 4.6) whilst the gradual decline at sensors 3 and 4 continued until mid-August before the piezometric levels increased to the end of the reporting period. Furthermore, a decline in pressure has been observed since January 2015 throughout periods when flowback pumping has not occurred. There is uncertainty as to whether the piezometric levels in WKMB05 sensors 5 and 6 have reached equilibration following installation. A long recovery period following installation is widely observed in deep VWP installations in low permeability formations (Parsons Brinckerhoff, 2014c). The piezometric response will continue to be reviewed as additional monitoring data becomes available.

Piezometric levels in the deep groundwater systems do not exceed the water level response triggers shown in Table 4.1 and Figure 4.7.

Comparing each of the hydrographs at WKMB05 there is an apparent and pronounced upward gradient between the deepest zones (with the highest artesian pressures) and the shallowest zones (with the lowest artesian pressures). This data conforms to the conceptual model with upward flow in the centre of the Basin and aquitards confining the piezometric pressures of the underlying strata.



Figure 4.5 Schematic comparison of WK13 perforated intervals and WKMB05 monitored intervals

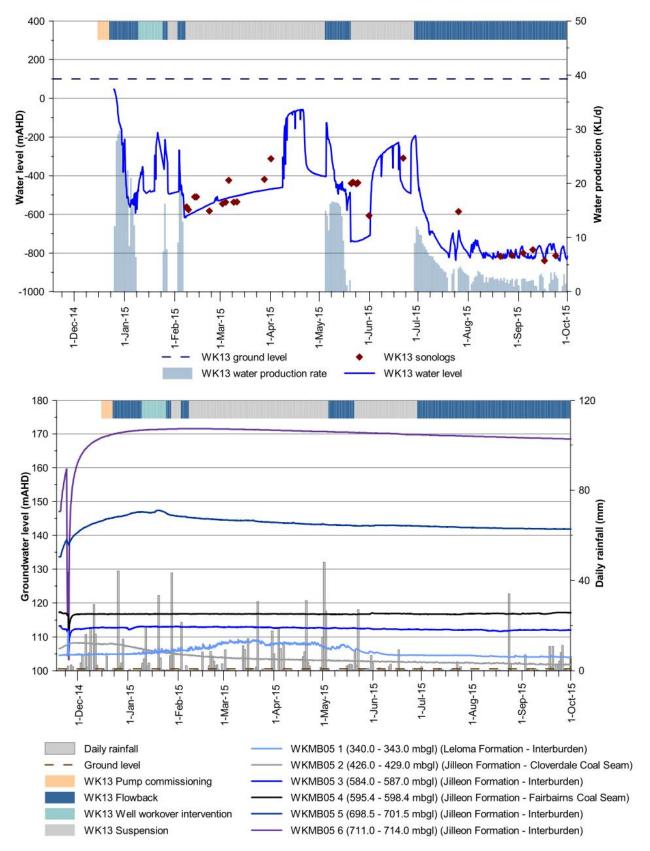



Figure 4.6 Groundwater levels and rainfall at multizone monitoring well WKMB05 compared to water levels at WK13

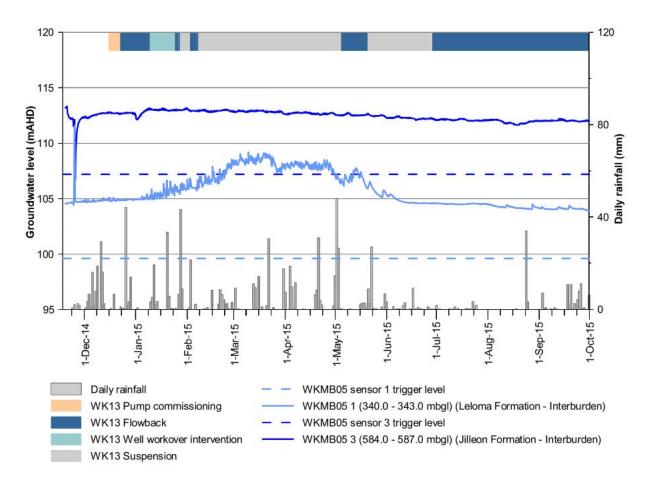



Figure 4.7 Groundwater and trigger levels at multizone monitoring well WKMB05

## **PL03**

Vibrating wire piezometer PL03 was installed in September 2013. Sensor 2 (496 mbgl) located in the Bowens Road coal seam shows a decrease in piezometric pressure of approximately 20 m since installation with a steady declining trend. Sensor 3 (463 mbgl) located in interburden shows a decrease in piezometric pressure of approximately 60 m since installation. The declines in piezometric level may reflect the long term readjustment of pore pressure in the surrounding rock since installation and are not considered to represent natural trends. However, since February 2015 the piezometric level in sensor 3 has remained relatively constant, and shows equilibration.

A long equilibration period has been observed at VWPs installed at the AGL Hunter Gas Project. At that location, groundwater levels took over one year to equilibrate following installation (Parsons Brinckerhoff, 2014c) and was considered to reflect pore pressures in low permeability formations adjusting and recovering towards hydrostatic pressures following the local disturbance associated with installation.

During the reporting period (1 July 2015 to 30 September 2015) piezometric levels at PL03 sensor 2 have decreased by approximately 2 m and at PL03 sensor 3 have increased by about 0.5 m (Figure 4.8).

Despite the apparent equilibration, there is still uncertainty that the data from PL03 is representative of the target formations and consequently this monitoring site has not been included in the water level response trigger assessment at this stage.

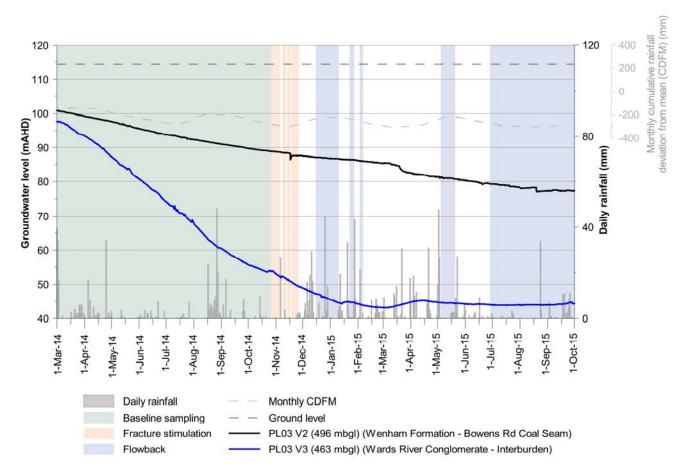



Figure 4.8 Groundwater levels and rainfall at vibrating wire piezometer PL03

#### Vertical hydraulic gradients 4.2.7

Groundwater levels at the WKMB06A and WKMB06B nested monitoring site show a very slight upward vertical gradient between the shallow rock and the alluvium. An upward vertical component of hydraulic gradient is characteristic of groundwater discharge areas. This is consistent with the conceptual hydrogeological model whereby deeper groundwater migrates through the shallow fractured rock and into the base of the alluvium before mixed shallow and deep groundwater discharges as baseflow to surface waters.

Groundwater levels at WKMB03 within the interburden of the deeper coal measures are higher than in the shallow rock monitoring bores WKMB01, WKMB02 and WKMB06B and indicate an upward vertical gradient and probable confining conditions attributed to the low permeability rock (Figure 4.2). Vertical seepage is likely to be limited and slow due to the low permeability of the interburden units. Furthermore, this data provides no indication that the upper thrust zone is a conduit for deep groundwater or that it is in hydraulic connection with shallow aquifers.

Piezometric levels at WKMB05 sensors 1 to 6 show an upward vertical gradient prior to any substantial flowback pumping in January 2015 (Figure 4.6). An upward trend in piezometric levels at WKMB05 sensor 1 and a downward trend in piezometric levels at sensor 2 from January 2015 to May 2015 have resulted in a reversal of this gradient. This trend may be related to flowback from WK13 leading to depressurisation of the Cloverdale coal seam (sensor 2).

WKMB05 sensors 5 and 6 show piezometric levels of approximately 45 m and 70 m respectively above ground level (Figure 4.6). Piezometric pressures at these depths and in the centre of the basin are expected to be artesian (above ground elevation); although initial numerical modelling suggests that the piezometric pressures at the deepest sensors should be approximately 10 to 20 m above ground level. There is

uncertainty as to whether the piezometric levels in WKMB05 sensors 5 and 6 have reached equilibration following installation; this will be reviewed as additional monitoring data becomes available.

#### Surface water levels 4.3

Surface water levels for the period September 2014 (installation) to 30 September 2015 are shown in Figure 4.9.

Water levels at stream gauge sites WKSW01 (Avon River upstream of the Project site), WKSW02 (Waukivory Creek upstream of the Project site) and WKSW03 (Avon River downstream of the Project site) show a slight overall increase in water levels over the reporting period (1 July 2015 to 30 September 2015).

Water levels in the Avon River (WKSW01 and WKSW03) show an increase of about 0.3 m in response to the rainfall event on 28 August 2015.

Water levels in Waukivory Creek (WKSW03) do not show a significant response to the rainfall event on 28 August 2015. There is an overall increase in water levels of about 0.3 m over the reporting period in response to rainfall in late-August and September.

Water levels at the Waukivory stream gauge sites show no response attributable to flowback pumping from the pilot wells (Figure 4.9).

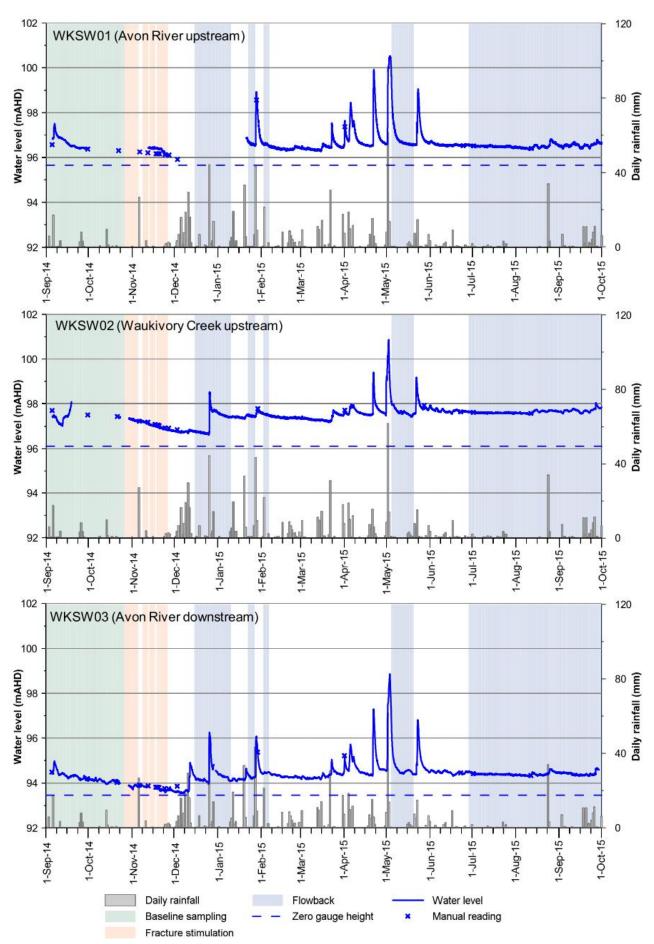



Figure 4.9 Surface water levels and rainfall at the Waukivory stream gauges

# Water quality

#### Introduction 5.1

This section presents water quality monitoring data for the period 1 July 2015 to 30 September 2015.

For the purpose of identifying trends, data collected since baseline sampling commenced in March 2014 is also included in the time-series charts in this report. The water quality assessment is described for the following components within this chapter:

- Fracture stimulation fluid composition (for comparison to flowback water quality)
- Pilot well water quality monitoring results
- AST2 water quality monitoring results
- Surface water quality monitoring results

There has been no groundwater quality sampling during the current reporting period in accordance with the sampling schedule stipulated in EPL 20358 and the SGMP (AGL 2015a).

A comprehensive suite of elements and compounds were analysed in each sample (Section 3). Water quality results and analysis for all sampling sites are provided in the Appendices.

#### 5.2 Fracture stimulation fluid

Chemical analysis of the fracture stimulation fluid is presented in Table 5.1, and further details are provided in the Waukivory Pilot Project Surface Water and Groundwater Monitoring Report to 31 December 2014 (Parsons Brinckerhoff 2015a). For context, summary findings of chemical analysis of waters during the fracture stimulation period in November 2014 were as follows:

- The injected fracture stimulation fluid contained lower concentrations of total dissolved solids, major ions, and trace metals than the Waukivory groundwater and surface water monitoring sites.
- BTEX and some phenolic compounds were detected in baseline groundwater data, but were not present in the fracture stimulation fluids. Total petroleum hydrocarbons (TPH) were detected in both groundwater and fracture stimulation fluid at low concentrations.
- Monoethanolamine (MEA) was present in concentrations that are 2 to 3 orders of magnitude higher in the fracture stimulation fluid than in surface water and groundwater; however the presence of MEA in groundwater (detected in baseline monitoring) prior to any fracture stimulation activities and raw water during fracture stimulation indicates an alternative source other than the fracture stimulation fluid.
- THPS was also present in the fracture stimulation fluid at concentrations 2 to 3 orders of magnitude higher than the surface water and groundwater. However, there are no confirmed detections of this analyte at the water monitoring sites which could be attributed to fracture stimulation activities.
- Free and total residual chlorine (constituents of sodium hypochlorite) detections occurred at selected surface water and groundwater sites. Sodium hypochlorite was not used as a fracture stimulation additive for the Project.

Groundwater and surface water monitoring data collected during 2014 showed that MEA, THPS and free and total residual chlorine were naturally present in the surrounding environment (Parsons Brinckerhoff 2015a). The EPA subsequently conducted independent investigations (EPA 2015a, 2015b and 2015c) into the occurrence of these analytes; the key conclusions are detailed in Section 3.5.

Table 5.1 Summary of fracture stimulation fluid concentrations

| Parameter                        | Fracture stimulation fluid                                                                                                 |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Monoethanolamine (MEA)           | Values ranged from 4,200 μg/L to 5,690 μg/L.                                                                               |
| THPS                             | Values ranged from 7,800 μg/L to 13,000 μg/L.                                                                              |
| Free and total residual chlorine | Below LoR (0.2 mg/L).                                                                                                      |
| BTEX compounds                   | Below LoR (2 μg/L).                                                                                                        |
| Boron                            | Values ranged from 82.5 mg/L to 115.0 mg/L.                                                                                |
| Sulphate                         | Values ranged from <10 mg/L to 63 mg/L.                                                                                    |
| Total phosphorus                 | Values ranged from 7.1 mg/L to 16.0 mg/L.                                                                                  |
| Total nitrogen (as N)            | Values ranged from 48.0 mg/L to 75.8 mg/L.                                                                                 |
| Salinity (EC)                    | 470 to 653 μS/cm                                                                                                           |
| рН                               | Alkaline pH (8.16 to 9.09)                                                                                                 |
| Major ions                       | Na -HCO <sub>3</sub> -Cl                                                                                                   |
| Dissolved metals                 | Below LoR: Sb, Be, Cd, Cr, Co, Hg, Se, U, V.                                                                               |
|                                  | Detected dissolved metal concentrations were typically higher than in the raw water (with the exception of Fe).            |
| Nutrients                        | Ammonia, nitrate and nitrite concentrations (as N) ranged between the LoR (0.1 mg/L) and 0.34 mg/L.                        |
|                                  | Total organic carbon concentrations ranged from 815 to 873 mg/L.                                                           |
| Dissolved methane                | Below LoR (10 μg/L).                                                                                                       |
| Petroleum hydrocarbons           | Phenols and PAHs were below LORs. TPH $C_{10}$ - $C_{36}$ (sum) ranged from below LoR (50 $\mu g/L$ ) to 1,860 $\mu g/L$ . |

## 5.3 Pilot well (flowback) water quality

The flowback water quality is influenced by the fracture stimulation fluid and the water quality of the target formations of the pilot well. During the flowback phase the flowback water quality will trend towards that of the formation and the concentration of the fracture stimulation additives will decrease to background levels.

A summary of fracture stimulation fluid chemistry is provided in Table 5.1, and further details are provided in the Waukivory Pilot Project Surface Water and Groundwater Monitoring Report to 31 December 2014 (Parsons Brinckerhoff 2015a).

Water quality data from deep coal seams (formation water) within the Gloucester Basin is available from flow testing of the Craven 06 and Waukivory 03 gas wells in 2013 (Parsons Brinckerhoff 2014d), and flow testing of the Craven 06 gas well in 2014 (Parsons Brinckerhoff 2015c).

In the previous Waukivory surface water and groundwater monitoring reports (Parsons Brinckerhoff 2015a, 2015b and 2015c) four analytes were selected as indicators of the migration of flowback water towards 'typical' Gloucester Basin coal seam formation water ('produced water'). As discussed in Section 3.5, THPS was removed from the EPL in July 2015 so the following assessment of the migration from flowback to produced water focusses on the following three analytes:

- Sodium and EC used as general indicators of salinity to illustrate the transition from flowback water (lower EC and sodium due to dilution by fracture stimulation fluid) to produced water (naturally higher EC and sodium).
- MEA borate as indicated by boron although MEA was present in high concentrations in the fracture stimulation fluid compared to the baseline groundwater and surface water data; there is no baseline MEA data from the produced water from CR06 and WK03 prior to the Project. Consequently, boron is used as an indicator of fracture stimulation fluid in flowback water as boron was present in high concentrations in the fracture stimulation fluid compared to produced water monitoring undertaken prior to the Project (i.e. from CR06 and WK03).
- BTEX naturally occurring in variable concentrations in deep coal seam formation water and not present in the fracture stimulation fluid.

The degree to which the flowback water quality has migrated towards that of 'typical' Gloucester Basin coal seam formation water ('produced water') is shown by the scatter plots presented in Figure 5.1.

These three analytes are presented relative to TDS in Figure 5.1 as TDS shows variation between the fracture stimulation fluid, flowback water and produced water, allowing the different water 'types' to be discerned.

Figure 5.1 shows that the flowback water quality is more similar to that of CR06 and WK03 (produced water) than that of the fracture stimulation fluid.

Sodium concentrations are considered to represent natural background variability for the target formations as the concentrations are significantly higher in flowback water compared to the fracture stimulation fluid. This indicates there is negligible influence from the fracture stimulation fluid on the flowback water. The peak concentrations of sodium at WK11, WK12 and WK14 as shown in Figure 5.1 occurred during the current reporting period.

Boron concentrations are typically high in the fracture stimulation fluid due to the presence of MEA borate. Boron concentrations in the flowback water during the current reporting period have shown variability consistent with background concentrations of this analyte, with a decreasing trend in variability emerging at WK11 and WK14 relative to previous reporting periods. The reduced variability in boron concentration is consistent with a transition from flowback to produced water and demonstrates removal of the fracture stimulation fluid and the natural breakdown of MEA.

There was intensive sampling for BTEX analysis at the pilot wells from 30 June to 29 July 2015 (inclusive) and therefore there is more BTEX data presented in Figure 5.1 compared to the other analytes. The large variation in BTEX concentrations as shown in Figure 5.1 is representative of the natural variability within the deep coal seams. As discussed in Section 5.3.1, BTEX concentrations decrease during the 30 June to 29 July investigation period and the lowest BTEX concentrations at WK11, WK13 and WK14 have been measured during the current reporting period; WK12 continues to show minimal or no BTEX detections due to shallower coal seams being targeted. The depth of the target formations is a key influence on BTEX concentrations and hence the difference between the BTEX data collected at WK11, WK13 and WK14 compared to WK12, CR06 and WK03.

The two primary indicators for the transition from flowback water to produced water remain as a) the removal of 100% of the volume of fracture stimulation fluids injected and b) water salinity (EC) of above 5,000 µS/cm.

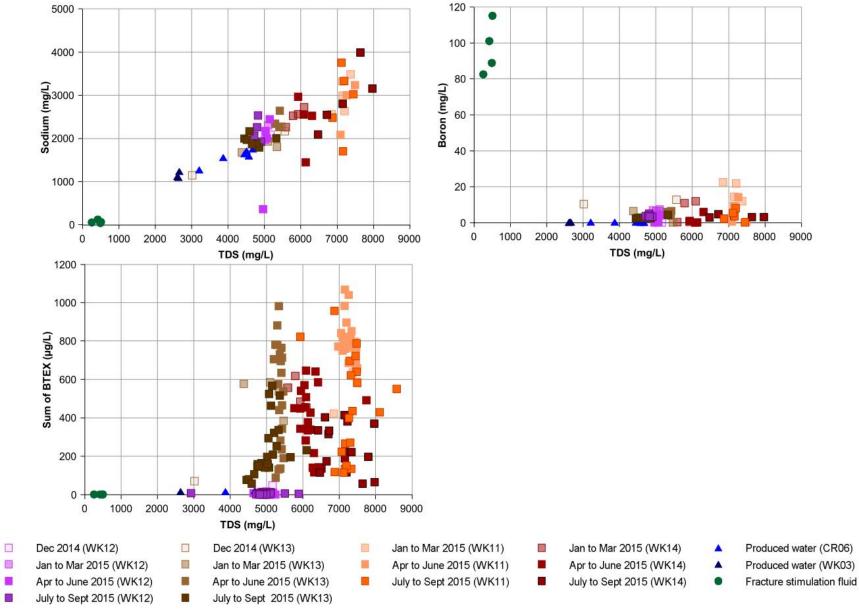



Figure 5.1 Sodium, boron and BTEX vs TDS for formation water, fracture stimulation fluid and flowback water

#### 5.3.1 Results

Figures 5.2 to 5.4 show time series plots for EC, MEA and BTEX for each of the four pilot wells. The data has been plotted against the total flowback volume since pumping began shown as a fraction of the total volume of fracture stimulation fluid that was injected into the well during fracture stimulation. One of the two indicators of the transition from flowback to produced water is 100% of the volume of fracture stimulation fluids injected.

## EC

Figure 5.2 shows that one of the indicators of the transition from flowback to produced water; an EC value above 5,000 µS/cm, has been met at all pilot wells. The EC at WK11, WK12 and WK13 has been relatively stable during the current reporting period with fluctuations that are considered to be within the natural variability of the target formation water quality. The EC at WK14 continues to show an overall upward trend; this is considered to be due to WK14 being one of the most recent wells to commence flowback, and has currently recovered a smaller fraction of the total volume injected compared to the other pilot wells (Section 6).

The latest sampling event (23 September 2015) shows the EC ranged from 7,190 to 12,300 µS/cm across the four pilot wells.

## MEA

Figure 5.3 shows the variation of MEA concentrations during the current reporting period. The data continues to show variability that is within an order of magnitude of natural groundwater and surface water background concentrations observed at Waukivory (Parsons Brinckerhoff 2015a). The latest sampling event from the pilot wells (9 September 2015 at WK12 and 23 September 2015 at WK11, WK13 and WK14) shows the MEA concentrations ranging from 7 to 44 µg/L.

The background MEA concentration range for Waukivory groundwater and surface water monitoring is 0 to 61 µg/L; therefore the current concentrations observed at the pilot wells are consistent with the background data, which is indicative that a transition from flowback to produced water is underway.

## BTEX

Figure 5.4 shows the variation in the sum of BTEX throughout the current reporting period. There is an increase in BTEX concentrations following periods when the pumps were not operational, as evident at the beginning of the reporting period, which followed the period of suspension from 19 May to 30 June 2015. The increase in concentrations during such periods is due to BTEX compounds mobilising into solution from the coal seams and accumulating in the water within the pilot well and adjacent fractures. A reduction in BTEX concentrations was observed at all pilot wells upon re-commencement of pumping and the decline continued throughout the reporting period. The BTEX data presented in Figure 5.5 demonstrates that through continued pumping, the BTEX concentrations reduce to background levels for the target formations.

The sum of BTEX concentrations in WK12 are low (< 12 µg/L during the current reporting period) compared to the other pilot wells. WK12 is perforated against shallower intervals (maximum depth of 597 mbgl at WK12, compared to 964 mbgl at WK11, 946 mbgl at WK13 and 805 mbgl at WK14). This data supports the findings of the investigation into the occurrence of BTEX compounds in flowback water carried out by AGL, the EPA and the DRE. The investigations concluded that the source of BTEX in the flowback water is from naturally occurring groundwater within the deep coal seams which are in excess of 600 metres below the surface (DRE, 2015 and EPA, 2015d).

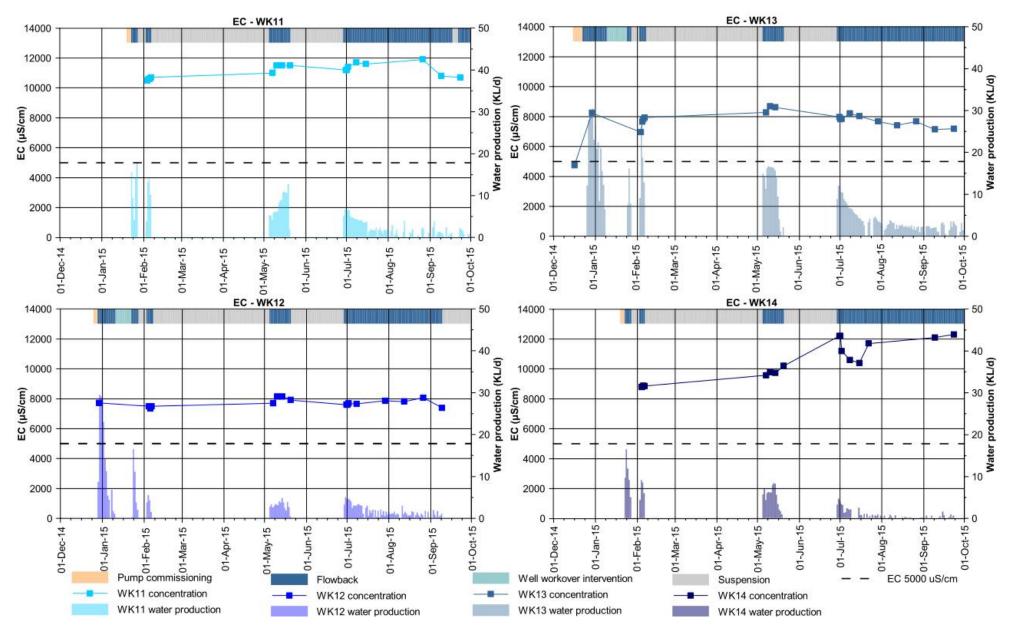



Figure 5.2 Laboratory electrical conductivity (EC) measurements and flowback volumes at the Waukivory pilot wells

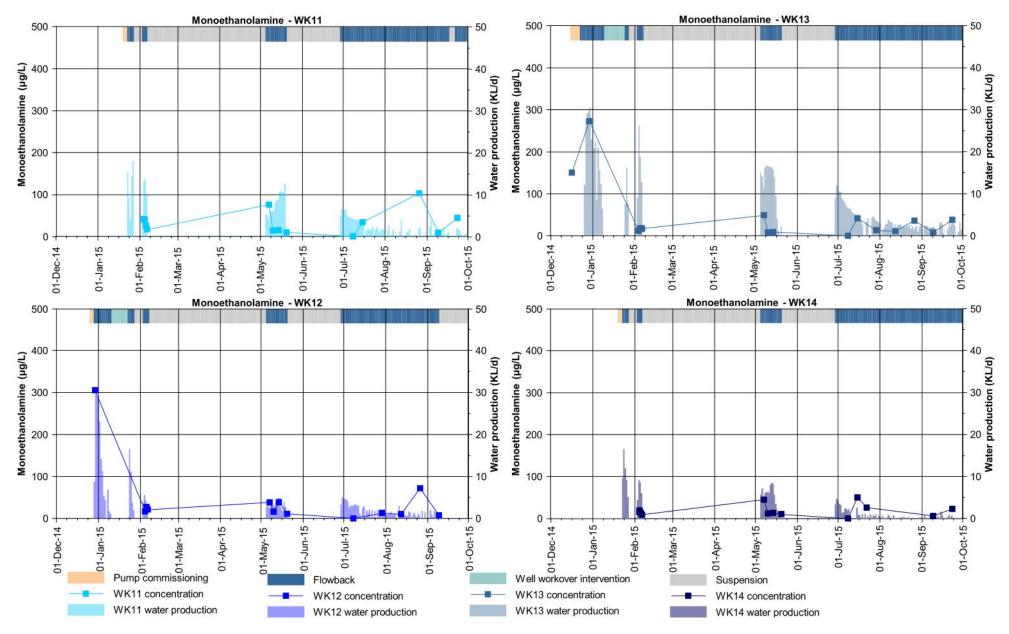



Figure 5.3 Monoethanolamine concentrations and flowback volumes at the Waukivory pilot wells

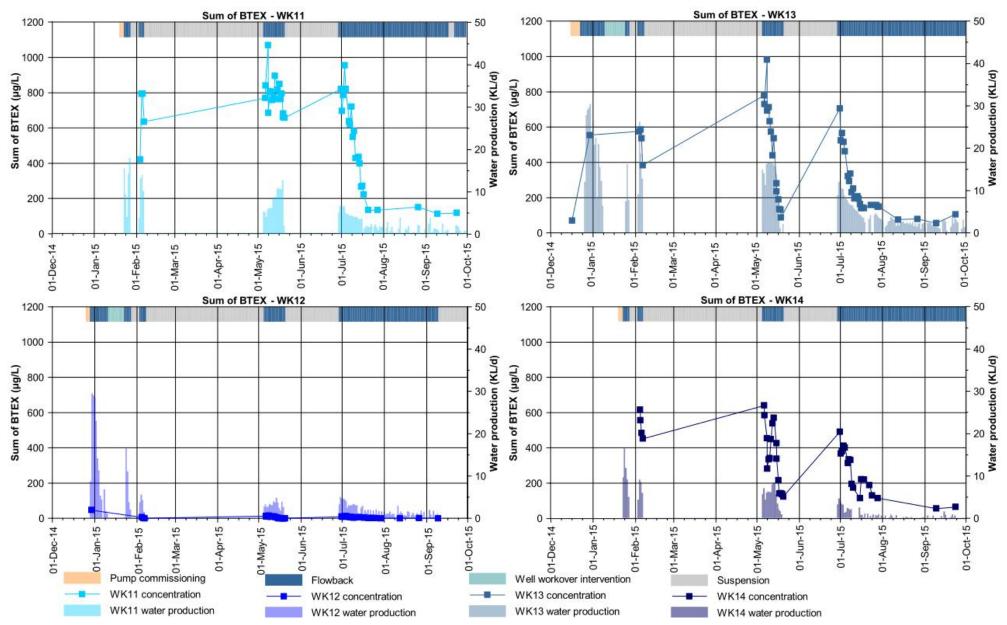



Figure 5.4 Sum of BTEX concentrations and flowback volumes at the Waukivory pilot wells

#### 5.3.2 Unionised hydrogen sulphide

Hydrogen sulphide (H<sub>2</sub>S), as indicated by the concentration of unionised hydrogen sulphide (UHS), is a metabolic by-product of sulphate reducing bacteria (SRB), which obtain energy by oxidizing organic compounds or molecular hydrogen while reducing sulphate to H2S. UHS concentrations provide an indicator of the potential for corrosive processes of steel infrastructure.

SRB generally thrive in the absence of oxygen and highly reduced environments; however they can circulate in aerated waters and have been detected in surface water samples from WKSW01, WKSW02 and WKSW03 and shallow rock monitoring bore WKMB06B during the previous reporting period (Parsons Brinckerhoff 2015c).

SRB are capable of causing corrosion because they produce enzymes which accelerate the reduction of sulphate compounds to produce corrosive H<sub>2</sub>S, thus SRB act as a catalyst in the reduction reaction so the presence of SRB alone is not an indicator of corrosion risk. The microbiological, organic and inorganic chemistry must be reviewed to provide a complete understanding as in the absence of sulphate and with alkaline pH conditions; SRB cannot produce the corrosive H<sub>2</sub>S.

All pilot well samples showed UHS concentrations below the LoR, with the exception of three detections of UHS in the flowback water at WK12 and WK14 on 2 July and 3 July 2015, which were at the LoR of 0.1 mg/L.

The pH of the flowback water varies between 7 and 9 and the sulphate concentration of the flowback water is typically low (<10 mg/L). Despite the presence of SRB (Parsons Brinckerhoff 2015c), the water chemistry has led to the concentrations of UHS being undetectable or at the LoR and hence insufficient to compromise well integrity due to corrosion.

## 5.4 AST2 water quality

AST2 is an open topped, 1.5 ML above ground storage tank situated adjacent to WK13 (Figure 3.1) receiving flowback water from the four pilot wells. Flowback water is stored in AST2 prior to disposal to a licenced facility. Monitoring at AST2 allows identification of changes in the flowback water chemistry over time and provides a water quality assessment for disposal purposes.

The water quality at AST2 will be influenced by the following factors:

- Quantity and quality of the flowback water
- Relative contributions from each gas well
- Meteorological conditions such as rainfall and evaporation
- Microbial activity
- Length of time the water has been standing.

Comprehensive water quality data and time series plots for AST2 are presented in Appendices D and F respectively. This section focuses on the results of BTEX analysis only in AST2 with respect to the trigger levels discussed in section 3.6.

#### **BTEX** 5.4.1

Figure 5.5 shows the variation in the sum of BTEX concentration during the current reporting period. BTEX concentrations increased at the beginning of the reporting period due to the recommencement of pumping from the pilot wells on 29 July 2015. Concentrations then declined as more flowback water was purged from each of the pilot wells (Figure 5.5). The sum of BTEX concentration at AST2 are generally an order of

magnitude less than that measured at the pilot wells due to the volatilisation of these compounds from the surface of the water in AST2 and dilution by rainfall. During the current reporting period the sum of BTEX concentration in AST2 ranged from 0 to 42 µg/L.

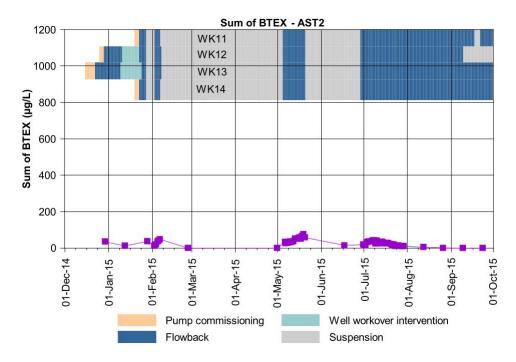



Figure 5.5 **Sum of BTEX concentrations at AST2** 

Figure 5.6 shows the variation of the individual BTEX compounds during the current reporting period in relation to the adopted threshold values based on the protection of human health and the environment (Table 3.8). The concentration of BTEX compounds detected was several orders of magnitude below the adopted threshold values.

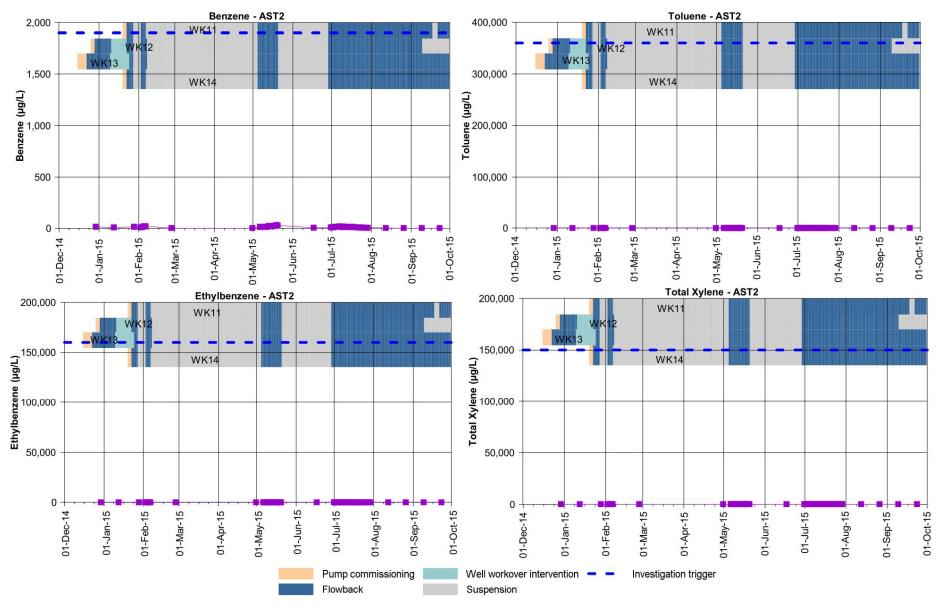



Figure 5.6 Benzene, Toluene, Ethylbenzene and Total Xylene concentrations at AST2

#### 5.4.2 Unionised hydrogen sulphide

During the current reporting period there were no detections of UHS at AST2.

#### 5.5 Groundwater quality

During the current reporting period there was no water quality sampling from any Waukivory groundwater monitoring bores as per the sampling frequency stipulated in the EPL and the SGMP (AGL 2015a)

#### Surface water quality 5.6

The following section presents the water quality data from the Waukivory surface water monitoring sites. The sampling events undertaken throughout the Project are shown in Figure 3.4.

#### 5.6.1 Analysis methodology

The analytical methods selected for the groundwater and surface water quality data and the rationale for their use in this investigation are discussed in the monitoring report covering the period January to March 2015 (Parsons Brinckerhoff 2015b).

The methodology is consistent with the requirements of the environmental guidelines for fresh and marine water quality (ANZECC 2000) and the Surface and Groundwater Management Plan (SGMP) (AGL 2015a).

The analysis methodology is summarised as follows:

- Filter: All analytes (187) were filtered to identify those for which there were no detections in any sample. Those analytes were not considered further. After removing a number of non-critical and duplicated analytes, a residual list of 64 analytes remained.
- Plot. Time series plots of concentration for each detected analyte at each monitoring site were generated (Appendix I). A 5<sup>th</sup> and 95<sup>th</sup> percentile concentration was calculated for each time series, for all data prior to the current reporting period. These levels reflect the variation in the sample analyses and serve as 'indicator thresholds' above (or below) which further assessment of the data may be required.
- Threshold test: The exponentially weighted moving average (EWMA) was calculated for each time series. The EWMA is a moving average that is weighted in favour of the most recent sample; the weighting decreases exponentially for progressively older samples. The parameter alpha (α) controls the distribution of weighting (a value of 0.2 was used in the analysis). An indicator threshold (above) is triggered if one or more EWMA values for the reporting period (quarter) exceed the 95th percentile value. The trigger simply indicates a potential trend requiring further comment; it is not a regulatory exceedance.
- Trend test: The Mann-Kendall rank correlation test (Kendall, 1938) was applied to each time series to identify if a statistically significant trend (or dependence) exists in the concentration of each analyte with respect to time. The test was applied to samples collected between the start of the fracture stimulation to the most recent sample. The level of significance was set at 95% (p-value ≤ 0.05). As above, a significant trend indicates that further review and comment is warranted.
- Action trigger. On its own, a significant data trend (as determined by the Mann-Kendall test) or an exceedance of a 95<sup>th</sup> percentile indicator threshold does not necessarily indicate impact from a disturbance activity. Rather, it acts as a trigger for further data review and assessment to determine the cause of the trend. This is a data review action trigger and is different to the primary trigger levels and

the thresholds for action that AGL has adopted in the SGMP should there be a perceived risk to human health or the environment.

- 6. Response: Trends that trigger an indicator threshold will be further assessed to determine if:
  - there is sufficient data to adequately define the natural variation in concentrations
  - the trends are clearly related to Project activities
  - there are other factors that may indicate enhanced connectivity between the gas well and the c) monitoring site.

If the further data assessment suggests that the trend is related to Project activities then the trend will be tracked more closely before the investigation and action levels in the SGMP are triggered and other management responses are required.

If it is concluded that the data suggests an adverse trend related to Project activities then an investigation and management response will be initiated as described in the SGMP.

#### 5.6.2 Results

Time series plots of each analyte (for which at least one sample is > LoR) and for each monitoring site are shown in Appendix I. The plots show blue shading representing the 5<sup>th</sup> to 95<sup>th</sup> percentile range of concentration prior to the last quarter and the EMWA trend in red. The fracture stimulation periods are shown in pink shading. The Mann Kendall Statistic is also shown ('nan' is shown if there is insufficient data above LOR). An example of a time series plot used for trend assessment is shown in Figure 5.7.

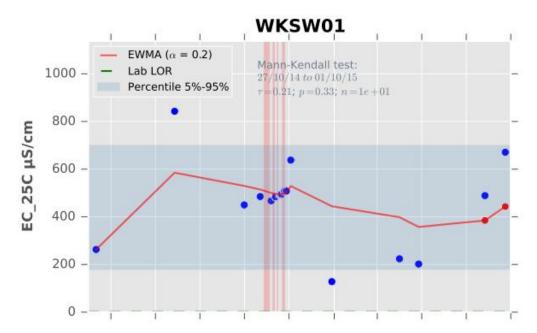
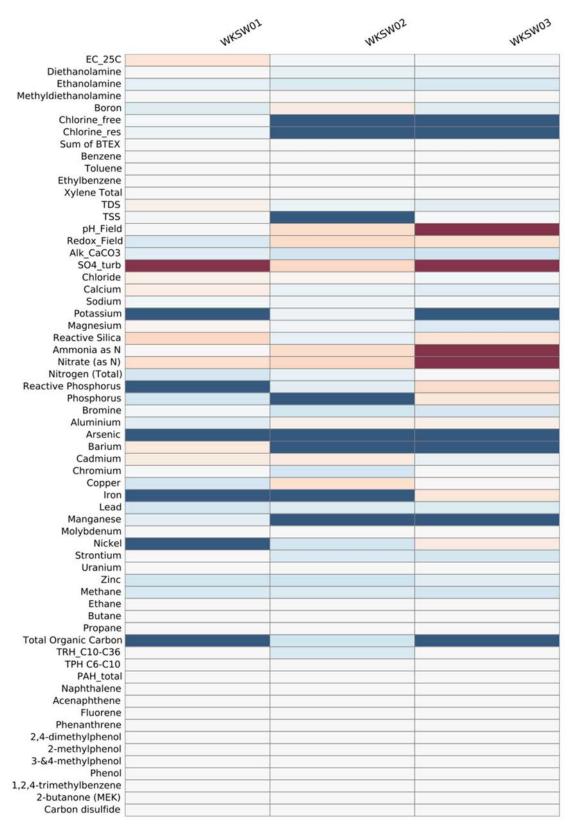
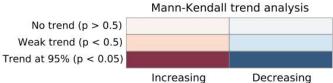



Figure 5.7 Example of time series plot used for trend analysis


Table 5.2 summarises sites and analytes for which at least one EMWA value in the last quarter has exceeded the 95<sup>th</sup> percentile (dark blue shading). Table 5.3 summarises locations and analytes for which the time series data define a significant trend. The table is colour-coded to signify the direction of the trend (reds = increasing, blues = decreasing) and the significance of the trend. The strongest coloured rectangles represent trends that are significant at the 95% level. Locations and analytes for which an indicator threshold has been triggered are further considered in Table 5.4 to assess whether additional investigation and management is required as listed in the SGMP (AGL 2015a).


Comparison of the EWMA to the 5<sup>th</sup> and 95<sup>th</sup> percentile for the current reporting period Table 5.2

|                                 | MKZNOJ | MKZNOS | WKZNO3 |
|---------------------------------|--------|--------|--------|
| EC_25C                          |        |        |        |
| Diethanolamine                  |        |        |        |
| Ethanolamine                    |        |        |        |
| Methyldiethanolamine            |        |        |        |
| Boron<br>Chlorine_free          |        |        |        |
| Chlorine_res                    |        |        | 4      |
| Sum of BTEX                     |        |        |        |
| Benzene                         |        |        |        |
| Toluene                         |        |        |        |
| Ethylbenzene                    |        |        |        |
| Xylene Total                    |        |        |        |
| TDS<br>TSS                      |        |        |        |
| pH_Field                        |        |        |        |
| Redox_Field                     |        |        |        |
| Alk_CaCO3                       |        |        |        |
| SO4_turb                        |        |        |        |
| Chloride                        |        |        |        |
| Calcium                         |        |        |        |
| Sodium                          |        |        |        |
| Potassium                       |        |        |        |
| Magnesium                       |        |        |        |
| Reactive Silica<br>Ammonia as N |        |        |        |
| Nitrate (as N)                  |        |        |        |
| Nitrogen (Total)                |        |        |        |
| Reactive Phosphorus             |        |        |        |
| Phosphorus                      |        |        |        |
| Bromine                         |        |        |        |
| Aluminium                       |        |        |        |
| Arsenic<br>Barium               |        |        |        |
| Cadmium                         |        |        |        |
| Chromium                        |        |        |        |
| Copper                          |        |        |        |
| Iron                            |        |        |        |
| Lead                            |        |        |        |
| Manganese                       |        |        |        |
| Molybdenum<br>Nickel            |        |        |        |
| Strontium                       |        |        |        |
| Uranium                         |        |        |        |
| Zinc                            |        |        |        |
| Methane                         |        |        |        |
| Ethane                          |        |        |        |
| Butane                          |        |        |        |
| Propane<br>Total Organic Carbon |        |        |        |
| TRH_C10-C36                     |        |        |        |
| TPH C6-C10                      |        |        |        |
| PAH_total                       |        |        |        |
| Naphthalene                     |        |        |        |
| Acenaphthene                    |        |        |        |
| Fluorene<br>Phenanthrene        |        |        |        |
| 2,4-dimethylphenol              |        |        |        |
| 2-methylphenol                  |        |        |        |
| 3-&4-methylphenol               |        |        |        |
| Phenol                          |        |        |        |
| 1,2,4-trimethylbenzene          |        |        |        |
| 2-butanone (MEK)                |        |        |        |
| Carbon disulfide                |        |        |        |

Note: Dark blue indicates sites and analytes for which at least one EMWA value in the last quarter has exceeded the 95th percentile (the P95 is calculated for data prior to the current reporting period).

Table 5.3 Summary of trends in water quality data up to 30 September 2015





#### 5.6.3 Surface water quality

Surface water monitoring sites and analyses for which time series data have triggered an indicator threshold are listed in Table 5.4. Each trigger event is assessed in line with the criteria in Section 5.5.1 to determine if further investigation of the data response is justified.

Table 5.4 Surface water monitoring sites and analytes that trigger further review

| Site   | Analyte          | Indicator<br>type <sup>1</sup> | Comment                                                                                                                                                           | Action |
|--------|------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| WKSW01 | Sulphate         | Т                              | Rising trend evident since February 2015 and latest sample (37 mg/L) is above the 95 <sup>th</sup> percentile. This analyte is not related to Project activities. | No     |
| WKSW03 | Field pH         | Т                              | Latest sample (8.69) was above 95 <sup>th</sup> percentile. Unrelated to Project activities.                                                                      | No     |
|        | Sulphate         | Т                              | Two most recent samples (18 and 28 mg/L) were above 95 <sup>th</sup> percentile but within the historical range. Unrelated to Project activities                  | No     |
|        | Nitrate (as N)   | Т                              | Latest sample (0.15 mg/L) was above 95 <sup>th</sup> percentile; this analyte is unrelated to Project activities.                                                 | No     |
|        | Nitrogen (total) | Е                              | Latest sample (5.8 mg/L) was above 95 <sup>th</sup> percentile; this analyte is unrelated to Project activities.                                                  | No     |
|        | Phosphorus       | Е                              | Latest sample (1.99 mg/L) was above 95 <sup>th</sup> percentile; this analyte is unrelated to Project activities.                                                 | No     |
|        | Ammonia (as N)   | E&T                            | Latest sample (3.95 mg/L) was above 95 <sup>th</sup> percentile; this analyte is unrelated to Project activities.                                                 | No     |

Indicator threshold type: E = EWMA outside the 5 – 95%; T = significant positive trend (Mann-Kendall p ≤ 0.05)

#### 5.6.3.1 Key analytes in surface water

There were no detections of key analytes in surface waters during the current reporting period.

#### 5.6.3.2 Other analytes in surface water

The EWMA for nitrogen (total), phosphorous and ammonia (as N) at WKSW03 has exceeded the 95<sup>th</sup> percentile of the historic data and some analytes, mostly nutrients, are showing an upward trend according to the Mann Kendal trend analysis (Table 5.3) at WKSW01 and WKSW03. This is not considered to be related to project activities as an increase in nutrient concentrations within the Avon River is considered indicative of local land use practices such as the use of fertilisers and other upstream agricultural activities.

## 6. Flowback

The SGMP (Section 6.1, pages 33 – 34) (AGL 2015a) states that:

- The flowback water period is deemed to be finished when 100% of the volume of fracture stimulation fluids injected at each well is recovered AND a salinity trigger of 5,000 µS/cm is reached (and maintained) for the return waters; and
- Produced water is deemed to be all deep groundwater that is pumped to surface after the flowback water trigger is achieved.

The total volume of fluid injected during fracture stimulation, and flowback volumes and percentage recovered up to 30 September 2015 are provided in Table 6.1. Flowback volumes are provided for all four pilot wells since commissioning in December 2014 (WK12 and WK13) and January 2015 (WK11 and WK12).

A comparison of cumulative flowback volumes recovered and laboratory electrical conductivity (EC) measurements in each of the four pilot wells is shown in Figure 6.1. At 30 September 2015 the salinity trigger of 5000 µS/cm has been reached and maintained for the flowback waters at all wells. However, the Project is still in the flowback phase as 100% of the volume of fracture stimulation fluids injected at each well has not yet been recovered (Table 6.1).

Table 6.1 Flowback volumes recovered up to 30 September 2015

|                                                           | WK11    |      | WK12    |      | WK13      |      | WK14    |      |
|-----------------------------------------------------------|---------|------|---------|------|-----------|------|---------|------|
|                                                           | litres  | %    | litres  | %    | litres    | %    | litres  | %    |
| Total volume injected                                     | 785,450 | -    | 480,603 | -    | 1,516,663 | -    | 466,535 | -    |
| Volume recovered at 30 September 2015                     | 480,637 | 61.2 | 419,365 | 87.3 | 1,093,255 | 72.1 | 271,240 | 58.1 |
| Volume remaining<br>to recover at<br>30 September<br>2015 | 304,813 | 38.8 | 61,238  | 12.7 | 423,408   | 27.9 | 195,295 | 41.9 |

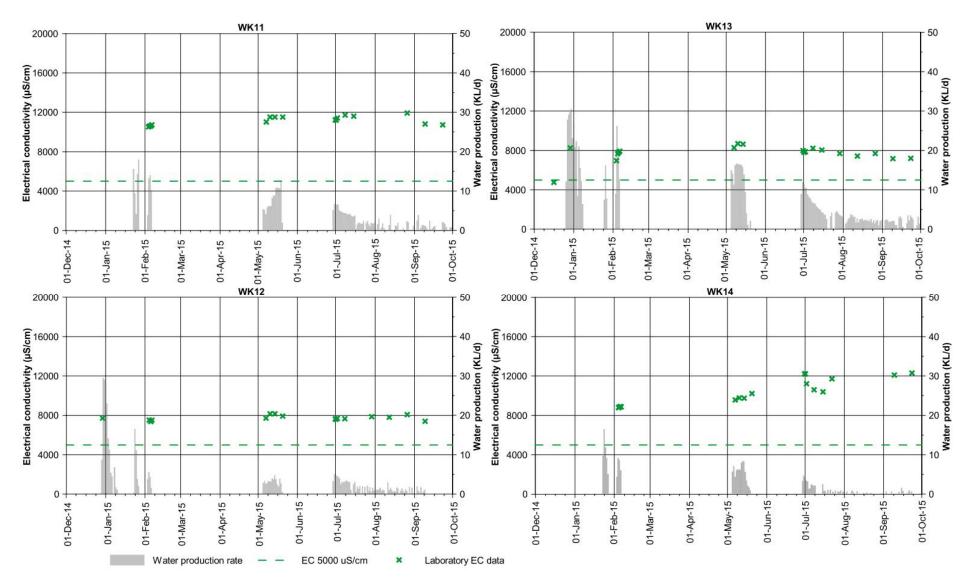



Figure 6.1 Laboratory electrical conductivity measurements and flowback volumes at the Waukivory pilot wells

## Beneficial use

Water beneficial use categories of domestic, stock, industrial and irrigation are based on yield and salinity characteristics. A generalised beneficial use matrix is described in the SGMP (AGL 2015a). Each aquifer can be assigned one or more beneficial use categories (based on the matrix in Table 7.1). Beneficial use categories can vary spatially for each groundwater system.

The aquifers in the Waukivory area rarely yield water at a rate greater than 1 L/s and contain poor water quality with salinities greater than 1600 µS/cm (AGL 2015a). The beneficial use categories that apply across the Gloucester Basin are shown in Table 7.1.

Table 7.1 Generalised beneficial use matrix, based on salinity and yield

|                  |             |        | Yield (L/s) |        |   |  |  |  |
|------------------|-------------|--------|-------------|--------|---|--|--|--|
|                  |             | <5     | 0.5-5       | <0.5   |   |  |  |  |
| Salinity (µS/cm) | 0-800       | D+I+S  | D+I+S       | D+S    | Α |  |  |  |
|                  | 801-1600    | D+I+S  | D+I+S       | D+S+In | В |  |  |  |
|                  | 1601-4800   | I+S+In | I+S+In      | S+In   | С |  |  |  |
|                  | 4801-10000  | S+In   | 9+III       | m      | D |  |  |  |
|                  | 10001-20000 | In     | In          | In     | E |  |  |  |
|                  | >20000      |        |             |        | F |  |  |  |
|                  |             | 1      | 2           | 3      |   |  |  |  |

Key: D – domestic; I – irrigation; S – stock; In – industry

| Alluvial baseline             | Shallow rock baseline             |
|-------------------------------|-----------------------------------|
| Alluvial fracture stimulation | Shallow rock fracture stimulation |
| Alluvial flowback             | Shallow rock flowback             |

The salinity (EC) data on which the beneficial use classification for the Waukivory pilot area is based is summarised in Table 7.2. All data that is within the 10<sup>th</sup> percentile and the 90<sup>th</sup> percentile has been used in the beneficial use classification. A percentile is the value below which a given percentage of observations fall. For example, the 10<sup>th</sup> percentile is the value below which 10% of observations are found. The 10<sup>th</sup> and 90<sup>th</sup> percentiles presented in Table 7.2 are used as a method of discounting outlying values.

The yield data is assumed to remain unchanged from the assessment documented in the SGMP (AGL 2015a).

Table 7.2 Summary statistics for electrical conductivity during baseline, fracture stimulation and flowback water quality monitoring

|             |                                      | Electrical conductiv | vity (µS/cm) |              |      |  |
|-------------|--------------------------------------|----------------------|--------------|--------------|------|--|
|             |                                      | Allu                 | ıvial        | Shallow Rock |      |  |
|             |                                      | Field                | Lab          | Field        | Lab  |  |
| Baseline    | 10 <sup>th</sup> percentile          | 3966                 | 4105         | 880          | 912  |  |
|             | Median                               | 4013                 | 4215         | 3865         | 3970 |  |
|             | 90 <sup>th</sup> percentile          |                      | 4297         | 5644         | 5960 |  |
| Fracture    | 10 <sup>th</sup> percentile          | 2737                 | 2754         | 884          | 862  |  |
| stimulation | Median                               | 3821                 | 4090         | 3739         | 3870 |  |
|             | 90 <sup>th</sup> percentile          | 4013                 | 4105         | 4920         | 5048 |  |
| Flowback    | Flowback 10 <sup>th</sup> percentile |                      | 2284         | 895          | 895  |  |
|             | Median                               | 3160                 | 3160         | 1360         | 1360 |  |
|             | 90 <sup>th</sup> percentile          | 4178                 | 4164         | 4465         | 4480 |  |

The following beneficial use categories can be assigned to each of the groundwater systems in the Waukivory area during the baseline reporting period, as shown in Table 7.1:

- Alluvial aquifers C2, C3
- Shallow rock aguifers B2, B3, C2, C3, D2, D3.

The following beneficial use categories can be assigned to each of the groundwater systems in the Waukivory area during the fracture stimulation period, as shown in Table 7.1:

- Alluvial aquifers C2, C3
- Shallow rock aguifers B2, B3, C2, C3, D2, D3.

The following beneficial use categories can be assigned to each of the groundwater systems in the Waukivory area during the flowback period, as shown in Table 7.1:

- Alluvial aquifers C2, C3
- Shallow rock aquifers B2, B3, C2, C3.

There has been no water quality data collection from the groundwater monitoring sites during the current reporting period, therefore the beneficial use assessment remains unchanged to that documented in the previous quarterly report (Parsons Brinckerhoff 2015c). That assessment is summarised as follows:

- Salinity (EC) data from the April to June reporting period show an apparent improvement compared to the baseline and fracture stimulation reporting periods. This is likely due to natural variation (such as rainfall recharge during the period) combined with the relatively limited data available during the flowback reporting period (three sampling events from the Waukivory groundwater monitoring sites). No management response is required.
- Water beneficial use categories of domestic, stock, industrial and irrigation are based on yield and salinity characteristics. There has been no change in the beneficial use classification of the different waters across the different phases of the Project.

## **Conclusions**

The following conclusions are drawn from a review of the flowback water, groundwater and surface water monitoring data for the Waukivory site, during the period 1 July to 30 September 2015. The review included:

- Interpretation of water level and water quality trends
- Assessment as to whether trends are naturally occurring or potentially attributed to Project activities
- Assessment of key analytes associated with fracture stimulation additives defined in AGL's SGMP.

#### Pilot well water levels

Water levels in the pilot wells are highly variable and dependent on pump operation, including fluctuating pumping rates and the operational management of the gas wells influencing the build-up/release of gas pressure within the well casing above the water level.

During the current reporting period the pilot well water levels showed an initial decline of between 450 and 800 m in response to recommencement of flowback on 29 June 2015. Water levels within the wells then remained relatively steady with fluctuations of approximately 50 to 100 m reflecting pump operation.

#### Pilot well water quality

During the current reporting period, the water quality data from WK11, WK12 and WK13 shows produced water characteristics (as depicted by produced water from CR06 and WK03) (Parsons Brinckerhoff 2014d and 2015c), most notably stable salinity (EC).

The EC of the flowback water from all pilot wells is greater than the 5000 µS/cm trigger for the transition from flowback to produced water.

EC data at WK14 continues to show a rising trend, this is considered to be due to WK14 being one of the most recent wells to commence flowback, and has currently recovered a smaller fraction of the total volume injected compared to the other pilot wells

MEA concentrations show no overall trend with variability similar to that observed in the background data from the groundwater and surface water monitoring sites. These observations are consistent with the removal of the fracture stimulation fluid during flowback and the natural breakdown of these compounds.

BTEX concentrations in the flowback water from WK11, WK13 and WK14 are greater than those found in the produced water from CR06 and WK03, and this is likely due to the deeper target formations at the Waukivory site. The sum of BTEX concentration in WK12 remains very low as this well is perforated against shallower intervals compared to WK11, WK13 and WK14.

All pilot well samples showed unionised hydrogen sulphide (UHS) concentrations below the LoR, with the exception of three detections of UHS in the flowback water at WK12 and WK14 on 2 July and 3 July 2015, which were at the LoR of 0.1 mg/L. Such concentrations are considered insufficient to compromise well integrity due to corrosion.

#### Pilot well water volumes

The total flowback water volumes recovered from each well as of 30 September 2015 range from 271,240 to 1,093,255 L.

The water recovery as a percentage of total volume injected during fracture stimulation for individual wells ranges from 58.1% to 87.3% as of 30 September 2015.

#### AST2 water quality

Sum of BTEX concentrations at AST2 ranged from non-detect to 42 µg/L during the current reporting period with BTEX concentrations less than the detection level throughout September 2015.

The sum of BTEX concentration is generally an order of magnitude less than that measured at the pilot wells due to the volatilisation of these compounds from the surface of the water in AST2 and dilution by rainfall.

The concentration of BTEX compounds are several orders of magnitude below the adopted threshold values relating to human and environmental health (SGMP Table 6.2 (AGL 2015a)).

There were no detections of UHS at AST2 during the current reporting period.

#### Groundwater levels

Groundwater levels in all Waukivory monitoring bores targeting the alluvium, shallow rock and upper interburden including the thrust fault zone have shown no response attributable to fracture stimulation or flowback from the pilot wells during the current reporting period.

The variation in groundwater levels has not exceeded the adopted triggers as defined in the SGMP (AGL 2015a) 2 m (outside of the normal range) decline in aquifers less than 75 m from the ground surface and 5 m (outside of the normal range) decline for deeper (non-coal) monitoring zones.

Groundwater levels in alluvial monitoring bores GR-P3 and WKMB06A show an overall decrease of approximately 0.3 m and groundwater levels in the shallow rock monitoring bores WKMB01, WKMB02 and WKMB06B show an overall decrease of 0.1 to 0.3 m in response to the relatively dry conditions throughout July and August 2015.

Groundwater levels in monitoring bore WKMB03, screened in the interburden (and thrust fault zone), appear to show a subdued and delayed response to seasonal climatic variations most likely attributable to the very low hydraulic conductivity of the interburden/thrust fault zone. During the current reporting period groundwater levels at WKMB03 show a slight increasing trend.

Both WKMB03 and WKMB06B are screened across the thrust fault zone, and WKMB06A is screened within the alluvium above the thrust fault zone. Hydrographs from these three monitoring bores show no anomalous water level responses and therefore provide no evidence of connectivity between the fracture stimulation zones and the shallow groundwater system via the thrust fault zone.

Groundwater levels at the WKMB06A and WKMB06B show a very slight upward vertical gradient between the shallow rock and the alluvium, which is characteristic of groundwater discharge areas.

It is possible that the slight decrease in piezometric level at WKMB05 sensor 2 (Cloverdale Coal Seam) represents a pressure response to flowback at WK13. The piezometric level at sensor 1 (Interburden) shows no net change since flowback commenced in December 2014.

WKMB05 sensors 3 and 4 continued to show a gradual decline until mid-August before increasing towards the end of the reporting period. This response is not considered to be attributable to flowback pumping as a decline in pressure has been observed throughout periods when flowback pumping has not occurred. There is uncertainty as to whether the piezometric levels in WKMB05 sensors 5 and 6 have reached equilibration following installation; this will be reviewed as additional monitoring data becomes available.

The piezometric levels at all sensors in WKMB05 show an upward vertical gradient with the exception of sensors 1 and 2, which is considered to be a response to flowback at WK13. The upward vertical gradient is consistent with the conceptual hydrogeological model.

#### Surface water levels

Water levels at stream gauge sites WKSW01 (Avon River upstream of the Project site), WKSW02 (Waukivory Creek upstream of the Project site) and WKSW03 (Avon River downstream of the Project site) show no change in water levels attributable to fracture stimulation or flowback from the pilot wells during the current reporting period.

Surface water levels showed a very gradual decline during the dry conditions experienced in July and August. Towards the end of the reporting period, surface water levels have shown a gradual increase with response to individual rainfall events.

#### Surface water quality

Surface water quality data shows that there were no adverse trends associated with Project activities.

#### Water Beneficial Use Conditions

Water beneficial use categories of domestic, stock, industrial and irrigation are based on yield and salinity characteristics. There has been no change in the beneficial use classification for any of the groundwater systems.

#### Actions to correct identified adverse trends

Analysis of monitoring results has not identified adverse trends that require corrective action.

## Statement of limitations

#### Scope of services

This second operational quarterly report (the report) has been prepared in accordance with the scope of services set out in the contract, or as otherwise agreed, between the client and Parsons Brinckerhoff (scope of services). In some circumstances the scope of services may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

#### Reliance on data

In preparing the report, Parsons Brinckerhoff has relied upon data, surveys, analyses, designs, plans and other information provided by the client and other individuals and organisations, most of which are referred to in the report (the data). Except as otherwise stated in the report, Parsons Brinckerhoff has not verified the accuracy or completeness of the data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in the report (conclusions) are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. Parsons Brinckerhoff will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to Parsons Brinckerhoff.

#### **Environmental conclusions**

In accordance with the scope of services, Parsons Brinckerhoff has relied upon the data and has conducted environmental field monitoring and/or testing in the preparation of the report. The nature and extent of monitoring and/or testing conducted is described in the report.

On all sites, varying degrees of non-uniformity of the vertical and horizontal soil or groundwater conditions are encountered. Hence no monitoring, common testing or sampling technique can eliminate the possibility that monitoring or testing results/samples are not totally representative of soil and/or water conditions encountered. The conclusions are based upon the data and the environmental field monitoring and/or testing and are therefore merely indicative of the environmental condition of the site at the time of preparing the report, including the presence or otherwise of contaminants or emissions.

Also, it should be recognised that site conditions, including the extent and concentration of contaminants, can change with time.

Within the limitations imposed by the scope of services, the monitoring, testing, sampling and preparation of this report have been undertaken and performed in a professional manner, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. No other warranty, expressed or implied, is made.

#### Report for benefit of client

The report has been prepared for the benefit of the client (and no other party). Parsons Brinckerhoff assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of Parsons Brinckerhoff or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Parties other than the client should not rely upon the report or the accuracy or completeness of any conclusions and should make their own enquiries and obtain independent advice in relation to such matters.

#### Other limitations

Parsons Brinckerhoff will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

## 10. References

- AECOM 2009, 'Gloucester Gas Project Environmental Assessment Volume 1', Report No. S70038 FNL EA, dated 11 Nov 2009.
- AGL 2015a, Surface Water and Groundwater Management Plan for the Waukivory Pilot Project -Gloucester Gas Project dated 6 May 2015.
- AGL 2015b, Water Portal. http://www.agl.com.au/waterportal
- ANZECC 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality Volumes 3 and 4. Australian and New Zealand Environment Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand, Canberra.
- AS/NZS 5667. Australia/New Zealand Standard. Water quality sampling.
- Bureau of Meteorology (BoM) 2015, Climate Data Online, viewed January 2015, http://www.bom.gov.au/climate/data/
- DRE 2015, Report in to BTEX Findings, media release, dated 19 May 2015, http://www.resourcesandenergy.nsw.gov.au/landholders-and-community/coal-seam-gas/gloucester-gasproject
- EnRiskS (2015) Flowback water trigger levels, dated 11 June 2015
- Envirolab 2015. THPS uncertainty queries. Letter to Sean Daykin, Parsons Brinckerhoff (20/01/2015).
- EPA 2015a. AGL Gloucester Gas Project Monoethanolamine Detections in Surface and Groundwater Results. Letter to Jenny MacMahon, AGL Upstream Investments Pty Limited (15/05/2015).
- EPA 2015b. Letter to Jenny MacMahon regarding tolcide detection in Waukivory surface water quality results, AGL Upstream Investments Pty Limited (15/05/2015).
- EPA 2015c. AGL Gloucester Gas Project Fluctuations in Groundwater Heights and other matters. Letter to Jenny MacMahon, AGL Upstream Investments Pty Limited (15/05/2015).
- EPA 2015d. Environment protection licence 20358 Gloucester coal seam gas BTEX detection in flowback waters. Letter to Jenny MacMahon, AGL Upstream Investments Pty Limited
- Hach 2015, http://www.hach.com/DisinfectionSeries02.
- Hillis, RR, Meyer, JJ & Reynolds, SD 1998, 'The Australian Stress Map', Exploration Geophysics, vol. 29, pp. 420-427.
- Lennox, M 2009, 'Stroud Gloucester Trough: Review of the Geology and Coal Development', Ashley Resources, Sydney, dated January 2009.
- NSW Environment Protection Authority 2015, Licence 20358, Licence variation notice number 1533192, 17 September 2015.
- Parsons Brinckerhoff 2014a, '2014 Groundwater and Surface Water Monitoring Status report Gloucester Gas Project- 2201007A-RES-RPT-001 Rev C, dated 20 November 2014, Parsons Brinckerhoff, Sydney.
- Parsons Brinckerhoff 2014b, 'Drilling Completion Report: Waukivory groundwater monitoring bores -Gloucester Gas Project', 2162406C-WAT-RPT-7761 RevB, dated 30 July 2014, Parsons Brinckerhoff,
- Parsons Brinckerhoff 2014c 'Hunter Groundwater and Surface Water Monitoring Annual Status Report', Hunter Gas Project, 2201003A-RES-RPT-001 RevD, dated November 2014.

- Parsons Brinckerhoff 2014d, '2013 Flow Testing of Craven 06 and Waukivory 03 Gas Wells', 2162406C-WAT-RPT-7642 Rev D, Parsons Brinckerhoff, dated April 2015.
- Parsons Brinckerhoff 2015a, 'Waukivory Pilot Project: Surface and Groundwater Monitoring Report to 31 December 2014, 2268523A-WAT-RPT-001 RevF, Parsons Brinckerhoff, dated February 2015.
- Parsons Brinckerhoff 2015b, 'Waukivory Pilot Project: Surface and Groundwater Monitoring Report to 31 March 2015, 2268523A-WAT-RPT-002 RevD, Parsons Brinckerhoff, dated May 2015
- Parsons Brinckerhoff 2015c, 'Waukivory Pilot Project: Surface and Groundwater Monitoring Report to 30 June 2015, 2268523A-WAT-RPT-003 RevE, Parsons Brinckerhoff, dated August 2015
- Parsons Brinckerhoff 2015d, '2014 Flow Testing of Craven 06 Gas Well', 2162406C-WAT-RPT-001 RevD, Parsons Brinckerhoff, dated April 2015.
- Parsons Brinckerhoff 2015e (in preparation), 'Numerical groundwater modelling of the Gloucester Basin - Local scale fault modelling', 2193335A, Parsons Brinckerhoff, Sydney.
- SRK Consulting 2005, 'Gloucester Basin Geological Review', SRK Project Number GBA001.

## Appendix A

Sampling dates, locations and rationale

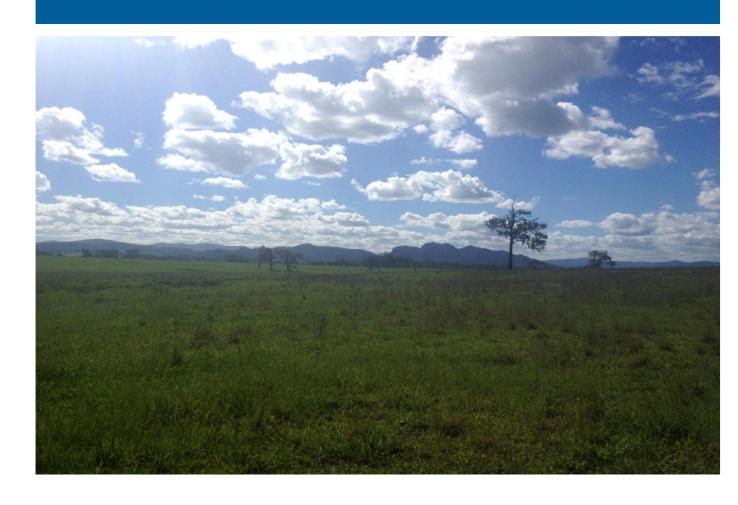



Table A1.1 Monitoring dates and rationale for groundwater and surface water sampling

|               |                                     |        |        |        |         | Monitori | ng point |          |        |        |        |                                                                                                                                                               |
|---------------|-------------------------------------|--------|--------|--------|---------|----------|----------|----------|--------|--------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | EPA ID                              | 10     | 11     | 12     | na      | na       | 90       | 91       | 9      | 8      | 7      | Sampling rationale                                                                                                                                            |
|               | AGL Location                        | WKMB01 | WKMB02 | WKMB03 | WKMB06A | WKMB06B  | GR-P3    | GW080487 | WKSW01 | WKSW02 | WKSW03 |                                                                                                                                                               |
|               | 11 Mar 14<br>12 Mar 14<br>13 Mar 14 | х      | х      | х      |         |          | х        | x        | Х      | х      | х      | 2014 baseline #1<br>(pre-Waukivory Pilot)                                                                                                                     |
|               | 26 Jun 14<br>27 Jun 14              | х      | х      | х      |         |          | х        |          | x      | x      | х      | 2014 baseline #2<br>(pre-Waukivory Pilot)                                                                                                                     |
|               | 30 Sep 14<br>1 Oct 14               | х      | х      | х      |         |          | х        | х        | х      | х      | х      | 2014 baseline #3<br>(pre-Waukivory Pilot)                                                                                                                     |
|               | 21 Oct 14<br>22 Oct 14              | х      | х      | х      |         |          | х        | х        | х      | х      | х      | 2014 baseline #4<br>(pre-Waukivory Pilot)                                                                                                                     |
| late          | 6 Nov 14                            | х      | х      | х      |         |          | х        | х        | х      | х      | х      | within 24 hours of the completion of the fracture stimulation of WK13                                                                                         |
| Sampling date | 12 Nov 14<br>13 Nov 14              | х      | х      | х      |         |          | х        | х        | х      | х      | х      | within 24 hours of the completion of the fracture stimulation of zone 2 WK12, one week after fracture stimulation of WK13 for surface water samples           |
| Ī             | 17 Nov 14<br>18 Nov 14              | х      | х      | х      |         |          | х        | х        | х      | х      | х      | within 24 hours of the completion of the fracture stimulation of WK14                                                                                         |
|               | 18 Nov 14<br>19 Nov 14              |        |        |        | х       | х        |          |          | х      | х      | х      | first sampling events<br>following installation of<br>the new bores, one<br>week after fracture<br>stimulation of zone 2<br>WK12 for surface<br>water samples |

|                                    |        | Monitoring point |        |         |         |       |          |        |        |        |                                                                                                                                                                  |  |  |
|------------------------------------|--------|------------------|--------|---------|---------|-------|----------|--------|--------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| EPA ID                             | 10     | 11               | 12     | na      | na      | 90    | 91       | 9      | 8      | 7      | Sampling rationale                                                                                                                                               |  |  |
| AGL Location                       | WKMB01 | WKMB02           | WKMB03 | WKMB06A | WKMB06B | GR-P3 | GW080487 | WKSW01 | WKSW02 | WKSW03 |                                                                                                                                                                  |  |  |
| 20 Nov 14                          | x      | х                | х      |         |         | х     | х        | х      | х      | х      | within 24 hours of the completion of the fracture stimulation of WK12                                                                                            |  |  |
| 24 Nov 14                          |        |                  |        |         |         |       |          | х      | х      | x      | one week after fracture<br>stimulation of WK14 for<br>surface water samples                                                                                      |  |  |
| 26 Nov 14<br>27 Nov 14             | х      | х                | х      |         |         | х     | х        | х      | х      | х      | within 24 hours of the completion of the fracture stimulation of WK11, one week after fracture stimulation of WK12 for surface water samples                     |  |  |
| 3 Dec 14                           |        |                  |        |         |         |       |          | х      | х      | х      | one week after fracture<br>stimulation of WK13 for<br>surface water samples                                                                                      |  |  |
| 9 Dec 14<br>10 Dec 14              | х      | х                | х      | х       | х       | х     | х        |        |        |        | two weeks after the completion of the fracture stimulation of WK11                                                                                               |  |  |
| 22 Dec 14<br>23 Dec 14             | х      | х                | х      | х       | х       | х     | х        |        |        |        | four weeks after the completion of the fracture stimulation of WK11                                                                                              |  |  |
| 29 Jan 15<br>30 Jan 15             | Х      | х                | Х      | х       | х       | х     | x        | х      | x      | х      | two weeks from<br>commencement of<br>flowback                                                                                                                    |  |  |
| 29 Apr 15<br>30 Apr 15<br>1 May 15 | х      | х                | х      | х       |         | х     | х        | х      | х      | x      | sampling prior to<br>recommencement of<br>flowback on 5 May.<br>WKMB06B was not<br>sampled on 30 April<br>due to waterlogging,<br>sample taken on 11<br>May 2015 |  |  |

| EPA ID                   | 10     | 11     | 12     | na      | na      | 90    | 91       | 9      | 8      | 7      | Sampling rationale                                                                                                                                 |
|--------------------------|--------|--------|--------|---------|---------|-------|----------|--------|--------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| AGL Location             | WKMB01 | WKMB02 | WKMB03 | WKMB06A | WKMB06B | GR-P3 | GW080487 | WKSW01 | WKSW02 | WKSW03 |                                                                                                                                                    |
| 11 May 15                | x      | х      |        | х       | x       |       |          |        |        |        | sampling on 11 May<br>2015 from WKMB01,<br>WKMB02 and<br>WKMB06A at DRE<br>request<br>WKMB06B sampled<br>due to waterlogging on<br>29 Apr to 1 May |
| 27 May 15                |        |        |        |         |         |       |          | х      | х      | х      | six months from<br>cessation of fracture<br>stimulation (surface<br>water only)                                                                    |
| 23 Jun 15<br>24 Jun 15   | х      | х      | х      | х       | х       |       |          | х      | х      | х      | sampling on 23 June<br>2015 as part of the<br>periodic sampling of<br>AGL's wider<br>Gloucester Basin<br>monitoring network                        |
| 26 Aug 15                |        |        |        |         |         |       |          | х      | Х      | х      | monthly sampling (surface water only)                                                                                                              |
| 22 Sept 15<br>23 Sept 15 |        |        |        |         |         |       |          | х      | Х      | Х      | monthly sampling (surface water only)                                                                                                              |

Table A1.2 Monitoring dates and rationale for flowback sampling

|               | Monitoring point |      |      |      |      |      |                                                        |
|---------------|------------------|------|------|------|------|------|--------------------------------------------------------|
|               | EPA ID           | 92   | 86   | 87   | 88   | 89   | Sampling rationale                                     |
|               | AGL Location     | AST2 | WK11 | WK12 | WK13 | WK14 |                                                        |
|               | 16 Dec 14        |      |      |      | Х    |      | commencement of flowback                               |
|               | 29 Dec 14        | Х    |      | Х    | Х    |      | fortnightly sampling from the commencement of flowback |
|               | 12 Jan 15        | Х    |      |      |      |      | fortnightly sampling from the commencement of flowback |
|               | 28 Jan 15        | Х    |      |      |      |      | fortnightly sampling from the commencement of flowback |
|               | 2 Feb 15         | Х    |      |      |      |      | BTEX investigation                                     |
|               | 3 Feb 15         | Х    | Х    |      | Х    |      | BTEX investigation                                     |
|               | 4 Feb 15         | Х    | Х    | Х    | Х    | XX   | BTEX investigation                                     |
|               | 5 Feb 15         | Х    | Х    | Х    | Х    | Х    | BTEX investigation                                     |
|               | 6 Feb 15         | Х    | Х    | Х    | Х    | Х    | BTEX investigation                                     |
| Ф             | 26 Feb 15        | Х    |      |      |      |      | AST2 water quality monitoring                          |
| y dat         | 30 Apr 15        | Х    |      |      |      |      | AST2 water quality monitoring                          |
| Sampling date | 6 May 15         | XX   | XX   | хх   | хх   | хх   | BTEX and UHS investigation DRE additional sampling     |
| တ             | 7 May 15         | Х    | Х    | Х    | Х    | Х    | Water quality monitoring , BTEX and UHS investigation  |
|               | 8 May 15         | Х    | XX   | хх   | хх   | хх   | BTEX and UHS investigation DRE additional sampling     |
|               | 9 May 15         | Х    | Х    | Х    | Х    | Х    | BTEX and UHS investigation                             |
|               | 10 May 15        | Х    | Х    | Х    | Х    | Х    | Water quality monitoring, BTEX and UHS investigation   |
|               | 11 May 15        | Х    | Х    | Х    | Х    | Х    | BTEX and UHS investigation                             |
|               | 12 May 15        | Х    | Х    | Х    | Х    | Х    | BTEX and UHS investigation                             |
|               | 13 May 15        | Х    | Х    | Х    | Х    | Х    | BTEX and UHS investigation                             |
|               | 14 May 15        | Х    | Х    | Х    | Х    | Х    | Water quality monitoring, BTEX and UHS investigation   |
|               | 15 May 15        | Х    | XX   | XX   | XX   | XX   | BTEX and UHS investigation DRE additional sampling     |

|              |      |      | Monitoring p | oint |      |                                                                                    |
|--------------|------|------|--------------|------|------|------------------------------------------------------------------------------------|
| EPA ID       | 92   | 86   | 87           | 88   | 89   | Sampling rationale                                                                 |
| AGL Location | AST2 | WK11 | WK12         | WK13 | WK14 |                                                                                    |
| 16 May 15    | Х    | Х    | Х            | Х    | Х    | BTEX and UHS investigation                                                         |
| 17 May 15    | Х    | Х    | Х            | Х    | Х    | BTEX and UHS investigation                                                         |
| 18 May 15    | Х    | Х    | Х            | XX   | Х    | BTEX and UHS investigation. Second WK13 sample collected 18/05/15 in the afternoon |
| 19 May 15    | Х    | XX   | XX           |      | XX   | BTEX and UHS investigation                                                         |
| 20 May 15    | Х    | Х    | Х            |      | Х    | Water quality monitoring, BTEX and UHS investigation                               |
| 17 Jun 15    | Х    |      |              |      |      | AST2 water quality monitoring                                                      |
| 30 Jun 15    | Х    | Х    | Х            | Х    | Х    | BTEX and UHS investigation                                                         |
| 1 Jul 15     | Х    | Х    | Х            | Х    | Х    | BTEX and UHS investigation                                                         |
| 2 Jul 15     | Х    | Х    | Х            | Х    | Х    | BTEX and UHS investigation                                                         |
| 3 Jul 15     | Х    | Х    | Х            | Х    | Х    | BTEX and UHS investigation                                                         |
| 4 Jul 15     | Х    | Х    | Х            | Х    | Х    | BTEX and UHS investigation                                                         |
| 6 Jul 15     | Х    | Х    | Х            | Х    | Х    | BTEX and UHS investigation                                                         |
| 7 Jul 15     | Х    | Х    | Х            | Х    | Х    | BTEX and UHS investigation                                                         |
| 8 Jul 15     | Х    | Х    | Х            | Х    | Х    | Water quality monitoring, BTEX and UHS investigation                               |
| 9 Jul 15     | Х    | Х    | Х            | Х    | Х    | BTEX and UHS investigation                                                         |
| 10 Jul 15    | Х    | Х    | Х            | Х    | Х    | BTEX and UHS investigation                                                         |
| 11 Jul 15    | Х    | Х    | Х            | Х    |      | BTEX and UHS investigation                                                         |
| 13 Jul 15    | Х    | Х    | Х            | Х    |      | BTEX and UHS investigation                                                         |
| 14 Jul 15    | Х    | Х    |              | Х    |      | BTEX and UHS investigation                                                         |
| 15 Jul 15    | Х    | Х    |              | Х    | Х    | Water quality monitoring, BTEX and UHS investigation                               |
| 16 Jul 15    | Х    | Х    | Х            | Х    | Х    | BTEX and UHS investigation                                                         |
| 17 Jul 15    | Х    | Х    | Х            | Х    |      | BTEX and UHS investigation                                                         |
| 18 Jul 15    | Х    |      |              | Х    | Х    | BTEX and UHS investigation                                                         |

|              |      |      | Monitoring p | oint |      |                                                      |
|--------------|------|------|--------------|------|------|------------------------------------------------------|
| EPA ID       | 92   | 86   | 87           | 88   | 89   | Sampling rationale                                   |
| AGL Location | AST2 | WK11 | WK12         | WK13 | WK14 |                                                      |
| 20 Jul 15    | Х    | Х    | Х            |      |      | BTEX and UHS investigation                           |
| 21 Jul 15    | Х    |      | Х            |      |      | BTEX and UHS investigation                           |
| 22 Jul 15    | Х    |      |              |      | Х    | Water quality monitoring, BTEX and UHS investigation |
| 23 Jul 15    | Х    |      | Х            | Х    |      | BTEX and UHS investigation                           |
| 24 Jul 15    | Х    |      |              |      | Х    | BTEX and UHS investigation                           |
| 25 Jul 15    | Х    |      | Х            |      |      | BTEX and UHS investigation                           |
| 27 Jul 15    | Х    | Х    |              | Х    |      | BTEX and UHS investigation                           |
| 28 Jul 15    | Х    |      |              | Х    | Х    | BTEX and UHS investigation                           |
| 29 Jul 15    | Х    |      | Х            | Х    |      | fortnightly sampling                                 |
| 12 Aug 15    | Х    |      | Х            | Х    |      | fortnightly sampling                                 |
| 26 Aug 15    | Х    | Х    | Х            | Х    |      | fortnightly sampling                                 |
| 9 Sept 15    | Х    | Х    | Х            | Х    | Х    | fortnightly sampling                                 |
| 23 Sept 15   | Х    | Х    |              | Х    | Х    | fortnightly sampling                                 |

## Appendix B

Parsons Brinckerhoff sampling procedure and AGL pilot well and AST2 sampling procedure





### Controlled Document – Change Register

| Revision | Section Changed | Change Description                    | Initial | Date       |
|----------|-----------------|---------------------------------------|---------|------------|
| А        | All             | New document                          | AM      | 01/02/15   |
| В        | 3, 8, 9         | Enhance QA/QC procedures              | SD      | 28/09/15   |
| С        | All             | General review and update             | CR      | 30/9/2015  |
| D        | 10, 11          | Sample handling and data QC procedure | SD      | 16/10/2015 |

#### 1. Introduction

This procedure outlines general protocols and work practices to be applied when collecting groundwater and surface water samples and downloading data loggers.

It is noted that other methods of groundwater and surface water sampling are possible and that deviation from this standard operating procedure (SOP) may be appropriate in some circumstances. The rationale for any deviations from this SOP should be discussed and agreed to with the Project Manager (PM) prior to undertaking the works and documented during the works.

#### 1.1 Objectives

The objective of this procedure is to provide a framework to describe how WSP|Parsons Brinckerhoff will perform surface water and groundwater sampling and monitoring activities. The procedure includes:

- Sampling and monitoring equipment.
- Sampling techniques.
- Sample collection and preservation.
- Logger download
- Quality Assurance / Quality Control (QA/QC) procedures.
- Chain of custody documentation.

#### 1.2 Responsibilities

WSP Parsons Brinckerhoff project managers are responsible for:

- Implementation and distribution of the procedure for field activities.
- Review of this procedure and client consultation to identify specific client requirements.
- Review of this procedure where any deviation to the procedure may exist and seek client confirmation of any adopted changes or recommendations.
- Ensuring that all staff undertaking the work have been trained appropriately and are familiar with sampling and equipment operating procedures.
- Ensuring all staff are inducted for site activities and are familiar with the project safety requirements.



All WSP Parsons Brinckerhoff staff are responsible for:

- Undertaking all groundwater and surface water activities in accordance with this procedure.
- Review of this procedure to reflect any recommendations or changes to procedure.
- The maintenance of equipment and ensuring that all equipment has been tested and tagged appropriately before use.

#### 2. References

The following standards and guidelines have been considered and apply to this procedure:

- AS/NZS 5667.1:1998: Water quality Sampling Guidance on the design of sampling programs, sampling techniques and the preservation and handling of samples.
- AS/NZS 5667.11:1998: Water quality Sampling Guidance on sampling of groundwaters.
- AS/NZS 5667.6:1998: Water quality Sampling Guidance on sampling of rivers and streams.
- Australian and New Zealand Environmental Conservation Council, and Agricultural and Resource Management Council of Australia and New Zealand 2000 Australian and New Zealand Guidelines for Fresh and Marine Water Quality October 2000.
- Geoscience Australia 2009, *Groundwater Sampling and Analysis a field guide*, Geoscience Australia, Record 2009/27 95 pp.

The following documents have been developed by WSP Parsons Brinckerhoff and should be referred to when undertaking all field activities for water quality sampling:

- Standard operating procedure Groundwater and Surface Water Sampling (this document).
- Parsons Brinckerhoff safe work method statements (SWMS's) for the use of the micropurge control box, generator, air compressor, Grundfos and 12-volt pump.
- Parsons Brinckerhoff groundwater field parameters field data recording form.
- Sample bottle checklist from template (WAN-CHK-001Rev.1).

### 3. Input documentation

- Site specific Health, Environment and Safety Plan (HESP), SWMS's and other related OHSE documents.
- Site specific access permits (if required).
- Authority to work (if required).
- Sample bottle checklist (WAN-CHK-001Rev.1).

#### 4. Selection of groundwater sampling methods

A range of methods can be used to obtain groundwater quality samples from monitoring bores. The most appropriate method for each bore should be selected based on the depth of the bore, the diameter of the bore, the depth to groundwater, and the permeability of the screened formation. Higher yielding monitoring

**Groundwater Team** 



# Standard Operating Procedure Groundwater and Surface Water Sampling and logger download

bores are typically purged and sampled using a submersible (high-flow) pump. Lower yielding bores are typically sampled using a low-flow pump.

#### Submersible (high-flow) pump

High flow pumps (usually submersible pumps such as 12 volt pumps, Grundfos or Bennett pumps) are deployed in high yielding bores. Typically, three bore volumes are extracted before a water quality sample is collected, however abstracting this volume is not always required or possible so appropriate sampling protocols must be agreed at project inception.

Where high flow pumps can be deployed to the screened interval of the monitoring bore, three well volumes may not always be necessary (Refer to section 6.2.2).

#### 4.1 Non-purge groundwater sampling

### Low flow (MicroPurge®) groundwater sampling

Low flow sampling techniques (such as the MicroPurge<sup>®</sup> pump) allows groundwater to be drawn into the pump intake directly from the screened interval of the monitoring bore, eliminating the need to purge large volumes of groundwater from these bores.

#### **Bailing**

Bailed samples collect a discrete sample at depth. Double check bailers (with stop valves at the top and bottom of the bailer) can be lowered to the screened interval to collect a grab sample at a specified depth within the water column. Disposable bailers with a single stop valve are generally not suitable to collect samples from deep within the water column, as mixing of the collected water sample is likely when the bailer is retrieved.

Despite the double checks on the discrete depth bailer, it is possible for mixing to occur if a proper seal is not established or if the bailer is not raised from the well steadily enough. Reusable bailers should be rinsed between samples and decontaminated between sites.

Care must be taken to ensure sediment in the sump of the monitoring bore is not disturbed using this sampling method.

#### Other non-purge methods

No-purge samplers include diffusion samplers and grab samplers (e.g. HydraSleeve<sup>®</sup> and Snap Sampler™). Deploy and retrieve the no-purge sampler in the well in accordance with the manufacturer's instructions. No purging is required for this method of groundwater sampling. Ensure that a sufficient volume of groundwater can be recovered to enable the required analysis, and measurement of groundwater quality parameters, can be conducted.

#### 5. Equipment

#### 5.1 General water quality sampling equipment

The following equipment is used for the majority of sampling tasks and is applicable to groundwater and surface water sampling:

Personal protective equipment and other safety equipment as identified in the HESP.



- Field data recording forms, chain-of-custody forms (COC), tablet and/or laptop.
- Water level meters (dipper), (electronic water level meters are not to be used where there is a requirement for equipment to be intrinsically safe, other manual methods (such as a "plopper" should be used instead).
- Multi-parameter water quality instruments and calibration solution.
- Appropriate sample containers as specified by the laboratory.
- Storage containers for the samples (such as an esky, ice (or ice bricks), or fridge).
- Decontamination equipment including clean buckets, phosphate free detergent e.g. Decon 90, potable water and deionised water (if required).
- Appropriately labelled storage containers to collect waste water discharge or transport.
- Nitrile gloves, syringes and water filters for filtered samples (e.g. dissolved metals, dissolved organic carbon, iron).
- Camera and mobile phone.

#### 5.2 Groundwater sampling equipment

Groundwater sampling equipment is specific to the sampling methodology to be used for sample collection. Before staff use any groundwater sampling equipment they should be fully trained and competent in the use of the equipment, familiar with the operation and safe work method statements for the task to be performed. All equipment should be regularly maintained, tested and tagged appropriately before use.

The following list is provided as a guide for necessary equipment for the range of sampling methodologies and not intended as an exhaustive checklist.

#### Submersible pump (12 volt pumps)

- 12 volt submersible pump and reel.
- Power cable (12 volt) and connectors (ensure appropriate connectors are selected based on vehicle / power source connection).
- 12 volt power source (auxiliary battery).
- Extension hose for purged water discharge.
- Water discharge controllers where applicable.

### Submersible pump (Grundfos)

- Grundfos pump and reel.
- Generator and residual control device (RCD).
- Water discharge control (variable speed control).
- Extension hose for purged water discharge.

#### Low flow techniques (Micro-purge®)

- Generator and residual control device (RCD).
- Air compressor.



- Micro-purge<sup>®</sup> control box
- Air hoses and fittings
- Extension hose for purged water discharge.
- Flow cells for water quality monitoring

#### 5.3 Surface water sampling equipment

Surface water samples should be collected using the following:

- Nalgene sample collection container.
- Telescopic sampling pole.

Surface water samples can be collected directly into sample containers that do not contain preservatives, provided that a representative sample can be collected. The Nalgene sample container should be replaced between each sample.

#### 5.4 Groundwater level monitoring equipment

Generally, Solinst Leveloggers have been deployed to continuously monitoring groundwater levels. Data loggers should be installed as follows:

- Data loggers should be suspended from the surface using stainless steel wire rope and stainless steel swages.
- Data loggers should be suspended below the standing water level. Potential groundwater level variations in the bore and individual logger specifications (different loggers have different pressure thresholds) should be considered before the depth at which the logger is to be installed is determined, as the logger must remain below the groundwater level.
- Program the data logger and then lower the data logger into a bore. Data logging intervals should be determined to satisfy client requirements and the resolution of data sought. Generally, 6 hourly intervals (00:00, 6:00, 12:00 and 18:00)

#### 6. Sampling and monitoring

#### 6.1 Water quality samples

- Prepare sample bottle checklist from template (WAN-CHK-001Rev.1). PM to familiarise field personnel
  with the sampling suite, holding times, sample security procedures and other project or site specific
  requirements regarding the sampling.
- Prepare suite of sampling containers as per the sample bottle checklist. Complete all fields on the checklist following the packing and filling of the containers.
- Complete all fields on the label of the container using a xylene free marker.
- Ensure sampling personnel are wearing a clean pair of disposable sampling gloves for each sample.
- Ensure that all bottles are filled and capped as quickly as practicable to reduce exposure of the sample to the atmosphere. Care should be taken when handling sample container lids to avoid contact with any surfaces that may compromise the integrity of the sample.



- Ensure that while collecting the sample, that no foreign object (such as the sampling hose) is inserted
  into the bottle, nor should anything touch the rim of the bottle.
- When collecting samples for volatile analysis, make sure all bottles are filled as far as practicable to minimise the headspace within the container and avoid potential loss of volatiles.
- Immediately place all samples into an esky pre-packed with ice or ice bricks, or a cooled field fridge. To reduce the potential for breakage, samples can be placed on the firm base of the esky with ice placed in a secure bag (to prevent leakage) on top. Samples should be arranged to minimise lateral movement during transport, and free space can be reduced by adding inert packing material (bubble wrap etc.) if required.
- Complete a quality control check of the labels of all samples submitted to the laboratory against the sample IDs on the COC.
- Transport all samples on ice (temperature below 4°C) to the laboratory as soon as practical with the completed and relinquished COC. The COC should include the following information: sample ID, date and time of sampling, project number, number of sample bottles, analysis requested, laboratory quote number, specific comments and remarks, name and signature of collector, date and time samples are relinquished and contact details.
- Any split replicate (triplicate) samples should be sent directly to the secondary laboratory in a separate esky from that containing the primary samples, with all other samples sent to the primary laboratory.
- Typically samples should not be frozen. Exceptions include samples for total phosphorus (AS/NZS 5667.1:1998) however advice must be sought from the laboratory.
- Where filtering of samples is required (e.g. dissolved metals and dissolved organic carbon) disposable disc filters (0.45µm) should be used with disposable syringes. Filtering equipment should not be reused between sampling locations.

#### 6.2 Groundwater sampling and monitoring

#### 6.2.1 Groundwater levels

Groundwater levels (or pressures, where appropriate) are collected either manually (by electronic water level meters) or by data loggers installed at each monitoring location (or a combination of both).

Prior to removing the data logger, manual water levels are recorded using the following procedure:

- Test the water level meter at the surface to ensure it is operational. Slowly lower the probe down the well and measure and record the depth to groundwater from the marked point at the top of the casing and record.
- If no marking is present, measure from the highest point of the casing, note this on the field data recording form and mark the casing for future monitoring.

The data logger can then be retrieved from the monitoring bore for data download by pulling the wire rope attached to the data logger. Data loggers are then downloaded using appropriate software for storage and data processing. The following diagnostics should be performed regularly to ensure data loggers are functioning properly:

- Visually inspect and clean the data logger if necessary.
- Inspect swages and connections to ensure the data logger is secured at the surface.
- Test run the data logger in air and submerged in a known depth of water and record real time data.



- Check real time data to ensure water levels recorded by the data logger are accurate before redeploying.
- Check data logger battery levels and record.

#### 6.2.2 Deployment of groundwater sampling equipment and purging

- Calibrate the water quality meter daily and record details on the calibration sheet.
- Unstable parameters should be measured in the field, such as temperature, dissolved oxygen (DO), oxidation-reduction potential (redox), electrical conductivity (EC) and pH as purging progresses. Total dissolved solids and carbon dioxide can also be measured in the field if required.
- Continue purging until at least three consecutive sets of field parameters are obtained and monitor the changes in pH, temperature and EC. Do not sample until field parameters show no significant variations (< +/- 10%).</li>
- Typically three bore volumes are removed from a bore prior to sampling (moderate to high yielding bores). Less than three bore volumes can be removed prior to sampling in the following circumstances:
  - A bore is purged dry and the recovery water is sampled.
  - Field parameters stabilise prior to the removal of three bore volumes, yet after the removal of at least one bore volume.
  - No-purge sampling equipment is used.
  - Low-flow groundwater pumps are used, with the intake at the screened section.
- Bore volumes can be estimated as follows:
  - $\blacktriangleright$  Bore volume (L) = 2 x water column length (m) for 50 mm wells.
- Qualitatively assess and record the colour of purged water, turbidity, any odours and other observations and note this on the field data recording form.

#### 6.3 Surface water samples

- Ensure that a representative water sample is collected from the water body as close to the thalweg as
  practicable. Consideration should be given to the choice of sampling location so that the water body is
  homogenous and any source mixing is complete.
- Take care to avoid disturbing sediment when collecting a sample. If there is a risk that sampling would have a downstream effects, sampling should be collected from a downstream location first, working upstream.
- Note and record the appearance of the surface water body, i.e. colour, turbidity, odour, surface crusts, films or floating material, algae, etc. Also note any other relevant observations such as dead or distressed vegetation, surface rubbish, surface sheen, etc.
- If sampling un-stratified surface waters, lower the surface water sampler carefully into the surface water body at a location well away from the edge. Collect the water sample from approximately 100 mm below the surface of the water body. Following collection, decant the surface water sample into the laboratory supplied sample containers. Use a dedicated sampling bottle for each location. Never submerse laboratory-supplied sample bottles that may contain acid or preservative, into the surface water body.
- If sampling stratified surface waters, lower a weighted sampler such as a bomb sampler or a Van Dorn sampler below the water surface to the depth required, and allow to fill until bubbles stop rising to the surface. When the bottle is full, gently remove it from the water.



#### 7. Quality Assurance (QA) sample collection

The requirement for QA samples should be assessed depending on the project and client requirements. The following provides the types of QA samples that may be required and a suggested frequency:

- Field duplicate: 1 in 10 samples. This is a replicate sample collected for analysis from the same sample site at the same time. This provides information on the sampling error and a measure of sample precision.
- Label QA samples 'QA\*\*\_date' with the first QA sample labelled QA01 and the second labelled QA02 etc. in order of collection. This includes field duplicates as well as rinsate, trip and field blanks and trip spikes.
- When a QA sample is taken a note must be made on the field sheet of the parent sample.
- Ensure specified PPE is worn and correct sampling techniques are followed (refer to section 6) to avoid contamination of the sample from the surrounding environment.
- Other blanks and controls can be collected depending on client requirements. The requirements of a sampling program should be defined and documented in a sampling program prior to the sampling program commencing. Other quality control samples could include:
  - ▶ Field blanks to estimate contamination of a sample during the collection procedure.
  - ➤ Transport blanks to estimate contamination introduced during transport and storage of the sample.
  - ▶ Container blanks to estimate contamination from the container and preservation technique during storage of a sample.
  - ▶ Field spikes to determine the loss or cross-contamination of volatile materials.
- Blanks and controls should be collected in consultation with the laboratory engaged for analysis. Ensure that the storage of blanks and controls adheres to laboratory requirements.

#### 8. Purged groundwater disposal

- Store and dispose of purged water appropriately. Purged water should not be disposed of onto the site surface or to sewer/stormwater without testing, unless approved by the client and appropriate procedures are in place to ensure that there is no adverse impact to the environment or human health.
- Purged water can be collected in appropriately labelled storage containers.

#### 9. Output documentation

The following documents shall be placed on the electronic project file as soon as possible upon completion of the fieldwork:

- Field data recording forms.
- Logger data files.
- Completed bottle checklist.
- Completed COC.
- Signed HESP.

**Groundwater Team** 

## Standard Operating Procedure Groundwater and Surface Water Sampling and logger download

#### Field data recording forms

Field data recording forms include all necessary information that would enable a repetition of sampling to take place under identical conditions. The Parsons Brinckerhoff groundwater and surface water field parameters form should be completed in its entirety for every sampling event.

#### 10. Sample storage, transit and delivery

- Complete all relevant fields on the CoC, if required, send to the lab prior to sampling for review to ensure that all required analyses are shown on the CoC
- Store samples upright, in new zip lock bags in an ice filled esky
- Samples should be stored I the tray of the vehicle whilst in transit, locked in the cab whilst parked if the vehicle is out of view and stored securely overnight in the accommodation or workplace
- Samples should be delivered by the trained water sampling technician to the laboratories where possible
- In the event that a courier is required, field staff will complete and send a Chain-of-Custody form with the sample for sample transport to the laboratory and seal each ice filled esky prior to pick up. Photographs to be taken of the open esky(s) and the closed, sealed esky(s)
- Complete the change of custodian fields on the CoC when samples are handed to courier or the lab

#### 11. Laboratory liaison Data QC and data provision

- The standard communications from the laboratory to all email addresses in the reporting field of the CoC are as follows:
  - Scanned copy of the CoC with work order number assigned by the lab
  - ▶ Sample receipt notification (SRN). This document cross references the samples received with the data required and identifies any non-compliances regarding container(s), preservation, holding time and sample condition
    - The SRN must be reviewed and any non-compliances immediately followed up with the lab and actioned
  - Results are emailed in ESdat format with pdf certificate of analysis (CoA). The CoA must be reviewed to ensure all required data is present and samples and the front page displays the correct sampler names and dates
- Prior to use of the data in further analysis/reporting or provision to the client the data must undergo a Quality Control (QC) process:
  - Undertake the QC as soon as possible after receiving results to maximise the possibility of rectifying any data omissions
  - It is the responsibility of the PM to ensure all required data has been received from the lab
  - Responsibilities regarding identifying anomalous data, trend tracking and comparison against QA samples must be agreed at project inception
  - QC for the presence of data can be done visually by cross referencing the CoA with the scope for smaller data sets. For larger datasets, the use of an excel lookup table (or similar) is recommended
- The QC process should be agreed in writing between the client and the PM at project inception



# Procedure for water sampling from pilot gas wells WK11, 12, 13, 14 & above ground flowback water storage tank

### Daily pilot well sampling checklist

| Date      |  |
|-----------|--|
| Sampler   |  |
| Signature |  |

| STEP | Action                                                                                                                                                                                                            | By Who | By When                       | Sampler initial |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------|-----------------|
| 1    | Order water sample bottles from ALS                                                                                                                                                                               | PB     | 1 week prior to sampling      |                 |
| 2    | Have available sterile, single use, disposal sampling equipment such as syringes, Minisart 0.45 µm filters (individually packed and sterile) and nitrile gloves.                                                  | PB     | 1 week prior to sampling      |                 |
| 3    | Obtain from AGL Senior Hydrogeologist the sampling locations, sequence and analytical suite. The sampling order will be from asset with lowest (first) to highest (last) concentration of key analytes            | PB     | 24 hours prior<br>to sampling |                 |
| 4    | Make up a pre diluted mixture of Decon 90 and water and have available to decontaminate the YSI water quality meter after each water sample.                                                                      | PB     | 24 hours prior to sampling    |                 |
| 5    | Calibrate YSI water quality meter and record in the calibration log. If the YSI meter does not calibrate, sampling technicians should obtain AGL's YSI meter from the AGL Gloucester office to use as a back-up.  | PB     | Start of each field day       |                 |
| 6    | Wear new nitrile gloves and safety glasses and other clean site specific PPE.                                                                                                                                     | PB     | Each sampling event           |                 |
| 7    | Prepare and maintain clean and clear work surfaces                                                                                                                                                                | PB     | Ongoing                       |                 |
| 8    | Avoid contact with the inside of the water sample bottle and the lid. Do not place the lid on surfaces that may result in contamination of the sample when filling the sample container                           | PB     | Ongoing                       |                 |
| 9    | Inspect water sampling, handling and storage locations to primary containment (e.g. drip trays) is installed and has capacity.                                                                                    | PB     | Prior to sampling             |                 |
| 10   | Sample containers are to be inspected prior to sampling to ensure that sample container lids have remained in place during transit. Any containers that have lost their lids during transport should not be used. | PB     | Prior to sampling             |                 |
| 11   | Avoid contact with the inside of the water sample bottle and the lid.  Do not place the lid on surfaces that may result in contamination of the sample when filling the sample container                          | PB     | During<br>sampling            |                 |
| 12   | Sample containers should be filled in a controlled manner once the container lid has been removed to avoid the exposure time of the sample to the surrounding environment. Overfilling must be avoided.           | PB     | During<br>sampling            |                 |
| 13   | Sample containers to be filled to ensure minimal or zero head space as required.                                                                                                                                  | PB     | During<br>sampling            |                 |



## Procedure for water sampling from pilot gas wells WK11, 12, 13, 14 & above ground flowback water storage tank

| STEP | Action                                                                                                                                                                                                                                                                                                                                                               | By Who                                                        | By When                               | Sampler initial |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|-----------------|
| 14   | Where subsampling is required, samples will be collected from<br>the sample point in large single use glass and plastic bottles.<br>Subsampling into laboratory bottles will go from glass to glass<br>and plastic to plastic.                                                                                                                                       | PB                                                            | During<br>sampling                    |                 |
| 15   | If required, divide the sample amongst the specific sampling containers provided by the laboratory for the pre-determined analytical suite. This activity shall be undertaken within secondary containment to avoid loss of containment of water sample to the ground (e.g. sample dividing to be done over drip tray or duck pond or plastic sheeting as required). | РВ                                                            | During<br>sampling                    |                 |
| 16   | Complete all fields on sample container label using a xylene free marker pen.                                                                                                                                                                                                                                                                                        | PB                                                            | During sampling                       |                 |
| 17   | <ul> <li>Advise if the water quality meter can be used next to the gas well.</li> <li>If approved by AGL Operator, measure physico-chemical parameters using a YSI water quality meter and record data on field sheet.</li> <li>After taking physico-chemical readings, rinse the YSI meter cup and probe in fresh/demineralised water</li> </ul>                    | <ul><li>AGL<br/>Oper<br/>ator</li><li>PB</li><li>PB</li></ul> | During<br>sampling                    |                 |
| 18   | Store individual laboratory samples upright in a snap lock bag and place in an ice filled esky and chilled as soon as possible                                                                                                                                                                                                                                       | PB                                                            | At completion of sampling             |                 |
| 19   | Collect solid waste in rubbish bags and kept separate from uncontaminated equipment and disposed of appropriately                                                                                                                                                                                                                                                    | PB                                                            | At completion of daily sampling event |                 |



# Procedure for water sampling from pilot gas wells WK11, 12, 13, 14 & above ground flowback water storage tank

### 5.2 AST2

| STEP | Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | By Who                              | By<br>When | Sampler initial |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------|-----------------|
| 1    | The 1.5 megalitre AST2 is situated at the WK13 pilot well site and is an open top tank with a single access point via a ladder securely mounted to the side of the tank.                                                                                                                                                                                                                                                                                                                                                                                    |                                     |            |                 |
| 2    | Sampling from AST2 requires climbing the ladder to a height of approximately 1.5 m above ground. A second technician should be located at the foot of the ladder to assist. Ensure three points of contact at all times and that ladder rungs are free from mud and excess water. Do not wear new nitrile gloves when climbing the ladder.                                                                                                                                                                                                                  | PB                                  | Ongoing    |                 |
| 3    | A telescopic sampling pole is to be used with a new 500 mL Nalgene bottle for each sample. The sampling pole and bottles should be passed up to the sampling technician by the second technician located on the ground. Once each bottle is filled the sampling technician should pass each filled bottle and finally the telescopic pole down to the second technician before stepping down the ladder.                                                                                                                                                    | РВ                                  | Ongoing    |                 |
| 4    | If AST2 is less than half full, submerge the Nalgene bottle rim first to a depth of at least 30 cm below surface, invert the bottle at this depth and allow to fill completely.                                                                                                                                                                                                                                                                                                                                                                             | PB                                  | Ongoing    |                 |
| 5    | <ul> <li>If AST2 is over half full then a composite sample must be taken, which comprises two samples:</li> <li>Sample 1: submerge the Nalgene bottle (1) rim to a depth of at least 30 cm below surface, invert the bottle at this depth and allow to fill completely.</li> <li>Sample 2: submerge the Nalgene bottle (2) rim to a depth of at least 100 cm below surface, invert the bottle at this depth and allow to fill completely.</li> <li>Combine the two samples (50% each) into a representative composite sample Nalgene bottle (3).</li> </ul> | РВ                                  | Ongoing    |                 |
| 6    | <ul> <li>Advise if the water quality meter can be used next to the AST2.</li> <li>If approved by AGL Operator, measure physico-chemical parameters using a YSI water quality meter and record on field sheet.</li> <li>After taking physico-chemical readings, rinse the YSI meter cup and probe in fresh/demineralised water</li> </ul>                                                                                                                                                                                                                    | AGL     Opera     tor     PB     PB | Ongoing    |                 |
| 7    | Divide the sample amongst the specific sampling containers provided by the laboratory for the pre-determined analytical suite                                                                                                                                                                                                                                                                                                                                                                                                                               | РВ                                  | Ongoing    |                 |
| 8    | Rinse the YSI meter cup and probe with fresh, demineralised water after sampling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | РВ                                  | Ongoing    |                 |
| 9    | Store AST2 liquid waste in a separate liquid container and when daily sampling event is complete, dispose waste water back to AST2.                                                                                                                                                                                                                                                                                                                                                                                                                         | PB                                  | Ongoing    |                 |



# Procedure for water sampling from pilot gas wells WK11, 12, 13, 14 & above ground flowback water storage tank

### 5.3 Waukivory 11, 12, 13 and 14

| STEP | Action                                                                                                                                                                                                                                                                                                                                                                                                                           | By Who                                                        | By When                                    | Sampler<br>initial |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|--------------------|
| 1    | All work undertaken within the hazardous zone at the well surface facilities is to be conducted under the supervision and instruction of an AGL operator                                                                                                                                                                                                                                                                         | AGL<br>Operator                                               | Ongoing                                    |                    |
| 2    | Sampling technicians to obtain the two Swagelok stainless steel sampling spouts (figure 1) from the AGL Field Environment Manager                                                                                                                                                                                                                                                                                                |                                                               |                                            |                    |
| 3    | Identify the sampling location at the well surface facilities                                                                                                                                                                                                                                                                                                                                                                    | AGL<br>Operator                                               | Prior to sampling                          |                    |
| 4    | Assess LEL levels within the hazardous zone at well surface facilities using a calibrated gas (LEL) detector. The gas detector shall be located within 150mm of the sampling location.                                                                                                                                                                                                                                           | AGL<br>Operator                                               | Immediately prior to, and during, sampling |                    |
| 5    | Confirm that drip trays and containers used for the collection of sample purge water will be located on secondary containment (eg a geofabric membrane bund or plastic sheeting) (figure 2).                                                                                                                                                                                                                                     | PB                                                            | Prior to sampling                          |                    |
| 6    | Remove the Swagelok stainless steel isolation cap (the cap is fitted at all times while not sampling). Cap can be removed with a ¼ turn with a spanner and then loosened and removed by hand.                                                                                                                                                                                                                                    | AGL<br>Operator                                               | Prior to sampling                          |                    |
| 7    | Install Swagelok stainless steel sampling spout (see figure 1). The spouts should be decontaminated with a pre-diluted mixture of Decon 90 and rinsed in fresh/demineralised water before each event. Two spouts will be kept by the AGL Field Environment Manager.                                                                                                                                                              | AGL<br>Operator                                               | Prior to<br>sampling                       |                    |
| 8    | Open sample valve gently and slowly (in case of the presence of natural gas)                                                                                                                                                                                                                                                                                                                                                     | AGL<br>Operator                                               | Prior to sampling                          |                    |
| 9    | Purge at least 50 litres from the sample point prior to sampling. When there is no observable presence of sand or coal fines the sample may be taken, otherwise continue to purge to drip tray. In the event that 50 litres cannot be purged from the sample point (due to low flows) the sample technician should record the actual volume purged and flow rate from the sample point and advise the AGL Senior Hydrogeologist. | PB                                                            | Prior to sampling                          |                    |
| 10   | <ul> <li>Advise if the water quality meter can be used next to the gas well.</li> <li>If approved by AGL Operator, measure physico-chemical parameters using a YSI water quality meter and record on field sheets.</li> <li>After taking physico-chemical readings, rinse the YSI meter cup and probe in fresh/demineralised water</li> </ul>                                                                                    | <ul><li>AGL<br/>Oper<br/>ator</li><li>PB</li><li>PB</li></ul> | Ongoing                                    |                    |
| 11   | The sample will be taken from a continuous stream of water from the sampling point (i.e. this avoids the opening and closing of the tap during the sampling procedure to avoid potential collection and dislodging of foreign particles).                                                                                                                                                                                        | PB                                                            | During sampling                            |                    |
| 12   | Where possible, samples will be collected from the sampling point directly into specific sampling containers provided by the laboratory for the pre-determined analytical suite. This may not be possible for small bottles or those that require zero headspace and will not be possible for the bottles that require field filtering.                                                                                          | РВ                                                            | During sampling                            |                    |
| 13   | Where possible sample containers are to be filled from the flowing water and sub-sampling is to be minimised                                                                                                                                                                                                                                                                                                                     | PB                                                            | During sampling                            |                    |



AGL Upstream Gas

## Procedure for water sampling from pilot gas wells WK11, 12, 13, 14 & above ground flowback water storage tank

| STEP | Action                                                     | By Who | By When       | Sampler |
|------|------------------------------------------------------------|--------|---------------|---------|
|      |                                                            |        |               | initial |
| 14   | Advise AGL Operator and Senior Hydrogeologist when         | PB     | When sampling |         |
|      | sampling event is complete                                 |        | is complete   |         |
| 15   | Return the two Swagelok stainless steel sampling spouts to | PB     | When sampling |         |
|      | the AGL Field Environment Manager                          |        | is complete   |         |




Figure 1 - Swagelok stainless steel sampling spout (detachable)

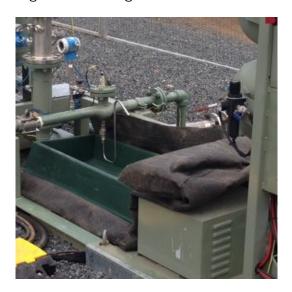



Figure 2 - Swagelok stainless steel sampling spout with primary and secondary containment in place.



AGL Upstream Gas

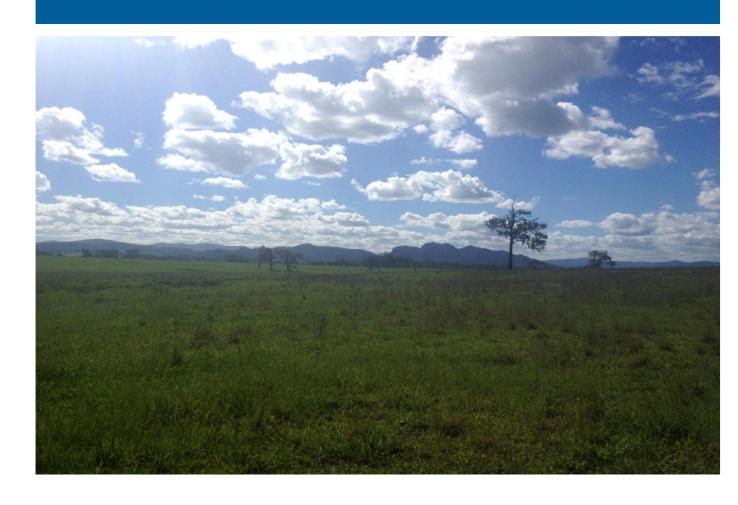
# Procedure for water sampling from pilot gas wells WK11, 12, 13, 14 & above ground flowback water storage tank

## 5.4 Field Quality Control

| STEP | Action                                                                   | Ву  | By When  | Sampler |
|------|--------------------------------------------------------------------------|-----|----------|---------|
|      |                                                                          | Who |          | initial |
| 1    | Include a field blank for each sampling event. The field blank(s)        | PB  | Each     |         |
|      | should be taken in both BTEX and SVOC bottles, filled to the top with    |     | sampling |         |
|      | laboratory supplied reagent water, and left to stand in the vicinity of  |     | event    |         |
|      | the sampling location (separator and pump locations only) in order to    |     |          |         |
|      | monitor for the potential of ambient background concentrations of        |     |          |         |
|      | hydrocarbons in air potentially biasing the dissolved phase              |     |          |         |
|      | concentration data generated for these samples.                          |     |          |         |
| 2    | Include additional sample bottles (notably 2 x BTEX vials and 1 x        | PB  | Each     |         |
|      | SVOC bottle) to allow for laboratory Quality Control to be performed     |     | sampling |         |
|      | on each AGL site sample, and allow for reanalysis from a undisturbed     |     | event    |         |
|      | sample volume, should data anomalies occur.                              |     |          |         |
| 3    | For every 1 in 10 water samples taken during the program, a              | PB  | Each     |         |
|      | duplicate sample comprising the full suite of one of the samples is to   |     | sampling |         |
|      | be taken. The duplicate should be taken from alternating locations on    |     | event    |         |
|      | each occasion (ie duplicate #1 from WK11, #2 from WK12, etc). More       |     |          |         |
|      | specific sampling requirements may be necessary if the water samples     |     |          |         |
|      | are taken because of an actual or suspected contamination event or       |     |          |         |
|      | for environmental/health risk purposes.                                  |     |          |         |
| 4    | Ensure a daily check list covering all points included in this procedure | PB  | Each     |         |
|      | is completed by the sampling technician for review by the AGL Senior     |     | sampling |         |
|      | Hydrogeologist on request.                                               |     | event    |         |



AGL Upstream Gas


## Procedure for water sampling from pilot gas wells WK11, 12, 13, 14 & above ground flowback water storage tank

## 5.5 Sample storage, transit and delivery

| STEP | Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | By Who                                                     | By When                                    | Sampler initial |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|-----------------|
| 1    | Ensure laboratories isolate AGL samples from all other through use of separate eskies during transport, to avoid potential for cross sample contamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PB                                                         | Prior to<br>transit                        |                 |
| 2    | Where ALS Laboratories are used for analysis, ensure ALS maintain the individual sample bagging protocol through transit via ALS Newcastle, re-batching and transit to ALS Sydney.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PB & ALS                                                   | Prior to<br>transit                        |                 |
| 3    | Ensure laboratories retain the AGL BTEX sample bottles under controlled storage including refrigeration, for a period of at least two months to allow for subsequent reanalysis and resolution of data issues.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PB                                                         | Prior to<br>transit                        |                 |
| 4    | Store samples bottles from the same sample location upright in new zip lock bags in an ice filled esky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PB                                                         | During<br>sample<br>storage<br>and transit |                 |
| 5    | Deliver the water samples directly to the ALS and Envirolab laboratories where possible. Where this is not possible a courier should be used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PB                                                         | During<br>sample<br>storage<br>and transit |                 |
| 6    | Where possible storage of samples overnight shall be avoided. If necessary, for storage overnight, samples shall be refrigerated and secure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PB & ALS                                                   | Prior to<br>and during<br>transit          |                 |
| 7    | Prior to delivery to ALS laboratory, the sample container lids are to remain securely on the sample containers and are only to be removed by ALS laboratory staff at the time of analysis. Sample containers are not be removed from the ice filled esky unless being stored and refrigerated overnight.                                                                                                                                                                                                                                                                                                                                                                                                    | PB & ALS                                                   | During<br>sample<br>storage<br>and transit |                 |
| 8    | <ul> <li>Include a hardcopy of the Chain of Custody (CoC) within a plastic zip lock bag within each esky, signed by the appropriate field staff, prior to closing each sample esky and applying security tape with signature.</li> <li>Each esky will have its own individual COC that matches the samples contained within.</li> <li>Note that the analytical specification does not have to be completed on this CoC. The laboratory staff then remove the CoC and sign, taking custody of the contents of the esky content. An electronic CoC is subsequently emailed to the laboratory. Ensure that the laboratory receive this emailed CoC prior to the samples arriving at the laboratory.</li> </ul> | PB & ALS                                                   | During<br>sample<br>storage<br>and transit |                 |
| 9    | In the event that a courier is required: <ul> <li>a Chain-of-Custody form will be prepared and sent with the samples for sample transport to the laboratory</li> <li>each ice filled esky will be sealed prior to pick up.</li> <li>Photographs to be taken of the open esky(s) and the closed, sealed esky(s).</li> <li>the courier drivers must sign the CoC upon receipt of the samples from field staff.</li> </ul>                                                                                                                                                                                                                                                                                     | <ul><li>PB</li><li>PB</li><li>PB</li><li>Courier</li></ul> | During<br>sample<br>storage<br>and transit |                 |

## Appendix C

Laboratory QC reports



## Appendix C

## Laboratory QC reports summary table

| Report number | Date samples received | Lab Name  |
|---------------|-----------------------|-----------|
| ES1525055     | 01-July-2015          | ALS       |
| ES1525247     | 02-July-2016          | ALS       |
| ES1525354     | 03-July-2016          | ALS       |
| ES1525375     | 04-July-2016          | ALS       |
| ES1525544     | 07-July-2015          | ALS       |
| ES1525652     | 08-July-2015          | ALS       |
| ES1525654     | 08-July-2015          | ALS       |
| ES1525742     | 09-July-2015          | ALS       |
| ES1525865     | 10-July-2015          | ALS       |
| ES1525880     | 13-July-2015          | ALS       |
| ES1526014     | 14-July-2015          | ALS       |
| ES1526117     | 15-July-2015          | ALS       |
| ES1526118     | 15-July-2015          | ALS       |
| ES1526216     | 16-July-2015          | ALS       |
| ES1526322     | 17-July-2015          | ALS       |
| ES1526325     | 18-July-2015          | ALS       |
| ES1526478     | 21-July-2015          | ALS       |
| ES1526602     | 22-July-2015          | ALS       |
| ES1526604     | 22-July-2015          | ALS       |
| ES1526718     | 23-July-2015          | ALS       |
| ES1526833     | 24-July-2015          | ALS       |
| ES1526838     | 24-July-2015          | ALS       |
| ES1527015     | 28-July-2015          | ALS       |
| ES1527133     | 29-July-2015          | ALS       |
| ES1527135     | 29-July-2015          | ALS       |
| ES1528258     | 13-August-2015        | ALS       |
| ES1528259     | 13-August-2015        | ALS       |
| ES1529385     | 27-August-2015        | ALS       |
| ES1529387     | 27-August-2015        | ALS       |
| ES1529589     | 28-August-2015        | ALS       |
| ES1530616     | 09-September-2015     | ALS       |
| ES1530625     | 09-September-2015     | ALS       |
| ES1531965     | 23-September-2015     | ALS       |
| ES1532002     | 23-September-2015     | ALS       |
| ES1532008     | 23-September-2015     | ALS       |
| 130805        | 08-July-2015          | Envirolab |
| 131168        | 15-July-2015          | Envirolab |
| 131627        | 23-July-2015          | Envirolab |
| 131883        | 29-July-2015          | Envirolab |
| 132658        | 13-August-2015        | Envirolab |
| 133320        | 27-August-2015        | Envirolab |
| 134039        | 09-September-2015     | Envirolab |



## **QUALITY CONTROL REPORT**

**Work Order** : **ES1525055** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ---Date Samples Received: 01-Jul-2015C-O-C number: ---Date Analysis Commenced: 01-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 01-Jul-2015

Site : --- No. of samples received : 6

Quote number : --- No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

NATA Accredited

Laboratory 825

Accredited for compliance with

ISO/IEC 17025.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



E-mail

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Phalak Inthakesone Laboratory Manager - Organics Sydney Organics

Page : 2 of 4
Work Order : ES1525055

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1525055

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER    |                         |                                         |            |     |       | Laboratory L    | Duplicate (DUP) Report |         |                     |
|----------------------|-------------------------|-----------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                        | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA010P: Conductivit  | ty by PC Titrator (QC I |                                         |            |     |       |                 |                        |         |                     |
| ES1525053-001        | Anonymous               | EA010-P: Electrical Conductivity @ 25°C |            | 1   | μS/cm | 7000            | 7030                   | 0.433   | 0% - 20%            |
| ES1525055-005        | WK14                    | EA010-P: Electrical Conductivity @ 25°C |            | 1   | μS/cm | 12200           | 12200                  | 0.00    | 0% - 20%            |
| EK084: Un-ionized H  | ydrogen Sulfide (QC I   | Lot: 142024)                            |            |     |       |                 |                        |         |                     |
| ES1525053-001        | Anonymous               | EK084: Unionized Hydrogen Sulfide       |            | 0.1 | mg/L  | <0.1            | <0.1                   | 0.00    | 0% - 20%            |
| ES1525055-005        | WK14                    | EK084: Unionized Hydrogen Sulfide       |            | 0.1 | mg/L  | <0.1            | <0.1                   | 0.00    | 0% - 20%            |
| EP080: BTEXN (QC     | Lot: 141834)            |                                         |            |     |       |                 |                        |         |                     |
| ES1525055-001        | AST2                    | EP080: Benzene                          | 71-43-2    | 1   | μg/L  | 7               | 7                      | 0.00    | No Limit            |
|                      |                         | EP080: Ethylbenzene                     | 100-41-4   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                      |                         | EP080: meta- & para-Xylene              | 108-38-3   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                      |                         |                                         | 106-42-3   |     |       |                 |                        |         |                     |
|                      |                         | EP080: ortho-Xylene                     | 95-47-6    | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                      |                         | EP080: Toluene                          | 108-88-3   | 2   | μg/L  | 9               | 9                      | 0.00    | No Limit            |
|                      |                         | EP080: Naphthalene                      | 91-20-3    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |

Page : 4 of 4 Work Order : ES1525055

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            | Method Blank (MB) | Laboratory Control Spike (LCS) Report |        |               |                    |          |            |
|-----------------------------------------------------|------------|-------------------|---------------------------------------|--------|---------------|--------------------|----------|------------|
|                                                     |            |                   |                                       |        | Spike         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                    | CAS Number | LOR               | Unit                                  | Result | Concentration | LCS                | Low      | High       |
| EA010P: Conductivity by PC Titrator (QCLot: 141914) |            |                   |                                       |        |               |                    |          |            |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1                 | μS/cm                                 | <1     | 2000 μS/cm    | 104                | 95       | 113        |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 142024)  |            |                   |                                       |        |               |                    |          |            |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1               | mg/L                                  | <0.1   | 0.05 mg/L     | 94.3               | 72       | 126        |
| EP080: BTEXN (QCLot: 141834)                        |            |                   |                                       |        |               |                    |          |            |
| EP080: Benzene                                      | 71-43-2    | 1                 | μg/L                                  | <1     | 10 μg/L       | 98.4               | 70       | 124        |
| EP080: Ethylbenzene                                 | 100-41-4   | 2                 | μg/L                                  | <2     | 10 μg/L       | 88.7               | 70       | 120        |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2                 | μg/L                                  | <2     | 10 μg/L       | 91.0               | 69       | 121        |
|                                                     | 106-42-3   |                   |                                       |        |               |                    |          |            |
| EP080: Naphthalene                                  | 91-20-3    | 5                 | μg/L                                  | <5     | 10 μg/L       | 111                | 70       | 124        |
| EP080: ortho-Xylene                                 | 95-47-6    | 2                 | μg/L                                  | <2     | 10 μg/L       | 89.5               | 72       | 122        |
| EP080: Toluene                                      | 108-88-3   | 2                 | μg/L                                  | <2     | 10 μg/L       | 93.2               | 65       | 129        |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                            |                  | Matrix Spike (MS) Report |           |    |     |  |  |
|----------------------|------------------|----------------------------|------------------|--------------------------|-----------|----|-----|--|--|
|                      |                  | Spike                      | SpikeRecovery(%) | Recovery L               | imits (%) |    |     |  |  |
| Laboratory sample ID | Client sample ID | Concentration              | MS               | Low                      | High      |    |     |  |  |
| EP080: BTEXN (Q      | CLot: 141834)    |                            |                  |                          |           |    |     |  |  |
| ES1525055-001        | AST2             | EP080: Benzene             | 71-43-2          | 25 μg/L                  | 92.6      | 70 | 130 |  |  |
|                      |                  | EP080: Ethylbenzene        | 100-41-4         | 25 μg/L                  | 98.0      | 70 | 130 |  |  |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3         | 25 μg/L                  | 99.4      | 70 | 130 |  |  |
|                      |                  |                            | 106-42-3         |                          |           |    |     |  |  |
|                      |                  | EP080: Naphthalene         | 91-20-3          | 25 μg/L                  | 118       | 70 | 130 |  |  |
|                      |                  | EP080: ortho-Xylene        | 95-47-6          | 25 μg/L                  | 99.3      | 70 | 130 |  |  |
|                      |                  | EP080: Toluene             | 108-88-3         | 25 μg/L                  | 94.3      | 70 | 130 |  |  |



## **QA/QC Compliance Assessment for DQO Reporting**

**Work Order** : **ES1525055** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 01-Jul-2015

 Site
 : --- Issue Date
 : 01-Jul-2015

Sampler : CAROLINA SARDELLA No. of samples received : 6
Order number : ---- No. of samples analysed : 6

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

## **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers: Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers exist.

### **Outliers: Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4
Work Order : ES1525055

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      |    | Count   |        | € (%)    | Quality Control Specification                    |
|----------------------------------|----|---------|--------|----------|--------------------------------------------------|
| Method                           | QC | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 2  | 0       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 11      | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 11      | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 11      | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

#### Matrix: WATER

Evaluation: \* = Holding time breach:  $\checkmark$  = Within holding time.

| Method Programme Technology (1997)       |       | Sample Date | Extraction / Preparation |                    |            | Analysis      |                  |            |  |
|------------------------------------------|-------|-------------|--------------------------|--------------------|------------|---------------|------------------|------------|--|
| Container / Client Sample ID(s)          |       |             | Date extracted           | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation |  |
| EA010P: Conductivity by PC Titrator      |       |             |                          |                    |            |               |                  |            |  |
| Clear Plastic Bottle - Natural (EA010-P) |       |             |                          |                    |            |               |                  |            |  |
| AST2,                                    | WK11, | 01-Jul-2015 |                          |                    |            | 01-Jul-2015   | 29-Jul-2015      | ✓          |  |
| WK12,                                    | WK13, |             |                          |                    |            |               |                  |            |  |
| WK14,                                    | QA1   |             |                          |                    |            |               |                  |            |  |
| EP080: BTEXN                             |       |             |                          |                    |            |               |                  |            |  |
| Amber VOC Vial - Sulfuric Acid (EP080)   |       |             |                          |                    |            |               |                  |            |  |
| AST2,                                    | WK11, | 01-Jul-2015 | 01-Jul-2015              | 15-Jul-2015        | ✓          | 01-Jul-2015   | 15-Jul-2015      | ✓          |  |
| WK12,                                    | WK13, |             |                          |                    |            |               |                  |            |  |
| WK14,                                    | QA1   |             |                          |                    |            |               |                  |            |  |

Page : 3 of 4 Work Order ES1525055

PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    |         |       |         | Evaluation | n: × = Quality Co   | ntrol frequency | not within specification; ✓ = Quality Control frequency within specification |
|----------------------------------|---------|-------|---------|------------|---------------------|-----------------|------------------------------------------------------------------------------|
| Quality Control Sample Type      |         | Count |         | Rate (%)   |                     |                 | Quality Control Specification                                                |
| Analytical Methods               | Method  | OC    | Reaular | Actual     | Expected Evaluation |                 |                                                                              |
| Laboratory Duplicates (DUP)      |         |       |         |            |                     |                 |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 2     | 11      | 18.18      | 10.00               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 2     | 0       | 0.00       | 10.00               | *               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1     | 6       | 16.67      | 10.00               | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0     | 11      | 0.00       | 10.00               | 3c              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Laboratory Control Samples (LCS) |         |       |         |            |                     |                 |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1     | 11      | 9.09       | 5.00                | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 1     | 0       | 0.00       | 5.00                | 3c              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1     | 6       | 16.67      | 5.00                | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0     | 11      | 0.00       | 5.00                | 3e              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Method Blanks (MB)               |         |       |         |            |                     |                 |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1     | 11      | 9.09       | 5.00                | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 1     | 0       | 0.00       | 5.00                | x               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1     | 6       | 16.67      | 5.00                | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0     | 11      | 0.00       | 5.00                | 3e              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Matrix Spikes (MS)               |         |       |         |            |                     |                 |                                                                              |
| TRH Volatiles/BTEX               | EP080   | 1     | 6       | 16.67      | 5.00                | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |

Page : 4 of 4
Work Order : ES1525055

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                             |
|-----------------------------|---------|--------|-----------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method       |
|                             |         |        | is compliant with NEPM (2013) Schedule B(3)                                                                     |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions |
|                             |         |        | by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)           |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                 |
|                             |         |        | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is    |
|                             |         |        | equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is     |
|                             |         |        | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                 |



## **QUALITY CONTROL REPORT**

· ES1525247 Work Order Page : 1 of 4

Client PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact SEAN DAYKIN Contact : Loren Schiavon

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : GPO BOX 5394

SYDNEY NSW. AUSTRALIA 2001

E-mail E-mail : SDaykin@pb.com.au : loren.schiavon@alsglobal.com

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503 : +61 02 92725101 Facsimile Facsimile : +61-2-8784 8500

: 2268523B QC Level Project : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Date Samples Received : 02-Jul-2015 Order number **Date Analysis Commenced** : 02-Jul-2015 C-O-C number

Issue Date · 02-Jul-2015 Sampler : CAROLINA SARDELLA

: 5 Site No. of samples received Quote number No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

Accredited for compliance with

ISO/IEC 17025.

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



NATA Accredited Laboratory 825

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in

compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics Edwandy Fadjar Organic Coordinator **Sydney Organics** 

Page : 2 of 4
Work Order : ES1525247

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1525247

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## ALS

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER                                    |                               |                                         | Laboratory Duplicate (DUP) Report |     |      |                 |                  |         |                     |
|------------------------------------------------------|-------------------------------|-----------------------------------------|-----------------------------------|-----|------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID                                 | Client sample ID              | Method: Compound                        | CAS Number                        | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EA010P: Conductivity by PC Titrator (QC Lot: 143179) |                               |                                         |                                   |     |      |                 |                  |         |                     |
| ES1525247-001                                        | AST2                          | EA010-P: Electrical Conductivity @ 25°C |                                   |     |      | 7020            | 7060             | 0.582   | 0% - 20%            |
| EK084: Un-ionized Hydrogen Sulfide (QC Lot: 143416)  |                               |                                         |                                   |     |      |                 |                  |         |                     |
| ES1525247-001                                        | AST2                          | EK084: Unionized Hydrogen Sulfide       |                                   | 0.1 | mg/L | <0.1            | <0.1             | 0.00    | 0% - 20%            |
| EP080: BTEXN (QC I                                   | EP080: BTEXN (QC Lot: 143178) |                                         |                                   |     |      |                 |                  |         |                     |
| ES1525247-001                                        | AST2                          | EP080: Benzene                          | 71-43-2                           | 1   | μg/L | 7               | 6                | 0.00    | No Limit            |
|                                                      |                               | EP080: Ethylbenzene                     | 100-41-4                          | 2   | μg/L | <2              | <2               | 0.00    | No Limit            |
|                                                      |                               | EP080: meta- & para-Xylene              | 108-38-3                          | 2   | μg/L | <2              | <2               | 0.00    | No Limit            |
|                                                      |                               |                                         | 106-42-3                          |     |      |                 |                  |         |                     |
|                                                      |                               | EP080: ortho-Xylene                     | 95-47-6                           | 2   | μg/L | <2              | <2               | 0.00    | No Limit            |
|                                                      |                               | EP080: Toluene                          | 108-88-3                          | 2   | μg/L | 9               | 8                | 0.00    | No Limit            |
|                                                      |                               | EP080: Naphthalene                      | 91-20-3                           | 5   | μg/L | <5              | <5               | 0.00    | No Limit            |

Page : 4 of 4 Work Order : ES1525247

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            |     |       | Method Blank (MB) |               | Laboratory Control Spike (LCS) Report |                                 |      |  |  |
|-----------------------------------------------------|------------|-----|-------|-------------------|---------------|---------------------------------------|---------------------------------|------|--|--|
|                                                     |            |     |       | Report            | Spike         | Spike Recovery (%)                    | ecovery (%) Recovery Limits (%) |      |  |  |
| Method: Compound                                    | CAS Number | LOR | Unit  | Result            | Concentration | LCS                                   | Low                             | High |  |  |
| EA010P: Conductivity by PC Titrator (QCLot: 143179) |            |     |       |                   |               |                                       |                                 |      |  |  |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1   | μS/cm | <1                | 2000 μS/cm    | 105                                   | 95                              | 113  |  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 143416)  |            |     |       |                   |               |                                       |                                 |      |  |  |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1 | mg/L  | <0.1              | 0.05 mg/L     | 87.1                                  | 72                              | 126  |  |  |
| EP080: BTEXN (QCLot: 143178)                        |            |     |       |                   |               |                                       |                                 |      |  |  |
| EP080: Benzene                                      | 71-43-2    | 1   | μg/L  | <1                | 10 μg/L       | 75.0                                  | 70                              | 124  |  |  |
| EP080: Ethylbenzene                                 | 100-41-4   | 2   | μg/L  | <2                | 10 μg/L       | 76.1                                  | 70                              | 120  |  |  |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2   | μg/L  | <2                | 10 μg/L       | 76.0                                  | 69                              | 121  |  |  |
|                                                     | 106-42-3   |     |       |                   |               |                                       |                                 |      |  |  |
| EP080: Naphthalene                                  | 91-20-3    | 5   | μg/L  | <5                | 10 μg/L       | 81.0                                  | 70                              | 124  |  |  |
| EP080: ortho-Xylene                                 | 95-47-6    | 2   | μg/L  | <2                | 10 μg/L       | 75.6                                  | 72                              | 122  |  |  |
| EP080: Toluene                                      | 108-88-3   | 2   | μg/L  | <2                | 10 μg/L       | 79.5                                  | 65                              | 129  |  |  |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  | Matrix Spike (MS) Report   |            |               |                  |            |           |
|----------------------|------------------|----------------------------|------------|---------------|------------------|------------|-----------|
|                      |                  |                            |            | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration | MS               | Low        | High      |
| EP080: BTEXN (Q      | CLot: 143178)    |                            |            |               |                  |            |           |
| ES1525247-001        | AST2             | EP080: Benzene             | 71-43-2    | 25 μg/L       | 87.7             | 70         | 130       |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L       | 80.7             | 70         | 130       |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L       | 80.2             | 70         | 130       |
|                      |                  |                            | 106-42-3   |               |                  |            |           |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L       | 80.6             | 70         | 130       |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L       | 78.3             | 70         | 130       |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L       | 84.5             | 70         | 130       |



## **QA/QC Compliance Assessment for DQO Reporting**

**Work Order** : **ES1525247** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 02-Jul-2015

 Site
 :--- Issue Date
 : 02-Jul-2015

Sampler : CAROLINA SARDELLA No. of samples received : 5
Order number No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

## **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

## **Outliers: Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 Work Order : ES1525247

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      | Co | ount    | Rate   | e (%)    | Quality Control Specification                    |
|----------------------------------|----|---------|--------|----------|--------------------------------------------------|
| Method                           | QC | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

#### Matrix: WATER

| Evaluation: x = Holding time bre | ach : ✓ = ' | Within holding time |  |
|----------------------------------|-------------|---------------------|--|
|----------------------------------|-------------|---------------------|--|

| Method                                   |       | Sample Date | Ex             | ktraction / Preparation |            |               | Analysis         |            |
|------------------------------------------|-------|-------------|----------------|-------------------------|------------|---------------|------------------|------------|
| Container / Client Sample ID(s)          |       |             | Date extracted | Due for extraction      | Evaluation | Date analysed | Due for analysis | Evaluation |
| EA010P: Conductivity by PC Titrator      |       |             |                |                         |            |               |                  |            |
| Clear Plastic Bottle - Natural (EA010-P) |       |             |                |                         |            |               |                  |            |
| AST2,                                    | WK11, | 02-Jul-2015 |                |                         |            | 02-Jul-2015   | 30-Jul-2015      | ✓          |
| WK12,                                    | WK13, |             |                |                         |            |               |                  |            |
| WK14                                     |       |             |                |                         |            |               |                  |            |
| EP080: BTEXN                             |       |             |                |                         |            |               |                  |            |
| Amber VOC Vial - Sulfuric Acid (EP080)   |       |             |                |                         |            |               |                  |            |
| AST2,                                    | WK11, | 02-Jul-2015 | 02-Jul-2015    | 16-Jul-2015             | ✓          | 02-Jul-2015   | 16-Jul-2015      | ✓          |
| WK12,                                    | WK13, |             |                |                         |            |               |                  |            |
| WK14                                     |       |             |                |                         |            |               |                  |            |

Page : 3 of 4 Work Order ES1525247

PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    |         |    |         | Evaluation | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specification |
|----------------------------------|---------|----|---------|------------|-------------------|-----------------|------------------------------------------------------------------------------|
| Quality Control Sample Type      |         | Co | ount    |            | Rate (%)          |                 | Quality Control Specification                                                |
| Analytical Methods               | Method  | OC | Regular | Actual     | Expected          | Evaluation      |                                                                              |
| Laboratory Duplicates (DUP)      |         |    |         |            |                   |                 |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1  | 5       | 20.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00       | 10.00             | ×               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 5       | 20.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00       | 10.00             | se.             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Laboratory Control Samples (LCS) |         |    |         |            |                   |                 |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1  | 5       | 20.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00       | 5.00              | x               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 5       | 20.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00       | 5.00              | Je.             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Method Blanks (MB)               |         |    |         |            |                   |                 |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1  | 5       | 20.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00       | 5.00              | x               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 5       | 20.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00       | 5.00              | Je.             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Matrix Spikes (MS)               |         |    |         |            |                   |                 |                                                                              |
| TRH Volatiles/BTEX               | EP080   | 1  | 5       | 20.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |

Page : 4 of 4 Work Order : ES1525247

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                                                                                                                                      |
|-----------------------------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                    |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)    |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                                                                                                                          |
|                             |         |        | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is |
|                             |         |        | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                          |



## **QUALITY CONTROL REPORT**

Work Order : **ES1525354** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

: SDaykin@pb.com.au E-mail : loren.schiavon@alsglobal.com

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ---Date Samples Received: 03-Jul-2015C-O-C number: 03-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 03-Jul-2015

Site : --- No. of samples received : 6

Quote number : --- No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

NATA Accredited

Laboratory 825

compliance with

ISO/IEC 17025.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



E-mail

Signatories

SYDNEY NSW. AUSTRALIA 2001

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Accredited for Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Pabi Subba Senior Organic Chemist Sydney Organics

Page : 2 of 4 Work Order : ES1525354

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1525354

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER          | ub-Matrix: WATER             |                                         |          |     |       | Laboratory Duplicate (DUP) Report |                  |         |                     |  |  |  |
|----------------------------|------------------------------|-----------------------------------------|----------|-----|-------|-----------------------------------|------------------|---------|---------------------|--|--|--|
| Laboratory sample ID       | Client sample ID             | Method: Compound CAS Number             |          | LOR | Unit  | Original Result                   | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |  |
| <b>EA010P: Conductivit</b> | y by PC Titrator (QC Lot: 14 |                                         |          |     |       |                                   |                  |         |                     |  |  |  |
| ES1525354-001              | AST2                         | EA010-P: Electrical Conductivity @ 25°C |          | 1   | μS/cm | 7120                              | 7170             | 0.709   | 0% - 20%            |  |  |  |
| EK084: Un-ionized Hy       | ydrogen Sulfide (QC Lot: 14  | 14685)                                  |          |     |       |                                   |                  |         |                     |  |  |  |
| ES1525354-001              | AST2                         | EK084: Unionized Hydrogen Sulfide       |          | 0.1 | mg/L  | <0.1                              | <0.1             | 0.00    | 0% - 20%            |  |  |  |
| EP080: BTEXN (QC I         | _ot: 144454)                 |                                         |          |     |       |                                   |                  |         |                     |  |  |  |
| ES1525354-001              | AST2                         | EP080: Benzene                          | 71-43-2  | 1   | μg/L  | 12                                | 12               | 0.00    | 0% - 50%            |  |  |  |
|                            |                              | EP080: Ethylbenzene                     | 100-41-4 | 2   | μg/L  | <2                                | <2               | 0.00    | No Limit            |  |  |  |
|                            |                              | EP080: meta- & para-Xylene              | 108-38-3 | 2   | μg/L  | 4                                 | 4                | 0.00    | No Limit            |  |  |  |
|                            |                              |                                         | 106-42-3 |     |       |                                   |                  |         |                     |  |  |  |
|                            |                              | EP080: ortho-Xylene                     | 95-47-6  | 2   | μg/L  | <2                                | <2               | 0.00    | No Limit            |  |  |  |
|                            |                              | EP080: Toluene                          | 108-88-3 | 2   | μg/L  | 16                                | 15               | 0.00    | No Limit            |  |  |  |
|                            |                              | EP080: Naphthalene                      | 91-20-3  | 5   | μg/L  | <5                                | <5               | 0.00    | No Limit            |  |  |  |

Page : 4 of 4 Work Order : ES1525354

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            |     |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                                   |     |            |  |
|-----------------------------------------------------|------------|-----|-------|-------------------|---------------------------------------|-----------------------------------|-----|------------|--|
|                                                     |            |     |       | Report            | Spike                                 | Spike Recovery (%) Recovery Limit |     | Limits (%) |  |
| Method: Compound                                    | CAS Number | LOR | Unit  | Result            | Concentration                         | LCS                               | Low | High       |  |
| EA010P: Conductivity by PC Titrator (QCLot: 144570) |            |     |       |                   |                                       |                                   |     |            |  |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1   | μS/cm | <1                | 2000 μS/cm                            | 104                               | 95  | 113        |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 144685)  |            |     |       |                   |                                       |                                   |     |            |  |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1 | mg/L  | <0.1              | 0.05 mg/L                             | 101                               | 72  | 126        |  |
| EP080: BTEXN (QCLot: 144454)                        |            |     |       |                   |                                       |                                   |     |            |  |
| EP080: Benzene                                      | 71-43-2    | 1   | μg/L  | <1                | 10 μg/L                               | 90.1                              | 70  | 124        |  |
| EP080: Ethylbenzene                                 | 100-41-4   | 2   | μg/L  | <2                | 10 μg/L                               | 96.5                              | 70  | 120        |  |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2   | μg/L  | <2                | 10 μg/L                               | 97.8                              | 69  | 121        |  |
|                                                     | 106-42-3   |     |       |                   |                                       |                                   |     |            |  |
| EP080: Naphthalene                                  | 91-20-3    | 5   | μg/L  | <5                | 10 μg/L                               | 90.5                              | 70  | 124        |  |
| EP080: ortho-Xylene                                 | 95-47-6    | 2   | μg/L  | <2                | 10 μg/L                               | 101                               | 72  | 122        |  |
| EP080: Toluene                                      | 108-88-3   | 2   | μg/L  | <2                | 10 μg/L                               | 95.7                              | 65  | 129        |  |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  | Matrix Spike (MS) Report   |            |               |                  |            |           |
|----------------------|------------------|----------------------------|------------|---------------|------------------|------------|-----------|
|                      |                  |                            |            | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration | MS               | Low        | High      |
| EP080: BTEXN (Q      | CLot: 144454)    |                            |            |               |                  |            |           |
| ES1525354-001        | AST2             | EP080: Benzene             | 71-43-2    | 25 μg/L       | 93.7             | 70         | 130       |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L       | 105              | 70         | 130       |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L       | 106              | 70         | 130       |
|                      |                  |                            | 106-42-3   |               |                  |            |           |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L       | 93.8             | 70         | 130       |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L       | 108              | 70         | 130       |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L       | 101              | 70         | 130       |



## **QA/QC Compliance Assessment for DQO Reporting**

**Work Order** : **ES1525354** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 03-Jul-2015

 Site
 :--- Issue Date
 : 03-Jul-2015

Sampler : CAROLINA SARDELLA No. of samples received : 6
Order number No. of samples analysed : 6

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

## **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers: Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers exist.

### **Outliers: Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 Work Order : ES1525354

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **Outliers: Frequency of Quality Control Samples**

Matrix: WATER

| Quality Control Sample Type      | Co | ount    | Rate   | e (%)    | Quality Control Specification                    |
|----------------------------------|----|---------|--------|----------|--------------------------------------------------|
| Method                           | QC | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 6       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 6       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 6       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

| Matrix: WATER                         |               |  |             |                |                         | Lvaldation | i. • - Holding time | breach, with     | in notaling time |
|---------------------------------------|---------------|--|-------------|----------------|-------------------------|------------|---------------------|------------------|------------------|
| Method                                | Method Method |  | Sample Date | E              | ktraction / Preparation |            | Analysis            |                  |                  |
| Container / Client Sample ID(s)       |               |  |             | Date extracted | Due for extraction      | Evaluation | Date analysed       | Due for analysis | Evaluation       |
| EA010P: Conductivity by PC Titrate    | or            |  |             |                |                         |            |                     |                  |                  |
| Clear Plastic Bottle - Natural (EA010 | 0-P)          |  |             |                |                         |            |                     |                  |                  |
| AST2                                  |               |  | 03-Jul-2015 |                |                         |            | 03-Jul-2015         | 31-Jul-2015      | ✓                |
| EP080: BTEXN                          |               |  |             |                |                         |            |                     |                  |                  |
| Amber VOC Vial - Sulfuric Acid (EP    | 080)          |  |             |                |                         |            |                     |                  |                  |
| AST2,                                 | WK11,         |  | 03-Jul-2015 | 03-Jul-2015    | 17-Jul-2015             | ✓          | 03-Jul-2015         | 17-Jul-2015      | ✓                |
| WK12,                                 | WK13,         |  |             |                |                         |            |                     |                  |                  |
| WK14,                                 | QA2           |  |             |                |                         |            |                     |                  |                  |

Page : 3 of 4
Work Order : ES1525354

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix WATER

Evaluation: \* = Quality Control frequency put within appointment of the Summary of Outliers.

| Quality Control Sample Type      |         | Co | ount    |        | Rate (%) |            | Quality Control Specification                    |
|----------------------------------|---------|----|---------|--------|----------|------------|--------------------------------------------------|
| Analytical Methods               | Method  | ОС | Reaular | Actual | Expected | Evaluation |                                                  |
| Laboratory Duplicates (DUP)      |         |    |         |        |          |            |                                                  |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00 | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00   | 10.00    | ×          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH Volatiles/BTEX               | EP080   | 1  | 6       | 16.67  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Jn-ionized Hydrogen Sulfide      | EK084   | 0  | 6       | 0.00   | 10.00    | .se        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| _aboratory Control Samples (LCS) |         |    |         |        |          |            |                                                  |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00 | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00   | 5.00     | 3c         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH Volatiles/BTEX               | EP080   | 1  | 6       | 16.67  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 6       | 0.00   | 5.00     | .se        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |         |    |         |        |          |            |                                                  |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00 | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00   | 5.00     | 3c         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH Volatiles/BTEX               | EP080   | 1  | 6       | 16.67  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 6       | 0.00   | 5.00     | Je.        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Matrix Spikes (MS)               |         |    |         |        |          |            |                                                  |
| TRH Volatiles/BTEX               | EP080   | 1  | 6       | 16.67  | 5.00     | 1          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

Page : 4 of 4 Work Order : ES1525354

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                             |
|-----------------------------|---------|--------|-----------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method       |
|                             |         |        | is compliant with NEPM (2013) Schedule B(3)                                                                     |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions |
|                             |         |        | by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)           |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                 |
|                             |         |        | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is    |
|                             |         |        | equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is     |
|                             |         |        | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                 |



## **QUALITY CONTROL REPORT**

· ES1525375 Work Order Page : 1 of 4

Client PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact SEAN DAYKIN Contact : Loren Schiavon

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : GPO BOX 5394

> SYDNEY NSW. AUSTRALIA 2001 E-mail : SDaykin@pb.com.au : loren.schiavon@alsglobal.com

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503 : +61 02 92725101 Facsimile Facsimile : +61-2-8784 8500

: 2268523B QC Level Project : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Date Samples Received : 04-Jul-2015 Order number **Date Analysis Commenced** : 06-Jul-2015 C-O-C number

Issue Date · 06-Jul-2015 Sampler : CAROLINA SARDELLA

: 5 Site No. of samples received Quote number No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

Accredited for compliance with

ISO/IEC 17025.

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



E-mail

NATA Accredited

Laboratory 825

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics Phalak Inthakesone Laboratory Manager - Organics **Sydney Organics** 

Page : 2 of 4
Work Order : ES1525375

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1525375

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## ALS

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER          |                              |                                         |            |     |       | Laboratory D    | Ouplicate (DUP) Report |         |                     |
|----------------------------|------------------------------|-----------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID       | Client sample ID             | Method: Compound                        | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| <b>EA010P: Conductivit</b> | y by PC Titrator (QC Lot: 14 |                                         |            |     |       |                 |                        |         |                     |
| ES1525375-001              | AST2                         | EA010-P: Electrical Conductivity @ 25°C |            | 1   | μS/cm | 7000            | 7210                   | 2.98    | 0% - 20%            |
| EK084: Un-ionized Hy       | /drogen Sulfide (QC Lot: 14  | 45583)                                  |            |     |       |                 |                        |         |                     |
| ES1525375-001              | AST2                         | EK084: Unionized Hydrogen Sulfide       |            | 0.1 | mg/L  | <0.1            | <0.1                   | 0.00    | 0% - 20%            |
| EP080: BTEXN (QC I         | ot: 145588)                  |                                         |            |     |       |                 |                        |         |                     |
| ES1525375-001              | AST2                         | EP080: Benzene                          | 71-43-2    | 1   | μg/L  | 14              | 13                     | 7.92    | 0% - 50%            |
|                            |                              | EP080: Ethylbenzene                     | 100-41-4   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                            |                              | EP080: meta- & para-Xylene              | 108-38-3   | 2   | μg/L  | 4               | 4                      | 0.00    | No Limit            |
|                            |                              |                                         | 106-42-3   |     |       |                 |                        |         |                     |
|                            |                              | EP080: ortho-Xylene                     | 95-47-6    | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                            |                              | EP080: Toluene                          | 108-88-3   | 2   | μg/L  | 17              | 16                     | 0.00    | No Limit            |
|                            |                              | EP080: Naphthalene                      | 91-20-3    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |

Page : 4 of 4 Work Order : ES1525375

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            |     |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |                     |      |  |
|-----------------------------------------------------|------------|-----|-------|-------------------|---------------------------------------|--------------------|---------------------|------|--|
|                                                     |            |     |       | Report            | Spike                                 | Spike Recovery (%) | Recovery Limits (%) |      |  |
| Method: Compound                                    | CAS Number | LOR | Unit  | Result            | Concentration                         | LCS                | Low                 | High |  |
| EA010P: Conductivity by PC Titrator (QCLot: 145945) |            |     |       |                   |                                       |                    |                     |      |  |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1   | μS/cm | <1                | 2000 μS/cm                            | 106                | 95                  | 113  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 145583)  |            |     |       |                   |                                       |                    |                     |      |  |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1 | mg/L  | <0.1              | 0.05 mg/L                             | 99.4               | 72                  | 126  |  |
| EP080: BTEXN (QCLot: 145588)                        |            |     |       |                   |                                       |                    |                     |      |  |
| EP080: Benzene                                      | 71-43-2    | 1   | μg/L  | <1                | 10 μg/L                               | 99.9               | 70                  | 124  |  |
| EP080: Ethylbenzene                                 | 100-41-4   | 2   | μg/L  | <2                | 10 μg/L                               | 104                | 70                  | 120  |  |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2   | μg/L  | <2                | 10 μg/L                               | 105                | 69                  | 121  |  |
|                                                     | 106-42-3   |     |       |                   |                                       |                    |                     |      |  |
| EP080: Naphthalene                                  | 91-20-3    | 5   | μg/L  | <5                | 10 μg/L                               | 102                | 70                  | 124  |  |
| EP080: ortho-Xylene                                 | 95-47-6    | 2   | μg/L  | <2                | 10 μg/L                               | 108                | 72                  | 122  |  |
| EP080: Toluene                                      | 108-88-3   | 2   | μg/L  | <2                | 10 μg/L                               | 101                | 65                  | 129  |  |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  | Matrix: WATER              |            |               |                  |            |           |
|----------------------|------------------|----------------------------|------------|---------------|------------------|------------|-----------|
|                      |                  |                            |            | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration | MS               | Low        | High      |
| EP080: BTEXN (Q      | CLot: 145588)    |                            |            |               |                  |            |           |
| ES1525375-001        | AST2             | EP080: Benzene             | 71-43-2    | 25 μg/L       | 96.1             | 70         | 130       |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L       | 109              | 70         | 130       |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L       | 108              | 70         | 130       |
|                      |                  |                            | 106-42-3   |               |                  |            |           |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L       | 99.5             | 70         | 130       |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L       | 111              | 70         | 130       |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L       | 99.6             | 70         | 130       |



## **QA/QC Compliance Assessment for DQO Reporting**

**Work Order** : **ES1525375** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 04-Jul-2015

 Site
 :--- Issue Date
 : 06-Jul-2015

Sampler : CAROLINA SARDELLA No. of samples received : 5
Order number No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

## **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers: Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers exist.

### **Outliers: Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 ES1525375 Work Order

PARSONS BRINCKERHOFF AUST P/L Client

Project 2268523B



#### **Outliers: Frequency of Quality Control Samples**

Matrix: WATER

| Quality Control Sample Type      | Co | ount    | Rate   | e (%)    | Quality Control Specification                    |
|----------------------------------|----|---------|--------|----------|--------------------------------------------------|
| Method                           | QC | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: | WAIER |  |
|---------|-------|--|
|---------|-------|--|

| Evaluation: × = | Holding time | breach · ✓ | = Within holding time. |
|-----------------|--------------|------------|------------------------|
|-----------------|--------------|------------|------------------------|

| Maura. WATER                                    |       |             |                |                        | Evaluation | i. 🗸 – Holding time | : Dieacii, 🔻 – Willi | in notaling time |
|-------------------------------------------------|-------|-------------|----------------|------------------------|------------|---------------------|----------------------|------------------|
| Method                                          |       | Sample Date | E              | traction / Preparation |            |                     | Analysis             |                  |
| Container / Client Sample ID(s)                 |       |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis     | Evaluation       |
| EA010P: Conductivity by PC Titrator             |       |             |                |                        |            |                     |                      |                  |
| Clear Plastic Bottle - Natural (EA010-F<br>AST2 | P)    | 04-Jul-2015 |                |                        |            | 06-Jul-2015         | 01-Aug-2015          | <b>✓</b>         |
| EP080: BTEXN                                    |       |             |                |                        |            |                     |                      |                  |
| Amber VOC Vial - Sulfuric Acid (EP08            | 0)    |             |                |                        |            |                     |                      |                  |
| AST2,                                           | WK11, | 04-Jul-2015 | 06-Jul-2015    | 18-Jul-2015            | ✓          | 06-Jul-2015         | 18-Jul-2015          | ✓                |
| WK12,                                           | WK13, |             |                |                        |            |                     |                      |                  |
| WK14                                            |       |             |                |                        |            |                     |                      |                  |

Page : 3 of 4 Work Order ES1525375

PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    |         |    |         | Evaluation | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specification |
|----------------------------------|---------|----|---------|------------|-------------------|-----------------|------------------------------------------------------------------------------|
| Quality Control Sample Type      |         | Co | ount    |            | Rate (%)          |                 | Quality Control Specification                                                |
| Analytical Methods               | Method  | OC | Reaular | Actual     | Expected          | Evaluation      |                                                                              |
| Laboratory Duplicates (DUP)      |         |    |         |            |                   |                 |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00       | 10.00             | ×               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 5       | 20.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00       | 10.00             | se.             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Laboratory Control Samples (LCS) |         |    |         |            |                   |                 |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00       | 5.00              | sc              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 5       | 20.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00       | 5.00              | Je.             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Method Blanks (MB)               |         |    |         |            |                   |                 |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00       | 5.00              | x               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 5       | 20.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00       | 5.00              | Je.             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Matrix Spikes (MS)               |         |    |         |            |                   |                 |                                                                              |
| TRH Volatiles/BTEX               | EP080   | 1  | 5       | 20.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |

Page : 4 of 4 Work Order : ES1525375

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                                                                                                                                      |
|-----------------------------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                    |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)    |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                                                                                                                          |
|                             |         |        | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is |
|                             |         |        | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                          |



# **QUALITY CONTROL REPORT**

**Work Order** : **ES1525544** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ---Date Samples Received: 07-Jul-2015C-O-C number: 07-Jul-2015

Sampler : DAVID WATSON Issue Date : 07-Jul-2015

Site : --- No. of samples received : 11

Quote number : --- No. of samples analysed : 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

NATA Accredited

Laboratory 825

Accredited for compliance with

ISO/IEC 17025.

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



E-mail

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Phalak Inthakesone Laboratory Manager - Organics Sydney Organics

Page : 2 of 4 Work Order : ES1525544

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1525544

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER    |                         |                                         |            |     |       | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|-------------------------|-----------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                        | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA010P: Conductivi   | ty by PC Titrator (QC I | Lot: 147320)                            |            |     |       |                 |                        |         |                     |
| ES1525544-001        | AST2                    | EA010-P: Electrical Conductivity @ 25°C |            | 1   | μS/cm | 7430            | 7420                   | 0.135   | 0% - 20%            |
| EK084: Un-ionized H  | lydrogen Sulfide (QC I  | Lot: 147460)                            |            |     |       |                 |                        |         |                     |
| ES1525544-001        | AST2                    | EK084: Unionized Hydrogen Sulfide       |            | 0.1 | mg/L  | <0.1            | <0.1                   | 0.00    | 0% - 20%            |
| ES1525544-010        | WK14                    | EK084: Unionized Hydrogen Sulfide       |            | 0.1 | mg/L  | <0.1            | <0.1                   | 0.00    | 0% - 20%            |
| EP080: BTEXN (QC     | Lot: 147341)            |                                         |            |     |       |                 |                        |         |                     |
| ES1525544-001        | AST2                    | EP080: Benzene                          | 71-43-2    | 1   | μg/L  | 16              | 16                     | 0.00    | 0% - 50%            |
|                      |                         | EP080: Ethylbenzene                     | 100-41-4   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                      |                         | EP080: meta- & para-Xylene              | 108-38-3   | 2   | μg/L  | 4               | 4                      | 0.00    | No Limit            |
|                      |                         |                                         | 106-42-3   |     |       |                 |                        |         |                     |
|                      |                         | EP080: ortho-Xylene                     | 95-47-6    | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                      |                         | EP080: Toluene                          | 108-88-3   | 2   | μg/L  | 18              | 18                     | 0.00    | No Limit            |
|                      |                         | EP080: Naphthalene                      | 91-20-3    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
| ES1525544-006        | AST2                    | EP080: Benzene                          | 71-43-2    | 1   | μg/L  | 17              | 16                     | 0.00    | 0% - 50%            |
|                      |                         | EP080: Ethylbenzene                     | 100-41-4   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                      |                         | EP080: meta- & para-Xylene              | 108-38-3   | 2   | μg/L  | 4               | 4                      | 0.00    | No Limit            |
|                      |                         |                                         | 106-42-3   |     |       |                 |                        |         |                     |
|                      |                         | EP080: ortho-Xylene                     | 95-47-6    | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                      |                         | EP080: Toluene                          | 108-88-3   | 2   | μg/L  | 19              | 18                     | 0.00    | No Limit            |
|                      |                         | EP080: Naphthalene                      | 91-20-3    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |



Page : 4 of 4 Work Order : ES1525544

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            |     |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |
|-----------------------------------------------------|------------|-----|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|
|                                                     |            |     |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound                                    | CAS Number | LOR | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |  |
| EA010P: Conductivity by PC Titrator (QCLot: 147320) |            |     |       |                   |                                       |                    |          |            |  |  |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1   | μS/cm | <1                | 2000 μS/cm                            | 104                | 95       | 113        |  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 147460)  |            |     |       |                   |                                       |                    |          |            |  |  |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1 | mg/L  | <0.1              | 0.05 mg/L                             | 84.0               | 72       | 126        |  |  |
| EP080: BTEXN (QCLot: 147341)                        |            |     |       |                   |                                       |                    |          |            |  |  |
| EP080: Benzene                                      | 71-43-2    | 1   | μg/L  | <1                | 10 μg/L                               | 98.6               | 70       | 124        |  |  |
| EP080: Ethylbenzene                                 | 100-41-4   | 2   | μg/L  | <2                | 10 μg/L                               | 91.0               | 70       | 120        |  |  |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2   | μg/L  | <2                | 10 μg/L                               | 90.8               | 69       | 121        |  |  |
|                                                     | 106-42-3   |     |       |                   |                                       |                    |          |            |  |  |
| EP080: Naphthalene                                  | 91-20-3    | 5   | μg/L  | <5                | 10 μg/L                               | 97.5               | 70       | 124        |  |  |
| EP080: ortho-Xylene                                 | 95-47-6    | 2   | μg/L  | <2                | 10 μg/L                               | 93.6               | 72       | 122        |  |  |
| EP080: Toluene                                      | 108-88-3   | 2   | μg/L  | <2                | 10 μg/L                               | 96.6               | 65       | 129        |  |  |

# Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                            |            | Matrix Spike (MS) Report |                  |            |           |  |  |
|----------------------|------------------|----------------------------|------------|--------------------------|------------------|------------|-----------|--|--|
|                      |                  |                            |            | Spike                    | SpikeRecovery(%) | Recovery L | imits (%) |  |  |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration            | MS               | Low        | High      |  |  |
| EP080: BTEXN (Q      | CLot: 147341)    |                            |            |                          |                  |            |           |  |  |
| ES1525544-001        | AST2             | EP080: Benzene             | 71-43-2    | 25 μg/L                  | 91.2             | 70         | 130       |  |  |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L                  | 95.3             | 70         | 130       |  |  |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L                  | 97.6             | 70         | 130       |  |  |
|                      |                  |                            | 106-42-3   |                          |                  |            |           |  |  |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L                  | 96.5             | 70         | 130       |  |  |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L                  | 96.2             | 70         | 130       |  |  |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L                  | 89.6             | 70         | 130       |  |  |



# **QA/QC Compliance Assessment for DQO Reporting**

**Work Order** : **ES1525544** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 07-Jul-2015

 Site
 : --- Issue Date
 : 07-Jul-2015

Sampler : DAVID WATSON No. of samples received : 11
Order number : ---- No. of samples analysed : 11

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

# **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

# **Outliers: Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4
Work Order : ES1525544

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      | Co | ount    | Rate   | e (%)    | Quality Control Specification                    |
|----------------------------------|----|---------|--------|----------|--------------------------------------------------|
| Method                           | QC | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 2  | 0       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 11      | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 11      | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Jn-ionized Hydrogen Sulfide      | 0  | 11      | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

# **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

#### Matrix: WATER

Evaluation: \* = Holding time breach:  $\checkmark$  = Within holding time

| Matrix: WATER                                    |       |             |                |                        | Evaluation | : × = Holding time | breach; ✓ = vvitni | n nolaing time |  |
|--------------------------------------------------|-------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|--|
| Method                                           |       | Sample Date | Ex             | traction / Preparation |            | Analysis           |                    |                |  |
| Container / Client Sample ID(s)                  |       |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |  |
| EA010P: Conductivity by PC Titrator              |       |             |                |                        |            |                    |                    |                |  |
| Clear Plastic Bottle - Natural (EA010-P)<br>AST2 |       | 06-Jul-2015 |                |                        |            | 07-Jul-2015        | 03-Aug-2015        | <b>✓</b>       |  |
| Clear Plastic Bottle - Natural (EA010-P)<br>AST2 |       | 07-Jul-2015 |                |                        |            | 07-Jul-2015        | 04-Aug-2015        | ✓              |  |
| EP080: BTEXN                                     |       |             |                |                        |            |                    |                    |                |  |
| Amber VOC Vial - Sulfuric Acid (EP080)           |       |             |                |                        |            |                    |                    |                |  |
| AST2,                                            | WK11, | 06-Jul-2015 | 07-Jul-2015    | 20-Jul-2015            | ✓          | 07-Jul-2015        | 20-Jul-2015        | ✓              |  |
| WK12,                                            | WK13, |             |                |                        |            |                    |                    |                |  |
| WK14                                             |       |             |                |                        |            |                    |                    |                |  |
| Amber VOC Vial - Sulfuric Acid (EP080)           |       |             |                |                        |            |                    |                    |                |  |
| AST2,                                            | WK11, | 07-Jul-2015 | 07-Jul-2015    | 21-Jul-2015            | ✓          | 07-Jul-2015        | 21-Jul-2015        | ✓              |  |
| WK12,                                            | WK13, |             |                |                        |            |                    |                    |                |  |
| WK14,                                            | QA3   |             |                |                        |            |                    |                    |                |  |

Page : 3 of 4 Work Order ES1525544

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    |         |    |         | Evaluatio |          | introl frequency | not within specification; ✓ = Quality Control frequency within specifica |
|----------------------------------|---------|----|---------|-----------|----------|------------------|--------------------------------------------------------------------------|
| Quality Control Sample Type      |         |    | ount    |           | Rate (%) | Fratration       | Quality Control Specification                                            |
| Analytical Methods               | Method  | OC | Regular | Actual    | Expected | Evaluation       |                                                                          |
| Laboratory Duplicates (DUP)      |         |    |         |           |          |                  |                                                                          |
| Conductivity by PC Titrator      | EA010-P | 1  | 2       | 50.00     | 10.00    | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                         |
| Dissolved Sulfide as S2-         | EK085F  | 2  | 0       | 0.00      | 10.00    | æ                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                         |
| TRH Volatiles/BTEX               | EP080   | 2  | 11      | 18.18     | 10.00    | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                         |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 11      | 0.00      | 10.00    | Je.              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                         |
| Laboratory Control Samples (LCS) |         |    |         |           |          |                  |                                                                          |
| Conductivity by PC Titrator      | EA010-P | 1  | 2       | 50.00     | 5.00     | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                         |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00      | 5.00     | æ                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                         |
| TRH Volatiles/BTEX               | EP080   | 1  | 11      | 9.09      | 5.00     | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                         |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 11      | 0.00      | 5.00     | Je.              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                         |
| Method Blanks (MB)               |         |    |         |           |          |                  |                                                                          |
| Conductivity by PC Titrator      | EA010-P | 1  | 2       | 50.00     | 5.00     | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                         |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00      | 5.00     | x                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                         |
| TRH Volatiles/BTEX               | EP080   | 1  | 11      | 9.09      | 5.00     | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                         |
| Jn-ionized Hydrogen Sulfide      | EK084   | 0  | 11      | 0.00      | 5.00     | Je.              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                         |
| Matrix Spikes (MS)               |         |    |         |           |          |                  |                                                                          |
| FRH Volatiles/BTEX               | EP080   | 1  | 11      | 9.09      | 5.00     | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                         |

Page : 4 of 4 Work Order : ES1525544

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                                                                                                                                      |
|-----------------------------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                    |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)    |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                                                                                                                          |
|                             |         |        | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is |
|                             |         |        | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                          |



#### **QUALITY CONTROL REPORT**

**Work Order** : **ES1525652** Page : 1 of 17

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

 E-mail
 : SDaykin@pb.com.au
 E-mail
 : loren.schiavon@alsglobal.com

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : --- Date Samples Received : 08-Jul-2015
C-O-C number Date Analysis Commenced : 08-Jul-2015

Sampler : DAVID WATSON Issue Date : 02-Sep-2015

Site : --- No. of samples received : 6

Quote number : --- No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position               | Accreditation Category |
|------------------|------------------------|------------------------|
| Alex Rossi       | Organic Chemist        | Sydney Organics        |
| Ankit Joshi      | Inorganic Chemist      | Sydney Inorganics      |
| Celine Conceicao | Senior Spectroscopist  | Sydney Inorganics      |
| Pabi Subba       | Senior Organic Chemist | Sydney Organics        |
| Shobhna Chandra  | Metals Coordinator     | Sydney Inorganics      |
|                  |                        |                        |

Page : 2 of 17

Work Order : ES1525652 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 17

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

# Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER    |                              |                                          |             |      |         | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------------|------------------------------------------|-------------|------|---------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID             | Method: Compound                         | CAS Number  | LOR  | Unit    | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA005P: pH by PC     | Titrator (QC Lot: 148741)    |                                          |             |      |         |                 |                        |         |                     |
| ES1525596-001        | Anonymous                    | EA005-P: pH Value                        |             | 0.01 | pH Unit | 8.15            | 8.21                   | 0.733   | 0% - 20%            |
| ES1525652-005        | WK14                         | EA005-P: pH Value                        |             | 0.01 | pH Unit | 7.74            | 7.76                   | 0.258   | 0% - 20%            |
| EA010P: Conductiv    | ity by PC Titrator (QC Lot:  | 148740)                                  |             |      |         |                 |                        |         |                     |
| ES1525621-004        | Anonymous                    | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 1140            | 1130                   | 0.788   | 0% - 20%            |
| ES1525618-001        | Anonymous                    | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 1300            | 1310                   | 0.688   | 0% - 20%            |
| EA010P: Conductiv    | ity by PC Titrator (QC Lot:  | 148743)                                  |             |      |         |                 |                        |         |                     |
| ES1525652-005        | WK14                         | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 10600           | 10700                  | 1.04    | 0% - 20%            |
| EA015: Total Dissol  | ved Solids (QC Lot: 14905    | 5)                                       |             |      |         |                 |                        |         |                     |
| ES1525648-001        | Anonymous                    | EA015H: Total Dissolved Solids @180°C    |             | 10   | mg/L    | 627             | 617                    | 1.61    | 0% - 20%            |
| ES1525665-003        | Anonymous                    | EA015H: Total Dissolved Solids @180°C    |             | 10   | mg/L    | 40900           | 39700                  | 3.13    | 0% - 20%            |
| EA025: Suspended     | Solids (QC Lot: 149056)      |                                          |             |      |         |                 |                        |         |                     |
| ES1525648-001        | Anonymous                    | EA025H: Suspended Solids (SS)            |             | 5    | mg/L    | 91              | 90                     | 0.00    | 0% - 50%            |
| ES1525665-003        | Anonymous                    | EA025H: Suspended Solids (SS)            |             | 5    | mg/L    | <5              | <5                     | 0.00    | No Limit            |
| ED009: Anions (Q0    | C Lot: 149830)               |                                          |             |      |         |                 |                        |         |                     |
| ES1525651-001        | Anonymous                    | ED009-X: Chloride                        | 16887-00-6  | 0.1  | mg/L    | 260             | 261                    | 0.215   | 0% - 20%            |
| ED037P: Alkalinity I | by PC Titrator (QC Lot: 148  | 3742)                                    |             |      |         |                 |                        |         |                     |
| ES1525684-001        | Anonymous                    | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L    | 55              | 53                     | 3.08    | 0% - 20%            |
|                      |                              | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                              | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                              | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L    | 55              | 53                     | 3.08    | 0% - 20%            |
| ES1525652-005        | WK14                         | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L    | 4360            | 4360                   | 0.00    | 0% - 20%            |
|                      |                              | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                              | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                              | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L    | 4360            | 4360                   | 0.00    | 0% - 20%            |
| ED041G: Sulfate (Tu  | urbidimetric) as SO4 2- by E | DA (QC Lot: 148929)                      |             |      |         |                 |                        |         |                     |
| ES1525624-002        | Anonymous                    | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L    | 3210            | 3190                   | 0.564   | 0% - 20%            |
| ES1525652-001        | AST2                         | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
| ED045G: Chloride b   | y Discrete Analyser (QC L    | ot: 148928)                              |             |      |         |                 |                        |         |                     |
| ES1525624-002        | Anonymous                    | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L    | 8330            | 8510                   | 2.21    | 0% - 20%            |
| ES1525652-001        | AST2                         | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L    | 621             | 618                    | 0.381   | 0% - 20%            |
| ED093F: Dissolved    | Major Cations (QC Lot: 150   | 0201)                                    |             |      |         |                 |                        |         |                     |
| ES1525652-003        | WK12                         | ED093F: Calcium                          | 7440-70-2   | 1    | mg/L    | 24              | 24                     | 0.00    | 0% - 20%            |
|                      |                              | ED093F: Magnesium                        | 7439-95-4   | 1    | mg/L    | 4               | 4                      | 0.00    | No Limit            |
|                      |                              | ED093F: Potassium                        | 7440-09-7   | 1    | mg/L    | 14              | 13                     | 0.00    | 0% - 50%            |

Page : 4 of 17

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                        |                      |            | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |  |  |
|----------------------|------------------------|----------------------|------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|--|--|
| Laboratory sample ID | Client sample ID       | Method: Compound     | CAS Number | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |
| ED093F: Dissolved N  | Major Cations (QC Lot: |                      |            |                                   |      |                 |                  |         |                     |  |  |
| ES1525652-003        | WK12                   | ED093F: Sodium       | 7440-23-5  | 1                                 | mg/L | 1840            | 1740             | 5.40    | 0% - 20%            |  |  |
| ES1525640-001        | Anonymous              | ED093F: Calcium      | 7440-70-2  | 1                                 | mg/L | 59              | 59               | 0.00    | 0% - 20%            |  |  |
|                      |                        | ED093F: Magnesium    | 7439-95-4  | 1                                 | mg/L | 32              | 31               | 4.37    | 0% - 20%            |  |  |
|                      |                        | ED093F: Potassium    | 7440-09-7  | 1                                 | mg/L | 3               | 2                | 0.00    | No Limit            |  |  |
|                      |                        | ED093F: Sodium       | 7440-23-5  | 1                                 | mg/L | 65              | 64               | 0.00    | 0% - 20%            |  |  |
| EG020F: Dissolved I  | Metals by ICP-MS (QC   | Lot: 150200)         |            |                                   |      |                 |                  |         |                     |  |  |
| ES1525652-003        | WK12                   | EG020A-F: Cadmium    | 7440-43-9  | 0.0001                            | mg/L | <0.0010         | <0.0010          | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Antimony   | 7440-36-0  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Arsenic    | 7440-38-2  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Barium     | 7440-39-3  | 0.001                             | mg/L | 5.58            | 5.47             | 1.99    | 0% - 20%            |  |  |
|                      |                        | EG020A-F: Beryllium  | 7440-41-7  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Chromium   | 7440-47-3  | 0.001                             | mg/L | 0.032           | 0.034            | 5.33    | No Limit            |  |  |
|                      |                        | EG020A-F: Cobalt     | 7440-48-4  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Copper     | 7440-50-8  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Lead       | 7439-92-1  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Manganese  | 7439-96-5  | 0.001                             | mg/L | 0.064           | 0.064            | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Molybdenum | 7439-98-7  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Nickel     | 7440-02-0  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Tin        | 7440-31-5  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Zinc       | 7440-66-6  | 0.005                             | mg/L | <0.050          | <0.050           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Aluminium  | 7429-90-5  | 0.01                              | mg/L | <0.10           | <0.10            | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Selenium   | 7782-49-2  | 0.01                              | mg/L | <0.10           | <0.10            | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Vanadium   | 7440-62-2  | 0.01                              | mg/L | <0.10           | <0.10            | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Boron      | 7440-42-8  | 0.05                              | mg/L | 5.03            | 4.76             | 5.47    | 0% - 50%            |  |  |
|                      |                        | EG020A-F: Iron       | 7439-89-6  | 0.05                              | mg/L | 5.72            | 5.89             | 2.91    | 0% - 50%            |  |  |
|                      |                        | EG020A-F: Bromine    | 7726-95-6  | 0.1                               | mg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |  |
| ES1525640-001        | Anonymous              | EG020A-F: Cadmium    | 7440-43-9  | 0.0001                            | mg/L | <0.0001         | <0.0001          | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Antimony   | 7440-36-0  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Arsenic    | 7440-38-2  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Barium     | 7440-39-3  | 0.001                             | mg/L | 0.118           | 0.116            | 0.940   | 0% - 20%            |  |  |
|                      |                        | EG020A-F: Beryllium  | 7440-41-7  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Chromium   | 7440-47-3  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Cobalt     | 7440-48-4  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Copper     | 7440-50-8  | 0.001                             | mg/L | 0.001           | 0.001            | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Lead       | 7439-92-1  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Manganese  | 7439-96-5  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Molybdenum | 7439-98-7  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Nickel     | 7440-02-0  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Tin        | 7440-31-5  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Zinc       | 7440-66-6  | 0.005                             | mg/L | 0.006           | 0.007            | 0.00    | No Limit            |  |  |

Page : 5 of 17

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| ub-Matrix: WATER     |                          |                                           |            |        |        | Laboratory I    | Duplicate (DUP) Report |         |                    |
|----------------------|--------------------------|-------------------------------------------|------------|--------|--------|-----------------|------------------------|---------|--------------------|
| Laboratory sample ID | Client sample ID         | Method: Compound                          | CAS Number | LOR    | Unit   | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (% |
| EG020F: Dissolved    | Metals by ICP-MS (QC I   | Lot: 150200) - continued                  |            |        |        |                 |                        |         |                    |
| ES1525640-001        | Anonymous                | EG020A-F: Aluminium                       | 7429-90-5  | 0.01   | mg/L   | <0.01           | <0.01                  | 0.00    | No Limit           |
|                      |                          | EG020A-F: Selenium                        | 7782-49-2  | 0.01   | mg/L   | <0.01           | <0.01                  | 0.00    | No Limit           |
|                      |                          | EG020A-F: Vanadium                        | 7440-62-2  | 0.01   | mg/L   | <0.01           | <0.01                  | 0.00    | No Limit           |
|                      |                          | EG020A-F: Boron                           | 7440-42-8  | 0.05   | mg/L   | 0.05            | 0.05                   | 0.00    | No Limit           |
|                      |                          | EG020A-F: Iron                            | 7439-89-6  | 0.05   | mg/L   | <0.05           | <0.05                  | 0.00    | No Limit           |
|                      |                          | EG020A-F: Bromine                         | 7726-95-6  | 0.1    | mg/L   | 0.1             | 0.1                    | 0.00    | No Limit           |
| G020F: Dissolved     | Metals by ICP-MS (QC I   | Lot: 150202)                              |            |        |        |                 |                        |         |                    |
| ES1525640-001        | Anonymous                | EG020B-F: Strontium                       | 7440-24-6  | 0.001  | mg/L   | 0.608           | 0.610                  | 0.447   | 0% - 20%           |
|                      |                          | EG020B-F: Uranium                         | 7440-61-1  | 0.001  | mg/L   | 0.002           | 0.001                  | 0.00    | No Limit           |
| ES1525699-001        | Anonymous                | EG020B-F: Strontium                       | 7440-24-6  | 0.001  | mg/L   | 0.087           | 0.086                  | 0.00    | 0% - 20%           |
|                      |                          | EG020B-F: Uranium                         | 7440-61-1  | 0.001  | mg/L   | <0.001          | <0.001                 | 0.00    | No Limit           |
| G035F: Dissolved     | Mercury by FIMS (QC L    | ot: 150199)                               |            |        |        |                 |                        |         |                    |
| ES1525610-002        | Anonymous                | EG035F: Mercury                           | 7439-97-6  | 0.0001 | mg/L   | <0.0001         | <0.0001                | 0.00    | No Limit           |
| ES1525640-001        | Anonymous                | EG035F: Mercury                           | 7439-97-6  | 0.0001 | mg/L   | <0.0001         | <0.0001                | 0.00    | No Limit           |
| G052G: Silica by E   | Discrete Analyser (QC L  | ot: 148931)                               |            |        |        |                 |                        |         |                    |
| ES1525652-001        | AST2                     | EG052G: Reactive Silica                   |            | 0.05   | mg/L   | 21.1            | 20.9                   | 0.969   | 0% - 20%           |
| K010/011: Chlorine   | e (QC Lot: 149017)       |                                           |            |        |        |                 |                        |         |                    |
| ES1525652-001        | AST2                     | EK010: Chlorine - Free                    |            | 0.2    | mg/L   | <0.2            | <0.2                   | 0.00    | No Limit           |
|                      |                          | EK010: Chlorine - Total Residual          |            | 0.2    | mg/L   | <0.2            | <0.2                   | 0.00    | No Limit           |
| K040P: Fluoride b    | y PC Titrator (QC Lot: 1 |                                           |            |        |        |                 |                        |         |                    |
| ES1525618-001        | Anonymous                | EK040P: Fluoride                          | 16984-48-8 | 0.1    | mg/L   | 1.3             | 1.4                    | 7.46    | 0% - 50%           |
| ES1525652-005        | WK14                     | EK040P: Fluoride                          | 16984-48-8 | 0.1    | mg/L   | 1.0             | 0.9                    | 0.00    | No Limit           |
| K055G: Ammonia       | as N by Discrete Analys  |                                           |            |        |        |                 |                        |         |                    |
| ES1525664-004        | Anonymous                | EK055G: Ammonia as N                      | 7664-41-7  | 0.01   | mg/L   | <0.01           | <0.01                  | 0.00    | No Limit           |
| ES1525652-001        | AST2                     | EK055G: Ammonia as N                      | 7664-41-7  | 0.01   | mg/L   | <0.10           | <0.10                  | 0.00    | No Limit           |
|                      | N by Discrete Analyser   |                                           | 1001111    |        | 9/ _   | 30              | 00                     | 0.00    | 110 =              |
| ES1525624-002        | Anonymous                | •                                         | 14797-65-0 | 0.01   | mg/L   | <0.01           | <0.01                  | 0.00    | No Limit           |
| ES1525652-001        | AST2                     | EK057G: Nitrite as N EK057G: Nitrite as N | 14797-65-0 | 0.01   | mg/L   | <0.01           | <0.01                  | 0.00    | No Limit           |
|                      |                          |                                           | 14797-00-0 | 0.01   | IIIg/L | 40.01           | 40.01                  | 0.00    | NO EIIIII          |
|                      | ` ` `                    | Discrete Analyser (QC Lot: 149347)        |            | 0.04   |        | 0.04            | -0.04                  | 0.00    | NIn I insid        |
| ES1525652-005        | WK14                     | EK059G: Nitrite + Nitrate as N            |            | 0.01   | mg/L   | 0.01            | <0.01                  | 0.00    | No Limit           |
| ES1525652-001        | AST2                     | EK059G: Nitrite + Nitrate as N            |            | 0.01   | mg/L   | 0.04            | 0.04                   | 0.00    | No Limit           |
|                      |                          | te Analyser (QC Lot: 149341)              |            |        |        |                 |                        |         |                    |
| ES1525609-001        | Anonymous                | EK061G: Total Kjeldahl Nitrogen as N      |            | 0.1    | mg/L   | 2.0             | 1.8                    | 9.46    | 0% - 20%           |
| ES1525652-006        | QA4                      | EK061G: Total Kjeldahl Nitrogen as N      |            | 0.1    | mg/L   | 5.4             | 5.3                    | 0.00    | 0% - 20%           |
|                      | sphorus as P by Discrete | e Analyser (QC Lot: 149340)               |            |        |        |                 |                        |         |                    |
| ES1525609-001        | Anonymous                | EK067G: Total Phosphorus as P             |            | 0.01   | mg/L   | 0.47            | 0.45                   | 3.51    | 0% - 20%           |
| ES1525652-006        | QA4                      | EK067G: Total Phosphorus as P             |            | 0.01   | mg/L   | 2.14            | 2.10                   | 1.87    | 0% - 20%           |

Page : 6 of 17

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                        |                                              |            |      |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------|----------------------------------------------|------------|------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                             | CAS Number | LOR  | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EK071G: Reactive I   | Phosphorus as P by dis | screte analyser (QC Lot: 148930) - continued |            |      |      |                 |                        |         |                     |
| ES1525652-001        | AST2                   | EK071G: Reactive Phosphorus as P             | 14265-44-2 | 0.01 | mg/L | 0.05            | 0.04                   | 0.00    | No Limit            |
| EP005: Total Organ   | ic Carbon (TOC) (QC I  | Lot: 149660)                                 |            |      |      |                 |                        |         |                     |
| ES1525477-001        | Anonymous              | EP005: Total Organic Carbon                  |            | 1    | mg/L | 5000            | 6                      | 0.00    | No Limit            |
| ES1525577-017        | Anonymous              | EP005: Total Organic Carbon                  |            | 1    | mg/L | 26              | 26                     | 0.00    | 0% - 20%            |
| EP033: C1 - C4 Hyd   | Irocarbon Gases (QC L  |                                              |            |      |      |                 |                        |         |                     |
| ES1525652-001        | AST2                   | EP033: Butane                                | 106-97-8   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Butene                                | 25167-67-3 | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Ethane                                | 74-84-0    | 10   | μg/L | 119             | 120                    | 0.00    | 0% - 50%            |
|                      |                        | EP033: Ethene                                | 74-85-1    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Methane                               | 74-82-8    | 10   | μg/L | 2660            | 2580                   | 3.02    | 0% - 20%            |
|                      |                        | EP033: Propane                               | 74-98-6    | 10   | μg/L | 18              | 18                     | 0.00    | No Limit            |
|                      |                        | EP033: Propene                               | 115-07-1   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
| EP074A: Monocycli    | ic Aromatic Hydrocarb  |                                              |            |      |      |                 |                        |         |                     |
| ES1525707-003        | Anonymous              | EP074: 1.2.4-Trimethylbenzene                | 95-63-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.3.5-Trimethylbenzene                | 108-67-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Isopropylbenzene                      | 98-82-8    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: n-Butylbenzene                        | 104-51-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: n-Propylbenzene                       | 103-65-1   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: p-Isopropyltoluene                    | 99-87-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: sec-Butylbenzene                      | 135-98-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Styrene                               | 100-42-5   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: tert-Butylbenzene                     | 98-06-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1525652-001        | AST2                   | EP074: 1.2.4-Trimethylbenzene                | 95-63-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.3.5-Trimethylbenzene                | 108-67-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Isopropylbenzene                      | 98-82-8    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: n-Butylbenzene                        | 104-51-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: n-Propylbenzene                       | 103-65-1   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: p-Isopropyltoluene                    | 99-87-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: sec-Butylbenzene                      | 135-98-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Styrene                               | 100-42-5   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: tert-Butylbenzene                     | 98-06-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
| P074B: Oxygenate     | ed Compounds (QC Lo    | ot: 149413)                                  |            |      |      |                 |                        |         |                     |
| S1525707-003         | Anonymous              | EP074: 2-Butanone (MEK)                      | 78-93-3    | 50   | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP074: 2-Hexanone (MBK)                      | 591-78-6   | 50   | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP074: 4-Methyl-2-pentanone (MIBK)           | 108-10-1   | 50   | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP074: Vinyl Acetate                         | 108-05-4   | 50   | μg/L | <50             | <50                    | 0.00    | No Limit            |
| ES1525652-001        | AST2                   | EP074: 2-Butanone (MEK)                      | 78-93-3    | 50   | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP074: 2-Hexanone (MBK)                      | 591-78-6   | 50   | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP074: 4-Methyl-2-pentanone (MIBK)           | 108-10-1   | 50   | μg/L | <50             | <50                    | 0.00    | No Limit            |

Page : 7 of 17

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                                    |            |     |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|-----------------------|------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                   | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074B: Oxygenat     | ed Compounds (QC L    | ot: 149413) - continued            |            |     |      |                 |                        |         |                     |
| ES1525652-001        | AST2                  | EP074: Vinyl Acetate               | 108-05-4   | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| EP074C: Sulfonate    | d Compounds (QC Lo    | t: 149413)                         |            |     |      |                 |                        |         |                     |
| ES1525707-003        | Anonymous             | EP074: Carbon disulfide            | 75-15-0    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1525652-001        | AST2                  | EP074: Carbon disulfide            | 75-15-0    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074D: Fumigants    | s (QC Lot: 149413)    |                                    |            |     |      |                 |                        |         |                     |
| ES1525707-003        | Anonymous             | EP074: 1.2-Dibromoethane (EDB)     | 106-93-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichloropropane         | 78-87-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 2.2-Dichloropropane         | 594-20-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.3-Dichloropropylene   | 10061-01-5 | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.3-Dichloropropylene | 10061-02-6 | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1525652-001        | AST2                  | EP074: 1.2-Dibromoethane (EDB)     | 106-93-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichloropropane         | 78-87-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 2.2-Dichloropropane         | 594-20-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.3-Dichloropropylene   | 10061-01-5 | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.3-Dichloropropylene | 10061-02-6 | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074E: Halogenat    | ted Aliphatic Compour |                                    |            |     |      |                 |                        |         |                     |
| ES1525707-003        | Anonymous             | EP074: 1.1.1.2-Tetrachloroethane   | 630-20-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      | , , , , , ,           | EP074: 1.1.1-Trichloroethane       | 71-55-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.2.2-Tetrachloroethane   | 79-34-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.2-Trichloroethane       | 79-00-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloroethane          | 75-34-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloroethene          | 75-35-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloropropylene       | 563-58-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2.3-Trichloropropane      | 96-18-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dibromo-3-chloropropane | 96-12-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichloroethane          | 107-06-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.3-Dichloropropane         | 142-28-9   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Carbon Tetrachloride        | 56-23-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.2-Dichloroethene      | 156-59-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.4-Dichloro-2-butene   | 1476-11-5  | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromomethane              | 74-95-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Hexachlorobutadiene         | 87-68-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Iodomethane                 | 74-88-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Pentachloroethane           | 76-01-7    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Tetrachloroethene           | 127-18-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.2-Dichloroethene    | 156-60-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Trichloroethene             | 79-01-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromomethane                | 74-83-9    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloroethane                | 75-00-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |

Page : 8 of 17

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                                    |            |     |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|-----------------------|------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                   | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074E: Halogenate   | ed Aliphatic Compound | ds (QC Lot: 149413) - continued    |            |     |      |                 |                        |         |                     |
| ES1525707-003        | Anonymous             | EP074: Chloromethane               | 74-87-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Dichlorodifluoromethane     | 75-71-8    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Trichlorofluoromethane      | 75-69-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Vinyl chloride              | 75-01-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| ES1525652-001        | AST2                  | EP074: 1.1.1.2-Tetrachloroethane   | 630-20-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.1-Trichloroethane       | 71-55-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.2.2-Tetrachloroethane   | 79-34-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.2-Trichloroethane       | 79-00-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloroethane          | 75-34-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloroethene          | 75-35-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloropropylene       | 563-58-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2.3-Trichloropropane      | 96-18-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dibromo-3-chloropropane | 96-12-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichloroethane          | 107-06-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.3-Dichloropropane         | 142-28-9   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Carbon Tetrachloride        | 56-23-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.2-Dichloroethene      | 156-59-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.4-Dichloro-2-butene   | 1476-11-5  | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromomethane              | 74-95-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Hexachlorobutadiene         | 87-68-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Iodomethane                 | 74-88-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Pentachloroethane           | 76-01-7    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Tetrachloroethene           | 127-18-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.2-Dichloroethene    | 156-60-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Trichloroethene             | 79-01-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromomethane                | 74-83-9    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloroethane                | 75-00-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloromethane               | 74-87-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Dichlorodifluoromethane     | 75-71-8    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Trichlorofluoromethane      | 75-69-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Vinyl chloride              | 75-01-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| EP074F: Halogenate   | ed Aromatic Compound  | ds (QC Lot: 149413)                |            |     |      |                 |                        |         |                     |
| ES1525707-003        | Anonymous             | EP074: 1.2.3-Trichlorobenzene      | 87-61-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2.4-Trichlorobenzene      | 120-82-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichlorobenzene         | 95-50-1    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.3-Dichlorobenzene         | 541-73-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.4-Dichlorobenzene         | 106-46-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 2-Chlorotoluene             | 95-49-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 4-Chlorotoluene             | 106-43-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |

Page : 9 of 17

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                      |                                           |            |     |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|----------------------|-------------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID     | Method: Compound                          | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074F: Halogenate   | ed Aromatic Compound | ls (QC Lot: 149413) - continued           |            |     |      |                 |                        |         |                     |
| ES1525707-003        | Anonymous            | EP074: Bromobenzene                       | 108-86-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Chlorobenzene                      | 108-90-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1525652-001        | AST2                 | EP074: 1.2.3-Trichlorobenzene             | 87-61-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2.4-Trichlorobenzene             | 120-82-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2-Dichlorobenzene                | 95-50-1    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.3-Dichlorobenzene                | 541-73-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.4-Dichlorobenzene                | 106-46-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 2-Chlorotoluene                    | 95-49-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 4-Chlorotoluene                    | 106-43-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Bromobenzene                       | 108-86-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Chlorobenzene                      | 108-90-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074G: Trihalomet   | hanes (QC Lot: 14941 | 3)                                        |            |     |      |                 |                        |         |                     |
| ES1525707-003        | Anonymous            | EP074: Bromodichloromethane               | 75-27-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| -51525707-003        |                      | EP074: Bromoform                          | 75-25-2    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Chloroform                         | 67-66-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Dibromochloromethane               | 124-48-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1525652-001        | AST2                 | EP074: Bromodichloromethane               | 75-27-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Bromoform                          | 75-25-2    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Chloroform                         | 67-66-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Dibromochloromethane               | 124-48-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP080/071: Total Pe  | troleum Hydrocarbons | (QC Lot: 149414)                          |            |     |      |                 |                        |         |                     |
| ES1525707-003        | Anonymous            | EP080: C6 - C9 Fraction                   |            | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| ES1525652-001        | AST2                 | EP080: C6 - C9 Fraction                   |            | 20  | μg/L | 50              | 60                     | 0.00    | No Limit            |
| EP080/071: Total Re  | coverable Hydrocarbo | ns - NEPM 2013 Fractions (QC Lot: 149414) |            |     |      |                 |                        |         |                     |
| ES1525707-003        | Anonymous            | EP080: C6 - C10 Fraction                  | C6 C10     | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| ES1525652-001        | AST2                 | EP080: C6 - C10 Fraction                  | C6 C10     | 20  | μg/L | 50              | 60                     | 0.00    | No Limit            |
| EP262: Ethanolamin   | nes (QC Lot: 154733) |                                           | _          |     |      |                 |                        |         |                     |
| ES1525652-001        | AST2                 | EP262: Diethanolamine                     | 111-42-2   | 1   | μg/L | <1              | <1                     | 0.00    | No Limit            |
|                      |                      | EP262: Ethanolamine                       | 141-43-5   | 1   | μg/L | <1              | <1                     | 0.00    | No Limit            |

Page : 10 of 17

Work Order : ES1525652 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                       |            |        |       | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|---------------------------------------------------------|------------|--------|-------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                         |            |        |       | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                        | CAS Number | LOR    | Unit  | Result            | Concentration | LCS                           | Low       | High       |
| EA010P: Conductivity by PC Titrator (QCLot: 148740)     |            |        |       |                   |               |                               |           |            |
| EA010-P: Electrical Conductivity @ 25°C                 |            | 1      | μS/cm | <1                | 2000 μS/cm    | 105                           | 95        | 113        |
| EA010P: Conductivity by PC Titrator (QCLot: 148743)     |            |        |       |                   |               |                               |           |            |
| EA010-P: Electrical Conductivity @ 25°C                 |            | 1      | μS/cm | <1                | 2000 μS/cm    | 105                           | 95        | 113        |
| EA015: Total Dissolved Solids (QCLot: 149055)           |            |        |       |                   |               |                               |           |            |
| EA015H: Total Dissolved Solids @180°C                   |            | 10     | mg/L  | <10               | 2000 mg/L     | 97.6                          | 87        | 109        |
|                                                         |            |        |       | <10               | 293 mg/L      | 101                           | 66        | 126        |
| EA025: Suspended Solids (QCLot: 149056)                 |            |        |       |                   |               |                               |           |            |
| EA025H: Suspended Solids (SS)                           |            | 5      | mg/L  | <5                | 150 mg/L      | 92.7                          | 83        | 129        |
| i i i i                                                 |            |        |       | <5                | 1000 mg/L     | 91.5                          | 84        | 110        |
| ED009: Anions (QCLot: 149830)                           |            |        |       |                   |               |                               |           |            |
| ED009-X: Chloride                                       | 16887-00-6 | 0.1    | mg/L  | <0.100            | 2 mg/L        | 106                           | 89        | 107        |
| ED037P: Alkalinity by PC Titrator (QCLot: 148742)       |            |        |       |                   |               |                               |           |            |
| ED037-P: Total Alkalinity as CaCO3                      |            |        | mg/L  |                   | 200 mg/L      | 102                           | 81        | 111        |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: | 148929)    |        |       |                   |               |                               |           |            |
| ED041G: Sulfate as SO4 - Turbidimetric                  | 14808-79-8 | 1      | mg/L  | <1                | 25 mg/L       | 105                           | 86        | 122        |
| ED045G: Chloride by Discrete Analyser (QCLot: 148928)   |            |        |       |                   |               |                               |           |            |
| ED045G: Chloride                                        | 16887-00-6 | 1      | mg/L  | <1                | 10 mg/L       | 109                           | 75        | 123        |
|                                                         |            |        |       | <1                | 1000 mg/L     | 107                           | 77        | 119        |
| ED093F: Dissolved Major Cations (QCLot: 150201)         |            |        |       |                   |               |                               |           |            |
| ED093F: Calcium                                         | 7440-70-2  | 1      | mg/L  | <1                | 50 mg/L       | 101                           | 90        | 114        |
| ED093F: Magnesium                                       | 7439-95-4  | 1      | mg/L  | <1                | 50 mg/L       | 102                           | 90        | 110        |
| ED093F: Potassium                                       | 7440-09-7  | 1      | mg/L  | <1                | 50 mg/L       | 102                           | 87        | 117        |
| ED093F: Sodium                                          | 7440-23-5  | 1      | mg/L  | <1                | 50 mg/L       | 103                           | 82        | 118        |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 150200)      |            |        |       |                   |               |                               |           |            |
| EG020A-F: Aluminium                                     | 7429-90-5  | 0.01   | mg/L  | <0.01             | 0.5 mg/L      | 90.1                          | 85        | 115        |
| EG020A-F: Antimony                                      | 7440-36-0  | 0.001  | mg/L  | <0.001            | 0.01 mg/L     | 90.2                          | 85        | 115        |
| EG020A-F: Arsenic                                       | 7440-38-2  | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 93.4                          | 85        | 115        |
| EG020A-F: Barium                                        | 7440-39-3  | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 91.9                          | 85        | 115        |
| EG020A-F: Beryllium                                     | 7440-41-7  | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 88.4                          | 85        | 115        |
| EG020A-F: Boron                                         | 7440-42-8  | 0.05   | mg/L  | <0.05             | 0.1 mg/L      | 92.2                          | 85        | 115        |
| EG020A-F: Bromine                                       | 7726-95-6  | 0.1    | mg/L  | <0.1              |               |                               |           |            |
| EG020A-F: Cadmium                                       | 7440-43-9  | 0.0001 | mg/L  | <0.0001           | 0.1 mg/L      | 91.7                          | 85        | 115        |
| EG020A-F: Chromium                                      | 7440-47-3  | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 85.1                          | 85        | 115        |

Page : 11 of 17

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                                                          |        |        | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|--------------------------------------------------------------------------------------------|--------|--------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                                                            |        |        | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound CAS Number                                                                | LOR    | Unit   | Result            | Concentration | LCS                           | Low       | High       |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 150200) - continued                             |        |        |                   |               |                               |           |            |
| EG020A-F: Cobalt 7440-48-4                                                                 | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 93.2                          | 85        | 115        |
| EG020A-F: Copper 7440-50-8                                                                 | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 89.8                          | 85        | 115        |
| EG020A-F: Iron 7439-89-6                                                                   | 0.05   | mg/L   | <0.05             | 0.5 mg/L      | 101                           | 85        | 115        |
| EG020A-F: Lead 7439-92-1                                                                   | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 92.7                          | 85        | 115        |
| EG020A-F: Manganese 7439-96-5                                                              | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 89.0                          | 85        | 115        |
| EG020A-F: Molybdenum 7439-98-7                                                             | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 94.4                          | 85        | 115        |
| EG020A-F: Nickel 7440-02-0                                                                 | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 88.0                          | 85        | 115        |
| EG020A-F: Selenium 7782-49-2                                                               | 0.01   | mg/L   | <0.01             | 0.1 mg/L      | 95.5                          | 85        | 115        |
| EG020A-F: Tin 7440-31-5                                                                    | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 90.3                          | 85        | 115        |
| EG020A-F: Vanadium 7440-62-2                                                               | 0.01   | mg/L   | <0.01             | 0.1 mg/L      | 89.7                          | 85        | 115        |
| EG020A-F: Zinc 7440-66-6                                                                   | 0.005  | mg/L   | <0.005            | 0.1 mg/L      | 94.5                          | 85        | 115        |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 150202)                                         |        |        |                   |               |                               |           |            |
| EG020B-F: Strontium 7440-24-6                                                              | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 90.7                          | 80        | 112        |
| EG020B-F: Uranium 7440-61-1                                                                | 0.001  | mg/L   | <0.001            |               |                               |           |            |
| EG035F: Dissolved Mercury by FIMS (QCLot: 150199)                                          |        |        |                   |               |                               |           |            |
| EG035F: Mercury 7439-97-6                                                                  | 0.0001 | mg/L   | <0.0001           | 0.01 mg/L     | 88.1                          | 78        | 114        |
| EG052G: Silica by Discrete Analyser (QCLot: 148931)                                        |        |        |                   |               |                               |           |            |
| EG052G: Reactive Silica                                                                    | 0.05   | mg/L   | <0.05             | 5 mg/L        | 103                           | 94        | 114        |
| EK010/011: Chlorine (QCLot: 149017)                                                        |        |        |                   |               |                               |           |            |
| EK010: Chlorine - Free                                                                     | 0.2    | mg/L   | <0.2              |               |                               |           |            |
| EK010: Chlorine - Total Residual                                                           | 0.2    | mg/L   | <0.2              |               |                               |           |            |
| EK040P: Fluoride by PC Titrator (QCLot: 148739)                                            |        | g-     |                   |               |                               |           |            |
| EK040P: Fluoride by FC Titrator (QCLOt. 148735)  EK040P: Fluoride 16984-48-8               | 0.1    | mg/L   | <0.1              | 5 mg/L        | 100                           | 75        | 119        |
| Erte for Thatilde                                                                          | 0.1    | IIIg/L | 40.1              | o mg/L        | 100                           | 70        | 110        |
| EK055G: Ammonia as N by Discrete Analyser (QCLot: 149348)  FK055G: Ammonia as N  7664-41-7 | 0.01   | ma/l   | <0.01             | 1 ma/l        | 101                           | 00        | 114        |
|                                                                                            | 0.01   | mg/L   | <0.01             | 1 mg/L        | 101                           | 90        | 114        |
| EK057G: Nitrite as N by Discrete Analyser (QCLot: 148927)                                  |        |        |                   | "             |                               |           |            |
| EK057G: Nitrite as N 14797-65-0                                                            | 0.01   | mg/L   | <0.01             | 0.5 mg/L      | 97.2                          | 82        | 114        |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 1                     |        |        |                   |               |                               |           |            |
| EK059G: Nitrite + Nitrate as N                                                             | 0.01   | mg/L   | <0.01             | 0.5 mg/L      | 102                           | 91        | 113        |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 149341)                       |        |        |                   |               |                               |           |            |
| EK061G: Total Kjeldahl Nitrogen as N                                                       | 0.1    | mg/L   | <0.1              | 10 mg/L       | 91.5                          | 69        | 101        |
|                                                                                            |        |        | <0.1              | 1 mg/L        | 93.6                          | 70        | 118        |
|                                                                                            |        |        | <0.1              | 5 mg/L        | 101                           | 74        | 118        |
| EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 149340)                         |        |        |                   |               |                               |           |            |
| EK067G: Total Phosphorus as P                                                              | 0.01   | mg/L   | <0.01             | 4.42 mg/L     | 92.1                          | 71        | 101        |
|                                                                                            |        |        | <0.01             | 0.442 mg/L    | 95.3                          | 72        | 108        |
|                                                                                            |        |        | <0.01             | 1 mg/L        | 104                           | 78        | 118        |

Page : 12 of 17

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                   |                    |      |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|-----------------------------------------------------|--------------------|------|------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                     |                    |      |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound                                    | CAS Number         | LOR  | Unit | Result            | Concentration                         | LCS                | Low      | High       |  |
| K071G: Reactive Phosphorus as P by discrete analyse | er (QCLot: 148930) |      |      |                   |                                       |                    |          |            |  |
| K071G: Reactive Phosphorus as P                     | 14265-44-2         | 0.01 | mg/L | <0.01             | 0.5 mg/L                              | 105                | 85       | 117        |  |
| P005: Total Organic Carbon (TOC) (QCLot: 149660)    |                    |      |      |                   |                                       |                    |          |            |  |
| P005: Total Organic Carbon                          |                    | 1    | mg/L | <1                | 10 mg/L                               | 91.4               | 76       | 120        |  |
| P020: Oil and Grease (O&G) (QCLot: 151311)          |                    |      |      |                   |                                       |                    |          |            |  |
| P020: Oil & Grease                                  |                    | 5    | mg/L | <5                | 5000 mg/L                             | 114                | 80       | 120        |  |
| P033: C1 - C4 Hydrocarbon Gases (QCLot: 149421)     |                    |      |      |                   |                                       |                    |          |            |  |
| EP033: Butane                                       | 106-97-8           | 10   | μg/L | <10               | 102.18 μg/L                           | 108                | 85       | 115        |  |
| P033: Butene                                        | 25167-67-3         | 10   | μg/L | <10               | 99.61 μg/L                            | 113                | 83       | 115        |  |
| P033: Ethane                                        | 74-84-0            | 10   | μg/L | <10               | 54.43 μg/L                            | 100                | 87       | 111        |  |
| P033: Ethene                                        | 74-85-1            | 10   | μg/L | <10               | 50.29 μg/L                            | 103                | 87       | 111        |  |
| P033: Methane                                       | 74-82-8            | 10   | μg/L | <10               | 28.48 μg/L                            | 88.5               | 86       | 114        |  |
| P033: Propane                                       | 74-98-6            | 10   | μg/L | <10               | 78.28 μg/L                            | 108                | 84       | 112        |  |
| P033: Propene                                       | 115-07-1           | 10   | μg/L | <10               | 73.97 μg/L                            | 109                | 85       | 113        |  |
| P074A: Monocyclic Aromatic Hydrocarbons (QCLot: 1   | 49413)             |      |      |                   |                                       |                    |          |            |  |
| P074: 1.2.4-Trimethylbenzene                        | 95-63-6            | 5    | μg/L | <5                | 10 μg/L                               | 101                | 71       | 121        |  |
| P074: 1.3.5-Trimethylbenzene                        | 108-67-8           | 5    | μg/L | <5                | 10 μg/L                               | 99.8               | 70       | 122        |  |
| P074: Isopropylbenzene                              | 98-82-8            | 5    | μg/L | <5                | 10 μg/L                               | 101                | 75       | 121        |  |
| P074: n-Butylbenzene                                | 104-51-8           | 5    | μg/L | <5                | 10 μg/L                               | 99.6               | 62       | 126        |  |
| P074: n-Propylbenzene                               | 103-65-1           | 5    | μg/L | <5                | 10 μg/L                               | 99.4               | 67       | 123        |  |
| P074: p-Isopropyltoluene                            | 99-87-6            | 5    | μg/L | <5                | 10 μg/L                               | 99.1               | 67       | 123        |  |
| P074: sec-Butylbenzene                              | 135-98-8           | 5    | μg/L | <5                | 10 μg/L                               | 99.8               | 69       | 123        |  |
| P074: Styrene                                       | 100-42-5           | 5    | μg/L | <5                | 10 μg/L                               | 101                | 74       | 118        |  |
| P074: tert-Butylbenzene                             | 98-06-6            | 5    | μg/L | <5                | 10 μg/L                               | 100                | 70       | 122        |  |
| P074B: Oxygenated Compounds (QCLot: 149413)         |                    |      |      |                   |                                       |                    |          |            |  |
| P074: 2-Butanone (MEK)                              | 78-93-3            | 50   | μg/L | <50               | 100 μg/L                              | 90.0               | 74       | 130        |  |
| P074: 2-Hexanone (MBK)                              | 591-78-6           | 50   | μg/L | <50               | 100 μg/L                              | 86.9               | 65       | 137        |  |
| P074: 4-Methyl-2-pentanone (MIBK)                   | 108-10-1           | 50   | μg/L | <50               | 100 μg/L                              | 87.5               | 61       | 139        |  |
| P074: Vinyl Acetate                                 | 108-05-4           | 50   | μg/L | <50               | 100 μg/L                              | 93.4               | 61       | 134        |  |
| P074C: Sulfonated Compounds (QCLot: 149413)         |                    |      |      |                   |                                       |                    |          |            |  |
| P074: Carbon disulfide                              | 75-15-0            | 5    | μg/L | <5                | 10 μg/L                               | 95.9               | 73       | 127        |  |
| P074D: Fumigants (QCLot: 149413)                    |                    |      |      |                   |                                       |                    |          |            |  |
| P074: 1.2-Dibromoethane (EDB)                       | 106-93-4           | 5    | μg/L | <5                | 10 μg/L                               | 94.7               | 69       | 117        |  |
| P074: 1.2-Dichloropropane                           | 78-87-5            | 5    | μg/L | <5                | 10 μg/L                               | 102                | 76       | 120        |  |
| P074: 2.2-Dichloropropane                           | 594-20-7           | 5    | μg/L | <5                | 10 μg/L                               | 100                | 61       | 119        |  |
| P074: cis-1.3-Dichloropropylene                     | 10061-01-5         | 5    | μg/L | <5                | 10 μg/L                               | 102                | 62       | 120        |  |
| P074: trans-1.3-Dichloropropylene                   | 10061-02-6         | 5    | μg/L | <5                | 10 μg/L                               | 99.3               | 61       | 119        |  |

Page : 13 of 17

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                            |                          |     | Method Blank (MB) | Laboratory Control Spike (LCS) Report |               |                    |          |            |
|----------------------------------------------|--------------------------|-----|-------------------|---------------------------------------|---------------|--------------------|----------|------------|
|                                              |                          |     |                   | Report                                | Spike         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                             | CAS Number               | LOR | Unit              | Result                                | Concentration | LCS                | Low      | High       |
| EP074E: Halogenated Aliphatic Compounds (QCI | Lot: 149413) - continued |     |                   |                                       |               |                    |          |            |
| EP074: 1.1.1.2-Tetrachloroethane             | 630-20-6                 | 5   | μg/L              | <5                                    | 10 μg/L       | 96.7               | 66       | 114        |
| EP074: 1.1.1-Trichloroethane                 | 71-55-6                  | 5   | μg/L              | <5                                    | 10 μg/L       | 98.7               | 61       | 119        |
| EP074: 1.1.2.2-Tetrachloroethane             | 79-34-5                  | 5   | μg/L              | <5                                    | 10 μg/L       | 92.4               | 70       | 124        |
| EP074: 1.1.2-Trichloroethane                 | 79-00-5                  | 5   | μg/L              | <5                                    | 10 μg/L       | 97.1               | 75       | 123        |
| EP074: 1.1-Dichloroethane                    | 75-34-3                  | 5   | μg/L              | <5                                    | 10 μg/L       | 101                | 75       | 119        |
| EP074: 1.1-Dichloroethene                    | 75-35-4                  | 5   | μg/L              | <5                                    | 10 μg/L       | 98.0               | 69       | 123        |
| EP074: 1.1-Dichloropropylene                 | 563-58-6                 | 5   | μg/L              | <5                                    | 10 μg/L       | 101                | 73       | 119        |
| EP074: 1.2.3-Trichloropropane                | 96-18-4                  | 5   | μg/L              | <5                                    | 10 μg/L       | 97.3               | 74       | 128        |
| EP074: 1.2-Dibromo-3-chloropropane           | 96-12-8                  | 5   | μg/L              | <5                                    | 10 μg/L       | 91.3               | 66       | 136        |
| EP074: 1.2-Dichloroethane                    | 107-06-2                 | 5   | μg/L              | <5                                    | 10 μg/L       | 95.4               | 78       | 122        |
| EP074: 1.3-Dichloropropane                   | 142-28-9                 | 5   | μg/L              | <5                                    | 10 μg/L       | 94.0               | 79       | 121        |
| EP074: Bromomethane                          | 74-83-9                  | 50  | μg/L              | <50                                   | 100 μg/L      | 91.1               | 56       | 140        |
| EP074: Carbon Tetrachloride                  | 56-23-5                  | 5   | μg/L              | <5                                    | 10 μg/L       | 98.5               | 63       | 121        |
| EP074: Chloroethane                          | 75-00-3                  | 50  | μg/L              | <50                                   | 100 μg/L      | 95.4               | 63       | 135        |
| EP074: Chloromethane                         | 74-87-3                  | 50  | μg/L              | <50                                   | 100 μg/L      | 93.5               | 67       | 130        |
| EP074: cis-1.2-Dichloroethene                | 156-59-2                 | 5   | μg/L              | <5                                    | 10 μg/L       | 101                | 77       | 117        |
| EP074: cis-1.4-Dichloro-2-butene             | 1476-11-5                | 5   | μg/L              | <5                                    | 10 μg/L       | 87.8               | 71       | 128        |
| EP074: Dibromomethane                        | 74-95-3                  | 5   | μg/L              | <5                                    | 10 μg/L       | 100                | 74       | 118        |
| EP074: Dichlorodifluoromethane               | 75-71-8                  | 50  | μg/L              | <50                                   | 100 μg/L      | 89.7               | 61       | 138        |
| EP074: Hexachlorobutadiene                   | 87-68-3                  | 5   | μg/L              | <5                                    | 10 μg/L       | 101                | 58       | 132        |
| EP074: lodomethane                           | 74-88-4                  | 5   | μg/L              | <5                                    | 10 μg/L       | 76.3               | 70       | 128        |
| EP074: Pentachloroethane                     | 76-01-7                  | 5   | μg/L              | <5                                    | 10 μg/L       | 94.3               | 72       | 126        |
| EP074: Tetrachloroethene                     | 127-18-4                 | 5   | μg/L              | <5                                    | 10 μg/L       | 100                | 72       | 124        |
| EP074: trans-1.2-Dichloroethene              | 156-60-5                 | 5   | μg/L              | <5                                    | 10 μg/L       | 99.3               | 71       | 119        |
| EP074: trans-1.4-Dichloro-2-butene           | 110-57-6                 | 5   | μg/L              | <5                                    | 10 μg/L       | 91.9               | 60       | 120        |
| EP074: Trichloroethene                       | 79-01-6                  | 5   | μg/L              | <5                                    | 10 μg/L       | 99.7               | 74       | 120        |
| EP074: Trichlorofluoromethane                | 75-69-4                  | 50  | μg/L              | <50                                   | 100 μg/L      | 95.2               | 65       | 131        |
| EP074: Vinyl chloride                        | 75-01-4                  | 50  | μg/L              | <50                                   | 100 μg/L      | 94.3               | 69       | 129        |
| EP074F: Halogenated Aromatic Compounds (QC   | Lot: 149413)             |     |                   |                                       |               |                    |          |            |
| EP074: 1.2.3-Trichlorobenzene                | 87-61-6                  | 5   | μg/L              | <5                                    | 10 μg/L       | 96.2               | 67       | 125        |
| EP074: 1.2.4-Trichlorobenzene                | 120-82-1                 | 5   | μg/L              | <5                                    | 10 μg/L       | 99.5               | 60       | 126        |
| EP074: 1.2-Dichlorobenzene                   | 95-50-1                  | 5   | μg/L              | <5                                    | 10 μg/L       | 99.4               | 77       | 117        |
| EP074: 1.3-Dichlorobenzene                   | 541-73-1                 | 5   | μg/L              | <5                                    | 10 μg/L       | 99.0               | 74       | 120        |
| EP074: 1.4-Dichlorobenzene                   | 106-46-7                 | 5   | μg/L              | <5                                    | 10 μg/L       | 99.4               | 72       | 120        |
| EP074: 2-Chlorotoluene                       | 95-49-8                  | 5   | μg/L              | <5                                    | 10 μg/L       | 102                | 71       | 121        |
| EP074: 4-Chlorotoluene                       | 106-43-4                 | 5   | μg/L              | <5                                    | 10 μg/L       | 99.9               | 71       | 121        |
| EP074: Bromobenzene                          | 108-86-1                 | 5   | μg/L              | <5                                    | 10 μg/L       | 98.1               | 76       | 116        |
| EP074: Chlorobenzene                         | 108-90-7                 | 5   | μg/L              | <5                                    | 10 μg/L       | 98.3               | 80       | 118        |

Page : 14 of 17

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                           | ub-Matrix: WATER |     |      | Method Blank (MB) |               | Laboratory Control Spike (LCS | ) Report |            |
|-------------------------------------------------------------|------------------|-----|------|-------------------|---------------|-------------------------------|----------|------------|
|                                                             |                  |     |      | Report            | Spike         | Spike Recovery (%)            | Recovery | Limits (%) |
| Method: Compound CAS                                        | S Number         | LOR | Unit | Result            | Concentration | LCS                           | Low      | High       |
| EP074G: Trihalomethanes (QCLot: 149413) - continued         |                  |     |      |                   |               |                               |          |            |
| EP074: Bromodichloromethane                                 | 75-27-4          | 5   | μg/L | <5                | 10 μg/L       | 95.0                          | 64       | 118        |
| EP074: Bromoform                                            | 75-25-2          | 5   | μg/L | <5                | 10 μg/L       | 97.3                          | 74       | 126        |
| EP074: Chloroform                                           | 67-66-3          | 5   | μg/L | <5                | 10 μg/L       | 101                           | 76       | 118        |
| EP074: Dibromochloromethane                                 | 24-48-1          | 5   | μg/L | <5                | 10 μg/L       | 93.6                          | 65       | 115        |
| EP075(SIM)A: Phenolic Compounds (QCLot: 148772)             |                  |     |      |                   |               |                               |          |            |
| EP075(SIM): 2.4.5-Trichlorophenol                           | 95-95-4          | 1   | μg/L | <1.0              | 5 μg/L        | 75.2                          | 50       | 108        |
| EP075(SIM): 2.4.6-Trichlorophenol                           | 88-06-2          | 1   | μg/L | <1.0              | 5 μg/L        | 63.0                          | 59       | 118        |
| EP075(SIM): 2.4-Dichlorophenol                              | 20-83-2          | 1   | μg/L | <1.0              | 5 μg/L        | 78.5                          | 59       | 122        |
| EP075(SIM): 2.4-Dimethylphenol                              | 05-67-9          | 1   | μg/L | <1.0              | 5 μg/L        | 66.4                          | 60       | 112        |
| EP075(SIM): 2.6-Dichlorophenol                              | 87-65-0          | 1   | μg/L | <1.0              | 5 μg/L        | 73.2                          | 64       | 118        |
| EP075(SIM): 2-Chlorophenol                                  | 95-57-8          | 1   | μg/L | <1.0              | 5 μg/L        | 64.0                          | 64       | 110        |
| EP075(SIM): 2-Methylphenol                                  | 95-48-7          | 1   | μg/L | <1.0              | 5 μg/L        | 65.5                          | 56       | 112        |
| EP075(SIM): 2-Nitrophenol                                   | 88-75-5          | 1   | μg/L | <1.0              | 5 μg/L        | 79.3                          | 63       | 117        |
| EP075(SIM): 3- & 4-Methylphenol                             | 19-77-3          | 2   | μg/L | <2.0              | 10 μg/L       | 64.1                          | 43       | 114        |
| EP075(SIM): 4-Chloro-3-methylphenol                         | 59-50-7          | 1   | μg/L | <1.0              | 5 μg/L        | 67.3                          | 63       | 119        |
| EP075(SIM): Pentachlorophenol                               | 87-86-5          | 2   | μg/L | <2.0              | 10 μg/L       | 62.0                          | 10       | 95         |
| EP075(SIM): Phenol 1                                        | 08-95-2          | 1   | μg/L | <1.0              | 5 μg/L        | 36.8                          | 25       | 62         |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 148) | 772)             |     |      |                   |               |                               |          |            |
| EP075(SIM): Acenaphthene                                    | 83-32-9          | 1   | μg/L | <1.0              | 5 μg/L        | 63.1                          | 62       | 113        |
| EP075(SIM): Acenaphthylene                                  | .08-96-8         | 1   | μg/L | <1.0              | 5 μg/L        | 64.4                          | 64       | 114        |
| EP075(SIM): Anthracene 1                                    | 20-12-7          | 1   | μg/L | <1.0              | 5 μg/L        | 81.1                          | 64       | 116        |
| EP075(SIM): Benz(a)anthracene                               | 56-55-3          | 1   | μg/L | <1.0              | 5 μg/L        | 70.7                          | 64       | 117        |
| EP075(SIM): Benzo(a)pyrene                                  | 50-32-8          | 0.5 | μg/L | <0.5              | 5 μg/L        | 69.7                          | 63       | 117        |
| EP075(SIM): Benzo(b+j)fluoranthene                          | 05-99-2          | 1   | μg/L | <1.0              | 5 μg/L        | 74.1                          | 62       | 119        |
|                                                             | 205-82-3         |     |      |                   |               |                               |          |            |
| EP075(SIM): Benzo(g.h.i)perylene                            | 91-24-2          | 1   | μg/L | <1.0              | 5 μg/L        | 88.1                          | 59       | 118        |
|                                                             | 207-08-9         | 1   | μg/L | <1.0              | 5 μg/L        | 80.7                          | 62       | 117        |
| El Gra(cim). Grilycone                                      | 18-01-9          | 1   | μg/L | <1.0              | 5 μg/L        | 67.3                          | 63       | 116        |
| El Gra(cim). Discriz(a.rr)ananacerio                        | 53-70-3          | 1   | μg/L | <1.0              | 5 μg/L        | 82.5                          | 61       | 117        |
| El Gra(cini). Flucialiticità                                | 206-44-0         | 1   | μg/L | <1.0              | 5 μg/L        | # 62.2                        | 64       | 118        |
| 2. 0. 0(0)                                                  | 86-73-7          | 1   | μg/L | <1.0              | 5 μg/L        | 66.9                          | 64       | 115        |
| Er Gro(eini). Indene(1.2.6.64)pyrone                        | 93-39-5          | 1   | μg/L | <1.0              | 5 μg/L        | 85.6                          | 60       | 118        |
|                                                             | 91-20-3          | 1   | μg/L | <1.0              | 5 μg/L        | 68.0                          | 59       | 119        |
| Er ore(entr). Friendriche                                   | 85-01-8          | 1   | μg/L | <1.0              | 5 μg/L        | 76.8                          | 63       | 116        |
| EP075(SIM): Pyrene 1                                        | 29-00-0          | 1   | μg/L | <1.0              | 5 μg/L        | 74.1                          | 63       | 118        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 148773)     |                  |     |      |                   |               |                               |          |            |
| EP071: C10 - C14 Fraction                                   |                  | 50  | μg/L | <50               | 2000 μg/L     | 93.6                          | 59       | 129        |
| EP071: C15 - C28 Fraction                                   |                  | 100 | μg/L | <100              | 3000 μg/L     | 90.0                          | 71       | 131        |

Page : 15 of 17

Work Order : ES1525652 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Sub-Matrix: WATER                                                 |                |      | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|-------------------------------------------------------------------|----------------|------|-------------------|---------------|------------------------------|-----------|------------|
|                                                                   |                |      | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound CAS Numb                                         | er LOR         | Unit | Result            | Concentration | LCS                          | Low       | High       |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 148773) - continu | ed             |      |                   |               |                              |           |            |
| EP071: C29 - C36 Fraction                                         | - 50           | μg/L | <50               | 2000 μg/L     | 99.8                         | 62        | 120        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 149414)           |                |      |                   |               |                              |           |            |
| EP080: C6 - C9 Fraction                                           | - 20           | μg/L | <20               | 260 μg/L      | 77.5                         | 75        | 127        |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions(  | QCLot: 148773) |      |                   |               |                              |           |            |
| EP071: >C10 - C16 Fraction >C10_C1                                | 100            | μg/L | <100              | 2500 μg/L     | 86.9                         | 59        | 131        |
| EP071: >C16 - C34 Fraction                                        | - 100          | μg/L | <100              | 3500 μg/L     | 92.2                         | 74        | 138        |
| EP071: >C34 - C40 Fraction                                        | - 100          | μg/L | <100              | 1500 μg/L     | 72.8                         | 67        | 127        |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions ( | QCLot: 149414) |      |                   |               |                              |           |            |
| EP080: C6 - C10 Fraction C6_C1                                    | 20             | μg/L | <20               | 310 μg/L      | 79.2                         | 75        | 127        |
| EP262: Ethanolamines (QCLot: 154733)                              |                |      |                   |               |                              |           |            |
| EP262: Diethanolamine 111-42-                                     | 2 1            | μg/L | <1                | 10 μg/L       | 93.3                         | 50        | 130        |
| EP262: Ethanolamine 141-43-                                       | 5 1            | μg/L | <1                | 10 μg/L       | 74.6                         | 50        | 130        |

# Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER   |                                               |                                        |            | M             | atrix Spike (MS) Report |            |            |
|---------------------|-----------------------------------------------|----------------------------------------|------------|---------------|-------------------------|------------|------------|
|                     |                                               |                                        |            | Spike         | SpikeRecovery(%)        | Recovery L | Limits (%) |
| aboratory sample ID | Client sample ID                              | Method: Compound                       | CAS Number | Concentration | MS                      | Low        | High       |
| ED009: Anions (C    | QCLot: 149830)                                |                                        |            |               |                         |            |            |
| ES1525651-001       | Anonymous                                     | ED009-X: Chloride                      | 16887-00-6 | 4 mg/L        | # Not<br>Determined     | 70         | 130        |
| ED041G: Sulfate (   | Furbidimetric) as SO4 2- by DA (QCLot: 148929 |                                        |            |               |                         |            |            |
| ES1525624-002       | Anonymous                                     | ED041G: Sulfate as SO4 - Turbidimetric | 14808-79-8 | 10 mg/L       | # Not<br>Determined     | 70         | 130        |
| ED045G: Chloride    | by Discrete Analyser (QCLot: 148928)          |                                        |            |               |                         |            |            |
| ES1525624-002       | Anonymous                                     | ED045G: Chloride                       | 16887-00-6 | 250 mg/L      | # Not<br>Determined     | 70         | 130        |
| EG020F: Dissolve    | d Metals by ICP-MS (QCLot: 150200)            |                                        |            |               |                         |            |            |
| ES1525610-002       | Anonymous                                     | EG020A-F: Arsenic                      | 7440-38-2  | 0.2 mg/L      | 108                     | 70         | 130        |
|                     |                                               | EG020A-F: Barium                       | 7440-39-3  | 0.2 mg/L      | 104                     | 70         | 130        |
|                     |                                               | EG020A-F: Beryllium                    | 7440-41-7  | 0.2 mg/L      | 92.2                    | 70         | 130        |
|                     |                                               | EG020A-F: Cadmium                      | 7440-43-9  | 0.05 mg/L     | 102                     | 70         | 130        |
|                     |                                               | EG020A-F: Chromium                     | 7440-47-3  | 0.2 mg/L      | 87.0                    | 70         | 130        |
|                     |                                               | EG020A-F: Cobalt                       | 7440-48-4  | 0.2 mg/L      | 102                     | 70         | 130        |
|                     |                                               | EG020A-F: Copper                       | 7440-50-8  | 0.2 mg/L      | 83.4                    | 70         | 130        |

Page : 16 of 17

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                                                        |                                           |                        | Ma                       | atrix Spike (MS) Report |            |            |
|----------------------|--------------------------------------------------------|-------------------------------------------|------------------------|--------------------------|-------------------------|------------|------------|
|                      |                                                        |                                           |                        | Spike                    | SpikeRecovery(%)        | Recovery L | imits (%)  |
| Laboratory sample ID | Client sample ID                                       | Method: Compound                          | CAS Number             | Concentration            | MS                      | Low        | High       |
| EG020F: Dissolve     | d Metals by ICP-MS (QCLot: 150200) - continued         |                                           |                        |                          |                         |            |            |
| ES1525610-002        | Anonymous                                              | EG020A-F: Lead                            | 7439-92-1              | 0.2 mg/L                 | 77.3                    | 70         | 130        |
|                      |                                                        | EG020A-F: Manganese                       | 7439-96-5              | 0.2 mg/L                 | 85.2                    | 70         | 130        |
|                      |                                                        | EG020A-F: Nickel                          | 7440-02-0              | 0.2 mg/L                 | 94.6                    | 70         | 130        |
|                      |                                                        | EG020A-F: Vanadium                        | 7440-62-2              | 0.2 mg/L                 | 78.3                    | 70         | 130        |
|                      |                                                        | EG020A-F: Zinc                            | 7440-66-6              | 0.2 mg/L                 | 99.3                    | 70         | 130        |
| EG035F: Dissolve     | d Mercury by FIMS (QCLot: 150199)                      |                                           |                        |                          |                         |            |            |
| ES1525610-001        | Anonymous                                              | EG035F: Mercury                           | 7439-97-6              | 0.01 mg/L                | 75.3                    | 70         | 130        |
| EG052G: Silica by    | Discrete Analyser (QCLot: 148931)                      |                                           |                        |                          |                         |            |            |
| ES1525652-001        | AST2                                                   | EG052G: Reactive Silica                   |                        | 5 mg/L                   | # Not                   | 70         | 130        |
|                      |                                                        |                                           |                        |                          | Determined              |            |            |
| EK040P: Fluoride     | by PC Titrator (QCLot: 148739)                         |                                           |                        |                          |                         |            |            |
| ES1525320-001        | Anonymous                                              | EK040P: Fluoride                          | 16984-48-8             | 5 mg/L                   | 99.2                    | 70         | 130        |
| EK055G: Ammonia      | a as N by Discrete Analyser (QCLot: 149348)            |                                           |                        |                          |                         |            |            |
| ES1525652-001        | AST2                                                   | EK055G: Ammonia as N                      | 7664-41-7              | 1 mg/L                   | 94.0                    | 70         | 130        |
| EK057G: Nitrite as   | s N by Discrete Analyser (QCLot: 148927)               |                                           |                        |                          |                         |            |            |
| ES1525624-002        | Anonymous                                              | EK057G: Nitrite as N                      | 14797-65-0             | 0.5 mg/L                 | 103                     | 70         | 130        |
| EK059G: Nitrite p    | lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 14 | 9347)                                     |                        |                          |                         |            |            |
| ES1525652-001        | AST2                                                   | EK059G: Nitrite + Nitrate as N            |                        | 0.5 mg/L                 | 102                     | 70         | 130        |
| EK061G: Total Kje    | eldahl Nitrogen By Discrete Analyser (QCLot: 149341)   |                                           |                        |                          |                         |            |            |
| ES1525610-001        | Anonymous                                              | EK061G: Total Kjeldahl Nitrogen as N      | <del></del>            | 5 mg/L                   | 96.6                    | 70         | 130        |
| EK067G: Total Pho    | osphorus as P by Discrete Analyser (QCLot: 149340)     | 2 Too To |                        |                          |                         |            |            |
| ES1525610-001        | Anonymous                                              | EK067G: Total Phosphorus as P             |                        | 1 mg/L                   | 104                     | 70         | 130        |
|                      | Phosphorus as P by discrete analyser (QCLot: 148930)   |                                           |                        | 79                       |                         |            |            |
| ES1525652-001        | AST2                                                   | EK071G: Reactive Phosphorus as P          | 14265-44-2             | 0.5 mg/L                 | 96.0                    | 70         | 130        |
|                      | nic Carbon (TOC) (QCLot: 149660)                       | ENOTIS. Neactive Filosphorus as F         | 11200 112              | 0.0 mg/L                 | 00.0                    | 7.0        | 100        |
| ES1525477-002        | Anonymous                                              | ED005: Tatal Ogrania Carban               |                        | 100 mg/L                 | 94.5                    | 70         | 130        |
|                      |                                                        | EP005: Total Organic Carbon               |                        | 100 Hig/L                | 94.5                    | 70         | 130        |
| ·                    | rdrocarbon Gases (QCLot: 149421)                       | EDOSS D. I                                | 106.07.9               | 102 10                   | 00.1                    | 70         | 120        |
| ES1525652-002        | WK11                                                   | EP033: Butane                             | 106-97-8<br>25167-67-3 | 102.18 μg/L              | 90.1                    | 70<br>70   | 130<br>130 |
|                      |                                                        | EP033: Butene EP033: Ethane               | 74-84-0                | 99.61 μg/L<br>54.43 μg/L | 90.1<br># Not           | 70         | 130        |
|                      |                                                        | EP033. Ethane                             | 74-04-0                | 54.45 μg/L               | # Not<br>Determined     | 70         | 150        |
|                      |                                                        | EP033: Ethene                             | 74-85-1                | 50.29 μg/L               | 97.8                    | 70         | 130        |
|                      |                                                        | EP033: Methane                            | 74-82-8                | 28.48 µg/L               | # Not                   | 70         | 130        |
|                      |                                                        |                                           |                        |                          | Determined              |            |            |
|                      |                                                        | EP033: Propane                            | 74-98-6                | 78.28 μg/L               | 125                     | 70         | 130        |

Page : 17 of 17

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                                                     |                           |               | l M        | atrix Spike (MS) Report |            |           |
|----------------------|-----------------------------------------------------|---------------------------|---------------|------------|-------------------------|------------|-----------|
|                      |                                                     |                           |               | Spike      | SpikeRecovery(%)        | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                                    | Method: Compound          | Concentration | MS         | Low                     | High       |           |
| EP033: C1 - C4 Hy    | drocarbon Gases (QCLot: 149421) - continued         |                           |               |            |                         |            |           |
| ES1525652-002        | WK11                                                | EP033: Propene            | 115-07-1      | 73.97 µg/L | 106                     | 70         | 130       |
| EP074E: Halogena     | ited Aliphatic Compounds (QCLot: 149413)            |                           |               |            |                         |            |           |
| ES1525652-001        | AST2                                                | EP074: 1.1-Dichloroethene | 75-35-4       | 25 μg/L    | 83.0                    | 70         | 130       |
|                      |                                                     | EP074: Trichloroethene    | 79-01-6       | 25 μg/L    | 95.5                    | 70         | 130       |
| EP074F: Halogena     | ted Aromatic Compounds (QCLot: 149413)              |                           |               |            |                         |            |           |
| ES1525652-001        | AST2                                                | EP074: Chlorobenzene      | 108-90-7      | 25 μg/L    | 98.7                    | 70         | 130       |
| EP080/071: Total F   | Petroleum Hydrocarbons (QCLot: 149414)              |                           |               |            |                         |            |           |
| ES1525652-001        | AST2                                                | EP080: C6 - C9 Fraction   |               | 325 μg/L   | 110                     | 70         | 130       |
| EP080/071: Total F   | Recoverable Hydrocarbons - NEPM 2013 Fractions (QCI | ot: 149414)               |               |            |                         |            |           |
| ES1525652-001        | AST2                                                | EP080: C6 - C10 Fraction  | C6_C10        | 375 μg/L   | 107                     | 70         | 130       |
| EP262: Ethanolam     | ines (QCLot: 154733)                                |                           |               |            |                         |            |           |
| ES1525652-001        | AST2                                                | EP262: Diethanolamine     | 111-42-2      | 10 μg/L    | 71.4                    | 50         | 130       |
|                      |                                                     | EP262: Ethanolamine       | 141-43-5      | 10 μg/L    | 71.7                    | 50         | 130       |



# QA/QC Compliance Assessment for DQO Reporting

Work Order : **ES1525652** Page : 1 of 12

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 08-Jul-2015

 Site
 :-- Issue Date
 : 02-Sep-2015

Sampler : DAVID WATSON No. of samples received : 6
Order number : ---- No. of samples analysed : 6

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- Laboratory Control outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

# **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

# **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 12

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: WATER

| Compound Group Name                             | Laboratory Sample ID | Client Sample ID | Analyte          | CAS Number | Data       | Limits  | Comment                                |
|-------------------------------------------------|----------------------|------------------|------------------|------------|------------|---------|----------------------------------------|
| aboratory Control Spike (LCS) Recoveries        |                      |                  |                  |            |            |         |                                        |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons  | QC-148772-002        |                  | Fluoranthene     | 206-44-0   | 62.2 %     | 64-118% | Recovery less than lower control limit |
| Matrix Spike (MS) Recoveries                    |                      |                  |                  |            |            |         |                                        |
| ED009: Anions                                   | ES1525651001         | Anonymous        | Chloride         | 16887-00-6 | Not        |         | MS recovery not determined,            |
|                                                 |                      |                  |                  |            | Determined |         | background level greater than or       |
|                                                 |                      |                  |                  |            |            |         | equal to 4x spike level.               |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA | ES1525624002         | Anonymous        | Sulfate as SO4 - | 14808-79-8 | Not        |         | MS recovery not determined,            |
|                                                 |                      |                  | Turbidimetric    |            | Determined |         | background level greater than or       |
|                                                 |                      |                  |                  |            |            |         | equal to 4x spike level.               |
| ED045G: Chloride by Discrete Analyser           | ES1525624002         | Anonymous        | Chloride         | 16887-00-6 | Not        |         | MS recovery not determined,            |
|                                                 |                      |                  |                  |            | Determined |         | background level greater than or       |
|                                                 |                      |                  |                  |            |            |         | equal to 4x spike level.               |
| EG052G: Silica by Discrete Analyser             | ES1525652001         | AST2             | Reactive Silica  |            | Not        |         | MS recovery not determined,            |
|                                                 |                      |                  |                  |            | Determined |         | background level greater than or       |
|                                                 |                      |                  |                  |            |            |         | equal to 4x spike level.               |
| EP033: C1 - C4 Hydrocarbon Gases                | ES1525652002         | WK11             | Ethane           | 74-84-0    | Not        |         | MS recovery not determined,            |
|                                                 |                      |                  |                  |            | Determined |         | background level greater than or       |
|                                                 |                      |                  |                  |            |            |         | equal to 4x spike level.               |
| EP033: C1 - C4 Hydrocarbon Gases                | ES1525652002         | WK11             | Methane          | 74-82-8    | Not        |         | MS recovery not determined,            |
|                                                 |                      |                  |                  |            | Determined |         | background level greater than or       |
|                                                 |                      |                  |                  |            |            |         | equal to 4x spike level.               |

#### Regular Sample Surrogates

Sub-Matrix: WATER

| Compound Group Name         | Laboratory Sample ID | Client Sample ID | Analyte         | CAS Number | Data  | Limits   | Comment                          |
|-----------------------------|----------------------|------------------|-----------------|------------|-------|----------|----------------------------------|
| Samples Submitted           |                      |                  |                 |            |       |          |                                  |
| EP075(SIM)T: PAH Surrogates | ES1525652-002        | WK11             | 4-Terphenyl-d14 | 1718-51-0  | 116 % | 32-112 % | Recovery greater than upper data |
|                             |                      |                  |                 |            |       |          | quality objective                |

# **Outliers : Frequency of Quality Control Samples**

#### Matrix: WATER

| Matrix: WATER               |    |         |        |          |                                                  |
|-----------------------------|----|---------|--------|----------|--------------------------------------------------|
| Quality Control Sample Type | Co | unt     | Rate   | e (%)    | Quality Control Specification                    |
| Method                      | QC | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP) |    |         |        |          |                                                  |
| PAH/Phenols (GC/MS - SIM)   | 0  | 10      | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction | 0  | 7       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Matrix Spikes (MS)          |    |         |        |          |                                                  |
| PAH/Phenols (GC/MS - SIM)   | 0  | 10      | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction | 0  | 7       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |



Page : 3 of 12

Work Order : ES1525652 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER                                              |                       |             | _              |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding tir |
|------------------------------------------------------------|-----------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|---------------|
| Method                                                     |                       | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |               |
| Container / Client Sample ID(s)                            |                       |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation    |
| EA005P: pH by PC Titrator                                  |                       |             |                |                        |            |                    |                    |               |
| Clear Plastic Bottle - Natural (EA005-P) AST2, WK12, WK14, | WK11,<br>WK13,<br>QA4 | 08-Jul-2015 |                |                        |            | 08-Jul-2015        | 08-Jul-2015        | ✓             |
| EA010P: Conductivity by PC Titrator                        |                       |             |                |                        |            |                    |                    |               |
| Clear Plastic Bottle - Natural (EA010-P) WK11, WK13, QA4   | WK12,<br>WK14,        | 08-Jul-2015 |                |                        |            | 08-Jul-2015        | 05-Aug-2015        | ✓             |
| EA015: Total Dissolved Solids                              |                       |             |                |                        |            |                    |                    |               |
| Clear Plastic Bottle - Natural (EA015H) AST2, WK12, WK14,  | WK11,<br>WK13,<br>QA4 | 08-Jul-2015 |                |                        |            | 08-Jul-2015        | 15-Jul-2015        | ✓             |
| EA025: Suspended Solids                                    |                       |             |                |                        |            |                    |                    |               |
| Clear Plastic Bottle - Natural (EA025H) AST2, WK12, WK14,  | WK11,<br>WK13,<br>QA4 | 08-Jul-2015 |                |                        |            | 08-Jul-2015        | 15-Jul-2015        | ✓             |
| ED009: Anions                                              |                       |             |                |                        |            |                    |                    |               |
| Clear Plastic Bottle - Natural (ED009-X) AST2, WK12, WK14, | WK11,<br>WK13,<br>QA4 | 08-Jul-2015 |                |                        |            | 09-Jul-2015        | 05-Aug-2015        | ✓             |
| ED037P: Alkalinity by PC Titrator                          |                       |             |                |                        |            |                    |                    |               |
| Clear Plastic Bottle - Natural (ED037-P) AST2, WK12, WK14, | WK11,<br>WK13,<br>QA4 | 08-Jul-2015 |                |                        |            | 08-Jul-2015        | 22-Jul-2015        | <b>✓</b>      |

Page : 4 of 12

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Clear Plastic Bottle - Natural (E0041G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Matrix: WATER                                         |       |             |                |                        | Evaluation | n: × = Holding time | breach ; ✓ = Withi | n holding time |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------|-------------|----------------|------------------------|------------|---------------------|--------------------|----------------|
| Clear Plastic Souther (Turoldimetric) as 904 2- by DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Method                                                |       | Sample Date | E)             | traction / Preparation |            |                     | Analysis           |                |
| Clase Plastic Bottle - Natural (ED041G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Container / Client Sample ID(s)                       |       |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation     |
| AST2_ WK11_ QA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ED041G: Sulfate (Turbidimetric) as SO4 2- by DA       |       |             |                |                        |            |                     |                    |                |
| WK12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Clear Plastic Bottle - Natural (ED041G)               |       |             |                |                        |            |                     | 05.4 00.45         |                |
| MYK14,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | •     | 08-Jul-2015 |                |                        |            | 08-Jul-2015         | 05-Aug-2015        | ✓              |
| ED045C Chlorids by Discrete Analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·                                                   | •     |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (ED04SQ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WK14,                                                 | QA4   |             |                |                        |            |                     |                    |                |
| AST2,   WK11,   QA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ED045G: Chloride by Discrete Analyser                 |       |             |                |                        |            |                     |                    |                |
| WK12,   WK13,   QA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Clear Plastic Bottle - Natural (ED045G)               |       |             |                |                        |            |                     | 05.4 00.45         |                |
| WK14,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | •     | 08-Jul-2015 |                |                        |            | 08-Jul-2015         | 05-Aug-2015        | ✓              |
| Clear Plastic Bottle - Nitric Acid; Filtered (E003F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WK12,                                                 | WK13, |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (ED093F)  AST2, WK12, WK13, WK13, WK13, WK13, WK14, OA4  Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)  AST2, WK13, WK14, OA4  Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)  AST2, WK13, WK14, OA4  Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F)  AST2, WK11, WK13, WK13, WK13, WK13, WK13, WK13, WK14, OA4  Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F)  AST2, WK11, WK13, WK13, WK13, WK13, WK13, WK14, OA4  Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)  AST2, WK11, WK13, WK13, WK14, OA4  Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)  AST2, WK13, WK13, WK14, OA4  Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)  AST2, WK13, WK14, OA4  Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)  AST2, WK13, WK14, OA4  Clear Plastic Bottle - Natural (EG052C)  AST2, WK13, WK14, OA4  Clear Plastic Bottle - Natural (EG052C)  AST2, WK13, WK14, OA4  Clear Plastic Bottle - Natural (EG052C)  AST2, WK13, WK14, OA4  Clear Plastic Bottle - Natural (EG052C)  AST2, WK13, WK14, OA4  Clear Plastic Bottle - Natural (EG052C)  AST2, WK13, WK14, OA4  Clear Plastic Bottle - Natural (EG052C)  AST2, WK13, WK14, OA4  Clear Plastic Bottle - Natural (EG052C)  AST2, WK13, WK13, WK14, OA4  Clear Plastic Bottle - Natural (EG052C)  AST2, WK13, WK13, WK13, WK14, OA4  Clear Plastic Bottle - Natural (EG052C)  AST2, WK13, WK  | WK14,                                                 | QA4   |             |                |                        |            |                     |                    |                |
| AST2. WK11, WK12, WK13, WK14, QA4  EG020F_ Dissolved Metals by ICP-MS  Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) AST2. WK11, QA4  EG020F_ Dissolved Metals by ICP-MS  Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) AST2. WK13, WK13, WK14, QA4  EG020F_ Dissolved Metals by ICP-MS  Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F) AST2. WK11, QA4  EG020F_ Dissolved Metals by ICP-MS  Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F) AST2. WK13, WK13, WK13, WK13, WK14, QA4  EG030F_ Dissolved Mercury by FIMS  Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) AST2. WK11, QA4  EG030F_ Dissolved Mercury by FIMS  Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) AST2. WK13, WK13, WK13, WK14, QA4  EG050C_ Silica by Discrete Analyser  Clear Plastic Bottle - Natural (EG052G) AST2. WK11, QA4  EG050C_ Silica by Discrete Analyser  Clear Plastic Bottle - Natural (EG052G) AST2. WK13, WK13, WK13, WK13, WK14, QA4  EG050C_ Silica by Discrete Analyser  Clear Plastic Bottle - Natural (EG052C) AST2. WK13, WK13, WK13, WK14, QA4  EG050C_ Silica by Discrete Analyser  Clear Plastic Bottle - Natural (EG052G) AST2. WK13, WK13, WK13, WK11, WK12, WK13, WK13, WK14, QA4  EG050C_ Silica by Discrete Analyser  Clear Plastic Bottle - Natural (EK010) AST2. WK13, WK11, WK13, WK13, WK13, WK13, WK13, WK13, WK13, WK13, WK13, WK14, WK15, | ED093F: Dissolved Major Cations                       |       |             |                |                        |            |                     |                    |                |
| WK12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) |       |             |                |                        |            |                     |                    |                |
| WK14,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | WK11, | 08-Jul-2015 |                |                        |            | 09-Jul-2015         | 05-Aug-2015        | ✓              |
| EG020F: Dissolved Metals by ICP-MS  Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)  WK11,  WK12,  WK13,  WK14,  QA4  EG020F: Dissolved Metals by ICP-MS  Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F)  WK11,  WK12,  WK13,  WK14,  QA4  EG020F: Dissolved Metals by ICP-MS  Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F)  WK11,  WK12,  WK13,  WK14,  QA4  EG035F: Dissolved Mercury by FIMS  Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)  AST2,  WK13,  WK14,  QA4  EG035F: Dissolved Mercury by FIMS  Clear Plastic Bottle - Natural (EG052G)  AST2,  WK11,  WK13,  WK14,  QA4  WK11,  WK12,  WK13,  WK14,  QA4  BB-Jul-2015  WK11,  WK11,  WK12,  WK13,  WK11,  WK11,  WK12,  WK13,  WK11,  WK11,  WK11,  WK12,  WK13,  WK11,  WK11,  WK12,  WK13,  WK11,  WK11,  WK12,  WK13,  WK11,  WK11,  WK12,  WK13,  WK11,  WK11,  WK11,  WK11,  WK12,  WK13,  WK11,  WK11,  WK12,  WK13,  WK11,  WK11,  WK12,  WK13,  WK11,  WK11,  WK12,  WK13,  WK11,  WK11,  WK11,  WK12,  WK11,  WK11,  WK12,  WK11,  WK12,  WK11,  WK12,  WK13,  WK11,  WK11,  WK12,  WK11,  WK12,  WK13,  WK11,  WK12,  WK11,  WK12,  WK13,  WK13,  WK11,  WK12,  WK13,  WK11,  WK11,  WK12,  WK13,  WK11,  WK11,  WK12,  WK11,  WK11,  WK11,  WK11,  WK11,  WK1  | WK12,                                                 | WK13, |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WK14,                                                 | QA4   |             |                |                        |            |                     |                    |                |
| AST2, WK11, WK12, WK13, WK14, QA4  EG020F: Dissolved Metals by ICP-MS  Clear Plastic Bottle - Nitric Acid; Filtered (EG030B-F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EG020F: Dissolved Metals by ICP-MS                    |       |             |                |                        |            |                     |                    |                |
| WK12, WK14, QA4  EG020F: Dissolved Metals by ICP-MS  Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F) AST2, WK12, WK13, WK14, QA4  EG035F: Dissolved Mercury by FIMS  Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) AST2, WK13, WK14, QA4  EG035F: Dissolved Mercury by FIMS  Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) AST2, WK13, WK14, QA4  EG052G: Silica by Discrete Analyser  Clear Plastic Bottle - Natural (EG052G) AST2, WK11, WK13, WK14, QA4  EG052G: Silica by Discrete Analyser  Clear Plastic Bottle - Natural (EG052G) AST2, WK13, WK14, QA4  EK010011: Chlorine  Clear Plastic Bottle - Natural (EK010) AST2, WK13, WK14, QA4  EK010011: Chlorine  Clear Plastic Bottle - Natural (EK010) AST2, WK13, WK14, QA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |       |             |                |                        |            |                     |                    |                |
| WK14,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | WK11, | 08-Jul-2015 |                |                        |            | 09-Jul-2015         | 04-Jan-2016        | ✓              |
| EG020F: Dissolved Metals by ICP-MS  Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F)  WK11,  WK12,  WK14,  QA4  EG035F: Dissolved Mercury by FIMS  Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)  AST2,  WK11,  WK12,  WK13,  WK14,  QA4  EG035G: Silica by Discrete Analyser  Clear Plastic Bottle - Natural (EG052G)  AST2,  WK11,  WK13,  WK14,  QA4  EK0010/011: Chlorine  Clear Plastic Bottle - Natural (EK010)  AST2,  WK13,  WK14,  WK15,  WK16,  WK17,  WK17,  WK17,  WK18,  WK18,  WK19,  WK19,  WK19,  WK10,  WK11,  WK10,  WK11,  WK12,  WK11,  WK11,  WK11,  WK11,  WK11,  WK11,  WK12,  WK11,  WK11,  WK11,  WK11,  WK11,  WK12,  WK11,  WK11,  WK12,  WK11,  WK11,  WK12,  WK11,  WK13,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WK12,                                                 | WK13, |             |                |                        |            |                     |                    |                |
| AST2, WK13, WK14, QA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WK14,                                                 | QA4   |             |                |                        |            |                     |                    |                |
| AST2, WK11, WK13, QA4  EG035F: Dissolved Mercury by FIMS  Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EG020F: Dissolved Metals by ICP-MS                    |       |             |                |                        |            |                     |                    |                |
| WK12, WK14, QA4  EG035F: Dissolved Mercury by FIMS  Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                     | =""   |             |                |                        |            |                     |                    |                |
| WK14, QA4  EG035F: Dissolved Mercury by FIMS  Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |       | 08-Jul-2015 |                |                        |            | 09-Jul-2015         | 04-Jan-2016        | ✓              |
| EG035F: Dissolved Mercury by FIMS  Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)  AST2, WK11, WK13, WK13, WK14, QA4  EG052G: Silica by Discrete Analyser  Clear Plastic Bottle - Natural (EG052G)  AST2, WK11, WK13, WK11, WK13, WK12, WK13, WK14, QA4  EG052G: Silica by Discrete Analyser  Clear Plastic Bottle - Natural (EG052G)  AST2, WK11, WK13, WK13, WK14, QA4  EK010/011: Chlorine  Clear Plastic Bottle - Natural (EG052G)  AST2, WK13, WK14, WK13, WK14, WK14, WK15, WK15, WK15, WK15, WK15, WK15, WK16, WK16, WK16, WK17, WK16, WK17, WK17, WK17, WK18, WK17, WK18, WK19, WK18, WK19,   | WK12,                                                 | WK13, |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WK14,                                                 | QA4   |             |                |                        |            |                     |                    |                |
| AST2, WK11, WK13, WK13, WK14, QA4  EG052G: Silica by Discrete Analyser  Clear Plastic Bottle - Natural (EK010)  AST2, WK14, QA4  EK010/011: Chlorine  Clear Plastic Bottle - Natural (EK010)  AST2, WK13, WK14, QA4   AST2, WK13, WK14, QA4  EK010/011: Chlorine  Clear Plastic Bottle - Natural (EK010)  AST2, WK13, WK13, WK13, WK13, WK14, QA4   EK010/011: Chlorine  Clear Plastic Bottle - Natural (EK010)  AST2, WK13,   | EG035F: Dissolved Mercury by FIMS                     |       |             |                |                        |            |                     |                    |                |
| WK12, WK13, WK14, QA4  EG052G: Silica by Discrete Analyser  Clear Plastic Bottle - Natural (EG052G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) |       |             |                |                        |            |                     |                    |                |
| WK14, QA4  EG052G: Silica by Discrete Analyser  Clear Plastic Bottle - Natural (EG052G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AST2,                                                 | WK11, | 08-Jul-2015 |                |                        |            | 14-Jul-2015         | 05-Aug-2015        | ✓              |
| EG052G: Silica by Discrete Analyser  Clear Plastic Bottle - Natural (EG052G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WK12,                                                 | WK13, |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EG052G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WK14,                                                 | QA4   |             |                |                        |            |                     |                    |                |
| AST2, WK11, WK12, WK13, WK14, QA4  EK010/011: Chlorine Clear Plastic Bottle - Natural (EK010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EG052G: Silica by Discrete Analyser                   |       |             |                |                        |            |                     |                    |                |
| WK12, WK13, WK14, QA4  EK010/011: Chlorine  Clear Plastic Bottle - Natural (EK010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Clear Plastic Bottle - Natural (EG052G)               |       |             |                |                        |            |                     |                    |                |
| WK14,         QA4         Sexion (Control of the control of the contr                                           | AST2,                                                 | WK11, | 08-Jul-2015 |                |                        |            | 08-Jul-2015         | 05-Aug-2015        | ✓              |
| EK010/011: Chlorine  Clear Plastic Bottle - Natural (EK010)  AST2, WK11,  WK12, WK13,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WK12,                                                 | WK13, |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EK010)         WK11,         08-Jul-2015           08-Jul-2015         08-Jul-2015         ✓           WK12,         WK13,         WK13,            08-Jul-2015         08-Jul-2015         ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WK14,                                                 | QA4   |             |                |                        |            |                     |                    |                |
| AST2, WK11, WK12, WK13,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EK010/011: Chlorine                                   |       |             |                |                        |            |                     |                    |                |
| WK12, WK13,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Clear Plastic Bottle - Natural (EK010)                |       |             |                |                        |            |                     |                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AST2,                                                 | WK11, | 08-Jul-2015 |                |                        |            | 08-Jul-2015         | 08-Jul-2015        | ✓              |
| WK14, QA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WK12,                                                 | WK13, |             |                |                        |            |                     |                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WK14,                                                 | QA4   |             |                |                        |            |                     |                    |                |

Page : 5 of 12

Work Order : ES1525652 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                            |                         |             |                |                        | Evaluation | n: 🗴 = Holding time | e breach ; ✓ = With | in holding tim |  |
|------------------------------------------|-------------------------|-------------|----------------|------------------------|------------|---------------------|---------------------|----------------|--|
| Method                                   |                         | Sample Date | Ex             | traction / Preparation |            | Analysis            |                     |                |  |
| Container / Client Sample ID(s)          |                         |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis    | Evaluation     |  |
| EK040P: Fluoride by PC Titrator          |                         |             |                |                        |            |                     |                     |                |  |
| Clear Plastic Bottle - Natural (EK040P)  |                         |             |                |                        |            |                     |                     |                |  |
| AST2,                                    | WK11,                   | 08-Jul-2015 |                |                        |            | 08-Jul-2015         | 05-Aug-2015         | ✓              |  |
| WK12,                                    | WK13,                   |             |                |                        |            |                     |                     |                |  |
| WK14,                                    | QA4                     |             |                |                        |            |                     |                     |                |  |
| EK055G: Ammonia as N by Discrete A       | Analyser                |             |                |                        |            |                     |                     |                |  |
| Clear Plastic Bottle - Sulfuric Acid (EK | 055G)                   |             |                |                        |            |                     |                     |                |  |
| AST2,                                    | WK11,                   | 08-Jul-2015 |                |                        |            | 09-Jul-2015         | 05-Aug-2015         | ✓              |  |
| WK12,                                    | WK13,                   |             |                |                        |            |                     |                     |                |  |
| WK14,                                    | QA4                     |             |                |                        |            |                     |                     |                |  |
| EK057G: Nitrite as N by Discrete Ana     | lyser                   |             |                |                        |            |                     |                     |                |  |
| Clear Plastic Bottle - Natural (EK057G)  |                         |             |                |                        |            |                     |                     |                |  |
| AST2,                                    | WK11,                   | 08-Jul-2015 |                |                        |            | 08-Jul-2015         | 10-Jul-2015         | ✓              |  |
| WK12,                                    | WK13,                   |             |                |                        |            |                     |                     |                |  |
| WK14,                                    | QA4                     |             |                |                        |            |                     |                     |                |  |
| EK059G: Nitrite plus Nitrate as N (NO    | x) by Discrete Analyser |             |                |                        |            |                     |                     |                |  |
| Clear Plastic Bottle - Sulfuric Acid (EK |                         |             |                |                        |            |                     |                     |                |  |
| AST2,                                    | WK11,                   | 08-Jul-2015 |                |                        |            | 09-Jul-2015         | 05-Aug-2015         | ✓              |  |
| WK12,                                    | WK13,                   |             |                |                        |            |                     |                     |                |  |
| WK14,                                    | QA4                     |             |                |                        |            |                     |                     |                |  |
| EK061G: Total Kjeldahl Nitrogen By D     | Discrete Analyser       |             |                |                        |            |                     |                     |                |  |
| Clear Plastic Bottle - Sulfuric Acid (EK |                         |             |                |                        |            |                     |                     |                |  |
| AST2,                                    | WK11,                   | 08-Jul-2015 | 09-Jul-2015    | 05-Aug-2015            | ✓          | 09-Jul-2015         | 05-Aug-2015         | ✓              |  |
| WK12,                                    | WK13,                   |             |                |                        |            |                     |                     |                |  |
| WK14,                                    | QA4                     |             |                |                        |            |                     |                     |                |  |
| EK067G: Total Phosphorus as P by Di      | iscrete Analyser        |             |                |                        |            |                     |                     |                |  |
| Clear Plastic Bottle - Sulfuric Acid (EK | 067G)                   |             |                |                        |            |                     |                     |                |  |
| AST2,                                    | WK11,                   | 08-Jul-2015 | 09-Jul-2015    | 05-Aug-2015            | ✓          | 09-Jul-2015         | 05-Aug-2015         | ✓              |  |
| WK12,                                    | WK13,                   |             |                |                        |            |                     |                     |                |  |
| WK14,                                    | QA4                     |             |                |                        |            |                     |                     |                |  |
| EK071G: Reactive Phosphorus as P b       | y discrete analyser     |             |                |                        |            |                     |                     |                |  |
| Clear Plastic Bottle - Natural (EK071G)  |                         |             |                |                        |            |                     |                     |                |  |
| AST2,                                    | WK11,                   | 08-Jul-2015 |                |                        |            | 08-Jul-2015         | 10-Jul-2015         | ✓              |  |
| WK12,                                    | WK13,                   |             |                |                        |            |                     |                     |                |  |
| WK14,                                    | QA4                     |             |                |                        |            |                     |                     |                |  |
| EP005: Total Organic Carbon (TOC)        |                         |             |                |                        |            |                     |                     |                |  |
| Amber TOC Vial - Sulfuric Acid (EP005    |                         |             |                |                        |            |                     |                     |                |  |
| AST2,                                    | WK11,                   | 08-Jul-2015 |                |                        |            | 09-Jul-2015         | 05-Aug-2015         | ✓              |  |
| WK12,                                    | WK13,                   |             |                |                        |            |                     |                     |                |  |
| WK14,                                    | QA4                     |             |                |                        |            |                     |                     |                |  |
|                                          |                         |             |                |                        |            |                     |                     |                |  |

Page : 6 of 12

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                                 |                               |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
|-------------------------------------------------------------------------------|-------------------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|
| Method                                                                        |                               | Sample Date | Ex             | traction / Preparation |            | Analysis           |                    |                |
| Container / Client Sample ID(s)                                               |                               |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EP020: Oil and Grease (O&G)                                                   |                               |             |                |                        |            |                    |                    |                |
| Amber Jar - Sulfuric Acid or Sodium Bisulfate (EP0<br>AST2,<br>WK12,<br>WK14, | 020)<br>WK11,<br>WK13,<br>QA4 | 08-Jul-2015 |                |                        |            | 10-Jul-2015        | 05-Aug-2015        | ✓              |
| EP033: C1 - C4 Hydrocarbon Gases                                              |                               |             |                |                        |            |                    |                    |                |
| Amber VOC Vial - Sulfuric Acid (EP033) AST2, WK12, WK14,                      | WK11,<br>WK13,<br>QA4         | 08-Jul-2015 |                |                        |            | 09-Jul-2015        | 22-Jul-2015        | ✓              |
| EP080/071: Total Petroleum Hydrocarbons                                       |                               |             |                |                        |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP071) AST2, WK12, WK14,                    | WK11,<br>WK13,<br>QA4         | 08-Jul-2015 | 09-Jul-2015    | 15-Jul-2015            | ✓          | 10-Jul-2015        | 18-Aug-2015        | ✓              |
| EP074A: Monocyclic Aromatic Hydrocarbons                                      |                               |             |                |                        |            |                    |                    |                |
| Amber VOC Vial - Sulfuric Acid (EP074) AST2, WK12, WK14,                      | WK11,<br>WK13,<br>QA4         | 08-Jul-2015 | 09-Jul-2015    | 22-Jul-2015            | ✓          | 09-Jul-2015        | 22-Jul-2015        | ✓              |
| EP075(SIM)T: PAH Surrogates                                                   |                               |             |                |                        |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP075(SIM)) AST2, WK12, WK14,               | WK11,<br>WK13,<br>QA4         | 08-Jul-2015 | 09-Jul-2015    | 15-Jul-2015            | ✓          | 10-Jul-2015        | 18-Aug-2015        | ✓              |
| EP080/071: Total Petroleum Hydrocarbons                                       |                               |             |                |                        |            |                    |                    |                |
| Amber VOC Vial - Sulfuric Acid (EP080) AST2, WK12, WK14,                      | WK11,<br>WK13,<br>QA4         | 08-Jul-2015 | 09-Jul-2015    | 22-Jul-2015            | ✓          | 09-Jul-2015        | 22-Jul-2015        | ✓              |
| EP262: Ethanolamines                                                          |                               |             |                |                        |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP262) AST2, WK12, WK14,                    | WK11,<br>WK13,<br>QA4         | 08-Jul-2015 |                |                        |            | 15-Jul-2015        | 15-Jul-2015        | ✓              |

Page : 7 of 12

Work Order ES1525652 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                                          |            |    |         | Evaluation | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specificatio |
|--------------------------------------------------------|------------|----|---------|------------|-------------------|-----------------|-----------------------------------------------------------------------------|
| Quality Control Sample Type                            |            | Сс | ount    |            | Rate (%)          |                 | Quality Control Specification                                               |
| Analytical Methods                                     | Method     | QC | Reaular | Actual     | Expected          | Evaluation      |                                                                             |
| Laboratory Duplicates (DUP)                            |            |    |         |            |                   |                 |                                                                             |
| Alkalinity by PC Titrator                              | ED037-P    | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Ammonia as N by Discrete analyser                      | EK055G     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| C1 - C4 Gases                                          | EP033      | 1  | 10      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Chloride by Discrete Analyser                          | ED045G     | 2  | 19      | 10.53      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Chlorine                                               | EK010      | 1  | 6       | 16.67      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Conductivity by PC Titrator                            | EA010-P    | 2  | 19      | 10.53      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Dissolved Mercury by FIMS                              | EG035F     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 7       | 14.29      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Fluoride by PC Titrator                                | EK040P     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Major Cations - Dissolved                              | ED093F     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Nitrite as N by Discrete Analyser                      | EK057G     | 2  | 19      | 10.53      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0  | 10      | 0.00       | 10.00             | 3c              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| pH by PC Titrator                                      | EA005-P    | 2  | 17      | 11.76      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 6       | 16.67      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 6       | 16.67      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 9       | 11.11      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 2  | 19      | 10.53      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Suspended Solids (High Level)                          | EA025H     | 2  | 20      | 10.00      | 9.52              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Total Dissolved Solids (High Level)                    | EA015H     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Total Organic Carbon                                   | EP005      | 2  | 18      | 11.11      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| TRH - Semivolatile Fraction                            | EP071      | 0  | 7       | 0.00       | 10.00             | 3¢              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| TRH Volatiles/BTEX                                     | EP080      | 2  | 16      | 12.50      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Volatile Organic Compounds                             | EP074      | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Laboratory Control Samples (LCS)                       |            |    |         |            |                   |                 |                                                                             |
| Alkalinity by PC Titrator                              | ED037-P    | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 20      | 5.00       | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| C1 - C4 Gases                                          | EP033      | 1  | 10      | 10.00      | 5.00              | <u>√</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Chloride by Discrete Analyser                          | ED045G     | 2  | 19      | 10.53      | 10.00             | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Conductivity by PC Titrator                            | EA010-P    | 1  | 19      | 5.26       | 5.00              | <u>√</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 20      | 5.00       | 5.00              | <u>√</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 20      | 5.00       | 5.00              |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |

Page : 8 of 12

Work Order : ES1525652 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                          |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification ; ✓ = Quality Control frequency within specification. |
|--------------------------------------------------------|------------|----|---------|-----------|-------------------|-----------------|--------------------------------------------------------------------------------|
| Quality Control Sample Type                            |            | Co | ount    |           | Rate (%)          |                 | Quality Control Specification                                                  |
| Analytical Methods                                     | Method     | OC | Regular | Actual    | Expected          | Evaluation      |                                                                                |
| Laboratory Control Samples (LCS) - Continued           |            |    |         |           |                   |                 |                                                                                |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 7       | 14.29     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Fluoride by PC Titrator                                | EK040P     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Major Cations - Dissolved                              | ED093F     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Oil and Grease                                         | EP020      | 1  | 15      | 6.67      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 10      | 10.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 6       | 16.67     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 6       | 16.67     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 9       | 11.11     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Suspended Solids (High Level)                          | EA025H     | 2  | 20      | 10.00     | 9.52              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Total Dissolved Solids (High Level)                    | EA015H     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 3  | 20      | 15.00     | 15.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Total Organic Carbon                                   | EP005      | 1  | 18      | 5.56      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 3  | 20      | 15.00     | 15.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 7       | 14.29     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 16      | 6.25      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Volatile Organic Compounds                             | EP074      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Method Blanks (MB)                                     |            |    |         |           |                   |                 |                                                                                |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 20      | 5.00      | 5.00              | 1               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| C1 - C4 Gases                                          | EP033      | 1  | 10      | 10.00     | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 19      | 5.26      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Chlorine                                               | EK010      | 1  | 6       | 16.67     | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Conductivity by PC Titrator                            | EA010-P    | 1  | 19      | 5.26      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 20      | 5.00      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 20      | 5.00      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 20      | 5.00      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 7       | 14.29     | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Fluoride by PC Titrator                                | EK040P     | 1  | 20      | 5.00      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Major Cations - Dissolved                              | ED093F     | 1  | 20      | 5.00      | 5.00              | <u>√</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 20      | 5.00      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 19      | 5.26      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Oil and Grease                                         | EP020      | 1  | 15      | 6.67      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 10      | 10.00     | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 6       | 16.67     | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 6       | 16.67     | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 9       | 11.11     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |

Page : 9 of 12

Work Order : ES1525652 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                         |            |    |         | Evaluation | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specifi |
|-------------------------------------------------------|------------|----|---------|------------|-------------------|-----------------|------------------------------------------------------------------------|
| Quality Control Sample Type                           |            | Co | ount    |            | Rate (%)          |                 | Quality Control Specification                                          |
| Analytical Methods                                    | Method     | QC | Regular | Actual     | Expected          | Evaluation      |                                                                        |
| Method Blanks (MB) - Continued                        |            |    |         |            |                   |                 |                                                                        |
| Suspended Solids (High Level)                         | EA025H     | 1  | 20      | 5.00       | 4.76              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| otal Dissolved Solids (High Level)                    | EA015H     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| otal Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| otal Organic Carbon                                   | EP005      | 1  | 18      | 5.56       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| otal Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| RH - Semivolatile Fraction                            | EP071      | 1  | 7       | 14.29      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| RH Volatiles/BTEX                                     | EP080      | 1  | 16      | 6.25       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| olatile Organic Compounds                             | EP074      | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| latrix Spikes (MS)                                    |            |    |         |            |                   |                 |                                                                        |
| mmonia as N by Discrete analyser                      | EK055G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| 1 - C4 Gases                                          | EP033      | 1  | 10      | 10.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| nloride by Discrete Analyser                          | ED045G     | 1  | 19      | 5.26       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| issolved Mercury by FIMS                              | EG035F     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| issolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| thanolamines by LCMSMS                                | EP262      | 1  | 7       | 14.29      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| uoride by PC Titrator                                 | EK040P     | 1  | 20      | 5.00       | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| itrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| itrite as N by Discrete Analyser                      | EK057G     | 1  | 19      | 5.26       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| AH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0  | 10      | 0.00       | 5.00              | x               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| eactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 6       | 16.67      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| lica (Reactive) by Discrete Analyser                  | EG052G     | 1  | 6       | 16.67      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| tandard Anions -by IC (Extended Method)               | ED009-X    | 1  | 9       | 11.11      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| ulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 19      | 5.26       | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| otal Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 20      | 5.00       | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| otal Organic Carbon                                   | EP005      | 1  | 18      | 5.56       | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| otal Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| RH - Semivolatile Fraction                            | EP071      | 0  | 7       | 0.00       | 5.00              | ×               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| RH Volatiles/BTEX                                     | EP080      | 1  | 16      | 6.25       | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |
| olatile Organic Compounds                             | EP074      | 1  | 20      | 5.00       | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                       |

Page : 10 of 12

Work Order : ES1525652 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                     | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------|----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pH by PC Titrator                                      | EA005-P  | WATER  | In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                             |
| Conductivity by PC Titrator                            | EA010-P  | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                       |
| Total Dissolved Solids (High Level)                    | EA015H   | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                          |
| Suspended Solids (High Level)                          | EA025H   | WATER  | In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of 'non-filterable' residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (2013) Schedule B(3)                                               |
| Standard Anions -by IC (Extended Method)               | ED009-X  | WATER  | In house: Referenced to APHA 4110. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                  |
| Alkalinity by PC Titrator                              | ED037-P  | WATER  | In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                     |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G   | WATER  | In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)                                                     |
| Chloride by Discrete Analyser                          | ED045G   | WATER  | In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003                                                                                                                |
| Major Cations - Dissolved                              | ED093F   | WATER  | In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3)  Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3)  Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) Schedule B(3) |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                      |

Page : 11 of 12

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Analytical Methods                                   | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Metals by ICP-MS - Suite B                 | EG020B-F   | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                                                                                                        |
| Dissolved Mercury by FIMS                            | EG035F     | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) |
| Silica (Reactive) by Discrete Analyser               | EG052G     | WATER  | In house: Referenced to APHA 4500-SiO2 D: Under Acdic conditions reactive silicon combines with ammonium molybdate to form a yellow molybdosilicic acid complex. This is reduced by 1-amino-2-naphthol-4-sulfonic acid to a silicomolybdenum blue complex which is measured by discrete analyser at 670 nm. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                           |
| Chlorine                                             | EK010      | WATER  | In-house (DPD colourimetry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fluoride by PC Titrator                              | EK040P     | WATER  | In house: Referenced to APHA 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                               |
| Ammonia as N by Discrete analyser                    | EK055G     | WATER  | In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ammonium as N                                        | EK055G-NH4 | WATER  | Ammonium in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH and Temperature. Ammonia is determined by direct colorimetry by Discrete Analyser according to APHA 4500-NH3 G. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                  |
| Nitrite as N by Discrete Analyser                    | EK057G     | WATER  | In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nitrate as N by Discrete Analyser                    | EK058G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                          |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser  | EK059G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                      |
| Total Kjeldahl Nitrogen as N By Discrete Analyser    | EK061G     | WATER  | In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                           |
| Total Nitrogen as N (TKN + Nox) By Discrete Analyser | EK062G     | WATER  | In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total Phosphorus as P By Discrete<br>Analyser        | EK067G     | WATER  | In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |

Page : 12 of 12

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Analytical Methods                               | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reactive Phosphorus as P-By Discrete<br>Analyser | EK071G      | WATER  | In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                      |
| Ionic Balance by PCT DA and Turbi SO4 DA         | EN055 - PG  | WATER  | In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                        |
| Total Organic Carbon                             | EP005       | WATER  | In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                     |
| Oil and Grease                                   | EP020       | WATER  | In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM (2013) Schedule B(3)                                                                             |
| C1 - C4 Gases                                    | EP033       | WATER  | Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, US EPA - Region 1, EPA New England, July 2001. Automated static headspace, dual column GC/FID. A 12 mL sample is pipetted into a 20 mL headspace vial containing 3g of sodium chloride and sealed. Each sample is equilibrated with shaking at 40 degrees C for 10 minutes prior to analysis by GC/FID using a pair of PLOT columns of different polarity. |
| TRH - Semivolatile Fraction                      | EP071       | WATER  | USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                                                 |
| Volatile Organic Compounds                       | EP074       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                          |
| PAH/Phenols (GC/MS - SIM)                        | EP075(SIM)  | WATER  | USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                     |
| TRH Volatiles/BTEX                               | EP080       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                           |
| Ethanolamines by LCMSMS                          | EP262       | WATER  | In-house LC-MSMS: Benzoyl derivatives of target compounds are analysed by LC/MSMS in ESI Positive Mode.                                                                                                                                                                                                                                                                                                                                            |
| Preparation Methods                              | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TKN/TP Digestion                                 | EK061/EK067 | WATER  | APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                       |



# **QUALITY CONTROL REPORT**

**Work Order** : **ES1525654** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ----Date Samples Received: 08-Jul-2015C-O-C number: 08-Jul-2015

Sampler : DAVID WATSON Issue Date : 08-Jul-2015

Site : --- No. of samples received : 6

Quote number : --- No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

NATA Accredited

Laboratory 825

Accredited for compliance with

ISO/IEC 17025.

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



E-mail

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit JoshiInorganic ChemistSydney InorganicsPabi SubbaSenior Organic ChemistSydney Organics

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER          |                             |                                         |            |     |       | Laboratory L    | Ouplicate (DUP) Report |         |                     |
|----------------------------|-----------------------------|-----------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID       | Client sample ID            | Method: Compound                        | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| <b>EA010P: Conductivit</b> | y by PC Titrator (QC Lot: 1 | 48689)                                  |            |     |       |                 |                        |         |                     |
| ES1525654-001              | AST2                        | EA010-P: Electrical Conductivity @ 25°C |            | 1   | μS/cm | 7140            | 7230                   | 1.27    | 0% - 20%            |
| EK084: Un-ionized H        | ydrogen Sulfide (QC Lot: 1  | 48665)                                  |            |     |       |                 |                        |         |                     |
| ES1525654-001              | AST2                        | EK084: Unionized Hydrogen Sulfide       |            | 0.1 | mg/L  | <0.1            | <0.1                   | 0.00    | 0% - 20%            |
| EP080: BTEXN (QC I         | Lot: 148540)                |                                         |            |     |       |                 |                        |         |                     |
| ES1525654-001              | AST2                        | EP080: Benzene                          | 71-43-2    | 1   | μg/L  | 17              | 17                     | 0.00    | 0% - 50%            |
|                            |                             | EP080: Ethylbenzene                     | 100-41-4   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                            |                             | EP080: meta- & para-Xylene              | 108-38-3   | 2   | μg/L  | 5               | 4                      | 0.00    | No Limit            |
|                            |                             |                                         | 106-42-3   |     |       |                 |                        |         |                     |
|                            |                             | EP080: ortho-Xylene                     | 95-47-6    | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                            |                             | EP080: Toluene                          | 108-88-3   | 2   | μg/L  | 20              | 19                     | 7.52    | 0% - 50%            |
|                            |                             | EP080: Naphthalene                      | 91-20-3    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            |       | Method Blank (MB)  | Laboratory Control Spike (LCS) Report |               |      |     |      |
|-----------------------------------------------------|------------|-------|--------------------|---------------------------------------|---------------|------|-----|------|
|                                                     | Report     | Spike | Spike Recovery (%) | Recovery                              | Limits (%)    |      |     |      |
| Method: Compound                                    | CAS Number | LOR   | Unit               | Result                                | Concentration | LCS  | Low | High |
| EA010P: Conductivity by PC Titrator (QCLot: 148689) |            |       |                    |                                       |               |      |     |      |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1     | μS/cm              | <1                                    | 2000 μS/cm    | 104  | 95  | 113  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 148665)  |            |       |                    |                                       |               |      |     |      |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1   | mg/L               | <0.1                                  | 0.05 mg/L     | 100  | 72  | 126  |
| EP080: BTEXN (QCLot: 148540)                        |            |       |                    |                                       |               |      |     |      |
| EP080: Benzene                                      | 71-43-2    | 1     | μg/L               | <1                                    | 10 μg/L       | 93.4 | 70  | 124  |
| EP080: Ethylbenzene                                 | 100-41-4   | 2     | μg/L               | <2                                    | 10 μg/L       | 93.8 | 70  | 120  |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2     | μg/L               | <2                                    | 10 μg/L       | 96.9 | 69  | 121  |
|                                                     | 106-42-3   |       |                    |                                       |               |      |     |      |
| EP080: Naphthalene                                  | 91-20-3    | 5     | μg/L               | <5                                    | 10 μg/L       | 87.8 | 70  | 124  |
| EP080: ortho-Xylene                                 | 95-47-6    | 2     | μg/L               | <2                                    | 10 μg/L       | 93.8 | 72  | 122  |
| EP080: Toluene                                      | 108-88-3   | 2     | μg/L               | <2                                    | 10 μg/L       | 95.8 | 65  | 129  |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  | Matrix Spike (MS) Report   |            |               |                  |            |           |  |
|----------------------|------------------|----------------------------|------------|---------------|------------------|------------|-----------|--|
|                      |                  |                            |            | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |  |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration | MS               | Low        | High      |  |
| EP080: BTEXN (Q      | CLot: 148540)    |                            |            |               |                  |            |           |  |
| ES1525654-001        | AST2             | EP080: Benzene             | 71-43-2    | 25 μg/L       | 88.1             | 70         | 130       |  |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L       | 91.0             | 70         | 130       |  |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L       | 89.9             | 70         | 130       |  |
|                      |                  |                            | 106-42-3   |               |                  |            |           |  |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L       | 108              | 70         | 130       |  |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L       | 91.8             | 70         | 130       |  |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L       | 87.2             | 70         | 130       |  |



# **QA/QC Compliance Assessment for DQO Reporting**

**Work Order** : **ES1525654** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 08-Jul-2015

 Site
 : --- Issue Date
 : 08-Jul-2015

Sampler : DAVID WATSON No. of samples received : 6
Order number No. of samples analysed : 6

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **Outliers: Frequency of Quality Control Samples**

Matrix: WATER

| Quality Control Sample Type      | Count |         | Rate (%) |          | Quality Control Specification                    |
|----------------------------------|-------|---------|----------|----------|--------------------------------------------------|
| Method                           | QC    | Regular | Actual   | Expected |                                                  |
| Laboratory Duplicates (DUP)      |       |         |          |          |                                                  |
| Dissolved Sulfide as S2-         | 1     | 0       | 0.00     | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0     | 6       | 0.00     | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |       |         |          |          |                                                  |
| Dissolved Sulfide as S2-         | 1     | 0       | 0.00     | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0     | 6       | 0.00     | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |       |         |          |          |                                                  |
| Dissolved Sulfide as S2-         | 1     | 0       | 0.00     | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0     | 6       | 0.00     | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: | WATER |
|---------|-------|
|         |       |

| Maula. WAILI                         |       | Evaluation: • = Holding time breach, • = within Holding time |            |                          |                    |            |               |                  |            |  |
|--------------------------------------|-------|--------------------------------------------------------------|------------|--------------------------|--------------------|------------|---------------|------------------|------------|--|
| Method Method                        |       |                                                              | ample Date | Extraction / Preparation |                    |            | Analysis      |                  |            |  |
| Container / Client Sample ID(s)      |       |                                                              |            | Date extracted           | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation |  |
| EA010P: Conductivity by PC Titra     | tor   |                                                              |            |                          |                    |            |               |                  |            |  |
| Clear Plastic Bottle - Natural (EA01 | I0-P) |                                                              |            |                          |                    |            |               |                  |            |  |
| AST2                                 |       | 08-                                                          | -Jul-2015  |                          |                    |            | 08-Jul-2015   | 05-Aug-2015      | ✓          |  |
| EP080: BTEXN                         |       |                                                              |            |                          |                    |            |               |                  |            |  |
| Amber VOC Vial - Sulfuric Acid (EF   | 2080) |                                                              |            |                          |                    |            |               |                  |            |  |
| AST2,                                | WK11, | 08-                                                          | -Jul-2015  | 08-Jul-2015              | 22-Jul-2015        | ✓          | 08-Jul-2015   | 22-Jul-2015      | ✓          |  |
| WK12,                                | WK13, |                                                              |            |                          |                    |            |               |                  |            |  |
| WK14,                                | QA4   |                                                              |            |                          |                    |            |               |                  |            |  |

Page : 3 of 4 Work Order ES1525654

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    |         |       |         | Evaluatio | n: 🗴 = Quality Co | ntrol frequency i | not within specification; ✓ = Quality Control frequency within specification |
|----------------------------------|---------|-------|---------|-----------|-------------------|-------------------|------------------------------------------------------------------------------|
| Quality Control Sample Type      |         | Count |         |           | Rate (%)          |                   | Quality Control Specification                                                |
| Analytical Methods               | Method  | OC    | Regular | Actual    | Expected          | Evaluation        |                                                                              |
| Laboratory Duplicates (DUP)      |         |       |         |           |                   |                   |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1     | 1       | 100.00    | 10.00             | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 1     | 0       | 0.00      | 10.00             | x                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| RH Volatiles/BTEX                | EP080   | 1     | 6       | 16.67     | 10.00             | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Jn-ionized Hydrogen Sulfide      | EK084   | 0     | 6       | 0.00      | 10.00             | se                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| _aboratory Control Samples (LCS) |         |       |         |           |                   |                   |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1     | 1       | 100.00    | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 1     | 0       | 0.00      | 5.00              | x                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| RH Volatiles/BTEX                | EP080   | 1     | 6       | 16.67     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Jn-ionized Hydrogen Sulfide      | EK084   | 0     | 6       | 0.00      | 5.00              | 3c                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Method Blanks (MB)               |         |       |         |           |                   |                   |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1     | 1       | 100.00    | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| bissolved Sulfide as S2-         | EK085F  | 1     | 0       | 0.00      | 5.00              | x                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| RH Volatiles/BTEX                | EP080   | 1     | 6       | 16.67     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| In-ionized Hydrogen Sulfide      | EK084   | 0     | 6       | 0.00      | 5.00              | se                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Matrix Spikes (MS)               |         |       |         |           |                   |                   |                                                                              |
| RH Volatiles/BTEX                | EP080   | 1     | 6       | 16.67     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                    |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                    |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3) |



# **QUALITY CONTROL REPORT**

· ES1525742 Work Order Page : 1 of 4

Client PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact SEAN DAYKIN Contact : Loren Schiavon

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : GPO BOX 5394

> SYDNEY NSW. AUSTRALIA 2001 E-mail : SDaykin@pb.com.au : loren.schiavon@alsglobal.com

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503 : +61 02 92725101 Facsimile Facsimile : +61-2-8784 8500

: 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement Project

Date Samples Received : 09-Jul-2015 Order number **Date Analysis Commenced** : 09-Jul-2015 C-O-C number Issue Date · 09-Jul-2015 Sampler

: 5 Site No. of samples received Quote number No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



E-mail

NATA Accredited Laboratory 825

Accredited for compliance with

ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics Edwandy Fadjar Organic Coordinator **Sydney Organics** 

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER    |                              |                                         | Laboratory D | ouplicate (DUP) Report |       |                 |                  |         |                     |
|----------------------|------------------------------|-----------------------------------------|--------------|------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID             | Method: Compound                        | CAS Number   | LOR                    | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EA010P: Conductivit  | y by PC Titrator (QC Lot: 14 | 19828)                                  |              |                        |       |                 |                  |         |                     |
| ES1525742-001        | AST2                         | EA010-P: Electrical Conductivity @ 25°C |              | 1                      | μS/cm | 7350            | 7420             | 0.961   | 0% - 20%            |
| EK084: Un-ionized H  | ydrogen Sulfide (QC Lot: 14  | 19971)                                  |              |                        |       |                 |                  |         |                     |
| ES1525742-001        | AST2                         | EK084: Unionized Hydrogen Sulfide       |              | 0.1                    | mg/L  | <0.1            | <0.1             | 0.00    | 0% - 20%            |
| EP080: BTEXN (QC I   | Lot: 149767)                 |                                         |              |                        |       |                 |                  |         |                     |
| ES1525742-001        | AST2                         | EP080: Benzene                          | 71-43-2      | 1                      | μg/L  | 10              | 10               | 0.00    | 0% - 50%            |
|                      |                              | EP080: Ethylbenzene                     | 100-41-4     | 2                      | μg/L  | <2              | <2               | 0.00    | No Limit            |
|                      |                              | EP080: meta- & para-Xylene              | 108-38-3     | 2                      | μg/L  | 3               | 3                | 0.00    | No Limit            |
|                      |                              |                                         | 106-42-3     |                        |       |                 |                  |         |                     |
|                      |                              | EP080: ortho-Xylene                     | 95-47-6      | 2                      | μg/L  | <2              | <2               | 0.00    | No Limit            |
|                      |                              | EP080: Toluene                          | 108-88-3     | 2                      | μg/L  | 11              | 11               | 0.00    | No Limit            |
|                      |                              | EP080: Naphthalene                      | 91-20-3      | 5                      | μg/L  | <5              | <5               | 0.00    | No Limit            |



Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            |     |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |
|-----------------------------------------------------|------------|-----|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|
|                                                     |            |     |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound                                    | CAS Number | LOR | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |  |
| EA010P: Conductivity by PC Titrator (QCLot: 149828) |            |     |       |                   |                                       |                    |          |            |  |  |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1   | μS/cm | <1                | 2000 μS/cm                            | 104                | 95       | 113        |  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 149971)  |            |     |       |                   |                                       |                    |          |            |  |  |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1 | mg/L  | <0.1              | 0.05 mg/L                             | 96.6               | 72       | 126        |  |  |
| EP080: BTEXN (QCLot: 149767)                        |            |     |       |                   |                                       |                    |          |            |  |  |
| EP080: Benzene                                      | 71-43-2    | 1   | μg/L  | <1                | 10 μg/L                               | 84.6               | 70       | 124        |  |  |
| EP080: Ethylbenzene                                 | 100-41-4   | 2   | μg/L  | <2                | 10 μg/L                               | 83.6               | 70       | 120        |  |  |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2   | μg/L  | <2                | 10 μg/L                               | 79.9               | 69       | 121        |  |  |
|                                                     | 106-42-3   |     |       |                   |                                       |                    |          |            |  |  |
| EP080: Naphthalene                                  | 91-20-3    | 5   | μg/L  | <5                | 10 μg/L                               | 95.1               | 70       | 124        |  |  |
| EP080: ortho-Xylene                                 | 95-47-6    | 2   | μg/L  | <2                | 10 μg/L                               | 90.2               | 72       | 122        |  |  |
| EP080: Toluene                                      | 108-88-3   | 2   | μg/L  | <2                | 10 μg/L                               | 78.8               | 65       | 129        |  |  |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                            |            | Matrix Spike (MS) Report |                  |            |           |  |  |
|----------------------|------------------|----------------------------|------------|--------------------------|------------------|------------|-----------|--|--|
|                      |                  |                            |            | Spike                    | SpikeRecovery(%) | Recovery L | imits (%) |  |  |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration            | MS               | Low        | High      |  |  |
| EP080: BTEXN (Q      | CLot: 149767)    |                            |            |                          |                  |            |           |  |  |
| ES1525742-001        | AST2             | EP080: Benzene             | 71-43-2    | 25 μg/L                  | 74.8             | 70         | 130       |  |  |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L                  | 77.5             | 70         | 130       |  |  |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L                  | 74.9             | 70         | 130       |  |  |
|                      |                  |                            | 106-42-3   |                          |                  |            |           |  |  |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L                  | 89.8             | 70         | 130       |  |  |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L                  | 81.4             | 70         | 130       |  |  |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L                  | 74.9             | 70         | 130       |  |  |



# **QA/QC Compliance Assessment for DQO Reporting**

**Work Order** : **ES1525742** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 09-Jul-2015

 Site
 :-- Issue Date
 : 09-Jul-2015

Sampler :--- No. of samples received : 5
Order number :--- No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers: Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 ES1525742 Work Order

PARSONS BRINCKERHOFF AUST P/L Client

Project 2268523B



#### **Outliers: Frequency of Quality Control Samples**

Matrix: WATER

| Quality Control Sample Type      | Co | ount    | Rate   | e (%)    | Quality Control Specification                    |
|----------------------------------|----|---------|--------|----------|--------------------------------------------------|
| Method                           | QC | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

| Evaluation: | = Holding time | breach; ✓ = V | Within holding time. |
|-------------|----------------|---------------|----------------------|
|-------------|----------------|---------------|----------------------|

| Maura. WATER                            |       |             |             |                         |                    | Evaluation | i. 🗸 – Holding time | : Dieacii, 🔻 – Willi | in notaling till |
|-----------------------------------------|-------|-------------|-------------|-------------------------|--------------------|------------|---------------------|----------------------|------------------|
| Method Method                           |       | Sample Date | E)          | ktraction / Preparation |                    | Analysis   |                     |                      |                  |
| Container / Client Sample ID(s)         |       |             |             | Date extracted          | Due for extraction | Evaluation | Date analysed       | Due for analysis     | Evaluation       |
| EA010P: Conductivity by PC Titrator     |       |             |             |                         |                    |            |                     |                      |                  |
| Clear Plastic Bottle - Natural (EA010-P | ?)    |             |             |                         |                    |            |                     |                      |                  |
| AST2                                    |       |             | 09-Jul-2015 |                         |                    |            | 09-Jul-2015         | 06-Aug-2015          | ✓                |
| EP080: BTEXN                            |       |             |             |                         |                    |            |                     |                      |                  |
| Amber VOC Vial - Sulfuric Acid (EP080   | 0)    |             |             |                         |                    |            |                     |                      |                  |
| AST2,                                   | WK11, |             | 09-Jul-2015 | 09-Jul-2015             | 23-Jul-2015        | ✓          | 09-Jul-2015         | 23-Jul-2015          | ✓                |
| WK12,                                   | WK13, |             |             |                         |                    |            |                     |                      |                  |
| WK14                                    |       |             |             |                         |                    |            |                     |                      |                  |

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

he expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    |         |    |         | Evaluatio | n: × = Quality Co | entrol frequency | not within specification; ✓ = Quality Control frequency within specification |
|----------------------------------|---------|----|---------|-----------|-------------------|------------------|------------------------------------------------------------------------------|
| Quality Control Sample Type      |         | Co | ount    |           | Rate (%)          |                  | Quality Control Specification                                                |
| Analytical Methods               | Method  | oc | Regular | Actual    | Expected          | Evaluation       |                                                                              |
| Laboratory Duplicates (DUP)      |         |    |         |           |                   |                  |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00    | 10.00             | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00      | 10.00             | *                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 5       | 20.00     | 10.00             | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00      | 10.00             | )£               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Laboratory Control Samples (LCS) |         |    |         |           |                   |                  |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00    | 5.00              | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00      | 5.00              | ×                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 5       | 20.00     | 5.00              | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00      | 5.00              | )£               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Method Blanks (MB)               |         |    |         |           |                   |                  |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00    | 5.00              | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00      | 5.00              | ×                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 5       | 20.00     | 5.00              | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00      | 5.00              | x                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Matrix Spikes (MS)               |         |    |         |           |                   |                  |                                                                              |
| TRH Volatiles/BTEX               | EP080   | 1  | 5       | 20.00     | 5.00              | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                    |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                    |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3) |



# **QUALITY CONTROL REPORT**

**Work Order** : **ES1525865** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ----Date Samples Received: 10-Jul-2015C-O-C number: ----Date Analysis Commenced: 10-Jul-2015Sampler: ----Issue Date: 10-Jul-2015

Site : --- No. of samples received : 6

Quote number : --- No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

NATA Accredited

Laboratory 825

Accredited for compliance with

ISO/IEC 17025.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



E-mail

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Pabi Subba Senior Organic Chemist Sydney Organics

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER          |                              |                                         |            |     |       | Laboratory D    | Ouplicate (DUP) Report |         |                     |
|----------------------------|------------------------------|-----------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID       | Client sample ID             | Method: Compound                        | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| <b>EA010P: Conductivit</b> | y by PC Titrator (QC Lot: 15 |                                         |            |     |       |                 |                        |         |                     |
| ES1525865-001              | AST2                         | EA010-P: Electrical Conductivity @ 25°C |            | 1   | μS/cm | 7430            | 7580                   | 2.03    | 0% - 20%            |
| EK084: Un-ionized Hy       | /drogen Sulfide (QC Lot: 15  | 51167)                                  |            |     |       |                 |                        |         |                     |
| ES1525865-001              | AST2                         | EK084: Unionized Hydrogen Sulfide       |            | 0.1 | mg/L  | <0.1            | <0.1                   | 0.00    | 0% - 20%            |
| EP080: BTEXN (QC I         | ot: 151018)                  |                                         |            |     |       |                 |                        |         |                     |
| ES1525865-001              | AST2                         | EP080: Benzene                          | 71-43-2    | 1   | μg/L  | 17              | 16                     | 0.00    | 0% - 50%            |
|                            |                              | EP080: Ethylbenzene                     | 100-41-4   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                            |                              | EP080: meta- & para-Xylene              | 108-38-3   | 2   | μg/L  | 4               | 4                      | 0.00    | No Limit            |
|                            |                              |                                         | 106-42-3   |     |       |                 |                        |         |                     |
|                            |                              | EP080: ortho-Xylene                     | 95-47-6    | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                            |                              | EP080: Toluene                          | 108-88-3   | 2   | μg/L  | 19              | 19                     | 0.00    | No Limit            |
|                            |                              | EP080: Naphthalene                      | 91-20-3    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            |     |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |                     |      |  |  |
|-----------------------------------------------------|------------|-----|-------|-------------------|---------------------------------------|--------------------|---------------------|------|--|--|
|                                                     |            |     |       | Report            | Spike                                 | Spike Recovery (%) | Recovery Limits (%) |      |  |  |
| Method: Compound                                    | CAS Number | LOR | Unit  | Result            | Concentration                         | LCS                | Low                 | High |  |  |
| EA010P: Conductivity by PC Titrator (QCLot: 151221) |            |     |       |                   |                                       |                    |                     |      |  |  |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1   | μS/cm | <1                | 2000 μS/cm                            | 103                | 95                  | 113  |  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 151167)  |            |     |       |                   |                                       |                    |                     |      |  |  |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1 | mg/L  | <0.1              | 0.05 mg/L                             | 97.4               | 72                  | 126  |  |  |
| EP080: BTEXN (QCLot: 151018)                        |            |     |       |                   |                                       |                    |                     |      |  |  |
| EP080: Benzene                                      | 71-43-2    | 1   | μg/L  | <1                | 10 μg/L                               | 99.5               | 70                  | 124  |  |  |
| EP080: Ethylbenzene                                 | 100-41-4   | 2   | μg/L  | <2                | 10 μg/L                               | 94.7               | 70                  | 120  |  |  |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2   | μg/L  | <2                | 10 μg/L                               | 94.4               | 69                  | 121  |  |  |
|                                                     | 106-42-3   |     |       |                   |                                       |                    |                     |      |  |  |
| EP080: Naphthalene                                  | 91-20-3    | 5   | μg/L  | <5                | 10 μg/L                               | 92.8               | 70                  | 124  |  |  |
| EP080: ortho-Xylene                                 | 95-47-6    | 2   | μg/L  | <2                | 10 μg/L                               | 96.1               | 72                  | 122  |  |  |
| EP080: Toluene                                      | 108-88-3   | 2   | μg/L  | <2                | 10 μg/L                               | 98.8               | 65                  | 129  |  |  |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                            |            | Matrix Spike (MS) Report |                                   |     |      |  |  |
|----------------------|------------------|----------------------------|------------|--------------------------|-----------------------------------|-----|------|--|--|
|                      |                  |                            |            | Spike                    | Spike SpikeRecovery(%) Recovery L |     |      |  |  |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration            | MS                                | Low | High |  |  |
| EP080: BTEXN (Q      | CLot: 151018)    |                            |            |                          |                                   |     |      |  |  |
| ES1525865-001        | AST2             | EP080: Benzene             | 71-43-2    | 25 μg/L                  | 97.7                              | 70  | 130  |  |  |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L                  | 94.2                              | 70  | 130  |  |  |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L                  | 98.0                              | 70  | 130  |  |  |
|                      |                  |                            | 106-42-3   |                          |                                   |     |      |  |  |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L                  | 86.3                              | 70  | 130  |  |  |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L                  | 99.4                              | 70  | 130  |  |  |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L                  | 101                               | 70  | 130  |  |  |



# **QA/QC Compliance Assessment for DQO Reporting**

**Work Order** : **ES1525865** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 10-Jul-2015

 Site
 : -- Issue Date
 : 10-Jul-2015

Sampler :--- No. of samples received : 6
Order number :--- No. of samples analysed : 6

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers: Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 ES1525865 Work Order

PARSONS BRINCKERHOFF AUST P/L Client

Project 2268523B



#### **Outliers: Frequency of Quality Control Samples**

Matrix: WATER

| Quality Control Sample Type      | Co | ount    | Rate   | e (%)    | Quality Control Specification                    |
|----------------------------------|----|---------|--------|----------|--------------------------------------------------|
| Method                           | QC | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 6       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 6       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |         |        |          |                                                  |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Un-ionized Hydrogen Sulfide      | 0  | 6       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not quarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Madeiro MATER Final vertices to a Halding time broads of AMithin halding time

| Matrix: WATER                            |       |             |                          |                    | Evaluation | : × = Holding time | breach; ✓ = Withi | in holding tim |  |
|------------------------------------------|-------|-------------|--------------------------|--------------------|------------|--------------------|-------------------|----------------|--|
| Method                                   |       | Sample Date | Extraction / Preparation |                    |            | Analysis           |                   |                |  |
| Container / Client Sample ID(s)          |       |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis  | Evaluation     |  |
| EA010P: Conductivity by PC Titrator      |       |             |                          |                    |            |                    |                   |                |  |
| Clear Plastic Bottle - Natural (EA010-P) |       |             |                          |                    |            |                    |                   |                |  |
| AST2,                                    | QA5   | 10-Jul-2015 |                          |                    |            | 10-Jul-2015        | 07-Aug-2015       | ✓              |  |
| EP080: BTEXN                             |       |             |                          |                    |            |                    |                   |                |  |
| Amber VOC Vial - Sulfuric Acid (EP080)   |       |             |                          |                    |            |                    |                   |                |  |
| AST2,                                    | WK11, | 10-Jul-2015 | 10-Jul-2015              | 24-Jul-2015        | ✓          | 10-Jul-2015        | 24-Jul-2015       | ✓              |  |
| WK12,                                    | WK13, |             |                          |                    |            |                    |                   |                |  |
| WK14,                                    | QA5   |             |                          |                    |            |                    |                   |                |  |

Page : 3 of 4 Work Order ES1525865

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    |         |       |         | Evaluation | n: × = Quality Co | ntrol frequency | not within specification ; ✓ = Quality Control frequency within specificatio |
|----------------------------------|---------|-------|---------|------------|-------------------|-----------------|------------------------------------------------------------------------------|
| Quality Control Sample Type      |         | Count |         |            | Rate (%)          |                 | Quality Control Specification                                                |
| Analytical Methods               | Method  | OC    | Reaular | Actual     | Expected          | Evaluation      |                                                                              |
| Laboratory Duplicates (DUP)      |         |       |         |            |                   |                 |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1     | 2       | 50.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 1     | 0       | 0.00       | 10.00             | x               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1     | 6       | 16.67      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0     | 6       | 0.00       | 10.00             | 3c              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Laboratory Control Samples (LCS) |         |       |         |            |                   |                 |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1     | 2       | 50.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 1     | 0       | 0.00       | 5.00              | 3c              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1     | 6       | 16.67      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0     | 6       | 0.00       | 5.00              | se              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Method Blanks (MB)               |         |       |         |            |                   |                 |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1     | 2       | 50.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Sulfide as S2-         | EK085F  | 1     | 0       | 0.00       | 5.00              | x               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1     | 6       | 16.67      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0     | 6       | 0.00       | 5.00              | se              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Matrix Spikes (MS)               |         |       |         |            |                   |                 |                                                                              |
| TRH Volatiles/BTEX               | EP080   | 1     | 6       | 16.67      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                             |
|-----------------------------|---------|--------|-----------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method       |
|                             |         |        | is compliant with NEPM (2013) Schedule B(3)                                                                     |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions |
|                             |         |        | by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)           |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                 |
|                             |         |        | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is    |
|                             |         |        | equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is     |
|                             |         |        | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                 |



# **QA/QC Compliance Assessment for DQO Reporting**

Work Order : **ES1525880** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 13-Jul-2015

 Site
 : -- Issue Date
 : 13-Jul-2015

Sampler :--- No. of samples received : 5
Order number :--- No. of samples analysed : 4

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

## **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers: Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **Outliers: Frequency of Quality Control Samples**

Matrix: WATER

| Quality Control Sample Type      | Co | Count   |        | € (%)    | Quality Control Specification                                                                      |
|----------------------------------|----|---------|--------|----------|----------------------------------------------------------------------------------------------------|
| Method                           | QC | Regular | Actual | Expected |                                                                                                    |
| Laboratory Duplicates (DUP)      |    |         |        |          |                                                                                                    |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                   |
| Un-ionized Hydrogen Sulfide      | 0  | 4       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                   |
| Laboratory Control Samples (LCS) |    |         |        |          |                                                                                                    |
| Dissolved Sulfide as S2-         | 1  | 0       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                   |
| Dissolved Sulfide as 32-         |    |         |        |          |                                                                                                    |
| Un-ionized Hydrogen Sulfide      | 0  | 4       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                   |
|                                  | 0  | 4       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                   |
| Un-ionized Hydrogen Sulfide      | 0  | 0       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

# **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

| L'aldation: *- Holding time bleach, *- Within Ho |       |             |                |                        |            |               |                  | ir noluling time |  |
|--------------------------------------------------|-------|-------------|----------------|------------------------|------------|---------------|------------------|------------------|--|
| Method Method                                    |       | Sample Date | Ex             | traction / Preparation |            | Analysis      |                  |                  |  |
| Container / Client Sample ID(s)                  |       |             | Date extracted | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation       |  |
| EA010P: Conductivity by PC Titrate               | or    |             |                |                        |            |               |                  |                  |  |
| Clear Plastic Bottle - Natural (EA010<br>AST2    | 0-P)  | 11-Jul-2015 |                |                        |            | 13-Jul-2015   | 08-Aug-2015      | <b>✓</b>         |  |
| EP080: BTEXN                                     |       |             |                |                        |            |               |                  |                  |  |
| Amber VOC Vial - Sulfuric Acid (EP               | 080)  |             |                |                        |            |               |                  |                  |  |
| AST2,                                            | WK11, | 11-Jul-2015 | 13-Jul-2015    | 25-Jul-2015            | ✓          | 13-Jul-2015   | 25-Jul-2015      | ✓                |  |
| WK12,                                            | WK13  |             |                |                        |            |               |                  |                  |  |

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix WATER

| Matrix: WATER                    |         |    |         | Evaluation                 | n: × = Quality Co | introl frequency i            | not within specification ; ✓ = Quality Control frequency within specification |
|----------------------------------|---------|----|---------|----------------------------|-------------------|-------------------------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type      |         | Co |         |                            |                   | Quality Control Specification |                                                                               |
| Analytical Methods               | Method  | QC | Regular | Actual Expected Evaluation |                   |                               |                                                                               |
| Laboratory Duplicates (DUP)      |         |    |         |                            |                   |                               |                                                                               |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00                     | 10.00             | ✓                             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00                       | 10.00             | x                             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX               | EP080   | 1  | 4       | 25.00                      | 10.00             | ✓                             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 4       | 0.00 10.00                 |                   | 3c                            | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Laboratory Control Samples (LCS) |         |    |         |                            |                   |                               |                                                                               |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00                     | 5.00              | ✓                             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00                       | 5.00              | x                             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX               | EP080   | 1  | 4       | 25.00                      | 5.00              | ✓                             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 4       | 0.00                       | 5.00              | 3c                            | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Method Blanks (MB)               |         |    |         |                            |                   |                               |                                                                               |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00                     | 5.00              | ✓                             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Sulfide as S2-         | EK085F  | 1  | 0       | 0.00                       | 5.00              | 3c                            | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX               | EP080   | 1  | 4       | 25.00                      | 5.00              | ✓                             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 4       | 0.00                       | 5.00              | 3c                            | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Matrix Spikes (MS)               |         |    |         |                            |                   |                               |                                                                               |
| TRH Volatiles/BTEX               | EP080   | 1  | 4       | 25.00                      | 5.00              | ✓                             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                    |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                    |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3) |



### **QUALITY CONTROL REPORT**

· ES1525880 Work Order Page : 1 of 4

Client PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact SEAN DAYKIN Contact : Loren Schiavon

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : GPO BOX 5394

> SYDNEY NSW. AUSTRALIA 2001 E-mail : SDaykin@pb.com.au : loren.schiavon@alsglobal.com

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503 : +61 02 92725101 Facsimile Facsimile : +61-2-8784 8500

: 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement Project

Date Samples Received : 13-Jul-2015 Order number **Date Analysis Commenced** : 12-Jul-2015 C-O-C number Issue Date · 13-Jul-2015 Sampler

: 5 Site No. of samples received Quote number No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



E-mail

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025. Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics Phalak Inthakesone Laboratory Manager - Organics **Sydney Organics** 

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER          |                             |                                         |            |     |       | Laboratory D    | Ouplicate (DUP) Report |         |                     |
|----------------------------|-----------------------------|-----------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID       | Client sample ID            | Method: Compound                        | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| <b>EA010P: Conductivit</b> | y by PC Titrator (QC Lot: 1 | 52271)                                  |            |     |       |                 |                        |         |                     |
| ES1525880-001              | AST2                        | EA010-P: Electrical Conductivity @ 25°C |            | 1   | μS/cm | 7660            | 7690                   | 0.404   | 0% - 20%            |
| EK084: Un-ionized Hy       | ydrogen Sulfide (QC Lot: 1  | 52752)                                  |            |     |       |                 |                        |         |                     |
| ES1525880-001              | AST2                        | EK084: Unionized Hydrogen Sulfide       |            | 0.1 | mg/L  | <0.1            | <0.1                   | 0.00    | 0% - 20%            |
| EP080: BTEXN (QC I         | Lot: 152107)                |                                         |            |     |       |                 |                        |         |                     |
| ES1525880-001              | AST2                        | EP080: Benzene                          | 71-43-2    | 1   | μg/L  | 10              | 10                     | 0.00    | No Limit            |
|                            |                             | EP080: Ethylbenzene                     | 100-41-4   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                            |                             | EP080: meta- & para-Xylene              | 108-38-3   | 2   | μg/L  | 3               | 3                      | 0.00    | No Limit            |
|                            |                             |                                         | 106-42-3   |     |       |                 |                        |         |                     |
|                            |                             | EP080: ortho-Xylene                     | 95-47-6    | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                            |                             | EP080: Toluene                          | 108-88-3   | 2   | μg/L  | 12              | 11                     | 0.00    | No Limit            |
|                            |                             | EP080: Naphthalene                      | 91-20-3    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            |     |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |                     |      |  |
|-----------------------------------------------------|------------|-----|-------|-------------------|---------------------------------------|--------------------|---------------------|------|--|
|                                                     |            |     |       | Report            | Spike                                 | Spike Recovery (%) | Recovery Limits (%) |      |  |
| Method: Compound                                    | CAS Number | LOR | Unit  | Result            | Concentration                         | LCS                | Low                 | High |  |
| EA010P: Conductivity by PC Titrator (QCLot: 152271) |            |     |       |                   |                                       |                    |                     |      |  |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1   | μS/cm | <1                | 2000 μS/cm                            | 108                | 95                  | 113  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 152752)  |            |     |       |                   |                                       |                    |                     |      |  |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1 | mg/L  | <0.1              | 0.05 mg/L                             | 116                | 72                  | 126  |  |
| EP080: BTEXN (QCLot: 152107)                        |            |     |       |                   |                                       |                    |                     |      |  |
| EP080: Benzene                                      | 71-43-2    | 1   | μg/L  | <1                | 10 μg/L                               | 90.7               | 70                  | 124  |  |
| EP080: Ethylbenzene                                 | 100-41-4   | 2   | μg/L  | <2                | 10 μg/L                               | 92.7               | 70                  | 120  |  |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2   | μg/L  | <2                | 10 μg/L                               | 92.3               | 69                  | 121  |  |
|                                                     | 106-42-3   |     |       |                   |                                       |                    |                     |      |  |
| EP080: Naphthalene                                  | 91-20-3    | 5   | μg/L  | <5                | 10 μg/L                               | 99.5               | 70                  | 124  |  |
| EP080: ortho-Xylene                                 | 95-47-6    | 2   | μg/L  | <2                | 10 μg/L                               | 89.8               | 72                  | 122  |  |
| EP080: Toluene                                      | 108-88-3   | 2   | μg/L  | <2                | 10 μg/L                               | 88.1               | 65                  | 129  |  |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                    | Matrix Spike (MS) Report   |            |               |                  |            |           |
|----------------------|--------------------|----------------------------|------------|---------------|------------------|------------|-----------|
|                      |                    |                            |            | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID   | Method: Compound           | CAS Number | Concentration | MS               | Low        | High      |
| EP080: BTEXN (Q      | CLot: 152107)      |                            |            |               |                  |            |           |
| ES1525880-001        | ES1525880-001 AST2 | EP080: Benzene             | 71-43-2    | 25 μg/L       | 75.0             | 70         | 130       |
|                      |                    | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L       | 79.2             | 70         | 130       |
|                      |                    | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L       | 76.8             | 70         | 130       |
|                      |                    |                            | 106-42-3   |               |                  |            |           |
|                      |                    | EP080: Naphthalene         | 91-20-3    | 25 μg/L       | 94.0             | 70         | 130       |
|                      |                    | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L       | 77.0             | 70         | 130       |
|                      |                    | EP080: Toluene             | 108-88-3   | 25 μg/L       | 77.7             | 70         | 130       |



#### **QUALITY CONTROL REPORT**

**Work Order** : **ES1526014** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ---- Date Samples Received : 14-Jul-2015
C-O-C number : ---- Date Analysis Commenced : 14-Jul-2015

Quote number : ---- No. of samples received : 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

Accredited for

compliance with

ISO/IEC 17025.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

SYDNEY NSW. AUSTRALIA 2001

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



NATA Accredited
Laboratory 825

Signatories
This documen

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Sanjeshni Jyoti Senior Chemist Volatiles Sydney Organics

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1526014

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER             |                              |                                         |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |  |  |
|-------------------------------|------------------------------|-----------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|--|--|
| Laboratory sample ID          | Client sample ID             | Method: Compound                        | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |
| <b>EA010P: Conductivit</b>    | y by PC Titrator (QC Lot: 15 | 53990)                                  |            |                                   |       |                 |                  |         |                     |  |  |
| ES1526014-001                 | AST2                         | EA010-P: Electrical Conductivity @ 25°C |            | 1                                 | μS/cm | 7600            | 7530             | 0.957   | 0% - 20%            |  |  |
| EK084: Un-ionized Hy          | ydrogen Sulfide (QC Lot: 15  | 53927)                                  |            |                                   |       |                 |                  |         |                     |  |  |
| ES1526014-001                 | AST2                         | EK084: Unionized Hydrogen Sulfide       |            | 0.1                               | mg/L  | <0.1            | <0.1             | 0.00    | 0% - 20%            |  |  |
| EP080: BTEXN (QC Lot: 153830) |                              |                                         |            |                                   |       |                 |                  |         |                     |  |  |
| ES1526014-001                 | AST2                         | EP080: Benzene                          | 71-43-2    | 1                                 | μg/L  | 14              | 14               | 0.00    | 0% - 50%            |  |  |
|                               |                              | EP080: Ethylbenzene                     | 100-41-4   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |
|                               |                              | EP080: meta- & para-Xylene              | 108-38-3   | 2                                 | μg/L  | 4               | 4                | 0.00    | No Limit            |  |  |
|                               |                              |                                         | 106-42-3   |                                   |       |                 |                  |         |                     |  |  |
|                               |                              | EP080: ortho-Xylene                     | 95-47-6    | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |
|                               |                              | EP080: Toluene                          | 108-88-3   | 2                                 | μg/L  | 16              | 16               | 0.00    | No Limit            |  |  |
|                               |                              | EP080: Naphthalene                      | 91-20-3    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit            |  |  |

Page : 4 of 4 Work Order : ES1526014

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   | Sub-Matrix: WATER |     |        |        |               | Laboratory Control Spike (LCS) Report |          |            |  |  |
|-----------------------------------------------------|-------------------|-----|--------|--------|---------------|---------------------------------------|----------|------------|--|--|
|                                                     |                   |     | Report |        | Spike         | Spike Recovery (%)                    | Recovery | Limits (%) |  |  |
| Method: Compound                                    | CAS Number        | LOR | Unit   | Result | Concentration | LCS                                   | Low      | High       |  |  |
| EA010P: Conductivity by PC Titrator (QCLot: 153990) |                   |     |        |        |               |                                       |          |            |  |  |
| EA010-P: Electrical Conductivity @ 25°C             |                   | 1   | μS/cm  | <1     | 2000 μS/cm    | 105                                   | 95       | 113        |  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 153927)  |                   |     |        |        |               |                                       |          |            |  |  |
| EK084: Unionized Hydrogen Sulfide                   |                   | 0.1 | mg/L   | <0.1   | 0.05 mg/L     | 90.4                                  | 72       | 126        |  |  |
| EP080: BTEXN (QCLot: 153830)                        |                   |     |        |        |               |                                       |          |            |  |  |
| EP080: Benzene                                      | 71-43-2           | 1   | μg/L   | <1     | 10 μg/L       | 100                                   | 70       | 124        |  |  |
| EP080: Ethylbenzene                                 | 100-41-4          | 2   | μg/L   | <2     | 10 μg/L       | 102                                   | 70       | 120        |  |  |
| EP080: meta- & para-Xylene                          | 108-38-3          | 2   | μg/L   | <2     | 10 μg/L       | 102                                   | 69       | 121        |  |  |
|                                                     | 106-42-3          |     |        |        |               |                                       |          |            |  |  |
| EP080: Naphthalene                                  | 91-20-3           | 5   | μg/L   | <5     | 10 μg/L       | 106                                   | 70       | 124        |  |  |
| EP080: ortho-Xylene                                 | 95-47-6           | 2   | μg/L   | <2     | 10 μg/L       | 106                                   | 72       | 122        |  |  |
| EP080: Toluene                                      | 108-88-3          | 2   | μg/L   | <2     | 10 μg/L       | 105                                   | 65       | 129        |  |  |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                            |            | Matrix Spike (MS) Report |                  |            |           |  |
|----------------------|------------------|----------------------------|------------|--------------------------|------------------|------------|-----------|--|
|                      |                  |                            |            | Spike                    | SpikeRecovery(%) | Recovery L | imits (%) |  |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration            | MS               | Low        | High      |  |
| EP080: BTEXN (Q      | CLot: 153830)    |                            |            |                          |                  |            |           |  |
| ES1526014-001        | AST2             | EP080: Benzene             | 71-43-2    | 25 μg/L                  | 90.6             | 70         | 130       |  |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L                  | 104              | 70         | 130       |  |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L                  | 104              | 70         | 130       |  |
|                      |                  |                            | 106-42-3   |                          |                  |            |           |  |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L                  | 99.9             | 70         | 130       |  |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L                  | 106              | 70         | 130       |  |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L                  | 98.4             | 70         | 130       |  |



## **QA/QC Compliance Assessment for DQO Reporting**

Work Order : **ES1526014** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 14-Jul-2015

 Site
 : --- Issue Date
 : 14-Jul-2015

Sampler : DAVID WATSON No. of samples received : 8
Order number : ---- No. of samples analysed : 8

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

## **Outliers : Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 Work Order : ES1526014

Client : PARSONS BRINCKERHOFF AUST P/L

Project · 2268523B



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      | Co | unt     | Rate (%) |          | Quality Control Specification                    |
|----------------------------------|----|---------|----------|----------|--------------------------------------------------|
| Method                           | QC | Regular | Actual   | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |         |          |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 8       | 0.00     | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |    |         |          |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 8       | 0.00     | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |         |          |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 8       | 0.00     | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER | Evaluation: × = Holding time breach; ✓ = Within holding time.  |
|---------------|----------------------------------------------------------------|
| WALLA VALLA   | Evaluation. •• - Holding time breach, • - Within Holding time. |

| Wallx: WATER                                     |       |             |                |                          | Evaluation | i. ~ - Holding time | breach, 🗸 = with | n nolaing time |  |
|--------------------------------------------------|-------|-------------|----------------|--------------------------|------------|---------------------|------------------|----------------|--|
| Method                                           |       | Sample Date | E              | Extraction / Preparation |            |                     | Analysis         |                |  |
| Container / Client Sample ID(s)                  |       |             | Date extracted | Due for extraction       | Evaluation | Date analysed       | Due for analysis | Evaluation     |  |
| EA010P: Conductivity by PC Titrator              |       |             |                |                          |            |                     |                  |                |  |
| Clear Plastic Bottle - Natural (EA010-P)<br>AST2 |       | 13-Jul-2015 |                |                          |            | 14-Jul-2015         | 10-Aug-2015      | <b>✓</b>       |  |
| Clear Plastic Bottle - Natural (EA010-P)<br>AST2 |       | 14-Jul-2015 |                |                          |            | 14-Jul-2015         | 11-Aug-2015      | ✓              |  |
| EP080: BTEXN                                     |       |             |                |                          |            |                     |                  |                |  |
| Amber VOC Vial - Sulfuric Acid (EP080)           |       |             |                |                          |            |                     |                  |                |  |
| AST2,                                            | WK11, | 13-Jul-2015 | 14-Jul-2015    | 27-Jul-2015              | ✓          | 14-Jul-2015         | 27-Jul-2015      | ✓              |  |
| WK12,                                            | WK13, |             |                |                          |            |                     |                  |                |  |
| QA6                                              |       |             |                |                          |            |                     |                  |                |  |
| Amber VOC Vial - Sulfuric Acid (EP080)           |       |             |                |                          |            |                     |                  |                |  |
| AST2,                                            | WK11, | 14-Jul-2015 | 14-Jul-2015    | 28-Jul-2015              | 1          | 14-Jul-2015         | 28-Jul-2015      | ✓              |  |
| WK13                                             |       |             |                |                          |            |                     |                  |                |  |

Page : 3 of 4 Work Order ES1526014

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    | Evaluation: <b>×</b> = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification |       |         |          |          |            |                                                  |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------|----------|------------|--------------------------------------------------|--|--|
| Quality Control Sample Type      |                                                                                                                               | Count |         | Rate (%) |          |            | Quality Control Specification                    |  |  |
| Analytical Methods               | Method                                                                                                                        | OC    | Reaular | Actual   | Expected | Evaluation |                                                  |  |  |
| Laboratory Duplicates (DUP)      |                                                                                                                               |       |         |          |          |            |                                                  |  |  |
| Conductivity by PC Titrator      | EA010-P                                                                                                                       | 1     | 2       | 50.00    | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| TRH Volatiles/BTEX               | EP080                                                                                                                         | 1     | 8       | 12.50    | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Un-ionized Hydrogen Sulfide      | EK084                                                                                                                         | 0     | 8       | 0.00     | 10.00    | se         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Laboratory Control Samples (LCS) |                                                                                                                               |       |         |          |          |            |                                                  |  |  |
| Conductivity by PC Titrator      | EA010-P                                                                                                                       | 1     | 2       | 50.00    | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| TRH Volatiles/BTEX               | EP080                                                                                                                         | 1     | 8       | 12.50    | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Un-ionized Hydrogen Sulfide      | EK084                                                                                                                         | 0     | 8       | 0.00     | 5.00     | sc .       | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Method Blanks (MB)               |                                                                                                                               |       |         |          |          |            |                                                  |  |  |
| Conductivity by PC Titrator      | EA010-P                                                                                                                       | 1     | 2       | 50.00    | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| TRH Volatiles/BTEX               | EP080                                                                                                                         | 1     | 8       | 12.50    | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Un-ionized Hydrogen Sulfide      | EK084                                                                                                                         | 0     | 8       | 0.00     | 5.00     | 3e         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Matrix Spikes (MS)               |                                                                                                                               |       |         |          |          |            |                                                  |  |  |
| TRH Volatiles/BTEX               | EP080                                                                                                                         | 1     | 8       | 12.50    | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
|                                  |                                                                                                                               |       |         |          |          |            |                                                  |  |  |

Page : 4 of 4
Work Order : ES1526014

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                             |
|-----------------------------|---------|--------|-----------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method       |
|                             |         |        | is compliant with NEPM (2013) Schedule B(3)                                                                     |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions |
|                             |         |        | by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)           |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                 |
|                             |         |        | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is    |
|                             |         |        | equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is     |
|                             |         |        | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                 |



## **QUALITY CONTROL REPORT**

**Work Order** : **ES1526117** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

: GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523A QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ---- Date Samples Received : 15-Jul-2015
C-O-C number : ---- Date Analysis Commenced : 15-Jul-2015
Sampler : DAVID WATSON | Issue Date | 15-Jul-2015

Sampler : DAVID WATSON Issue Date : 15-Jul-2015

Site : ---- No. of samples received : 5
Quote number : ---- No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

NATA Accredited

Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



Address

Signatories

SYDNEY NSW. AUSTRALIA 2001

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Pabi Subba Senior Organic Chemist Sydney Organics

Page : 2 of 4
Work Order : ES1526117

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1526117

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A

## ALS

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER             |                           |                                         |                                        | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |  |  |
|-------------------------------|---------------------------|-----------------------------------------|----------------------------------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|--|--|
| Laboratory sample ID          | Client sample ID          | Method: Compound                        | CAS Number                             | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |
| <b>EA010P: Conductivit</b>    | y by PC Titrator (QC Lot: | 155115)                                 |                                        |                                   |       |                 |                  |         |                     |  |  |
| ES1526117-001                 | AST2                      | EA010-P: Electrical Conductivity @ 25°C | A010-P: Electrical Conductivity @ 25°C |                                   | μS/cm | 7490            | 7570             | 1.10    | 0% - 20%            |  |  |
| EK084: Un-ionized H           | ydrogen Sulfide (QC Lot:  | 155078)                                 |                                        |                                   |       |                 |                  |         |                     |  |  |
| ES1526117-001                 | AST2                      | EK084: Unionized Hydrogen Sulfide       |                                        | 0.1                               | mg/L  | <0.1            | <0.1             | 0.00    | 0% - 20%            |  |  |
| EP080: BTEXN (QC Lot: 154969) |                           |                                         |                                        |                                   |       |                 |                  |         |                     |  |  |
| ES1526117-001                 | AST2                      | EP080: Benzene                          | 71-43-2                                | 1                                 | μg/L  | 10              | 10               | 0.00    | No Limit            |  |  |
|                               |                           | EP080: Ethylbenzene                     | 100-41-4                               | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |
|                               |                           | EP080: meta- & para-Xylene              | 108-38-3                               | 2                                 | μg/L  | 4               | 4                | 0.00    | No Limit            |  |  |
|                               |                           |                                         | 106-42-3                               |                                   |       |                 |                  |         |                     |  |  |
|                               |                           | EP080: ortho-Xylene                     | 95-47-6                                | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |
|                               |                           | EP080: Toluene                          | 108-88-3                               | 2                                 | μg/L  | 13              | 12               | 0.00    | No Limit            |  |  |
|                               |                           | EP080: Naphthalene                      | 91-20-3                                | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit            |  |  |

Page : 4 of 4 Work Order : ES1526117

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   | ub-Matrix: WATER |     |       |        |               | Laboratory Control Spike (LCS) Report |                     |      |  |  |
|-----------------------------------------------------|------------------|-----|-------|--------|---------------|---------------------------------------|---------------------|------|--|--|
|                                                     |                  |     |       | Report |               | Spike Recovery (%)                    | Recovery Limits (%) |      |  |  |
| Method: Compound                                    | CAS Number       | LOR | Unit  | Result | Concentration | LCS                                   | Low                 | High |  |  |
| EA010P: Conductivity by PC Titrator (QCLot: 155115) |                  |     |       |        |               |                                       |                     |      |  |  |
| EA010-P: Electrical Conductivity @ 25°C             |                  | 1   | μS/cm | <1     | 2000 μS/cm    | 107                                   | 95                  | 113  |  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 155078)  |                  |     |       |        |               |                                       |                     |      |  |  |
| EK084: Unionized Hydrogen Sulfide                   |                  | 0.1 | mg/L  | <0.1   | 0.05 mg/L     | 96.8                                  | 72                  | 126  |  |  |
| EP080: BTEXN (QCLot: 154969)                        |                  |     |       |        |               |                                       |                     |      |  |  |
| EP080: Benzene                                      | 71-43-2          | 1   | μg/L  | <1     | 10 μg/L       | 82.5                                  | 70                  | 124  |  |  |
| EP080: Ethylbenzene                                 | 100-41-4         | 2   | μg/L  | <2     | 10 μg/L       | 90.4                                  | 70                  | 120  |  |  |
| EP080: meta- & para-Xylene                          | 108-38-3         | 2   | μg/L  | <2     | 10 μg/L       | 91.9                                  | 69                  | 121  |  |  |
|                                                     | 106-42-3         |     |       |        |               |                                       |                     |      |  |  |
| EP080: Naphthalene                                  | 91-20-3          | 5   | μg/L  | <5     | 10 μg/L       | 84.2                                  | 70                  | 124  |  |  |
| EP080: ortho-Xylene                                 | 95-47-6          | 2   | μg/L  | <2     | 10 μg/L       | 97.9                                  | 72                  | 122  |  |  |
| EP080: Toluene                                      | 108-88-3         | 2   | μg/L  | <2     | 10 μg/L       | 91.6                                  | 65                  | 129  |  |  |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  | latrix: WATER              |            |               |                  |            |           |
|----------------------|------------------|----------------------------|------------|---------------|------------------|------------|-----------|
|                      |                  |                            |            | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration | MS               | Low        | High      |
| EP080: BTEXN (Q      | CLot: 154969)    |                            |            |               |                  |            |           |
| ES1526117-001        | AST2             | EP080: Benzene             | 71-43-2    | 25 μg/L       | 81.4             | 70         | 130       |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L       | 95.2             | 70         | 130       |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L       | 98.5             | 70         | 130       |
|                      |                  |                            | 106-42-3   |               |                  |            |           |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L       | 98.0             | 70         | 130       |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L       | 105              | 70         | 130       |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L       | 88.5             | 70         | 130       |



## **QA/QC Compliance Assessment for DQO Reporting**

Work Order : **ES1526117** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523A
 Date Samples Received
 : 15-Jul-2015

 Site
 : --- Issue Date
 : 15-Jul-2015

Sampler : DAVID WATSON No. of samples received : 5
Order number : ---- No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

## **Outliers : Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 ES1526117 Work Order

PARSONS BRINCKERHOFF AUST P/L Client

Project 2268523A



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      | Co | unt     | Rate   | e (%)    | Quality Control Specification                    |
|----------------------------------|----|---------|--------|----------|--------------------------------------------------|
| Method                           | QC | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER | Evaluation: × = H |
|---------------|-------------------|
| Matrix: WATER | Evaluation, * = n |

| Matrix: WATER                                 |       |             |                |                        | Evaluation | : x = Holding time | breach ; ✓ = Withi | n holding time. |
|-----------------------------------------------|-------|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------|
| Method                                        |       | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                 |
| Container / Client Sample ID(s)               |       |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation      |
| EA010P: Conductivity by PC Titrator           |       |             |                |                        |            |                    |                    |                 |
| Clear Plastic Bottle - Natural (EA010-P) AST2 |       | 15-Jul-2015 |                |                        |            | 15-Jul-2015        | 12-Aug-2015        | ✓               |
| EP080: BTEXN                                  |       |             |                |                        |            |                    |                    |                 |
| Amber VOC Vial - Sulfuric Acid (EP080)        |       |             |                |                        |            |                    |                    |                 |
| AST2,                                         | WK11, | 15-Jul-2015 | 15-Jul-2015    | 29-Jul-2015            | ✓          | 15-Jul-2015        | 29-Jul-2015        | ✓               |
| WK13,                                         | WK14, |             |                |                        |            |                    |                    |                 |
| QA7                                           |       |             |                |                        |            |                    |                    |                 |

Page : 3 of 4 Work Order ES1526117

Client PARSONS BRINCKERHOFF AUST P/L

2268523A Project



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

| the expected | rate. A listing | or preaches | is provided in the | e Summary o | or Outliers |
|--------------|-----------------|-------------|--------------------|-------------|-------------|
|              |                 |             |                    |             |             |

| Matrix: WATER                    |         |    |         | Evaluatio |          | Titror frequency | not within specification; ✓ = Quality Control frequency within speci |
|----------------------------------|---------|----|---------|-----------|----------|------------------|----------------------------------------------------------------------|
| Quality Control Sample Type      |         | Co | ount    |           | Rate (%) |                  | Quality Control Specification                                        |
| Analytical Methods               | Method  | OC | Reaular | Actual    | Expected | Evaluation       |                                                                      |
| aboratory Duplicates (DUP)       |         |    |         |           |          |                  |                                                                      |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00    | 10.00    | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| FRH Volatiles/BTEX               | EP080   | 1  | 5       | 20.00     | 10.00    | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| Jn-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00      | 10.00    | .sc              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| _aboratory Control Samples (LCS) |         |    |         |           |          |                  |                                                                      |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00    | 5.00     | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| RH Volatiles/BTEX                | EP080   | 1  | 5       | 20.00     | 5.00     | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| Jn-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00      | 5.00     | <b>x</b>         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| Method Blanks (MB)               |         |    |         |           |          |                  |                                                                      |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00    | 5.00     | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| RH Volatiles/BTEX                | EP080   | 1  | 5       | 20.00     | 5.00     | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| Jn-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00      | 5.00     | 3c               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| Matrix Spikes (MS)               |         |    |         |           |          |                  |                                                                      |
| FRH Volatiles/BTEX               | EP080   | 1  | 5       | 20.00     | 5.00     | 1                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |

Page : 4 of 4
Work Order : ES1526117

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                    |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                    |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3) |



## **QUALITY CONTROL REPORT**

**Work Order** : **ES1526118** Page : 1 of 17

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ---Date Samples Received: 15-Jul-2015C-O-C number: 15-Jul-2015Date Analysis Commenced: 15-Jul-2015

Sampler : DAVID WATSON Issue Date : 02-Sep-2015

Site : --- No. of samples received : 5
Quote number : --- No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position               | Accreditation Category |
|------------------|------------------------|------------------------|
| Alex Rossi       | Organic Chemist        | Sydney Organics        |
| Ankit Joshi      | Inorganic Chemist      | Sydney Inorganics      |
| Ashesh Patel     | Inorganic Chemist      | Sydney Inorganics      |
| Celine Conceicao | Senior Spectroscopist  | Sydney Inorganics      |
| Pabi Subba       | Senior Organic Chemist | Sydney Organics        |
|                  |                        |                        |

Page : 2 of 17

Work Order : ES1526118 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 17

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## ALS

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER    |                          |                                          |             |      |         | Laboratory I    | Duplicate (DUP) Report |         |                    |
|----------------------|--------------------------|------------------------------------------|-------------|------|---------|-----------------|------------------------|---------|--------------------|
| Laboratory sample ID | Client sample ID         | Method: Compound                         | CAS Number  | LOR  | Unit    | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (% |
| EA005P: pH by PC     | Titrator (QC Lot: 15520  | 3)                                       |             |      |         |                 |                        |         |                    |
| ES1526093-001        | Anonymous                | EA005-P: pH Value                        |             | 0.01 | pH Unit | 7.76            | 7.88                   | 1.53    | 0% - 20%           |
| ES1526091-001        | Anonymous                | EA005-P: pH Value                        |             | 0.01 | pH Unit | 6.95            | 6.95                   | 0.00    | 0% - 20%           |
| EA010P: Conductiv    | ity by PC Titrator (QC I | Lot: 155201)                             |             |      |         |                 |                        |         |                    |
| ES1526093-001        | Anonymous                | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 291             | 291                    | 0.00    | 0% - 20%           |
| ES1526091-001        | Anonymous                | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 1910            | 1900                   | 0.923   | 0% - 20%           |
| EA010P: Conductiv    | ity by PC Titrator (QC I | Lot: 155204)                             |             |      |         |                 |                        |         |                    |
| ES1526118-002        | WK11                     | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 11600           | 11600                  | 0.357   | 0% - 20%           |
| EA015: Total Dissol  | ved Solids (QC Lot: 15   | 56152)                                   |             |      |         |                 |                        |         |                    |
| ES1526112-001        | Anonymous                | EA015H: Total Dissolved Solids @180°C    |             | 10   | mg/L    | 1680            | 1760                   | 4.52    | 0% - 20%           |
| ES1526118-002        | WK11                     | EA015H: Total Dissolved Solids @180°C    |             | 10   | mg/L    | 6490            | 6620                   | 1.91    | 0% - 20%           |
| EA025: Suspended     | Solids (QC Lot: 15615    | 3)                                       |             |      |         |                 |                        |         |                    |
| ES1526112-001        | Anonymous                | EA025H: Suspended Solids (SS)            |             | 5    | mg/L    | 302             | 268                    | 12.0    | 0% - 20%           |
| ES1526118-002        | WK11                     | EA025H: Suspended Solids (SS)            |             | 5    | mg/L    | 33              | 33                     | 0.00    | No Limit           |
| ED009: Anions (Q0    | C Lot: 155489)           |                                          |             |      |         |                 |                        |         |                    |
| ES1526089-009        | Anonymous                | ED009-X: Chloride                        | 16887-00-6  | 0.1  | mg/L    | 11.3            | 11.4                   | 1.41    | 0% - 20%           |
| ES1526166-006        | Anonymous                | ED009-X: Chloride                        | 16887-00-6  | 0.1  | mg/L    | 8.97            | 8.89                   | 0.974   | 0% - 20%           |
| ED037P: Alkalinity I | by PC Titrator (QC Lot:  |                                          |             |      |         |                 |                        |         |                    |
| ES1526118-002        | WK11                     | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L    | 6180            | 6200                   | 0.388   | 0% - 20%           |
|                      |                          | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit           |
|                      |                          | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit           |
|                      |                          | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L    | 6180            | 6200                   | 0.388   | 0% - 20%           |
| ES1526091-001        | Anonymous                | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L    | 666             | 666                    | 0.00    | 0% - 20%           |
|                      |                          | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit           |
|                      |                          | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit           |
|                      |                          | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L    | 666             | 666                    | 0.00    | 0% - 20%           |
| ED041G: Sulfate (Tu  | urbidimetric) as SO4 2-  | by DA (QC Lot: 155178)                   |             |      |         |                 |                        |         |                    |
| ES1526052-006        | Anonymous                | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L    | 25              | 26                     | 0.00    | 0% - 20%           |
| ES1526051-001        | Anonymous                | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L    | 28              | 27                     | 0.00    | 0% - 20%           |
| ED041G: Sulfate (Tu  | urbidimetric) as SO4 2-  | by DA (QC Lot: 155182)                   |             |      |         |                 |                        |         |                    |
| ES1526118-002        | WK11                     | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L    | <10             | <10                    | 0.00    | No Limit           |
| ED045G: Chloride b   | y Discrete Analyser (C   | QC Lot: 155177)                          |             |      |         |                 |                        |         |                    |
| ES1526051-001        | Anonymous                | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L    | 100             | 116                    | 14.8    | 0% - 20%           |
| ES1526118-002        | WK11                     | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L    | 587             | 594                    | 1.07    | 0% - 20%           |
|                      | Major Cations (QC Lot    |                                          |             |      |         |                 |                        |         |                    |

Page : 4 of 17

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                        |                         |            |        |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------|-------------------------|------------|--------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound        | CAS Number | LOR    | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| ED093F: Dissolved N  | Major Cations (QC Lot: |                         |            |        |      |                 |                        |         |                     |
| ES1526237-001        | Anonymous              | ED093F: Calcium         | 7440-70-2  | 1      | mg/L | 21              | 20                     | 0.00    | 0% - 20%            |
|                      |                        | ED093F: Magnesium       | 7439-95-4  | 1      | mg/L | 15              | 15                     | 0.00    | 0% - 50%            |
|                      |                        | ED093F: Potassium       | 7440-09-7  | 1      | mg/L | 3               | 3                      | 0.00    | No Limit            |
|                      |                        | ED093F: Sodium          | 7440-23-5  | 1      | mg/L | 32              | 32                     | 0.00    | 0% - 20%            |
| ES1526066-001        | Anonymous              | ED093F: Calcium         | 7440-70-2  | 1      | mg/L | 14              | 14                     | 0.00    | 0% - 50%            |
|                      |                        | ED093F: Magnesium       | 7439-95-4  | 1      | mg/L | 7               | 8                      | 0.00    | No Limit            |
|                      |                        | ED093F: Potassium       | 7440-09-7  | 1      | mg/L | 3               | 3                      | 0.00    | No Limit            |
|                      |                        | ED093F: Sodium          | 7440-23-5  | 1      | mg/L | 4               | 4                      | 0.00    | No Limit            |
| EG020F: Dissolved N  | Metals by ICP-MS (QC I |                         |            |        |      |                 |                        |         |                     |
| ES1526237-001        | Anonymous              | EG020A-F: Cadmium       | 7440-43-9  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.00    | No Limit            |
|                      | ,                      | EG020A-F: Antimony      | 7440-36-0  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                        | EG020A-F: Arsenic       | 7440-38-2  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                        | EG020A-F: Barium        | 7440-39-3  | 0.001  | mg/L | 0.033           | 0.032                  | 3.22    | 0% - 20%            |
|                      |                        | EG020A-F: Beryllium     | 7440-41-7  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                        | EG020A-F: Chromium      | 7440-47-3  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                        | EG020A-F: Cobalt        | 7440-48-4  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                        | EG020A-F: Copper        | 7440-50-8  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                        | EG020A-F: Lead          | 7439-92-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                        | EG020A-F: Manganese     | 7439-96-5  | 0.001  | mg/L | 0.003           | 0.003                  | 0.00    | No Limit            |
|                      |                        | EG020A-F: Molybdenum    | 7439-98-7  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                        | EG020A-F: Nickel        | 7440-02-0  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                        | EG020A-F: Tin           | 7440-31-5  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                        | EG020A-F: Zinc          | 7440-66-6  | 0.005  | mg/L | 0.014           | <0.005                 | 94.0    | No Limit            |
|                      |                        | EG020A-F: Aluminium     | 7429-90-5  | 0.01   | mg/L | 0.06            | 0.06                   | 0.00    | No Limit            |
|                      |                        | EG020A-F: Selenium      | 7782-49-2  | 0.01   | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                        | EG020A-F: Vanadium      | 7440-62-2  | 0.01   | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                        | EG020A-F: Boron         | 7440-42-8  | 0.05   | mg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                        | EG020A-F: Iron          | 7439-89-6  | 0.05   | mg/L | 0.22            | 0.23                   | 0.00    | 0% - 20%            |
|                      |                        | EG020A-F: Bromine       | 7726-95-6  | 0.1    | mg/L | 0.2             | 0.1                    | 0.00    | No Limit            |
| ES1526066-001        | Anonymous              | EG020A-F: Cadmium       | 7440-43-9  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.00    | No Limit            |
|                      | ,                      | EG020A-F: Antimony      | 7440-36-0  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                        | EG020A-F: Arsenic       | 7440-38-2  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                        | EG020A-F: Barium        | 7440-39-3  | 0.001  | mg/L | 0.030           | 0.030                  | 0.00    | 0% - 20%            |
|                      |                        | EG020A-F: Beryllium     | 7440-41-7  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                        | EG020A-F: Chromium      | 7440-47-3  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                        | EG020A-F: Cobalt        | 7440-48-4  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                        | EG020A-F: Copper        | 7440-50-8  | 0.001  | mg/L | 0.004           | 0.004                  | 0.00    | No Limit            |
|                      |                        | EG020A-F: Lead          | 7439-92-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                        | EG020A-F: Manganese     | 7439-96-5  | 0.001  | mg/L | 0.002           | 0.002                  | 0.00    | No Limit            |
|                      |                        | EG020A-F: Maligariese   | 7439-98-7  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
| I                    | T                      | LG020A-1 . WOIYDUCHUIII | 1 +00 00-1 | 0.001  | g/L  | -0.001          | -0.001                 | 0.00    | 110 Ellillit        |

Page : 5 of 17

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER              |                          |                                      |            |          |        | Laboratory I    | Duplicate (DUP) Report |         |                     |
|--------------------------------|--------------------------|--------------------------------------|------------|----------|--------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID           | Client sample ID         | Method: Compound                     | CAS Number | LOR      | Unit   | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EG020F: Dissolved              | Metals by ICP-MS (QC I   | Lot: 157255) - continued             |            |          |        |                 |                        |         |                     |
| ES1526066-001                  | Anonymous                | EG020A-F: Nickel                     | 7440-02-0  | 0.001    | mg/L   | 0.054           | 0.054                  | 0.00    | 0% - 20%            |
|                                |                          | EG020A-F: Tin                        | 7440-31-5  | 0.001    | mg/L   | <0.001          | <0.001                 | 0.00    | No Limit            |
|                                |                          | EG020A-F: Zinc                       | 7440-66-6  | 0.005    | mg/L   | 0.005           | 0.005                  | 0.00    | No Limit            |
|                                |                          | EG020A-F: Aluminium                  | 7429-90-5  | 0.01     | mg/L   | 0.02            | 0.02                   | 0.00    | No Limit            |
|                                |                          | EG020A-F: Selenium                   | 7782-49-2  | 0.01     | mg/L   | <0.01           | <0.01                  | 0.00    | No Limit            |
|                                |                          | EG020A-F: Vanadium                   | 7440-62-2  | 0.01     | mg/L   | <0.01           | <0.01                  | 0.00    | No Limit            |
|                                |                          | EG020A-F: Boron                      | 7440-42-8  | 0.05     | mg/L   | <0.05           | <0.05                  | 0.00    | No Limit            |
|                                |                          | EG020A-F: Iron                       | 7439-89-6  | 0.05     | mg/L   | 0.11            | 0.11                   | 0.00    | No Limit            |
|                                |                          | EG020A-F: Bromine                    | 7726-95-6  | 0.1      | mg/L   | <0.1            | <0.1                   | 0.00    | No Limit            |
| EG020F: Dissolved              | Metals by ICP-MS (QC I   | Lot: 157256)                         |            |          |        |                 |                        |         |                     |
| ES1526066-001                  | Anonymous                | EG020B-F: Strontium                  | 7440-24-6  | 0.001    | mg/L   | 0.026           | 0.026                  | 0.00    | 0% - 20%            |
|                                |                          | EG020B-F: Uranium                    | 7440-61-1  | 0.001    | mg/L   | <0.001          | <0.001                 | 0.00    | No Limit            |
| EG035F: Dissolved              | Mercury by FIMS (QC L    | ot: 157257)                          |            |          |        |                 |                        |         |                     |
| ES1526066-002                  | Anonymous                | EG035F: Mercury                      | 7439-97-6  | 0.0001   | mg/L   | <0.0001         | <0.0001                | 0.00    | No Limit            |
| ES1526239-001                  | Anonymous                | EG035F: Mercury                      | 7439-97-6  | 0.0001   | mg/L   | <0.0001         | <0.0001                | 0.00    | No Limit            |
| FG052G: Silica by D            | Discrete Analyser (QC L  |                                      |            |          |        |                 |                        |         |                     |
| ES1526118-002                  | WK11                     | EG052G: Reactive Silica              |            | 0.05     | mg/L   | 35.2            | 34.0                   | 3.46    | 0% - 20%            |
| EK010/011: Chlorine            |                          | LOUSZO. Reactive offica              |            | 0.00     | 9.=    | 00.2            | 00                     | 0.10    | 070 2070            |
| ES1526118-001                  | AST2                     | EKO40. Oblasia - Essa                |            | 0.2      | mg/L   | <0.2            | <0.2                   | 0.00    | No Limit            |
| E31320116-001                  | A312                     | EK010: Chloring - Tatal Pagidual     |            | 0.2      | mg/L   | <0.2            | <0.2                   | 0.00    | No Limit            |
|                                | PO T' / / / / / /        | EK010: Chlorine - Total Residual     |            | 0.2      | IIIg/L | <b>~0.2</b>     | <b>~0.2</b>            | 0.00    | NO LITTLE           |
|                                | y PC Titrator (QC Lot: 1 |                                      | 40004 40.0 |          |        | 1.0             | 1.0                    | 2.22    | 20/ 500/            |
| ES1526118-002                  | WK11                     | EK040P: Fluoride                     | 16984-48-8 | 0.1      | mg/L   | 1.3             | 1.3                    | 0.00    | 0% - 50%            |
| ES1526091-001                  | Anonymous                | EK040P: Fluoride                     | 16984-48-8 | 0.1      | mg/L   | 0.6             | 0.6                    | 0.00    | No Limit            |
|                                | as N by Discrete Analys  | ser (QC Lot: 155963)                 |            |          |        |                 |                        |         |                     |
| ES1526112-001                  | Anonymous                | EK055G: Ammonia as N                 | 7664-41-7  | 0.01     | mg/L   | 0.13            | 0.12                   | 9.19    | 0% - 50%            |
| ES1526118-001                  | AST2                     | EK055G: Ammonia as N                 | 7664-41-7  | 0.01     | mg/L   | <0.01           | <0.01                  | 0.00    | No Limit            |
| EK057G: Nitrite as             | N by Discrete Analyser   | (QC Lot: 155179)                     |            |          |        |                 |                        |         |                     |
| ES1526118-005                  | QA7                      | EK057G: Nitrite as N                 | 14797-65-0 | 0.01     | mg/L   | <0.01           | <0.01                  | 0.00    | No Limit            |
| ES1526118-002                  | WK11                     | EK057G: Nitrite as N                 | 14797-65-0 | 0.01     | mg/L   | <0.05           | <0.05                  | 0.00    | No Limit            |
| EK059G: Nitrite plu            | s Nitrate as N (NOx) by  | Discrete Analyser (QC Lot: 155964)   |            |          |        |                 |                        |         |                     |
| ES1526112-001                  | Anonymous                | EK059G: Nitrite + Nitrate as N       |            | 0.01     | mg/L   | 1.60            | 1.58                   | 1.43    | 0% - 20%            |
| ES1526118-001                  | AST2                     | EK059G: Nitrite + Nitrate as N       |            | 0.01     | mg/L   | 0.04            | 0.04                   | 0.00    | No Limit            |
| EK061G: Total Kield            | lahl Nitrogen By Discret | te Analyser (QC Lot: 155953)         |            |          |        |                 |                        |         |                     |
| ES1526112-001                  | Anonymous                | EK061G: Total Kjeldahl Nitrogen as N |            | 0.1      | mg/L   | 1.7             | 2.4                    | 32.0    | 0% - 50%            |
| ES1526118-002                  | WK11                     | EK061G: Total Kjeldahl Nitrogen as N |            | 0.1      | mg/L   | 8.6             | 8.5                    | 0.00    | 0% - 20%            |
|                                |                          | e Analyser (QC Lot: 155952)          |            | <b>V</b> |        | 3.3             | 5.5                    | 0.00    | 0,0 20,0            |
| ES1526112-001                  |                          |                                      |            | 0.01     | ma/l   | 1.23            | 1.45                   | 16.0    | 0% - 20%            |
| ES1526112-001<br>ES1526118-002 | Anonymous<br>WK11        | EK067G: Total Phosphorus as P        |            | 0.01     | mg/L   | 3.15            | 3.12                   | 0.930   | 0% - 20%            |
| E31320118-002                  | VVICTI                   | EK067G: Total Phosphorus as P        |            | 0.01     | mg/L   | 3.15            | 3.12                   | 0.930   | 0% - 20%            |

Page : 6 of 17

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                        |                                    |            |      |      | Laboratory      | Duplicate (DUP) Report |                              |                     |
|----------------------|------------------------|------------------------------------|------------|------|------|-----------------|------------------------|------------------------------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                   | CAS Number | LOR  | Unit | Original Result | Duplicate Result       | RPD (%)                      | Recovery Limits (%) |
| EK071G: Reactive P   | Phosphorus as P by dis | screte analyser (QC Lot: 155175)   |            |      |      |                 |                        |                              |                     |
| ES1526092-001        | Anonymous              | EK071G: Reactive Phosphorus as P   | 14265-44-2 | 0.01 | mg/L | <0.01           | <0.01                  | 0.00                         | No Limit            |
| ES1526051-001        | Anonymous              | EK071G: Reactive Phosphorus as P   | 14265-44-2 | 0.01 | mg/L | <0.01           | <0.01                  | 0.00                         | No Limit            |
| EP033: C1 - C4 Hyd   | rocarbon Gases (QC L   | ot: 156157)                        |            |      |      |                 |                        |                              |                     |
| ES1526126-009        | Anonymous              | EP033: Butane                      | 106-97-8   | 10   | μg/L | <10             | <10                    | 0.00                         | No Limit            |
|                      |                        | EP033: Butene                      | 25167-67-3 | 10   | μg/L | <10             | <10                    | 0.00                         | No Limit            |
|                      |                        | EP033: Ethane                      | 74-84-0    | 10   | μg/L | <10             | <10                    | 0.00                         | No Limit            |
|                      |                        | EP033: Ethene                      | 74-85-1    | 10   | μg/L | <10             | <10                    | 0.00                         | No Limit            |
|                      |                        | EP033: Methane                     | 74-82-8    | 10   | μg/L | <10             | <10                    | 0.00                         | No Limit            |
|                      |                        | EP033: Propane                     | 74-98-6    | 10   | μg/L | <10             | <10                    | 0.00                         | No Limit            |
|                      |                        | EP033: Propene                     | 115-07-1   | 10   | μg/L | <10             | <10                    | 0.00<br>0.00<br>0.00<br>0.00 | No Limit            |
| ES1526118-001        | AST2                   | EP033: Butane                      | 106-97-8   | 10   | μg/L | <10             | <10                    | 0.00                         | No Limit            |
|                      |                        | EP033: Butene                      | 25167-67-3 | 10   | μg/L | <10             | <10                    | 0.00                         | No Limit            |
|                      |                        | EP033: Ethane                      | 74-84-0    | 10   | μg/L | 88              | 91                     | 3.22                         | No Limit            |
|                      |                        | EP033: Ethene                      | 74-85-1    | 10   | μg/L | <10             | <10                    | 0.00                         | No Limit            |
|                      |                        | EP033: Methane                     | 74-82-8    | 10   | μg/L | 1980            | 2110                   | 6.43                         | 0% - 20%            |
|                      |                        | EP033: Propane                     | 74-98-6    | 10   | μg/L | 14              | 14                     | 0.00                         | No Limit            |
|                      |                        | EP033: Propene                     | 115-07-1   | 10   | μg/L | <10             | <10                    | 0.00                         | No Limit            |
| EP074A: Monocycli    | c Aromatic Hydrocarbo  | ons (QC Lot: 155023)               |            |      |      |                 |                        |                              |                     |
| ES1526060-001        | Anonymous              | EP074: 1.2.4-Trimethylbenzene      | 95-63-6    | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
|                      |                        | EP074: 1.3.5-Trimethylbenzene      | 108-67-8   | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
|                      |                        | EP074: Isopropylbenzene            | 98-82-8    | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
|                      |                        | EP074: n-Butylbenzene              | 104-51-8   | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
|                      |                        | EP074: n-Propylbenzene             | 103-65-1   | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
|                      |                        | EP074: p-lsopropyltoluene          | 99-87-6    | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
|                      |                        | EP074: sec-Butylbenzene            | 135-98-8   | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
|                      |                        | EP074: Styrene                     | 100-42-5   | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
|                      |                        | EP074: tert-Butylbenzene           | 98-06-6    | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
| ES1526118-001        | AST2                   | EP074: 1.2.4-Trimethylbenzene      | 95-63-6    | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
|                      |                        | EP074: 1.3.5-Trimethylbenzene      | 108-67-8   | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
|                      |                        | EP074: Isopropylbenzene            | 98-82-8    | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
|                      |                        | EP074: n-Butylbenzene              | 104-51-8   | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
|                      |                        | EP074: n-Propylbenzene             | 103-65-1   | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
|                      |                        | EP074: p-Isopropyltoluene          | 99-87-6    | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
|                      |                        | EP074: sec-Butylbenzene            | 135-98-8   | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
|                      |                        | EP074: Styrene                     | 100-42-5   | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
|                      |                        | EP074: tert-Butylbenzene           | 98-06-6    | 5    | μg/L | <5              | <5                     | 0.00                         | No Limit            |
| EP074B: Oxygenate    | ed Compounds (QC Lo    | ot: 155023)                        |            |      |      |                 |                        |                              |                     |
| ES1526060-001        | Anonymous              | EP074: 2-Butanone (MEK)            | 78-93-3    | 50   | μg/L | <50             | <50                    | 0.00                         | No Limit            |
|                      | -                      | EP074: 2-Hexanone (MBK)            | 591-78-6   | 50   | μg/L | <50             | <50                    | 0.00                         | No Limit            |
|                      |                        | EP074: 4-Methyl-2-pentanone (MIBK) | 108-10-1   | 50   | μg/L | <50             | <50                    | 0.00                         | No Limit            |

Page : 7 of 17

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| EP0748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Recovery Limits (%)  No Limit  No Limit |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E9074B: Oxygenated Compounds (QC Lot: 155023) - continued   E9074: Uniyi Acetate   108-05-4   50   µg/L   <50   <50   0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No Limit                                                                                                  |
| ES1526118-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No Limit                                                                                                  |
| EP074: 2-Hexanone (MBK)   591-78-6   50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No Limit                                                                                                                             |
| EP074: A-Methyl-2-pentanone (MIBK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No Limit                                                                                                                                               |
| EP074: Vinyl Acetate   108-05-4   50   µg/L   <50   <50   0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No Limit                                                                                                                                                                 |
| EP074C: Sulfonated Compounds (QC Lot: 155023)   ES1526060-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No Limit                                                                                                                                                                          |
| ES1526060-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No Limit                                                                                                                                                                            |
| ES1526118-001   AST2   EP074: Carbon disulfide   75-15-0   5   µg/L   <5   <5   0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No Limit                                                                                                                                                                            |
| ES1526118-001   AST2   EP074: Carbon disulfide   75-15-0   5   µg/L   <5   <5   0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No Limit No Limit No Limit No Limit No Limit No Limit                                                                                                                                                                                                     |
| ES1526060-001  Anonymous  EP074: 1.2-Dibromoethane (EDB)  EP074: 1.2-Dichloropropane  T8-87-5  EP074: 1.2-Dichloropropane  EP074: 2.2-Dichloropropane  EP074: 2.2-Dichloropropane  EP074: 2.2-Dichloropropylene  EP074: cis-1.3-Dichloropropylene  EP074: trans-1.3-Dichloropropylene  ES1526118-001  AST2  EP074: 1.2-Dibromoethane (EDB)  EP074: 1.2-Dibromoethane (EDB)  EP074: 1.2-Dibromoethane (EDB)  EP074: 1.2-Dichloropropane  EP074: 2.2-Dichloropropane  EP074: 2.2-Dichloropropane  EP074: 2.2-Dichloropropane  EP074: cis-1.3-Dichloropropylene  EP074: cis-1.3-Dichloropropylene  EP074: cis-1.3-Dichloropropylene  EP074: trans-1.3-Dichloropropylene  EP074: trans-1.3-Dichloropropyle | No Limit<br>No Limit<br>No Limit<br>No Limit<br>No Limit                                                                                                                                                                                                  |
| ES1526060-001  Anonymous  EP074: 1.2-Dibromoethane (EDB)  EP074: 1.2-Dichloropropane  T8-87-5  EP074: 1.2-Dichloropropane  EP074: 2.2-Dichloropropane  EP074: 2.2-Dichloropropane  EP074: 2.2-Dichloropropylene  EP074: cis-1.3-Dichloropropylene  EP074: trans-1.3-Dichloropropylene  ES1526118-001  AST2  EP074: 1.2-Dibromoethane (EDB)  EP074: 1.2-Dibromoethane (EDB)  EP074: 1.2-Dibromoethane (EDB)  EP074: 1.2-Dichloropropane  EP074: 2.2-Dichloropropane  EP074: 2.2-Dichloropropane  EP074: 2.2-Dichloropropane  EP074: cis-1.3-Dichloropropylene  EP074: cis-1.3-Dichloropropylene  EP074: cis-1.3-Dichloropropylene  EP074: trans-1.3-Dichloropropylene  EP074: trans-1.3-Dichloropropyle | No Limit<br>No Limit<br>No Limit<br>No Limit<br>No Limit                                                                                                                                                                                                  |
| EP074: 1.2-Dichloropropane   78-87-5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No Limit No Limit No Limit No Limit                                                                                                                                                                                                                       |
| EP074: 2.2-Dichloropropane   594-20-7   5   μg/L   <5   <5   0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No Limit<br>No Limit<br>No Limit                                                                                                                                                                                                                          |
| EP074: cis-1.3-Dichloropropylene   10061-01-5   5   µg/L   <5   <5   0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No Limit<br>No Limit                                                                                                                                                                                                                                      |
| EP074: trans-1.3-Dichloropropylene   10061-02-6   5   μg/L   <5   <5   0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No Limit                                                                                                                                                                                                                                                  |
| ES1526118-001  AST2  EP074: 1.2-Dibromoethane (EDB)  EP074: 1.2-Dichloropropane  78-87-5  5  μg/L  <5  <5  0.00  EP074: 2.2-Dichloropropane  594-20-7  5  μg/L  <5  <5  0.00  EP074: cis-1.3-Dichloropropylene  10061-01-5  EP074: trans-1.3-Dichloropropylene  10061-02-6  EP074: trans-1.3-Dichloropropylene  EP074E: Halogenated Aliphatic Compounds (QC Lot: 155023)  EP074: 1.1.1.2-Tetrachloroethane  630-20-6  5  μg/L  <5  <5  0.00  EP074: 1.2-Dibromoethane (EDB)  106-93-4  5  μg/L  <5  <5  0.00  EP074: 1.2-Dichloropropane  78-87-5  5  μg/L  <5  <5  0.00  EP074: 1.2-Dichloropropane  594-20-7  5  μg/L  <5  <5  0.00  EP074: 1.3-Dichloropropylene  10061-02-6  5  μg/L  <5  <5  0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                           |
| EP074: 1.2-Dichloropropane       78-87-5       5       μg/L       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No Limit                                                                                                                                                                                                                                                  |
| EP074: 2.2-Dichloropropane       594-20-7       5       μg/L       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INO LITTIL                                                                                                                                                                                                                                                |
| EP074: cis-1.3-Dichloropropylene       10061-01-5       5       μg/L       <5       <5       0.00         EP074: trans-1.3-Dichloropropylene       10061-02-6       5       μg/L       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No Limit                                                                                                                                                                                                                                                  |
| EP074: trans-1.3-Dichloropropylene     10061-02-6     5     μg/L     <5     <5     0.00       EP074E: Halogenated Aliphatic Compounds (QC Lot: 155023)       ES1526060-001     Anonymous     EP074: 1.1.1.2-Tetrachloroethane     630-20-6     5     μg/L     <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No Limit                                                                                                                                                                                                                                                  |
| EP074E: Halogenated Aliphatic Compounds (QC Lot: 155023)           ES1526060-001         Anonymous         EP074: 1.1.1.2-Tetrachloroethane         630-20-6         5         μg/L         <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No Limit                                                                                                                                                                                                                                                  |
| ES1526060-001 Anonymous EP074: 1.1.1.2-Tetrachloroethane 630-20-6 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No Limit                                                                                                                                                                                                                                                  |
| EP074: 1.1.1-Trichloroethane 71-55-6 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No Limit                                                                                                                                                                                                                                                  |
| EP074: 1.1.2.2-Tetrachloroethane 79-34-5 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No Limit                                                                                                                                                                                                                                                  |
| EP074: 1.1.2-Trichloroethane 79-00-5 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No Limit                                                                                                                                                                                                                                                  |
| EP074: 1.1-Dichloroethane 75-34-3 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No Limit                                                                                                                                                                                                                                                  |
| EP074: 1.1-Dichloroethene 75-35-4 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No Limit                                                                                                                                                                                                                                                  |
| EP074: 1.1-Dichloropropylene 563-58-6 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No Limit                                                                                                                                                                                                                                                  |
| EP074: 1.2.3-Trichloropropane 96-18-4 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No Limit                                                                                                                                                                                                                                                  |
| EP074: 1.2-Dibromo-3-chloropropane 96-12-8 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No Limit                                                                                                                                                                                                                                                  |
| EP074: 1.2-Dichloroethane 107-06-2 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No Limit                                                                                                                                                                                                                                                  |
| EP074: 1.3-Dichloropropane 142-28-9 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No Limit                                                                                                                                                                                                                                                  |
| EP074: Carbon Tetrachloride 56-23-5 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No Limit                                                                                                                                                                                                                                                  |
| EP074: cis-1.2-Dichloroethene 156-59-2 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No Limit                                                                                                                                                                                                                                                  |
| EP074: cis-1.4-Dichloro-2-butene 1476-11-5 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No Limit                                                                                                                                                                                                                                                  |
| EP074: Dibromomethane 74-95-3 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No Limit                                                                                                                                                                                                                                                  |
| EP074: Hexachlorobutadiene 87-68-3 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No Limit                                                                                                                                                                                                                                                  |
| EP074: Iodomethane 74-88-4 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No Limit                                                                                                                                                                                                                                                  |
| EP074: Pentachloroethane 76-01-7 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |
| EP074: Tetrachloroethene 127-18-4 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No Limit                                                                                                                                                                                                                                                  |
| EP074: trans-1.2-Dichloroethene 156-60-5 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No Limit<br>No Limit                                                                                                                                                                                                                                      |

Page : 8 of 17

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| ub-Matrix: WATER     |                      |                                    |            |     |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|----------------------|------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID     | Method: Compound                   | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074E: Halogenate   | d Aliphatic Compound | s (QC Lot: 155023) - continued     |            |     |      |                 |                        |         |                     |
| ES1526060-001        | Anonymous            | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Trichloroethene             | 79-01-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Bromomethane                | 74-83-9    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Chloroethane                | 75-00-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Chloromethane               | 74-87-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Dichlorodifluoromethane     | 75-71-8    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Trichlorofluoromethane      | 75-69-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Vinyl chloride              | 75-01-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| ES1526118-001        | AST2                 | EP074: 1.1.1.2-Tetrachloroethane   | 630-20-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1.1-Trichloroethane       | 71-55-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1.2.2-Tetrachloroethane   | 79-34-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1.2-Trichloroethane       | 79-00-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1-Dichloroethane          | 75-34-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1-Dichloroethene          | 75-35-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1-Dichloropropylene       | 563-58-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2.3-Trichloropropane      | 96-18-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2-Dibromo-3-chloropropane | 96-12-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2-Dichloroethane          | 107-06-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.3-Dichloropropane         | 142-28-9   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Carbon Tetrachloride        | 56-23-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: cis-1.2-Dichloroethene      | 156-59-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: cis-1.4-Dichloro-2-butene   | 1476-11-5  | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Dibromomethane              | 74-95-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Hexachlorobutadiene         | 87-68-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Iodomethane                 | 74-88-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Pentachloroethane           | 76-01-7    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Tetrachloroethene           | 127-18-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: trans-1.2-Dichloroethene    | 156-60-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Trichloroethene             | 79-01-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Bromomethane                | 74-83-9    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Chloroethane                | 75-00-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Chloromethane               | 74-87-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Dichlorodifluoromethane     | 75-71-8    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Trichlorofluoromethane      | 75-69-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Vinyl chloride              | 75-01-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| P074F: Halogenate    | d Aromatic Compound  |                                    |            |     |      |                 |                        |         |                     |
| ES1526060-001        | Anonymous            | EP074: 1.2.3-Trichlorobenzene      | 87-61-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      | ,                    | EP074: 1.2.4-Trichlorobenzene      | 120-82-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2-4-Hichlorobenzene       | 95-50-1    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |

Page : 9 of 17

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                        |                                           |            |     |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------|-------------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                          | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074F: Halogenat    | ed Aromatic Compound   | ls (QC Lot: 155023) - continued           |            |     |      |                 |                        |         |                     |
| ES1526060-001        | Anonymous              | EP074: 1.3-Dichlorobenzene                | 541-73-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.4-Dichlorobenzene                | 106-46-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 2-Chlorotoluene                    | 95-49-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 4-Chlorotoluene                    | 106-43-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Bromobenzene                       | 108-86-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Chlorobenzene                      | 108-90-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1526118-001        | AST2                   | EP074: 1.2.3-Trichlorobenzene             | 87-61-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.2.4-Trichlorobenzene             | 120-82-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.2-Dichlorobenzene                | 95-50-1    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.3-Dichlorobenzene                | 541-73-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.4-Dichlorobenzene                | 106-46-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 2-Chlorotoluene                    | 95-49-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 4-Chlorotoluene                    | 106-43-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Bromobenzene                       | 108-86-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Chlorobenzene                      | 108-90-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074G: Trihalome    | thanes (QC Lot: 155023 | 3)                                        |            |     |      |                 |                        |         |                     |
| ES1526060-001        | Anonymous              | EP074: Bromodichloromethane               | 75-27-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Bromoform                          | 75-25-2    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Chloroform                         | 67-66-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Dibromochloromethane               | 124-48-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1526118-001        | AST2                   | EP074: Bromodichloromethane               | 75-27-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Bromoform                          | 75-25-2    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Chloroform                         | 67-66-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Dibromochloromethane               | 124-48-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP080/071: Total Pe  | etroleum Hydrocarbons  | (QC Lot: 155022)                          |            |     |      |                 |                        |         |                     |
| ES1526060-001        | Anonymous              | EP080: C6 - C9 Fraction                   |            | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| ES1526118-001        | AST2                   | EP080: C6 - C9 Fraction                   |            | 20  | μg/L | 50              | 50                     | 0.00    | No Limit            |
| EP080/071: Total Re  | ecoverable Hydrocarbo  | ns - NEPM 2013 Fractions (QC Lot: 155022) |            |     |      | <u> </u>        |                        |         |                     |
| ES1526060-001        | Anonymous              | EP080; C6 - C10 Fraction                  | C6_C10     | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| ES1526118-001        | AST2                   | EP080: C6 - C10 Fraction                  | C6 C10     | 20  | µg/L | 50              | 50                     | 0.00    | No Limit            |
|                      | nes (QC Lot: 155634)   | 2. 333. 33 3101143831                     |            |     |      |                 |                        |         |                     |
| EB1522915-001        | Anonymous              | EP262: Diethanolamine                     | 111-42-2   | 1   | μg/L | 0.010           | 10                     | 0.00    | 0% - 50%            |
| LD 10220 10-00 I     | , wionymous            | EP262: Dietnanolamine EP262: Ethanolamine | 141-43-5   | 1   | μg/L | 0.010           | 13                     | 19.7    | 0% - 50%            |

Page : 10 of 17

Work Order : ES1526118 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                               |       |       | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report | ort        |  |
|-----------------------------------------------------------------|-------|-------|-------------------|---------------|-------------------------------|-----------|------------|--|
|                                                                 |       |       | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |  |
| Method: Compound CAS Number                                     | r LOR | Unit  | Result            | Concentration | LCS                           | Low       | High       |  |
| EA010P: Conductivity by PC Titrator (QCLot: 155201)             |       |       |                   |               |                               |           |            |  |
| EA010-P: Electrical Conductivity @ 25°C                         | . 1   | μS/cm | <1                | 2000 μS/cm    | 105                           | 95        | 113        |  |
| EA010P: Conductivity by PC Titrator (QCLot: 155204)             |       |       |                   |               |                               |           |            |  |
| EA010-P: Electrical Conductivity @ 25°C                         | . 1   | μS/cm | <1                | 2000 μS/cm    | 102                           | 95        | 113        |  |
| EA015: Total Dissolved Solids (QCLot: 156152)                   |       |       |                   |               |                               |           |            |  |
| EA015H: Total Dissolved Solids @180°C                           | 10    | mg/L  | <10               | 2000 mg/L     | 95.7                          | 87        | 109        |  |
|                                                                 |       | -     | <10               | 293 mg/L      | 111                           | 66        | 126        |  |
| EA025: Suspended Solids (QCLot: 156153)                         |       |       |                   |               |                               |           |            |  |
| EA025H: Suspended Solids (SS)                                   | 5     | mg/L  | <5                | 150 mg/L      | 94.0                          | 83        | 129        |  |
|                                                                 |       |       | <5                | 1000 mg/L     | 92.0                          | 84        | 110        |  |
| ED009: Anions (QCLot: 155489)                                   |       |       |                   |               |                               |           |            |  |
| ED009-X: Chloride 16887-00-6                                    | 0.1   | mg/L  | <0.100            | 2 mg/L        | 103                           | 89        | 107        |  |
| ED037P: Alkalinity by PC Titrator (QCLot: 155200)               |       |       |                   |               |                               |           |            |  |
| ED037-P: Total Alkalinity as CaCO3                              |       | mg/L  |                   | 200 mg/L      | 103                           | 81        | 111        |  |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 155178) |       |       |                   |               |                               |           |            |  |
| ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8               | 1     | mg/L  | <1                | 25 mg/L       | 114                           | 86        | 122        |  |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 155182) |       |       |                   | _             |                               |           |            |  |
| ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8               | 1     | mg/L  | <1                | 25 mg/L       | 111                           | 86        | 122        |  |
| ED045G: Chloride by Discrete Analyser (QCLot: 155177)           |       |       |                   |               |                               |           |            |  |
| ED045G: Chloride by Discrete Analyser (QCEOt. 133177)           | 1     | mg/L  | <1                | 10 mg/L       | 110                           | 75        | 123        |  |
| ED043G. Gillottue                                               | •     | 9/=   | <1                | 1000 mg/L     | 84.7                          | 77        | 119        |  |
| ED093F: Dissolved Major Cations (QCLot: 157258)                 |       |       |                   |               |                               |           |            |  |
| ED093F: Calcium 7440-70-2                                       | . 1   | mg/L  | <1                | 50 mg/L       | 108                           | 90        | 114        |  |
| ED093F: Magnesium 7439-95-4                                     | . 1   | mg/L  | <1                | 50 mg/L       | 106                           | 90        | 110        |  |
| ED093F: Potassium 7440-09-7                                     | 1     | mg/L  | <1                | 50 mg/L       | 107                           | 87        | 117        |  |
| ED093F: Sodium 7440-23-5                                        | 1     | mg/L  | <1                | 50 mg/L       | 109                           | 82        | 118        |  |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 157255)              |       |       |                   |               |                               |           |            |  |
| EG020A-F: Aluminium 7429-90-5                                   | 0.01  | mg/L  | <0.01             | 0.5 mg/L      | 95.2                          | 85        | 115        |  |
| EG020A-F: Antimony 7440-36-0                                    | 0.001 | mg/L  | <0.001            | 0.01 mg/L     | 85.4                          | 85        | 115        |  |
| EG020A-F: Arsenic 7440-38-2                                     | 0.001 | mg/L  | <0.001            | 0.1 mg/L      | 105                           | 85        | 115        |  |
| EG020A-F: Barium 7440-39-3                                      | 0.001 | mg/L  | <0.001            | 0.1 mg/L      | 97.4                          | 85        | 115        |  |
| EG020A-F: Beryllium 7440-41-7                                   | 0.001 | mg/L  | <0.001            | 0.1 mg/L      | 90.6                          | 85        | 115        |  |
| EG020A-F: Boron 7440-42-8                                       | 0.05  | mg/L  | <0.05             | 0.1 mg/L      | 108                           | 85        | 115        |  |
| EG020A-F: Bromine 7726-95-6                                     | 0.1   | mg/L  | <0.1              |               |                               |           |            |  |

Page : 11 of 17

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                           |             |          |        | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|-------------------------------------------------------------|-------------|----------|--------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                             |             |          |        | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                            | CAS Number  | LOR      | Unit   | Result            | Concentration | LCS                           | Low       | High       |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 157255) - con    | tinued      |          |        |                   |               |                               |           |            |
| EG020A-F: Cadmium                                           | 7440-43-9   | 0.0001   | mg/L   | <0.0001           | 0.1 mg/L      | 96.6                          | 85        | 115        |
| EG020A-F: Chromium                                          | 7440-47-3   | 0.001    | mg/L   | <0.001            | 0.1 mg/L      | 90.5                          | 85        | 115        |
| EG020A-F: Cobalt                                            | 7440-48-4   | 0.001    | mg/L   | <0.001            | 0.1 mg/L      | 103                           | 85        | 115        |
| EG020A-F: Copper                                            | 7440-50-8   | 0.001    | mg/L   | <0.001            | 0.1 mg/L      | 102                           | 85        | 115        |
| EG020A-F: Iron                                              | 7439-89-6   | 0.05     | mg/L   | <0.05             | 0.5 mg/L      | 104                           | 85        | 115        |
| EG020A-F: Lead                                              | 7439-92-1   | 0.001    | mg/L   | <0.001            | 0.1 mg/L      | 92.8                          | 85        | 115        |
| EG020A-F: Manganese                                         | 7439-96-5   | 0.001    | mg/L   | <0.001            | 0.1 mg/L      | 93.6                          | 85        | 115        |
| EG020A-F: Molybdenum                                        | 7439-98-7   | 0.001    | mg/L   | <0.001            | 0.1 mg/L      | 98.8                          | 85        | 115        |
| EG020A-F: Nickel                                            | 7440-02-0   | 0.001    | mg/L   | <0.001            | 0.1 mg/L      | 106                           | 85        | 115        |
| EG020A-F: Selenium                                          | 7782-49-2   | 0.01     | mg/L   | <0.01             | 0.1 mg/L      | 104                           | 85        | 115        |
| EG020A-F: Tin                                               | 7440-31-5   | 0.001    | mg/L   | <0.001            | 0.1 mg/L      | 95.9                          | 85        | 115        |
| EG020A-F: Vanadium                                          | 7440-62-2   | 0.01     | mg/L   | <0.01             | 0.1 mg/L      | 93.0                          | 85        | 115        |
| EG020A-F: Zinc                                              | 7440-66-6   | 0.005    | mg/L   | <0.005            | 0.1 mg/L      | 105                           | 85        | 115        |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 157256)          |             |          |        |                   |               |                               |           |            |
| EG020B-F: Strontium                                         | 7440-24-6   | 0.001    | mg/L   | <0.001            | 0.1 mg/L      | 102                           | 80        | 112        |
| EG020B-F: Uranium                                           | 7440-61-1   | 0.001    | mg/L   | <0.001            |               |                               |           |            |
| EG035F: Dissolved Mercury by FIMS (QCLot: 157257)           |             |          |        |                   |               |                               |           |            |
| EG035F: Mercury                                             | 7439-97-6   | 0.0001   | mg/L   | <0.0001           | 0.01 mg/L     | 87.5                          | 78        | 114        |
| EG052G: Silica by Discrete Analyser (QCLot: 155181)         |             |          |        |                   |               |                               |           |            |
| EG052G: Reactive Silica                                     |             | 0.05     | mg/L   | <0.05             | 5 mg/L        | 109                           | 94        | 114        |
| EK010/011: Chlorine (QCLot: 155057)                         |             |          |        |                   |               |                               |           |            |
| EK010: Chlorine - Free                                      |             | 0.2      | mg/L   | <0.2              |               |                               |           |            |
| EK010: Chlorine - Total Residual                            |             | 0.2      | mg/L   | <0.2              |               |                               |           |            |
| EK040P: Fluoride by PC Titrator (QCLot: 155202)             |             |          |        |                   |               |                               |           |            |
| EK040P: Fluoride                                            | 16984-48-8  | 0.1      | mg/L   | <0.1              | 5 mg/L        | 93.0                          | 75        | 119        |
| EK055G: Ammonia as N by Discrete Analyser (QCLot: 15596     | (3)         |          |        |                   |               |                               |           |            |
| EK055G: Ammonia as N                                        | 7664-41-7   | 0.01     | mg/L   | <0.01             | 1 mg/L        | 105                           | 90        | 114        |
|                                                             |             |          | g.     |                   | <b>g</b>      |                               |           |            |
| EK057G: Nitrite as N by Discrete Analyser (QCLot: 155179)   | 14797-65-0  | 0.01     | mg/L   | <0.01             | 0.5 mg/L      | 93.4                          | 82        | 114        |
| EK057G: Nitrite as N                                        |             |          | IIIg/L | 70.01             | 0.5 mg/L      | 33.4                          | 02        | 114        |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyse |             | <u> </u> | m=//   | <b>40.04</b>      | 0.5//         | 07.0                          | 04        | 140        |
| EK059G: Nitrite + Nitrate as N                              |             | 0.01     | mg/L   | <0.01             | 0.5 mg/L      | 97.6                          | 91        | 113        |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCL   |             |          |        |                   |               |                               |           |            |
| EK061G: Total Kjeldahl Nitrogen as N                        |             | 0.1      | mg/L   | <0.1              | 10 mg/L       | 87.9                          | 69        | 101        |
|                                                             |             |          |        | <0.1              | 1 mg/L        | 91.0                          | 70<br>74  | 118        |
|                                                             |             |          |        | <0.1              | 5 mg/L        | 108                           | 74        | 118        |
| EK067G: Total Phosphorus as P by Discrete Analyser (QCLo    | ot: 155952) |          |        |                   |               |                               |           |            |

Page : 12 of 17

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                               |                          |          |      | Method Blank (MB) |               | Laboratory Control Spike (LCS) Report |          |            |  |  |
|-------------------------------------------------|--------------------------|----------|------|-------------------|---------------|---------------------------------------|----------|------------|--|--|
|                                                 |                          |          |      | Report            | Spike         | Spike Recovery (%)                    | Recovery | Limits (%) |  |  |
| Method: Compound                                | CAS Number               | LOR      | Unit | Result            | Concentration | LCS                                   | Low      | High       |  |  |
| EK067G: Total Phosphorus as P by Discrete Analy | ser (QCLot: 155952) - co | ontinued |      |                   |               |                                       |          |            |  |  |
| EK067G: Total Phosphorus as P                   |                          | 0.01     | mg/L | <0.01             | 4.42 mg/L     | 92.4                                  | 71       | 101        |  |  |
| ·                                               |                          |          |      | <0.01             | 0.442 mg/L    | 94.2                                  | 72       | 108        |  |  |
|                                                 |                          |          |      | <0.01             | 1 mg/L        | 109                                   | 78       | 118        |  |  |
| EK071G: Reactive Phosphorus as P by discrete an | alyser (QCLot: 155175)   |          |      |                   |               |                                       |          |            |  |  |
| EK071G: Reactive Phosphorus as P                | 14265-44-2               | 0.01     | mg/L | <0.01             | 0.5 mg/L      | 108                                   | 85       | 117        |  |  |
| EP020: Oil and Grease (O&G) (QCLot: 155526)     |                          |          |      |                   |               |                                       |          |            |  |  |
| EP020: Oil & Grease                             |                          | 5        | mg/L | <5                | 5000 mg/L     | 110                                   | 80       | 120        |  |  |
| EP033: C1 - C4 Hydrocarbon Gases (QCLot: 1561   | 57)                      |          |      |                   |               |                                       |          |            |  |  |
| EP033: Butane                                   | 106-97-8                 | 10       | μg/L | <10               | 102.18 μg/L   | 112                                   | 85       | 115        |  |  |
| EP033: Butene                                   | 25167-67-3               | 10       | μg/L | <10               | 99.61 μg/L    | 114                                   | 83       | 115        |  |  |
| EP033: Ethane                                   | 74-84-0                  | 10       | μg/L | <10               | 54.43 μg/L    | 101                                   | 87       | 111        |  |  |
| EP033: Ethene                                   | 74-85-1                  | 10       | μg/L | <10               | 50.29 μg/L    | 105                                   | 87       | 111        |  |  |
| EP033: Methane                                  | 74-82-8                  | 10       | μg/L | <10               | 28.48 μg/L    | 88.1                                  | 86       | 114        |  |  |
| EP033: Propane                                  | 74-98-6                  | 10       | μg/L | <10               | 78.28 μg/L    | 110                                   | 84       | 112        |  |  |
| EP033: Propene                                  | 115-07-1                 | 10       | μg/L | <10               | 73.97 μg/L    | 112                                   | 85       | 113        |  |  |
| EP074A: Monocyclic Aromatic Hydrocarbons (QC    | Lot: 155023)             |          |      |                   |               |                                       |          |            |  |  |
| EP074: 1.2.4-Trimethylbenzene                   | 95-63-6                  | 5        | μg/L | <5                | 10 μg/L       | 87.5                                  | 71       | 121        |  |  |
| EP074: 1.3.5-Trimethylbenzene                   | 108-67-8                 | 5        | μg/L | <5                | 10 μg/L       | 87.9                                  | 70       | 122        |  |  |
| EP074: Isopropylbenzene                         | 98-82-8                  | 5        | μg/L | <5                | 10 μg/L       | 91.4                                  | 75       | 121        |  |  |
| EP074: n-Butylbenzene                           | 104-51-8                 | 5        | μg/L | <5                | 10 μg/L       | 86.6                                  | 62       | 126        |  |  |
| EP074: n-Propylbenzene                          | 103-65-1                 | 5        | μg/L | <5                | 10 μg/L       | 82.9                                  | 67       | 123        |  |  |
| EP074: p-Isopropyltoluene                       | 99-87-6                  | 5        | μg/L | <5                | 10 μg/L       | 88.3                                  | 67       | 123        |  |  |
| EP074: sec-Butylbenzene                         | 135-98-8                 | 5        | μg/L | <5                | 10 μg/L       | 87.0                                  | 69       | 123        |  |  |
| EP074: Styrene                                  | 100-42-5                 | 5        | μg/L | <5                | 10 μg/L       | 87.6                                  | 74       | 118        |  |  |
| EP074: tert-Butylbenzene                        | 98-06-6                  | 5        | μg/L | <5                | 10 μg/L       | 84.8                                  | 70       | 122        |  |  |
| EP074B: Oxygenated Compounds (QCLot: 155023     | 3)                       |          |      |                   |               |                                       |          |            |  |  |
| EP074: 2-Butanone (MEK)                         | 78-93-3                  | 50       | μg/L | <50               | 100 μg/L      | 83.3                                  | 74       | 130        |  |  |
| EP074: 2-Hexanone (MBK)                         | 591-78-6                 | 50       | μg/L | <50               | 100 μg/L      | 85.3                                  | 65       | 137        |  |  |
| EP074: 4-Methyl-2-pentanone (MIBK)              | 108-10-1                 | 50       | μg/L | <50               | 100 μg/L      | 80.9                                  | 61       | 139        |  |  |
| EP074: Vinyl Acetate                            | 108-05-4                 | 50       | μg/L | <50               | 100 μg/L      | 82.4                                  | 61       | 134        |  |  |
| EP074C: Sulfonated Compounds (QCLot: 155023)    |                          |          |      |                   |               |                                       |          |            |  |  |
| EP074: Carbon disulfide                         | 75-15-0                  | 5        | μg/L | <5                | 10 μg/L       | 84.2                                  | 73       | 127        |  |  |
| EP074D: Fumigants (QCLot: 155023)               |                          |          |      |                   |               |                                       |          |            |  |  |
| EP074: 1.2-Dibromoethane (EDB)                  | 106-93-4                 | 5        | μg/L | <5                | 10 μg/L       | 88.5                                  | 69       | 117        |  |  |
| EP074: 1.2-Dichloropropane                      | 78-87-5                  | 5        | μg/L | <5                | 10 μg/L       | 83.9                                  | 76       | 120        |  |  |
| EP074: 2.2-Dichloropropane                      | 594-20-7                 | 5        | μg/L | <5                | 10 μg/L       | 78.1                                  | 61       | 119        |  |  |
| EP074: cis-1.3-Dichloropropylene                | 10061-01-5               | 5        | μg/L | <5                | 10 μg/L       | 66.3                                  | 62       | 120        |  |  |
| EP074: trans-1.3-Dichloropropylene              | 10061-02-6               | 5        | μg/L | <5                | 10 μg/L       | 67.4                                  | 61       | 119        |  |  |

Page : 13 of 17

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                           |               |     |      | Method Blank (MB) |               | S) Report          |          |            |
|---------------------------------------------|---------------|-----|------|-------------------|---------------|--------------------|----------|------------|
|                                             |               |     |      | Report            | Spike         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                            | CAS Number    | LOR | Unit | Result            | Concentration | LCS                | Low      | High       |
| EP074E: Halogenated Aliphatic Compounds (QC | CLot: 155023) |     |      |                   |               |                    |          |            |
| EP074: 1.1.1.2-Tetrachloroethane            | 630-20-6      | 5   | μg/L | <5                | 10 μg/L       | 88.3               | 66       | 114        |
| EP074: 1.1.1-Trichloroethane                | 71-55-6       | 5   | μg/L | <5                | 10 μg/L       | 84.5               | 61       | 119        |
| EP074: 1.1.2.2-Tetrachloroethane            | 79-34-5       | 5   | μg/L | <5                | 10 μg/L       | 86.3               | 70       | 124        |
| EP074: 1.1.2-Trichloroethane                | 79-00-5       | 5   | μg/L | <5                | 10 μg/L       | 92.0               | 75       | 123        |
| EP074: 1.1-Dichloroethane                   | 75-34-3       | 5   | μg/L | <5                | 10 μg/L       | 83.6               | 75       | 119        |
| EP074: 1.1-Dichloroethene                   | 75-35-4       | 5   | μg/L | <5                | 10 μg/L       | 85.9               | 69       | 123        |
| EP074: 1.1-Dichloropropylene                | 563-58-6      | 5   | μg/L | <5                | 10 μg/L       | 85.3               | 73       | 119        |
| EP074: 1.2.3-Trichloropropane               | 96-18-4       | 5   | μg/L | <5                | 10 μg/L       | 102                | 74       | 128        |
| EP074: 1.2-Dibromo-3-chloropropane          | 96-12-8       | 5   | μg/L | <5                | 10 μg/L       | 77.9               | 66       | 136        |
| EP074: 1.2-Dichloroethane                   | 107-06-2      | 5   | μg/L | <5                | 10 μg/L       | 98.3               | 78       | 122        |
| EP074: 1.3-Dichloropropane                  | 142-28-9      | 5   | μg/L | <5                | 10 μg/L       | 92.0               | 79       | 121        |
| EP074: Bromomethane                         | 74-83-9       | 50  | μg/L | <50               | 100 μg/L      | 84.1               | 56       | 140        |
| EP074: Carbon Tetrachloride                 | 56-23-5       | 5   | μg/L | <5                | 10 μg/L       | 93.7               | 63       | 121        |
| EP074: Chloroethane                         | 75-00-3       | 50  | μg/L | <50               | 100 μg/L      | 83.6               | 63       | 135        |
| EP074: Chloromethane                        | 74-87-3       | 50  | μg/L | <50               | 100 μg/L      | 70.1               | 67       | 130        |
| EP074: cis-1.2-Dichloroethene               | 156-59-2      | 5   | μg/L | <5                | 10 μg/L       | 91.5               | 77       | 117        |
| EP074: cis-1.4-Dichloro-2-butene            | 1476-11-5     | 5   | μg/L | <5                | 10 μg/L       | 81.5               | 71       | 128        |
| EP074: Dibromomethane                       | 74-95-3       | 5   | μg/L | <5                | 10 μg/L       | 91.8               | 74       | 118        |
| EP074: Dichlorodifluoromethane              | 75-71-8       | 50  | μg/L | <50               | 100 μg/L      | 61.3               | 61       | 138        |
| EP074: Hexachlorobutadiene                  | 87-68-3       | 5   | μg/L | <5                | 10 μg/L       | 102                | 58       | 132        |
| EP074: Iodomethane                          | 74-88-4       | 5   | μg/L | <5                | 10 μg/L       | 76.6               | 70       | 128        |
| EP074: Pentachloroethane                    | 76-01-7       | 5   | μg/L | <5                | 10 μg/L       | 89.0               | 72       | 126        |
| EP074: Tetrachloroethene                    | 127-18-4      | 5   | μg/L | <5                | 10 μg/L       | 90.7               | 72       | 124        |
| EP074: trans-1.2-Dichloroethene             | 156-60-5      | 5   | μg/L | <5                | 10 μg/L       | 87.2               | 71       | 119        |
| EP074: trans-1.4-Dichloro-2-butene          | 110-57-6      | 5   | μg/L | <5                | 10 μg/L       | 83.5               | 60       | 120        |
| EP074: Trichloroethene                      | 79-01-6       | 5   | μg/L | <5                | 10 μg/L       | 89.6               | 74       | 120        |
| EP074: Trichlorofluoromethane               | 75-69-4       | 50  | μg/L | <50               | 100 μg/L      | 96.5               | 65       | 131        |
| EP074: Vinyl chloride                       | 75-01-4       | 50  | μg/L | <50               | 100 μg/L      | 118                | 69       | 129        |
| EP074F: Halogenated Aromatic Compounds (QC  | CLot: 155023) |     |      |                   |               |                    |          |            |
| EP074: 1.2.3-Trichlorobenzene               | 87-61-6       | 5   | μg/L | <5                | 10 μg/L       | 96.5               | 67       | 125        |
| EP074: 1.2.4-Trichlorobenzene               | 120-82-1      | 5   | μg/L | <5                | 10 μg/L       | 92.8               | 60       | 126        |
| EP074: 1.2-Dichlorobenzene                  | 95-50-1       | 5   | μg/L | <5                | 10 μg/L       | 91.6               | 77       | 117        |
| EP074: 1.3-Dichlorobenzene                  | 541-73-1      | 5   | μg/L | <5                | 10 μg/L       | 90.0               | 74       | 120        |
| EP074: 1.4-Dichlorobenzene                  | 106-46-7      | 5   | μg/L | <5                | 10 μg/L       | 90.7               | 72       | 120        |
| EP074: 2-Chlorotoluene                      | 95-49-8       | 5   | μg/L | <5                | 10 μg/L       | 85.8               | 71       | 121        |
| EP074: 4-Chlorotoluene                      | 106-43-4      | 5   | μg/L | <5                | 10 μg/L       | 85.7               | 71       | 121        |
| EP074: Bromobenzene                         | 108-86-1      | 5   | μg/L | <5                | 10 μg/L       | 89.8               | 76       | 116        |
| EP074: Chlorobenzene                        | 108-90-7      | 5   | μg/L | <5                | 10 μg/L       | 93.7               | 80       | 118        |

Page : 14 of 17

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                           |         |     |      | Method Blank (MB) |               | Laboratory Control Spike (LCS | ) Report |            |
|-------------------------------------------------------------|---------|-----|------|-------------------|---------------|-------------------------------|----------|------------|
|                                                             |         |     |      | Report            | Spike         | Spike Recovery (%)            | Recovery | Limits (%) |
| Method: Compound CAS                                        | Number  | LOR | Unit | Result            | Concentration | LCS                           | Low      | High       |
| EP074G: Trihalomethanes (QCLot: 155023) - continued         |         |     |      |                   |               |                               |          |            |
| EP074: Bromodichloromethane 7                               | 75-27-4 | 5   | μg/L | <5                | 10 μg/L       | 82.0                          | 64       | 118        |
| EP074: Bromoform 7                                          | 75-25-2 | 5   | μg/L | <5                | 10 μg/L       | 97.5                          | 74       | 126        |
| EP074: Chloroform 6                                         | 67-66-3 | 5   | μg/L | <5                | 10 μg/L       | 87.9                          | 76       | 118        |
| EP074: Dibromochloromethane                                 | 24-48-1 | 5   | μg/L | <5                | 10 μg/L       | 88.1                          | 65       | 115        |
| EP075(SIM)A: Phenolic Compounds (QCLot: 155459)             |         |     |      |                   |               |                               |          |            |
| EP075(SIM): 2.4.5-Trichlorophenol                           | 95-95-4 | 1   | μg/L | <1.0              | 5 μg/L        | 80.1                          | 50       | 108        |
| EP075(SIM): 2.4.6-Trichlorophenol                           | 38-06-2 | 1   | μg/L | <1.0              | 5 μg/L        | 67.5                          | 59       | 118        |
| EP075(SIM): 2.4-Dichlorophenol                              | 20-83-2 | 1   | μg/L | <1.0              | 5 μg/L        | 72.6                          | 59       | 122        |
| EP075(SIM): 2.4-Dimethylphenol                              | )5-67-9 | 1   | μg/L | <1.0              | 5 μg/L        | 70.0                          | 60       | 112        |
| EP075(SIM): 2.6-Dichlorophenol                              | 37-65-0 | 1   | μg/L | <1.0              | 5 μg/L        | 77.9                          | 64       | 118        |
| EP075(SIM): 2-Chlorophenol                                  | 95-57-8 | 1   | μg/L | <1.0              | 5 μg/L        | # 63.4                        | 64       | 110        |
| EP075(SIM): 2-Methylphenol                                  | 95-48-7 | 1   | μg/L | <1.0              | 5 μg/L        | 66.0                          | 56       | 112        |
| EP075(SIM): 2-Nitrophenol                                   | 88-75-5 | 1   | μg/L | <1.0              | 5 μg/L        | 66.3                          | 63       | 117        |
| EP075(SIM): 3- & 4-Methylphenol                             | 9-77-3  | 2   | μg/L | <2.0              | 10 μg/L       | 71.2                          | 43       | 114        |
| EP075(SIM): 4-Chloro-3-methylphenol                         | 59-50-7 | 1   | μg/L | <1.0              | 5 μg/L        | 75.6                          | 63       | 119        |
| EP075(SIM): Pentachlorophenol                               | 37-86-5 | 2   | μg/L | <2.0              | 10 μg/L       | 39.1                          | 10       | 95         |
| EP075(SIM): Phenol                                          | )8-95-2 | 1   | μg/L | <1.0              | 5 μg/L        | 37.1                          | 25       | 62         |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 1554 | 59)     |     |      |                   |               |                               |          |            |
| EP075(SIM): Acenaphthene                                    | 33-32-9 | 1   | μg/L | <1.0              | 5 μg/L        | 75.7                          | 62       | 113        |
| EP075(SIM): Acenaphthylene 20                               | )8-96-8 | 1   | μg/L | <1.0              | 5 μg/L        | 81.1                          | 64       | 114        |
| EP075(SIM): Anthracene                                      | 20-12-7 | 1   | μg/L | <1.0              | 5 μg/L        | 86.9                          | 64       | 116        |
| EP075(SIM): Benz(a)anthracene                               | 56-55-3 | 1   | μg/L | <1.0              | 5 μg/L        | 77.1                          | 64       | 117        |
| EP075(SIM): Benzo(a)pyrene 5                                | 50-32-8 | 0.5 | μg/L | <0.5              | 5 μg/L        | 89.3                          | 63       | 117        |
| EP075(SIM): Benzo(b+j)fluoranthene 20                       | )5-99-2 | 1   | μg/L | <1.0              | 5 μg/L        | 88.5                          | 62       | 119        |
| 20                                                          | )5-82-3 |     |      |                   |               |                               |          |            |
| EP075(SIM): Benzo(g.h.i)perylene                            | 91-24-2 | 1   | μg/L | <1.0              | 5 μg/L        | 83.2                          | 59       | 118        |
| EP075(SIM): Benzo(k)fluoranthene                            | 7-08-9  | 1   | μg/L | <1.0              | 5 μg/L        | 93.8                          | 62       | 117        |
| EP075(SIM): Chrysene 21                                     | 18-01-9 | 1   | μg/L | <1.0              | 5 μg/L        | 99.7                          | 63       | 116        |
| EP075(SIM): Dibenz(a.h)anthracene                           | 53-70-3 | 1   | μg/L | <1.0              | 5 μg/L        | 87.2                          | 61       | 117        |
| EP075(SIM): Fluoranthene                                    | 06-44-0 | 1   | μg/L | <1.0              | 5 μg/L        | 88.8                          | 64       | 118        |
| 2. 0. 0(0)                                                  | 36-73-7 | 1   | μg/L | <1.0              | 5 μg/L        | 80.2                          | 64       | 115        |
|                                                             | 93-39-5 | 1   | μg/L | <1.0              | 5 μg/L        | 88.0                          | 60       | 118        |
| 2. c. c(c) ap                                               | 91-20-3 | 1   | μg/L | <1.0              | 5 μg/L        | 66.5                          | 59       | 119        |
| EP075(SIM): Phenanthrene                                    | 35-01-8 | 1   | μg/L | <1.0              | 5 μg/L        | 82.7                          | 63       | 116        |
| EP075(SIM): Pyrene 12                                       | 29-00-0 | 1   | μg/L | <1.0              | 5 μg/L        | 90.0                          | 63       | 118        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 155022)     |         |     |      |                   |               |                               |          |            |
| EP080: C6 - C9 Fraction                                     |         | 20  | μg/L | <20               | 260 μg/L      | 80.5                          | 75       | 127        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 155458)     |         |     |      |                   |               |                               |          |            |

Page : 15 of 17

Work Order : ES1526118 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Sub-Matrix: WATER                                          |            |              |      | Method Blank (MB) | , ,           |                    |          |            |
|------------------------------------------------------------|------------|--------------|------|-------------------|---------------|--------------------|----------|------------|
|                                                            |            |              |      | Report            | Spike         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                           | AS Number  | LOR          | Unit | Result            | Concentration | LCS                | Low      | High       |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 155458)    | continued  |              |      |                   |               |                    |          |            |
| EP071: C10 - C14 Fraction                                  |            | 50           | μg/L | <50               | 2000 μg/L     | 104                | 59       | 129        |
| EP071: C15 - C28 Fraction                                  |            | 100          | μg/L | <100              | 3000 μg/L     | 97.8               | 71       | 131        |
| EP071: C29 - C36 Fraction                                  |            | 50           | μg/L | <50               | 2000 μg/L     | 109                | 62       | 120        |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Frac | ctions (QC | Lot: 155022) |      |                   |               |                    |          |            |
| EP080: C6 - C10 Fraction                                   | C6_C10     | 20           | μg/L | <20               | 310 μg/L      | 83.2               | 75       | 127        |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Frac | ctions (QC | Lot: 155458) |      |                   |               |                    |          |            |
| EP071: >C10 - C16 Fraction >                               | ·C10_C16   | 100          | μg/L | <100              | 2500 μg/L     | 108                | 59       | 131        |
| EP071: >C16 - C34 Fraction                                 |            | 100          | μg/L | <100              | 3500 μg/L     | 96.8               | 74       | 138        |
| EP071: >C34 - C40 Fraction                                 |            | 100          | μg/L | <100              | 1500 μg/L     | 108                | 67       | 127        |
| EP262: Ethanolamines (QCLot: 155634)                       |            |              |      |                   |               |                    |          |            |
| EP262: Diethanolamine                                      | 111-42-2   | 1            | μg/L | <1                | 10 μg/L       | 71.2               | 50       | 130        |
| EP262: Ethanolamine                                        | 141-43-5   | 1            | μg/L | <1                | 10 μg/L       | 97.9               | 50       | 130        |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                                                |                                        |            | M             | atrix Spike (MS) Report |            |           |
|----------------------|------------------------------------------------|----------------------------------------|------------|---------------|-------------------------|------------|-----------|
|                      |                                                |                                        |            | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                               | Method: Compound                       | CAS Number | Concentration | MS                      | Low        | High      |
| ED009: Anions (0     | QCLot: 155489)                                 |                                        |            |               |                         |            |           |
| ES1526089-009        | Anonymous                                      | ED009-X: Chloride                      | 16887-00-6 | 4 mg/L        | 105                     | 70         | 130       |
| ED041G: Sulfate (    | Turbidimetric) as SO4 2- by DA (QCLot: 155178) |                                        |            |               |                         |            |           |
| ES1526051-001        | Anonymous                                      | ED041G: Sulfate as SO4 - Turbidimetric | 14808-79-8 | 10 mg/L       | 78.5                    | 70         | 130       |
| ED041G: Sulfate (    | Turbidimetric) as SO4 2- by DA (QCLot: 155182) |                                        |            |               |                         |            |           |
| ES1526118-002        | WK11                                           | ED041G: Sulfate as SO4 - Turbidimetric | 14808-79-8 | 10 mg/L       | 80.5                    | 70         | 130       |
| ED045G: Chloride     | by Discrete Analyser (QCLot: 155177)           |                                        |            |               |                         |            |           |
| ES1526051-001        | Anonymous                                      | ED045G: Chloride                       | 16887-00-6 | 250 mg/L      | 75.6                    | 70         | 130       |
| EG020F: Dissolve     | d Metals by ICP-MS (QCLot: 157255)             |                                        |            |               |                         |            |           |
| ES1526066-002        | Anonymous                                      | EG020A-F: Arsenic                      | 7440-38-2  | 0.2 mg/L      | 130                     | 70         | 130       |
|                      |                                                | EG020A-F: Barium                       | 7440-39-3  | 0.2 mg/L      | 127                     | 70         | 130       |
|                      |                                                | EG020A-F: Beryllium                    | 7440-41-7  | 0.2 mg/L      | 128                     | 70         | 130       |
|                      |                                                | EG020A-F: Cadmium                      | 7440-43-9  | 0.05 mg/L     | 130                     | 70         | 130       |
|                      |                                                | EG020A-F: Chromium                     | 7440-47-3  | 0.2 mg/L      | 123                     | 70         | 130       |
|                      |                                                | EG020A-F: Cobalt                       | 7440-48-4  | 0.2 mg/L      | 130                     | 70         | 130       |
|                      |                                                | EG020A-F: Copper                       | 7440-50-8  | 0.2 mg/L      | 128                     | 70         | 130       |
|                      |                                                | EG020A-F: Lead                         | 7439-92-1  | 0.2 mg/L      | 118                     | 70         | 130       |

Page : 16 of 17

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| ıb-Matrix: WATER    |                                                       |                                      |            |               | atrix Spike (MS) Report |            |       |
|---------------------|-------------------------------------------------------|--------------------------------------|------------|---------------|-------------------------|------------|-------|
|                     |                                                       |                                      |            | Spike         | SpikeRecovery(%)        | Recovery L | · · · |
| aboratory sample ID | Client sample ID                                      | Method: Compound                     | CAS Number | Concentration | MS                      | Low        | High  |
| G020F: Dissolved    | Metals by ICP-MS (QCLot: 157255) - continued          |                                      |            |               |                         |            |       |
| S1526066-002        | Anonymous                                             | EG020A-F: Manganese                  | 7439-96-5  | 0.2 mg/L      | 126                     | 70         | 130   |
|                     |                                                       | EG020A-F: Nickel                     | 7440-02-0  | 0.2 mg/L      | 130                     | 70         | 130   |
|                     |                                                       | EG020A-F: Vanadium                   | 7440-62-2  | 0.2 mg/L      | 123                     | 70         | 130   |
|                     |                                                       | EG020A-F: Zinc                       | 7440-66-6  | 0.2 mg/L      | 127                     | 70         | 130   |
| G035F: Dissolved    | Mercury by FIMS (QCLot: 157257)                       |                                      |            |               |                         |            |       |
| ES1526066-001       | Anonymous                                             | EG035F: Mercury                      | 7439-97-6  | 0.01 mg/L     | 85.6                    | 70         | 130   |
| G052G: Silica by    | Discrete Analyser (QCLot: 155181)                     |                                      |            |               |                         |            |       |
|                     | WK11                                                  | EG052G: Reactive Silica              |            | 5 mg/L        | # Not                   | 70         | 130   |
|                     |                                                       | Eddozd. Nedduve dilied               |            | Jg            | Determined              |            |       |
| K040P: Fluoride b   | by PC Titrator (QCLot: 155202)                        |                                      |            |               |                         |            |       |
|                     | Anonymous                                             | EK040P: Fluoride                     | 16984-48-8 | 5 mg/L        | 80.8                    | 70         | 130   |
|                     |                                                       | LIVOHOF. FINORINE                    | 10304-40-0 | J Hig/L       | 00.0                    | 70         | 130   |
|                     | as N by Discrete Analyser (QCLot: 155963)             |                                      |            |               |                         |            |       |
| ES1526112-001       | Anonymous                                             | EK055G: Ammonia as N                 | 7664-41-7  | 1 mg/L        | 73.1                    | 70         | 130   |
| K057G: Nitrite as   | N by Discrete Analyser (QCLot: 155179)                |                                      |            |               |                         |            |       |
| S1526118-002        | WK11                                                  | EK057G: Nitrite as N                 | 14797-65-0 | 0.5 mg/L      | 99.0                    | 70         | 130   |
| K059G: Nitrite pl   | us Nitrate as N (NOx) by Discrete Analyser (QCLot: 15 | 55964)                               |            |               |                         |            |       |
| S1526112-001        | Anonymous                                             | EK059G: Nitrite + Nitrate as N       |            | 0.5 mg/L      | 112                     | 70         | 130   |
| K061G: Total Kiel   | dahl Nitrogen By Discrete Analyser (QCLot: 155953)    |                                      |            |               |                         |            |       |
| S1526112-002        | Anonymous                                             | EK061G: Total Kjeldahl Nitrogen as N |            | 5 mg/L        | 95.7                    | 70         | 130   |
|                     |                                                       | EROOTO: Total Neldani Miliogen as N  |            | 5g. <u>2</u>  | 00                      | . •        |       |
|                     | sphorus as P by Discrete Analyser (QCLot: 155952)     |                                      |            | 4 //          | 00.0                    | 70         | 400   |
|                     | Anonymous                                             | EK067G: Total Phosphorus as P        |            | 1 mg/L        | 90.9                    | 70         | 130   |
| K071G: Reactive     | Phosphorus as P by discrete analyser(QCLot: 155175    |                                      |            |               |                         |            |       |
| ES1526051-001       | Anonymous                                             | EK071G: Reactive Phosphorus as P     | 14265-44-2 | 0.5 mg/L      | 102                     | 70         | 130   |
| P033: C1 - C4 Hyd   | drocarbon Gases (QCLot: 156157)                       |                                      |            |               |                         |            |       |
| B1522926-095        | Anonymous                                             | EP033: Butane                        | 106-97-8   | 102.18 μg/L   | 104                     | 70         | 130   |
|                     |                                                       | EP033: Butene                        | 25167-67-3 | 99.61 μg/L    | 107                     | 70         | 130   |
|                     |                                                       | EP033: Ethane                        | 74-84-0    | 54.43 μg/L    | 94.9                    | 70         | 130   |
|                     |                                                       | EP033: Ethene                        | 74-85-1    | 50.29 μg/L    | 96.4                    | 70         | 130   |
|                     |                                                       | EP033: Methane                       | 74-82-8    | 28.48 μg/L    | 77.7                    | 70         | 130   |
|                     |                                                       | EP033: Propane                       | 74-98-6    | 78.28 μg/L    | 101                     | 70         | 130   |
|                     |                                                       | EP033: Propene                       | 115-07-1   | 73.97 μg/L    | 100                     | 70         | 130   |
| P074E: Halogena     | ted Aliphatic Compounds (QCLot: 155023)               |                                      |            |               |                         |            |       |
|                     | Anonymous                                             | EP074: 1.1-Dichloroethene            | 75-35-4    | 25 μg/L       | 75.3                    | 70         | 130   |
|                     |                                                       | EP074: Trichloroethene               | 79-01-6    | 25 μg/L       | 93.0                    | 70         | 130   |

Page : 17 of 17

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                                                   |                          |            | Ма            | trix Spike (MS) Report |             |           |
|----------------------|---------------------------------------------------|--------------------------|------------|---------------|------------------------|-------------|-----------|
|                      |                                                   |                          |            | Spike         | SpikeRecovery(%)       | Recovery Li | imits (%) |
| Laboratory sample ID | Client sample ID                                  | Method: Compound         | CAS Number | Concentration | MS                     | Low         | High      |
| EP074F: Halogena     | ed Aromatic Compounds (QCLot: 155023) - continued |                          |            |               |                        |             |           |
| ES1526060-001        | Anonymous                                         | EP074: Chlorobenzene     | 108-90-7   | 25 μg/L       | 103                    | 70          | 130       |
| EP080/071: Total P   | etroleum Hydrocarbons (QCLot: 155022)             |                          |            |               |                        |             |           |
| ES1526060-001        | Anonymous                                         | EP080: C6 - C9 Fraction  |            | 325 μg/L      | 96.7                   | 70          | 130       |
| EP080/071: Total R   | ecoverable Hydrocarbons - NEPM 2013 Fractions(QCL | ot: 155022)              |            |               |                        |             |           |
| ES1526060-001        | Anonymous                                         | EP080: C6 - C10 Fraction | C6_C10     | 375 μg/L      | 97.5                   | 70          | 130       |
| EP262: Ethanolami    | nes (QCLot: 155634)                               |                          |            |               |                        |             |           |
| EB1522915-001        | Anonymous                                         | EP262: Diethanolamine    | 111-42-2   | 10 μg/L       | 69.1                   | 50          | 130       |
|                      |                                                   | EP262: Ethanolamine      | 141-43-5   | 10 μg/L       | 65.8                   | 50          | 130       |



## QA/QC Compliance Assessment for DQO Reporting

Work Order : **ES1526118** Page : 1 of 12

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 15-Jul-2015

 Site
 :-- Issue Date
 : 02-Sep-2015

Sampler : DAVID WATSON No. of samples received : 5
Order number :---- No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

## **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- Laboratory Control outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

## **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 12

Work Order : ES1526118 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project · 2268523B

#### **Outliers: Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: WATER

| Compound Group Name                       | Laboratory Sample ID | Client Sample ID | Analyte         | CAS Number | Data       | Limits  | Comment                                |
|-------------------------------------------|----------------------|------------------|-----------------|------------|------------|---------|----------------------------------------|
| Laboratory Control Spike (LCS) Recoveries |                      |                  |                 |            |            |         |                                        |
| EP075(SIM)A: Phenolic Compounds           | QC-155459-002        |                  | 2-Chlorophenol  | 95-57-8    | 63.4 %     | 64-110% | Recovery less than lower control limit |
| Matrix Spike (MS) Recoveries              |                      |                  |                 |            |            |         |                                        |
| EG052G: Silica by Discrete Analyser       | ES1526118002         | WK11             | Reactive Silica |            | Not        |         | MS recovery not determined,            |
|                                           |                      |                  |                 |            | Determined |         | background level greater than or       |
|                                           |                      |                  |                 |            |            |         | equal to 4x spike level.               |

#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type | Co | ount    | Rate   | e (%)    | Quality Control Specification                    |
|-----------------------------|----|---------|--------|----------|--------------------------------------------------|
| Method                      | QC | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP) |    |         |        |          |                                                  |
| PAH/Phenols (GC/MS - SIM)   | 0  | 5       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction | 0  | 18      | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Matrix Spikes (MS)          |    |         |        |          |                                                  |
| PAH/Phenols (GC/MS - SIM)   | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction | 0  | 18      | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

#### Matrix: WATER

| Evaluation: 🗴 : | = Holding time | e breach ; 🗸 = ' | Within holding time. |
|-----------------|----------------|------------------|----------------------|
|                 |                |                  |                      |

| Method                                   |       | Sample Date | Extraction / Preparation |                    |            | Analysis      |                  |            |
|------------------------------------------|-------|-------------|--------------------------|--------------------|------------|---------------|------------------|------------|
| Container / Client Sample ID(s)          |       |             | Date extracted           | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation |
| EA005P: pH by PC Titrator                |       |             |                          |                    |            |               |                  |            |
| Clear Plastic Bottle - Natural (EA005-P) |       |             |                          |                    |            |               |                  |            |
| AST2,                                    | WK11, | 15-Jul-2015 |                          |                    |            | 15-Jul-2015   | 15-Jul-2015      | ✓          |
| WK13,                                    | WK14, |             |                          |                    |            |               |                  |            |
| QA7                                      |       |             |                          |                    |            |               |                  |            |
| EA010P: Conductivity by PC Titrator      |       |             |                          |                    |            |               |                  |            |
| Clear Plastic Bottle - Natural (EA010-P) |       |             |                          |                    |            |               |                  |            |
| WK11,                                    | WK13, | 15-Jul-2015 |                          |                    |            | 15-Jul-2015   | 12-Aug-2015      | ✓          |
| WK14,                                    | QA7   |             |                          |                    |            |               |                  |            |

Page : 3 of 12

Work Order : ES1526118 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                                   |                |   |             | Evaluation: × = Holding time breach; ✓ = Within holding ti |                    |            |               |                  |            |  |
|---------------------------------------------------------------------------------|----------------|---|-------------|------------------------------------------------------------|--------------------|------------|---------------|------------------|------------|--|
| Method                                                                          |                |   | Sample Date | Extraction / Preparation                                   |                    |            | Analysis      |                  |            |  |
| Container / Client Sample ID(s)                                                 |                |   |             | Date extracted                                             | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation |  |
| EA015: Total Dissolved Solids                                                   |                |   |             |                                                            |                    |            |               |                  |            |  |
| Clear Plastic Bottle - Natural (EA015H) AST2, WK13, QA7                         | WK11,<br>WK14, |   | 15-Jul-2015 |                                                            |                    |            | 16-Jul-2015   | 22-Jul-2015      | ✓          |  |
| EA025: Suspended Solids                                                         |                |   |             |                                                            |                    |            |               |                  |            |  |
| Clear Plastic Bottle - Natural (EA025H) AST2, WK13, QA7                         | WK11,<br>WK14, |   | 15-Jul-2015 |                                                            |                    |            | 16-Jul-2015   | 22-Jul-2015      | ✓          |  |
| ED009: Anions                                                                   |                |   |             |                                                            |                    |            |               |                  |            |  |
| Clear Plastic Bottle - Natural (ED009-X) AST2, WK13, QA7                        | WK11,<br>WK14, |   | 15-Jul-2015 |                                                            |                    |            | 16-Jul-2015   | 12-Aug-2015      | ✓          |  |
| ED037P: Alkalinity by PC Titrator                                               |                |   |             |                                                            |                    |            |               |                  | :          |  |
| Clear Plastic Bottle - Natural (ED037-P) AST2, WK13, QA7                        | WK11,<br>WK14, |   | 15-Jul-2015 |                                                            |                    |            | 15-Jul-2015   | 29-Jul-2015      | ✓          |  |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA                                 |                |   |             |                                                            |                    |            |               |                  |            |  |
| Clear Plastic Bottle - Natural (ED041G) AST2, WK13, QA7                         | WK11,<br>WK14, |   | 15-Jul-2015 |                                                            |                    |            | 15-Jul-2015   | 12-Aug-2015      | ✓          |  |
| ED045G: Chloride by Discrete Analyser                                           |                |   |             |                                                            |                    |            |               |                  |            |  |
| Clear Plastic Bottle - Natural (ED045G) AST2, WK13, QA7                         | WK11,<br>WK14, |   | 15-Jul-2015 |                                                            |                    |            | 15-Jul-2015   | 12-Aug-2015      | ✓          |  |
| ED093F: Dissolved Major Cations                                                 |                |   |             |                                                            |                    |            |               |                  | !          |  |
| Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) AST2, WK13, QA7           | WK11,<br>WK14, |   | 15-Jul-2015 |                                                            |                    |            | 17-Jul-2015   | 12-Aug-2015      | ✓          |  |
| EG020F: Dissolved Metals by ICP-MS                                              |                |   |             |                                                            |                    |            |               |                  |            |  |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F<br>AST2,<br>WK13,<br>QA7 | WK11,<br>WK14, | _ | 15-Jul-2015 |                                                            |                    |            | 17-Jul-2015   | 11-Jan-2016      | ✓          |  |

Page : 4 of 12

Work Order : ES1526118 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                           |         |             |                          |                    | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
|---------------------------------------------------------|---------|-------------|--------------------------|--------------------|------------|--------------------|--------------------|----------------|
| Method                                                  |         | Sample Date | Extraction / Preparation |                    |            | Analysis           |                    |                |
| Container / Client Sample ID(s)                         |         |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EG020F: Dissolved Metals by ICP-MS                      |         |             |                          |                    |            |                    |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F) |         |             |                          |                    |            |                    |                    |                |
| AST2,                                                   | WK11,   | 15-Jul-2015 |                          |                    |            | 17-Jul-2015        | 11-Jan-2016        | ✓              |
| WK13,                                                   | WK14,   |             |                          |                    |            |                    |                    |                |
| QA7                                                     |         |             |                          |                    |            |                    |                    |                |
| EG035F: Dissolved Mercury by FIMS                       |         |             |                          |                    |            |                    |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)   | NAME    | 45 1-1 0045 |                          |                    |            | 47 1.1 0045        | 10 Aug 2015        |                |
| AST2,                                                   | WK11,   | 15-Jul-2015 |                          |                    |            | 17-Jul-2015        | 12-Aug-2015        | ✓              |
| WK13,                                                   | WK14,   |             |                          |                    |            |                    |                    |                |
| QA7                                                     |         |             |                          |                    |            |                    |                    |                |
| EG052G: Silica by Discrete Analyser                     |         |             |                          |                    |            |                    |                    |                |
| Clear Plastic Bottle - Natural (EG052G)                 |         |             |                          |                    |            |                    | 10.1 00.15         |                |
| AST2,                                                   | WK11,   | 15-Jul-2015 |                          |                    |            | 15-Jul-2015        | 12-Aug-2015        | ✓              |
| WK13,                                                   | WK14,   |             |                          |                    |            |                    |                    |                |
| QA7                                                     |         |             |                          |                    |            |                    |                    |                |
| EK010/011: Chlorine                                     |         |             |                          |                    |            |                    |                    |                |
| Clear Plastic Bottle - Natural (EK010)                  |         |             |                          |                    |            |                    |                    |                |
| AST2,                                                   | WK11,   | 15-Jul-2015 |                          |                    |            | 15-Jul-2015        | 15-Jul-2015        | ✓              |
| WK13,                                                   | WK14,   |             |                          |                    |            |                    |                    |                |
| QA7                                                     |         |             |                          |                    |            |                    |                    |                |
| EK040P: Fluoride by PC Titrator                         |         |             |                          |                    |            |                    |                    |                |
| Clear Plastic Bottle - Natural (EK040P)                 |         |             |                          |                    |            |                    | 40.40045           |                |
| AST2,                                                   | WK11,   | 15-Jul-2015 |                          |                    |            | 15-Jul-2015        | 12-Aug-2015        | ✓              |
| WK13,                                                   | WK14,   |             |                          |                    |            |                    |                    |                |
| QA7                                                     |         |             |                          |                    |            |                    |                    |                |
| EK055G: Ammonia as N by Discrete Analyser               |         |             |                          |                    |            |                    |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK055G)           |         |             |                          |                    |            |                    | 10.1 00.15         |                |
| AST2,                                                   | WK11,   | 15-Jul-2015 |                          |                    |            | 16-Jul-2015        | 12-Aug-2015        | ✓              |
| WK13,                                                   | WK14,   |             |                          |                    |            |                    |                    |                |
| QA7                                                     |         |             |                          |                    |            |                    |                    |                |
| EK057G: Nitrite as N by Discrete Analyser               |         |             |                          |                    |            |                    |                    |                |
| Clear Plastic Bottle - Natural (EK057G)                 |         |             |                          |                    |            |                    |                    | _              |
| AST2,                                                   | WK11,   | 15-Jul-2015 |                          |                    |            | 15-Jul-2015        | 17-Jul-2015        | ✓              |
| WK13,                                                   | WK14,   |             |                          |                    |            |                    |                    |                |
| QA7                                                     |         |             |                          |                    |            |                    |                    |                |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A   | nalyser |             |                          |                    |            |                    |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK059G)           |         |             |                          |                    |            |                    |                    |                |
| AST2,                                                   | WK11,   | 15-Jul-2015 |                          |                    |            | 16-Jul-2015        | 12-Aug-2015        | ✓              |
| WK13,                                                   | WK14,   |             |                          |                    |            |                    |                    |                |
| QA7                                                     |         |             |                          |                    |            |                    |                    |                |

Page : 5 of 12

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                 |                |             |                          |                    | Evaluation | n: 🗴 = Holding time | breach ; ✓ = With | in holding tim |
|-----------------------------------------------|----------------|-------------|--------------------------|--------------------|------------|---------------------|-------------------|----------------|
| Method                                        |                | Sample Date | Extraction / Preparation |                    |            | Analysis            |                   |                |
| Container / Client Sample ID(s)               |                |             | Date extracted           | Due for extraction | Evaluation | Date analysed       | Due for analysis  | Evaluation     |
| EK061G: Total Kjeldahl Nitrogen By Discre     | te Analyser    |             |                          |                    |            |                     |                   |                |
| Clear Plastic Bottle - Sulfuric Acid (EK061G  |                |             |                          |                    |            |                     |                   |                |
| AST2,                                         | WK11,          | 15-Jul-2015 | 16-Jul-2015              | 12-Aug-2015        | 1          | 16-Jul-2015         | 12-Aug-2015       | ✓              |
| WK13,                                         | WK14,          |             |                          |                    |            |                     |                   |                |
| QA7                                           |                |             |                          |                    |            |                     |                   |                |
| EK067G: Total Phosphorus as P by Discret      | te Analyser    |             |                          |                    |            |                     |                   |                |
| Clear Plastic Bottle - Sulfuric Acid (EK067G) | •              |             |                          | 10.1 00.15         |            |                     | 40.4 0045         |                |
| AST2,                                         | WK11,          | 15-Jul-2015 | 16-Jul-2015              | 12-Aug-2015        | ✓          | 16-Jul-2015         | 12-Aug-2015       | ✓              |
| WK13,                                         | WK14,          |             |                          |                    |            |                     |                   |                |
| QA7                                           |                |             |                          |                    |            |                     |                   |                |
| EK071G: Reactive Phosphorus as P by disc      | crete analyser |             |                          |                    |            |                     |                   |                |
| Clear Plastic Bottle - Natural (EK071G)       |                |             |                          |                    |            |                     | 47 1 1 0045       |                |
| AST2,                                         | WK11,          | 15-Jul-2015 |                          |                    |            | 15-Jul-2015         | 17-Jul-2015       | ✓              |
| WK13,                                         | WK14,          |             |                          |                    |            |                     |                   |                |
| QA7                                           |                |             |                          |                    |            | <u> </u>            |                   |                |
| EP005: Total Organic Carbon (TOC)             |                |             |                          |                    |            |                     |                   |                |
| Amber TOC Vial - Sulfuric Acid (EP005)        |                |             |                          |                    |            |                     |                   |                |
| AST2,                                         | WK11,          | 15-Jul-2015 |                          |                    |            | 17-Jul-2015         | 12-Aug-2015       | ✓              |
| WK13,                                         | WK14,          |             |                          |                    |            |                     |                   |                |
| QA7                                           |                |             |                          |                    |            |                     |                   |                |
| EP020: Oil and Grease (O&G)                   |                |             |                          |                    |            |                     |                   |                |
| Amber Jar - Sulfuric Acid or Sodium Bisulfa   |                | 45.1.10045  |                          |                    |            | 40 1 1 0045         | 40 4 2045         |                |
| AST2,                                         | WK11,          | 15-Jul-2015 |                          |                    |            | 16-Jul-2015         | 12-Aug-2015       | ✓              |
| WK13,                                         | WK14,          |             |                          |                    |            |                     |                   |                |
| QA7                                           |                |             |                          |                    |            |                     |                   |                |
| EP033: C1 - C4 Hydrocarbon Gases              |                |             |                          |                    |            |                     |                   |                |
| Amber VOC Vial - Sulfuric Acid (EP033)        |                | 45.1.10045  |                          |                    |            | 40 1 1 0045         | 20 1.1 2045       |                |
| AST2,                                         | WK11,          | 15-Jul-2015 |                          |                    |            | 16-Jul-2015         | 29-Jul-2015       | ✓              |
| WK13,                                         | WK14,          |             |                          |                    |            |                     |                   |                |
| QA7                                           |                |             |                          |                    |            |                     |                   |                |
| EP080/071: Total Petroleum Hydrocarbons       |                |             | 1                        | <u> </u>           |            | T                   | I                 |                |
| Amber Glass Bottle - Unpreserved (EP071)      |                | 45 1:1 0045 | 40 11 0045               | 00 1 0045          |            | 47 1 0045           | 25 4 2045         |                |
| AST2,                                         | WK11,          | 15-Jul-2015 | 16-Jul-2015              | 22-Jul-2015        | ✓          | 17-Jul-2015         | 25-Aug-2015       | ✓              |
| WK13,                                         | WK14,          |             |                          |                    |            |                     |                   |                |
| QA7                                           |                |             |                          |                    |            |                     |                   |                |
| EP074A: Monocyclic Aromatic Hydrocarbo        | ns             |             |                          |                    |            |                     |                   |                |
| Amber VOC Vial - Sulfuric Acid (EP074)        |                | ,_,,        | 45 1                     | 00 101 0045        |            | 4                   | 00 1.1 0045       |                |
| AST2,                                         | WK11,          | 15-Jul-2015 | 15-Jul-2015              | 29-Jul-2015        | ✓          | 15-Jul-2015         | 29-Jul-2015       | ✓              |
| WK13,                                         | WK14,          |             |                          |                    |            |                     |                   |                |
| QA7                                           |                |             |                          |                    |            |                     |                   |                |

Page : 6 of 12

Work Order : ES1526118 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Matrix: WATER                         |           |             |                |                        | Evaluation | i: × = Holding time | breach ; ✓ = Withi | n holding time |
|---------------------------------------|-----------|-------------|----------------|------------------------|------------|---------------------|--------------------|----------------|
| Method                                |           | Sample Date | E              | traction / Preparation |            |                     | Analysis           |                |
| Container / Client Sample ID(s)       |           |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation     |
| EP075(SIM)T: PAH Surrogates           |           |             |                |                        |            |                     |                    |                |
| Amber Glass Bottle - Unpreserved (EP  | 075(SIM)) |             |                |                        |            |                     |                    |                |
| AST2,                                 | WK11,     | 15-Jul-2015 | 16-Jul-2015    | 22-Jul-2015            | ✓          | 16-Jul-2015         | 25-Aug-2015        | ✓              |
| WK13,                                 | WK14,     |             |                |                        |            |                     |                    |                |
| QA7                                   |           |             |                |                        |            |                     |                    |                |
| EP080/071: Total Petroleum Hydrocar   | bons      |             |                |                        |            |                     |                    |                |
| Amber VOC Vial - Sulfuric Acid (EP080 | 0)        |             |                |                        |            |                     |                    |                |
| AST2,                                 | WK11,     | 15-Jul-2015 | 15-Jul-2015    | 29-Jul-2015            | ✓          | 15-Jul-2015         | 29-Jul-2015        | ✓              |
| WK13,                                 | WK14,     |             |                |                        |            |                     |                    |                |
| QA7                                   |           |             |                |                        |            |                     |                    |                |
| EP262: Ethanolamines                  |           |             |                |                        |            |                     |                    |                |
| Amber Glass Bottle - Unpreserved (EP  | 262)      |             |                |                        |            |                     |                    |                |
| AST2,                                 | WK11,     | 15-Jul-2015 |                |                        |            | 16-Jul-2015         | 22-Jul-2015        | ✓              |
| WK13,                                 | WK14,     |             |                |                        |            |                     |                    |                |
| QA7                                   |           |             |                |                        |            |                     |                    |                |

Page : 7 of 12

Work Order ES1526118 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Quality Control Sample Type                            |            | C     | ount    |         | Rate (%) |            | Quality Control Specification                    |
|--------------------------------------------------------|------------|-------|---------|---------|----------|------------|--------------------------------------------------|
| Analytical Methods                                     | Method     | OC OC | Regular | Actual  | Expected | Evaluation | Quality Control Specification                    |
| Laboratory Duplicates (DUP)                            |            |       |         | 7101447 |          |            |                                                  |
| Alkalinity by PC Titrator                              | ED037-P    | 2     | 13      | 15.38   | 10.00    | 1          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Ammonia as N by Discrete analyser                      | EK055G     | 2     | 14      | 14.29   | 10.00    |            | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| C1 - C4 Gases                                          | EP033      | 2     | 14      | 14.29   | 10.00    | <u>√</u>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Chloride by Discrete Analyser                          | ED045G     | 2     | 16      | 12.50   | 10.00    | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Chlorine                                               | EK010      | 1     | 5       | 20.00   | 10.00    | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Conductivity by PC Titrator                            | EA010-P    | 2     | 19      | 10.53   | 10.00    | <u>√</u>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Mercury by FIMS                              | EG035F     | 2     | 12      | 16.67   | 10.00    | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 2     | 19      | 10.53   | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1     | 6       | 16.67   | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Ethanolamines by LCMSMS                                | EP262      | 1     | 7       | 14.29   | 10.00    | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Fluoride by PC Titrator                                | EK040P     | 2     | 11      | 18.18   | 10.00    | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Major Cations - Dissolved                              | ED093F     | 2     | 15      | 13.33   | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 2     | 20      | 10.00   | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Nitrite as N by Discrete Analyser                      | EK057G     | 2     | 11      | 18.18   | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0     | 5       | 0.00    | 10.00    | æ          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| pH by PC Titrator                                      | EA005-P    | 2     | 20      | 10.00   | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 2     | 20      | 10.00   | 10.00    | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1     | 5       | 20.00   | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 2     | 11      | 18.18   | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 2     | 20      | 10.00   | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Suspended Solids (High Level)                          | EA025H     | 2     | 20      | 10.00   | 9.52     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Total Dissolved Solids (High Level)                    | EA015H     | 2     | 20      | 10.00   | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 2     | 20      | 10.00   | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 2     | 20      | 10.00   | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction                            | EP071      | 0     | 18      | 0.00    | 10.00    | ×          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH Volatiles/BTEX                                     | EP080      | 2     | 12      | 16.67   | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Volatile Organic Compounds                             | EP074      | 2     | 17      | 11.76   | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS)                       |            |       |         |         |          |            |                                                  |
| Alkalinity by PC Titrator                              | ED037-P    | 1     | 13      | 7.69    | 5.00     | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Ammonia as N by Discrete analyser                      | EK055G     | 1     | 14      | 7.14    | 5.00     | <u>√</u>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| C1 - C4 Gases                                          | EP033      | 1     | 14      | 7.14    | 5.00     | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Chloride by Discrete Analyser                          | ED045G     | 2     | 16      | 12.50   | 10.00    | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Conductivity by PC Titrator                            | EA010-P    | 1     | 19      | 5.26    | 5.00     | <u>-</u>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Mercury by FIMS                              | EG035F     | 1     | 12      | 8.33    | 5.00     | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1     | 19      | 5.26    | 5.00     | <u>√</u>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1     | 6       | 16.67   | 5.00     | <u>√</u>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

Page : 8 of 12

Work Order : ES1526118 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Matrix: WATER                                          |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency r | not within specification; ✓ = Quality Control frequency within specification. |
|--------------------------------------------------------|------------|----|---------|-----------|-------------------|-------------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type                            |            | Co | ount    |           | Rate (%)          |                   | Quality Control Specification                                                 |
| Analytical Methods                                     | Method     | QC | Regular | Actual    | Expected          | Evaluation        |                                                                               |
| Laboratory Control Samples (LCS) - Continued           |            |    |         |           |                   |                   |                                                                               |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 7       | 14.29     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Fluoride by PC Titrator                                | EK040P     | 1  | 11      | 9.09      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Major Cations - Dissolved                              | ED093F     | 1  | 15      | 6.67      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 20      | 5.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 11      | 9.09      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Oil and Grease                                         | EP020      | 1  | 20      | 5.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 5       | 20.00     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 20      | 5.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 5       | 20.00     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 11      | 9.09      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 20      | 5.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Suspended Solids (High Level)                          | EA025H     | 2  | 20      | 10.00     | 9.52              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Dissolved Solids (High Level)                    | EA015H     | 2  | 20      | 10.00     | 10.00             | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 3  | 20      | 15.00     | 15.00             | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 3  | 20      | 15.00     | 15.00             | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 18      | 5.56      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 12      | 8.33      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Volatile Organic Compounds                             | EP074      | 1  | 17      | 5.88      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Method Blanks (MB)                                     |            |    |         |           |                   |                   |                                                                               |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 14      | 7.14      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| C1 - C4 Gases                                          | EP033      | 1  | 14      | 7.14      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 16      | 6.25      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Chlorine                                               | EK010      | 1  | 5       | 20.00     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Conductivity by PC Titrator                            | EA010-P    | 1  | 19      | 5.26      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 12      | 8.33      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 19      | 5.26      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 6       | 16.67     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 7       | 14.29     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Fluoride by PC Titrator                                | EK040P     | 1  | 11      | 9.09      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Major Cations - Dissolved                              | ED093F     | 1  | 15      | 6.67      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 20      | 5.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 11      | 9.09      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Oil and Grease                                         | EP020      | 1  | 20      | 5.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 5       | 20.00     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 20      | 5.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 5       | 20.00     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 11      | 9.09      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 20      | 5.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Suspended Solids (High Level)                          | EA025H     | 1  | 20      | 5.00      | 4.76              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Dissolved Solids (High Level)                    | EA015H     | 1  | 20      | 5.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |

Page : 9 of 12

Work Order : ES1526118 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Matrix: WATER                                          |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specification. |
|--------------------------------------------------------|------------|----|---------|-----------|-------------------|-----------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type                            |            | Co | ount    |           | Rate (%)          |                 | Quality Control Specification                                                 |
| Analytical Methods                                     | Method     | oc | Regular | Actual    | Expected          | Evaluation      |                                                                               |
| Method Blanks (MB) - Continued                         |            |    |         |           |                   |                 |                                                                               |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 18      | 5.56      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 12      | 8.33      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Volatile Organic Compounds                             | EP074      | 1  | 17      | 5.88      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Matrix Spikes (MS)                                     |            |    |         |           |                   |                 |                                                                               |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 14      | 7.14      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| C1 - C4 Gases                                          | EP033      | 1  | 14      | 7.14      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 16      | 6.25      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 12      | 8.33      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 7       | 14.29     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Fluoride by PC Titrator                                | EK040P     | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0  | 5       | 0.00      | 5.00              | x               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 5       | 20.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH - Semivolatile Fraction                            | EP071      | 0  | 18      | 0.00      | 5.00              | 3c              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 12      | 8.33      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Volatile Organic Compounds                             | EP074      | 1  | 17      | 5.88      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |

Page : 10 of 12

Work Order : ES1526118 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                     | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pH by PC Titrator                                      | EA005-P  | WATER  | In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                              |
| Conductivity by PC Titrator                            | EA010-P  | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                         |
| Total Dissolved Solids (High Level)                    | EA015H   | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |
| Suspended Solids (High Level)                          | EA025H   | WATER  | In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of 'non-filterable' residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (2013) Schedule B(3)                                 |
| Standard Anions -by IC (Extended Method)               | ED009-X  | WATER  | In house: Referenced to APHA 4110. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                    |
| Alkalinity by PC Titrator                              | ED037-P  | WATER  | In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                       |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G   | WATER  | In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)                                       |
| Chloride by Discrete Analyser                          | ED045G   | WATER  | In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003                                                                                                  |
| Major Cations - Dissolved                              | ED093F   | WATER  | In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3)  Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3)  Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) |
| Disaster d Matala had OD MO. Quita A                   | 500004 5 | WATER  | Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                        |

Page : 11 of 12

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Analytical Methods                                   | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Metals by ICP-MS - Suite B                 | EG020B-F   | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                                                                                                        |
| Dissolved Mercury by FIMS                            | EG035F     | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) |
| Silica (Reactive) by Discrete Analyser               | EG052G     | WATER  | In house: Referenced to APHA 4500-SiO2 D: Under Acdic conditions reactive silicon combines with ammonium molybdate to form a yellow molybdosilicic acid complex. This is reduced by 1-amino-2-naphthol-4-sulfonic acid to a silicomolybdenum blue complex which is measured by discrete analyser at 670 nm. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                           |
| Chlorine                                             | EK010      | WATER  | In-house (DPD colourimetry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fluoride by PC Titrator                              | EK040P     | WATER  | In house: Referenced to APHA 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                               |
| Ammonia as N by Discrete analyser                    | EK055G     | WATER  | In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ammonium as N                                        | EK055G-NH4 | WATER  | Ammonium in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH and Temperature. Ammonia is determined by direct colorimetry by Discrete Analyser according to APHA 4500-NH3 G. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                  |
| Nitrite as N by Discrete Analyser                    | EK057G     | WATER  | In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nitrate as N by Discrete Analyser                    | EK058G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                          |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser  | EK059G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                      |
| Total Kjeldahl Nitrogen as N By Discrete Analyser    | EK061G     | WATER  | In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                           |
| Total Nitrogen as N (TKN + Nox) By Discrete Analyser | EK062G     | WATER  | In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total Phosphorus as P By Discrete<br>Analyser        | EK067G     | WATER  | In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |

Page : 12 of 12

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Analytical Methods                               | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reactive Phosphorus as P-By Discrete<br>Analyser | EK071G      | WATER  | In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                      |
| Total Organic Carbon                             | EP005       | WATER  | In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                     |
| Oil and Grease                                   | EP020       | WATER  | In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM (2013) Schedule B(3)                                                                             |
| C1 - C4 Gases                                    | EP033       | WATER  | Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, US EPA - Region 1, EPA New England, July 2001. Automated static headspace, dual column GC/FID. A 12 mL sample is pipetted into a 20 mL headspace vial containing 3g of sodium chloride and sealed. Each sample is equilibrated with shaking at 40 degrees C for 10 minutes prior to analysis by GC/FID using a pair of PLOT columns of different polarity. |
| TRH - Semivolatile Fraction                      | EP071       | WATER  | USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                                                 |
| Volatile Organic Compounds                       | EP074       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                          |
| PAH/Phenols (GC/MS - SIM)                        | EP075(SIM)  | WATER  | USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                     |
| TRH Volatiles/BTEX                               | EP080       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                           |
| Ethanolamines by LCMSMS                          | EP262       | WATER  | In-house LC-MSMS: Benzoyl derivatives of target compounds are analysed by LC/MSMS in ESI Positive Mode.                                                                                                                                                                                                                                                                                                                                            |
| Preparation Methods                              | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TKN/TP Digestion                                 | EK061/EK067 | WATER  | APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                       |



### **QUALITY CONTROL REPORT**

**Work Order** : **ES1526216** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ---- Date Samples Received : 16-Jul-2015
C-O-C number : ---- Date Analysis Commenced : 16-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 16-Jul-2015

Site : --- No. of samples received : 5
Quote number : --- No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

SYDNEY NSW. AUSTRALIA 2001

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



NATA Accredited Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Pabi Subba Senior Organic Chemist Sydney Organics

Page : 2 of 4
Work Order : ES1526216

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1526216

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

# Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER          |                             |                                         |            |     |       | Laboratory D    | Ouplicate (DUP) Report |         |                     |
|----------------------------|-----------------------------|-----------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID       | Client sample ID            | Method: Compound                        | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| <b>EA010P: Conductivit</b> | y by PC Titrator (QC Lot: 1 | 56485)                                  |            |     |       |                 |                        |         |                     |
| ES1526216-001              | AST2                        | EA010-P: Electrical Conductivity @ 25°C |            | 1   | μS/cm | 7780            | 7870                   | 1.19    | 0% - 20%            |
| EK084: Un-ionized Hy       | /drogen Sulfide (QC Lot: 1  | 56292)                                  |            |     |       |                 |                        |         |                     |
| ES1526216-001              | AST2                        | EK084: Unionized Hydrogen Sulfide       |            | 0.1 | mg/L  | <0.1            | <0.1                   | 0.00    | 0% - 20%            |
| EP080: BTEXN (QC I         | ot: 156137)                 |                                         |            |     |       |                 |                        |         |                     |
| ES1526216-003              | WK12                        | EP080: Benzene                          | 71-43-2    | 1   | μg/L  | 2               | 2                      | 0.00    | No Limit            |
|                            |                             | EP080: Ethylbenzene                     | 100-41-4   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                            |                             | EP080: meta- & para-Xylene              | 108-38-3   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                            |                             |                                         | 106-42-3   |     |       |                 |                        |         |                     |
|                            |                             | EP080: ortho-Xylene                     | 95-47-6    | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                            |                             | EP080: Toluene                          | 108-88-3   | 2   | μg/L  | 3               | 3                      | 0.00    | No Limit            |
|                            |                             | EP080: Naphthalene                      | 91-20-3    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |

Page : 4 of 4 Work Order : ES1526216

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            |     |       | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|-----------------------------------------------------|------------|-----|-------|-------------------|---------------|------------------------------|-----------|------------|
|                                                     |            |     |       | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                    | CAS Number | LOR | Unit  | Result            | Concentration | LCS                          | Low       | High       |
| EA010P: Conductivity by PC Titrator (QCLot: 156485) |            |     |       |                   |               |                              |           |            |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1   | μS/cm | <1                | 2000 μS/cm    | 106                          | 95        | 113        |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 156292)  |            |     |       |                   |               |                              |           |            |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1 | mg/L  | <0.1              | 0.05 mg/L     | 105                          | 72        | 126        |
| EP080: BTEXN (QCLot: 156137)                        |            |     |       |                   |               |                              |           |            |
| EP080: Benzene                                      | 71-43-2    | 1   | μg/L  | <1                | 10 μg/L       | 76.9                         | 70        | 124        |
| EP080: Ethylbenzene                                 | 100-41-4   | 2   | μg/L  | <2                | 10 μg/L       | 80.9                         | 70        | 120        |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2   | μg/L  | <2                | 10 μg/L       | 78.6                         | 69        | 121        |
|                                                     | 106-42-3   |     |       |                   |               |                              |           |            |
| EP080: Naphthalene                                  | 91-20-3    | 5   | μg/L  | <5                | 10 μg/L       | 86.2                         | 70        | 124        |
| EP080: ortho-Xylene                                 | 95-47-6    | 2   | μg/L  | <2                | 10 μg/L       | 88.9                         | 72        | 122        |
| EP080: Toluene                                      | 108-88-3   | 2   | μg/L  | <2                | 10 μg/L       | 83.2                         | 65        | 129        |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                            |            | Ma            | trix Spike (MS) Report |            |           |
|----------------------|------------------|----------------------------|------------|---------------|------------------------|------------|-----------|
|                      |                  |                            |            | Spike         | SpikeRecovery(%)       | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration | MS                     | Low        | High      |
| EP080: BTEXN (Q      | CLot: 156137)    |                            |            |               |                        |            |           |
| ES1526216-003        | WK12             | EP080: Benzene             | 71-43-2    | 25 μg/L       | 86.4                   | 70         | 130       |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L       | 93.2                   | 70         | 130       |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L       | 88.2                   | 70         | 130       |
|                      |                  |                            | 106-42-3   |               |                        |            |           |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L       | 93.8                   | 70         | 130       |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L       | 97.5                   | 70         | 130       |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L       | 86.7                   | 70         | 130       |



# **QA/QC Compliance Assessment for DQO Reporting**

Work Order : **ES1526216** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 16-Jul-2015

 Site
 :-- Issue Date
 : 16-Jul-2015

Sampler : CAROLINA SARDELLA No. of samples received : 5
Order number : ---- No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

# **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

# **Outliers : Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4
Work Order : ES1526216

Client : PARSONS BRINCKERHOFF AUST P/L

Project · 2268523B



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      | Co | ount    | Rate   | : (%)    | Quality Control Specification                    |
|----------------------------------|----|---------|--------|----------|--------------------------------------------------|
| Method                           | QC | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

# **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER |  |
|---------------|--|
| Matrix: WATER |  |
| Matrix: WAILE |  |

| - 1 C       |     | The state of the s |              | / AAROLE    | and the second |
|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|----------------|
| Evaluation: | × = | Holding fim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e breach : 🕦 | / = VVithin | holding time   |

| Method                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Date | Ex             | traction / Preparation |            |               | Analysis         |            |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|------------------------|------------|---------------|------------------|------------|
| Container / Client Sample ID(s)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Date extracted | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation |
| EA010P: Conductivity by PC Titrate            | or and the second secon |             |                |                        |            |               |                  |            |
| Clear Plastic Bottle - Natural (EA010<br>AST2 | J-P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16-Jul-2015 |                |                        |            | 16-Jul-2015   | 13-Aug-2015      | ✓          |
| EP080: BTEXN                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                |                        |            |               |                  |            |
| Amber VOC Vial - Sulfuric Acid (EPO<br>AST2,  | 080)<br>WK11,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16-Jul-2015 | 16-Jul-2015    | 30-Jul-2015            | 1          | 16-Jul-2015   | 30-Jul-2015      |            |
| WK12,                                         | WK13,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 04.1     | 12 22          |                        |            |               | 25 35. 20.0      | _          |
| WK14                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                |                        |            |               |                  |            |

Page : 3 of 4 Work Order ES1526216

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    | ATER Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specificat |    |         |        |          |            |                                                  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------|----|---------|--------|----------|------------|--------------------------------------------------|--|--|
| Quality Control Sample Type      |                                                                                                                          | Co | ount    |        | Rate (%) |            | Quality Control Specification                    |  |  |
| Analytical Methods               | Method                                                                                                                   | OC | Regular | Actual | Expected | Evaluation |                                                  |  |  |
| Laboratory Duplicates (DUP)      |                                                                                                                          |    |         |        |          |            |                                                  |  |  |
| Conductivity by PC Titrator      | EA010-P                                                                                                                  | 1  | 1       | 100.00 | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| TRH Volatiles/BTEX               | EP080                                                                                                                    | 1  | 5       | 20.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Un-ionized Hydrogen Sulfide      | EK084                                                                                                                    | 0  | 5       | 0.00   | 10.00    | <b>sc</b>  | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Laboratory Control Samples (LCS) |                                                                                                                          |    |         |        |          |            |                                                  |  |  |
| Conductivity by PC Titrator      | EA010-P                                                                                                                  | 1  | 1       | 100.00 | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| TRH Volatiles/BTEX               | EP080                                                                                                                    | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Un-ionized Hydrogen Sulfide      | EK084                                                                                                                    | 0  | 5       | 0.00   | 5.00     | <b>s</b> c | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Method Blanks (MB)               |                                                                                                                          |    |         |        |          |            |                                                  |  |  |
| Conductivity by PC Titrator      | EA010-P                                                                                                                  | 1  | 1       | 100.00 | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| TRH Volatiles/BTEX               | EP080                                                                                                                    | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Un-ionized Hydrogen Sulfide      | EK084                                                                                                                    | 0  | 5       | 0.00   | 5.00     | <b>se</b>  | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Matrix Spikes (MS)               |                                                                                                                          |    |         |        |          |            |                                                  |  |  |
| TRH Volatiles/BTEX               | EP080                                                                                                                    | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |

Page : 4 of 4 Work Order : ES1526216

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                    |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                    |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3) |



### **QUALITY CONTROL REPORT**

**Work Order** : **ES1526322** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ---- Date Samples Received : 17-Jul-2015
C-O-C number : ---- Date Analysis Commenced : 17-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 17-Jul-2015

Site : --- No. of samples received : 5
Quote number : --- No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

SYDNEY NSW. AUSTRALIA 2001

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



NATA Accredited Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Pabi Subba Senior Organic Chemist Sydney Organics

Page : 2 of 4
Work Order : ES1526322

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1526322

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER                                    |                  |                                         |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |
|------------------------------------------------------|------------------|-----------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID                                 | Client sample ID | Method: Compound                        | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EA010P: Conductivity by PC Titrator (QC Lot: 157605) |                  |                                         |            |                                   |       |                 |                  |         |                     |
| ES1526322-001                                        | AST2             | EA010-P: Electrical Conductivity @ 25°C |            | 1                                 | μS/cm | 7430            | 7560             | 1.79    | 0% - 20%            |
| EK084: Un-ionized Hydrogen Sulfide (QC Lot: 157480)  |                  |                                         |            |                                   |       |                 |                  |         |                     |
| ES1526322-001                                        | AST2             | EK084: Unionized Hydrogen Sulfide       |            | 0.1                               | mg/L  | <0.1            | <0.1             | 0.00    | 0% - 20%            |
| EP080: BTEXN (QC Lot: 157400)                        |                  |                                         |            |                                   |       |                 |                  |         |                     |
| ES1526322-003                                        | WK12             | EP080: Benzene                          | 71-43-2    | 1                                 | μg/L  | 2               | 2                | 0.00    | No Limit            |
|                                                      |                  | EP080: Ethylbenzene                     | 100-41-4   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |
|                                                      |                  | EP080: meta- & para-Xylene              | 108-38-3   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |
|                                                      |                  |                                         | 106-42-3   |                                   |       |                 |                  |         |                     |
|                                                      |                  | EP080: ortho-Xylene                     | 95-47-6    | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |
|                                                      |                  | EP080: Toluene                          | 108-88-3   | 2                                 | μg/L  | 2               | 2                | 0.00    | No Limit            |
|                                                      |                  | EP080: Naphthalene                      | 91-20-3    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit            |

Page : 4 of 4 Work Order : ES1526322

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            |     |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |                     |      |  |
|-----------------------------------------------------|------------|-----|-------|-------------------|---------------------------------------|--------------------|---------------------|------|--|
|                                                     |            |     |       | Report            | Spike                                 | Spike Recovery (%) | Recovery Limits (%) |      |  |
| Method: Compound                                    | CAS Number | LOR | Unit  | Result            | Concentration                         | LCS                | Low                 | High |  |
| EA010P: Conductivity by PC Titrator (QCLot: 157605) |            |     |       |                   |                                       |                    |                     |      |  |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1   | μS/cm | <1                | 2000 μS/cm                            | 102                | 95                  | 113  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 157480)  |            |     |       |                   |                                       |                    |                     |      |  |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1 | mg/L  | <0.1              | 0.05 mg/L                             | 106                | 72                  | 126  |  |
| EP080: BTEXN (QCLot: 157400)                        |            |     |       |                   |                                       |                    |                     |      |  |
| EP080: Benzene                                      | 71-43-2    | 1   | μg/L  | <1                | 10 μg/L                               | 90.0               | 70                  | 124  |  |
| EP080: Ethylbenzene                                 | 100-41-4   | 2   | μg/L  | <2                | 10 μg/L                               | 86.4               | 70                  | 120  |  |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2   | μg/L  | <2                | 10 μg/L                               | 88.3               | 69                  | 121  |  |
|                                                     | 106-42-3   |     |       |                   |                                       |                    |                     |      |  |
| EP080: Naphthalene                                  | 91-20-3    | 5   | μg/L  | <5                | 10 μg/L                               | 88.2               | 70                  | 124  |  |
| EP080: ortho-Xylene                                 | 95-47-6    | 2   | μg/L  | <2                | 10 μg/L                               | 89.4               | 72                  | 122  |  |
| EP080: Toluene                                      | 108-88-3   | 2   | μg/L  | <2                | 10 μg/L                               | 89.5               | 65                  | 129  |  |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                            |            | Matrix Spike (MS) Report |                  |            |           |  |
|----------------------|------------------|----------------------------|------------|--------------------------|------------------|------------|-----------|--|
|                      |                  |                            |            | Spike                    | SpikeRecovery(%) | Recovery L | imits (%) |  |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration            | MS               | Low        | High      |  |
| EP080: BTEXN (Q      | CLot: 157400)    |                            |            |                          |                  |            |           |  |
| ES1526322-003        | WK12             | EP080: Benzene             | 71-43-2    | 25 μg/L                  | 96.6             | 70         | 130       |  |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L                  | 91.8             | 70         | 130       |  |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L                  | 90.9             | 70         | 130       |  |
|                      |                  |                            | 106-42-3   |                          |                  |            |           |  |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L                  | 81.1             | 70         | 130       |  |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L                  | 91.4             | 70         | 130       |  |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L                  | 96.2             | 70         | 130       |  |



# **QA/QC Compliance Assessment for DQO Reporting**

Work Order : **ES1526322** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 17-Jul-2015

 Site
 : --- Issue Date
 : 17-Jul-2015

Sampler : CAROLINA SARDELLA No. of samples received : 5
Order number : ---- No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

# **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

# **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

# **Outliers : Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 ES1526322 Work Order

PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      | Co | ount    | Rate   | e (%)    | Quality Control Specification                    |
|----------------------------------|----|---------|--------|----------|--------------------------------------------------|
| Method                           | QC | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

# **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER | Evaluation | n: x = Holding time breach; | ✓ = Within holding time. |
|---------------|------------|-----------------------------|--------------------------|
|               |            |                             |                          |

| Maura. WATER                                     |       |             |                          |                    | Evaluation | i. 🗸 – Holding time | : Dieacii, 🔻 – Willi | in notaling time |
|--------------------------------------------------|-------|-------------|--------------------------|--------------------|------------|---------------------|----------------------|------------------|
| Method Method                                    |       | Sample Date | Extraction / Preparation |                    |            | Analysis            |                      |                  |
| Container / Client Sample ID(s)                  |       |             | Date extracted           | Due for extraction | Evaluation | Date analysed       | Due for analysis     | Evaluation       |
| EA010P: Conductivity by PC Titrator              |       |             |                          |                    |            |                     |                      |                  |
| Clear Plastic Bottle - Natural (EA010-P)<br>AST2 |       | 17-Jul-2015 |                          |                    |            | 17-Jul-2015         | 14-Aug-2015          | <b>✓</b>         |
| EP080: BTEXN                                     |       |             |                          |                    |            |                     |                      |                  |
| Amber VOC Vial - Sulfuric Acid (EP080)           |       |             |                          |                    |            |                     |                      |                  |
| AST2,                                            | WK11, | 17-Jul-2015 | 17-Jul-2015              | 31-Jul-2015        | ✓          | 17-Jul-2015         | 31-Jul-2015          | ✓                |
| WK12,                                            | WK13, |             |                          |                    |            |                     |                      |                  |
| QA8                                              |       |             |                          |                    |            |                     |                      |                  |

Page : 3 of 4 Work Order ES1526322

PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    | /ATER Evaluation: ★ = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification |    |         |        |          |            |                                                  |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------|----|---------|--------|----------|------------|--------------------------------------------------|--|--|
| Quality Control Sample Type      |                                                                                                                              | Co | ount    |        | Rate (%) |            | Quality Control Specification                    |  |  |
| Analytical Methods               | Method                                                                                                                       | OC | Reaular | Actual | Expected | Evaluation |                                                  |  |  |
| Laboratory Duplicates (DUP)      |                                                                                                                              |    |         |        |          |            |                                                  |  |  |
| Conductivity by PC Titrator      | EA010-P                                                                                                                      | 1  | 1       | 100.00 | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| TRH Volatiles/BTEX               | EP080                                                                                                                        | 1  | 5       | 20.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Un-ionized Hydrogen Sulfide      | EK084                                                                                                                        | 0  | 5       | 0.00   | 10.00    | se         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Laboratory Control Samples (LCS) |                                                                                                                              |    |         |        |          |            |                                                  |  |  |
| Conductivity by PC Titrator      | EA010-P                                                                                                                      | 1  | 1       | 100.00 | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| TRH Volatiles/BTEX               | EP080                                                                                                                        | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Un-ionized Hydrogen Sulfide      | EK084                                                                                                                        | 0  | 5       | 0.00   | 5.00     | sc .       | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Method Blanks (MB)               |                                                                                                                              |    |         |        |          |            |                                                  |  |  |
| Conductivity by PC Titrator      | EA010-P                                                                                                                      | 1  | 1       | 100.00 | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| TRH Volatiles/BTEX               | EP080                                                                                                                        | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Un-ionized Hydrogen Sulfide      | EK084                                                                                                                        | 0  | 5       | 0.00   | 5.00     | 3c         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Matrix Spikes (MS)               |                                                                                                                              |    |         |        |          |            |                                                  |  |  |
| TRH Volatiles/BTEX               | EP080                                                                                                                        | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |

Page : 4 of 4 Work Order : ES1526322

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                                                                                                                                      |  |  |  |  |
|-----------------------------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                    |  |  |  |  |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)    |  |  |  |  |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                                                                                                                          |  |  |  |  |
|                             |         |        | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is |  |  |  |  |
|                             |         |        | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                          |  |  |  |  |



### **QUALITY CONTROL REPORT**

**Work Order** : **ES1526325** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ----Date Samples Received: 18-Jul-2015C-O-C number: ----Date Analysis Commenced: 20-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 20-Jul-2015

Site : --- No. of samples received : 3

Quote number : --- No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

**NATA Accredited** 

Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



Signatories

SYDNEY NSW. AUSTRALIA 2001

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Pabi Subba Senior Organic Chemist Sydney Organics

Page : 2 of 4 Work Order : ES1526325

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1526325

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER                                   |                                                      |                                         |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |  |  |
|-----------------------------------------------------|------------------------------------------------------|-----------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|--|--|
| Laboratory sample ID                                | Client sample ID                                     | Method: Compound                        | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |
| EA010P: Conductivit                                 | EA010P: Conductivity by PC Titrator (QC Lot: 158665) |                                         |            |                                   |       |                 |                  |         |                     |  |  |
| ES1526325-001                                       | AST2                                                 | EA010-P: Electrical Conductivity @ 25°C |            | 1                                 | μS/cm | 7910            | 7920             | 0.126   | 0% - 20%            |  |  |
| EK084: Un-ionized Hydrogen Sulfide (QC Lot: 158517) |                                                      |                                         |            |                                   |       |                 |                  |         |                     |  |  |
| ES1526325-001                                       | AST2                                                 | EK084: Unionized Hydrogen Sulfide       |            | 0.1                               | mg/L  | <0.1            | <0.1             | 0.00    | 0% - 20%            |  |  |
| EP080: BTEXN (QC Lot: 158399)                       |                                                      |                                         |            |                                   |       |                 |                  |         |                     |  |  |
| ES1526325-001                                       | AST2                                                 | EP080: Benzene                          | 71-43-2    | 1                                 | μg/L  | 11              | 10               | 0.00    | 0% - 50%            |  |  |
|                                                     |                                                      | EP080: Ethylbenzene                     | 100-41-4   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |
|                                                     |                                                      | EP080: meta- & para-Xylene              | 108-38-3   | 2                                 | μg/L  | 4               | 4                | 0.00    | No Limit            |  |  |
|                                                     |                                                      |                                         | 106-42-3   |                                   |       |                 |                  |         |                     |  |  |
|                                                     |                                                      | EP080: ortho-Xylene                     | 95-47-6    | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |
|                                                     |                                                      | EP080: Toluene                          | 108-88-3   | 2                                 | μg/L  | 12              | 12               | 0.00    | No Limit            |  |  |
|                                                     |                                                      | EP080: Naphthalene                      | 91-20-3    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit            |  |  |



Page : 4 of 4 Work Order : ES1526325

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            |     |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |
|-----------------------------------------------------|------------|-----|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|
|                                                     |            |     |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound                                    | CAS Number | LOR | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |  |
| EA010P: Conductivity by PC Titrator (QCLot: 158665) |            |     |       |                   |                                       |                    |          |            |  |  |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1   | μS/cm | <1                | 2000 μS/cm                            | 106                | 95       | 113        |  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 158517)  |            |     |       |                   |                                       |                    |          |            |  |  |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1 | mg/L  | <0.1              | 0.05 mg/L                             | 94.6               | 72       | 126        |  |  |
| EP080: BTEXN (QCLot: 158399)                        |            |     |       |                   |                                       |                    |          |            |  |  |
| EP080: Benzene                                      | 71-43-2    | 1   | μg/L  | <1                | 10 μg/L                               | 94.1               | 70       | 124        |  |  |
| EP080: Ethylbenzene                                 | 100-41-4   | 2   | μg/L  | <2                | 10 μg/L                               | 98.7               | 70       | 120        |  |  |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2   | μg/L  | <2                | 10 μg/L                               | 101                | 69       | 121        |  |  |
|                                                     | 106-42-3   |     |       |                   |                                       |                    |          |            |  |  |
| EP080: Naphthalene                                  | 91-20-3    | 5   | μg/L  | <5                | 10 μg/L                               | 99.3               | 70       | 124        |  |  |
| EP080: ortho-Xylene                                 | 95-47-6    | 2   | μg/L  | <2                | 10 μg/L                               | 104                | 72       | 122        |  |  |
| EP080: Toluene                                      | 108-88-3   | 2   | μg/L  | <2                | 10 μg/L                               | 93.1               | 65       | 129        |  |  |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                            |            | Matrix Spike (MS) Report |                  |            |           |  |  |  |
|----------------------|------------------|----------------------------|------------|--------------------------|------------------|------------|-----------|--|--|--|
|                      |                  |                            |            | Spike                    | SpikeRecovery(%) | Recovery L | imits (%) |  |  |  |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration            | MS               | Low        | High      |  |  |  |
| EP080: BTEXN (Q      | CLot: 158399)    |                            |            |                          |                  |            |           |  |  |  |
| ES1526325-001        | AST2             | EP080: Benzene             | 71-43-2    | 25 μg/L                  | 92.8             | 70         | 130       |  |  |  |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L                  | 94.6             | 70         | 130       |  |  |  |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L                  | 93.1             | 70         | 130       |  |  |  |
|                      |                  |                            | 106-42-3   |                          |                  |            |           |  |  |  |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L                  | 98.4             | 70         | 130       |  |  |  |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L                  | 98.0             | 70         | 130       |  |  |  |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L                  | 90.3             | 70         | 130       |  |  |  |



# **QA/QC Compliance Assessment for DQO Reporting**

Work Order : **ES1526325** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 18-Jul-2015

 Site
 :-- Issue Date
 : 20-Jul-2015

Sampler : CAROLINA SARDELLA No. of samples received : 3
Order number : ---- No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

# **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

# **Outliers : Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 Work Order : ES1526325

Client : PARSONS BRINCKERHOFF AUST P/L

Project · 2268523B



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      | Count |         | Rate (%) |          | Quality Control Specification                    |
|----------------------------------|-------|---------|----------|----------|--------------------------------------------------|
| Method                           | QC    | Regular | Actual   | Expected |                                                  |
| Laboratory Duplicates (DUP)      |       |         |          |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0     | 3       | 0.00     | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |       |         |          |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0     | 3       | 0.00     | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |       |         |          |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0     | 3       | 0.00     | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

# **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER | Evaluation: × = Holding time breach; | ✓ = Within holding time. |
|---------------|--------------------------------------|--------------------------|
|               |                                      |                          |

| Method                                                  |             | Extraction / Preparation |                    |            | Analysis      |                  |            |  |
|---------------------------------------------------------|-------------|--------------------------|--------------------|------------|---------------|------------------|------------|--|
| Container / Client Sample ID(s)                         |             | Date extracted           | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation |  |
| EA010P: Conductivity by PC Titrator                     |             |                          |                    |            |               |                  |            |  |
| Clear Plastic Bottle - Natural (EA010-P) AST2           | 18-Jul-2015 |                          |                    |            | 20-Jul-2015   | 15-Aug-2015      | <b>✓</b>   |  |
| EP080: BTEXN                                            |             |                          |                    |            |               |                  |            |  |
| Amber VOC Vial - Sulfuric Acid (EP080) AST2, WK13, WK14 | 18-Jul-2015 | 20-Jul-2015              | 01-Aug-2015        | ✓          | 20-Jul-2015   | 01-Aug-2015      | ✓          |  |

Page : 3 of 4 Work Order ES1526325

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

| me | expected | rate. F | a listing o | r breaches | is provide | a in the | Summary | of Outlier | S. |
|----|----------|---------|-------------|------------|------------|----------|---------|------------|----|
|    |          |         |             |            |            |          |         |            |    |

| Matrix: WATER                    |         |    |         | Evaluation | n: 🗴 = Quality Co | ontrol frequency | not within specification; ✓ = Quality Control frequency within specification |
|----------------------------------|---------|----|---------|------------|-------------------|------------------|------------------------------------------------------------------------------|
| Quality Control Sample Type      |         | Co | ount    |            | Rate (%)          |                  | Quality Control Specification                                                |
| Analytical Methods               | Method  | OC | Reaular | Actual     | Expected          | Evaluation       |                                                                              |
| Laboratory Duplicates (DUP)      |         |    |         |            |                   |                  |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00     | 10.00             | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 3       | 33.33      | 10.00             | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 3       | 0.00       | 10.00             | 3£               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Laboratory Control Samples (LCS) |         |    |         |            |                   |                  |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00     | 5.00              | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 3       | 33.33      | 5.00              | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 3       | 0.00       | 5.00              | ×                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Method Blanks (MB)               |         |    |         |            |                   |                  |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00     | 5.00              | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 3       | 33.33      | 5.00              | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 3       | 0.00       | 5.00              | ×                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Matrix Spikes (MS)               |         |    |         |            |                   |                  |                                                                              |
| TRH Volatiles/BTEX               | EP080   | 1  | 3       | 33.33      | 5.00              | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |

Page : 4 of 4 Work Order : ES1526325

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                                                                                                                                      |
|-----------------------------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                    |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)    |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                                                                                                                          |
|                             |         |        | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is |
|                             |         |        | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                          |



## **QUALITY CONTROL REPORT**

**Work Order** : **ES1526478** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ---- Date Samples Received : 21-Jul-2015
C-O-C number : ---- Date Analysis Commenced : 21-Jul-2015

Sampler : PAUL WATSON Issue Date : 21-Jul-2015

Site : --- No. of samples received : 6

Quote number : --- No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

**NATA Accredited** 

Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



Signatories

SYDNEY NSW. AUSTRALIA 2001

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Pabi Subba Senior Organic Chemist Sydney Organics

Page : 2 of 4 Work Order : ES1526478

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1526478

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

# Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER             |                                                      |                                         |            |     |       | Laboratory L    | Ouplicate (DUP) Report |         |                     |
|-------------------------------|------------------------------------------------------|-----------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID          | Client sample ID                                     | Method: Compound                        | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| <b>EA010P: Conductivit</b>    | EA010P: Conductivity by PC Titrator (QC Lot: 160067) |                                         |            |     |       |                 |                        |         |                     |
| ES1526478-001                 | AST2                                                 | EA010-P: Electrical Conductivity @ 25°C |            | 1   | μS/cm | 7650            | 7730                   | 1.07    | 0% - 20%            |
| EK084: Un-ionized H           | ydrogen Sulfide (QC Lot:                             | 159984)                                 |            |     |       |                 |                        |         |                     |
| ES1526478-001                 | AST2                                                 | EK084: Unionized Hydrogen Sulfide       |            | 0.1 | mg/L  | <0.1            | <0.1                   | 0.00    | 0% - 20%            |
| EP080: BTEXN (QC Lot: 159949) |                                                      |                                         |            |     |       |                 |                        |         |                     |
| ES1526478-001                 | AST2                                                 | EP080: Benzene                          | 71-43-2    | 1   | μg/L  | 8               | 8                      | 0.00    | No Limit            |
|                               |                                                      | EP080: Ethylbenzene                     | 100-41-4   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                               |                                                      | EP080: meta- & para-Xylene              | 108-38-3   | 2   | μg/L  | 3               | 2                      | 0.00    | No Limit            |
|                               |                                                      |                                         | 106-42-3   |     |       |                 |                        |         |                     |
|                               |                                                      | EP080: ortho-Xylene                     | 95-47-6    | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                               |                                                      | EP080: Toluene                          | 108-88-3   | 2   | μg/L  | 10              | 10                     | 0.00    | No Limit            |
|                               |                                                      | EP080: Naphthalene                      | 91-20-3    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |

Page : 4 of 4 Work Order : ES1526478

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            |     |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |
|-----------------------------------------------------|------------|-----|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|
|                                                     |            |     |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound                                    | CAS Number | LOR | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |  |
| EA010P: Conductivity by PC Titrator (QCLot: 160067) |            |     |       |                   |                                       |                    |          |            |  |  |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1   | μS/cm | <1                | 2000 μS/cm                            | 106                | 95       | 113        |  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 159984)  |            |     |       |                   |                                       |                    |          |            |  |  |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1 | mg/L  | <0.1              | 0.05 mg/L                             | 100                | 72       | 126        |  |  |
| EP080: BTEXN (QCLot: 159949)                        |            |     |       |                   |                                       |                    |          |            |  |  |
| EP080: Benzene                                      | 71-43-2    | 1   | μg/L  | <1                | 10 μg/L                               | 91.7               | 70       | 124        |  |  |
| EP080: Ethylbenzene                                 | 100-41-4   | 2   | μg/L  | <2                | 10 μg/L                               | 95.5               | 70       | 120        |  |  |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2   | μg/L  | <2                | 10 μg/L                               | 94.9               | 69       | 121        |  |  |
|                                                     | 106-42-3   |     |       |                   |                                       |                    |          |            |  |  |
| EP080: Naphthalene                                  | 91-20-3    | 5   | μg/L  | <5                | 10 μg/L                               | 89.6               | 70       | 124        |  |  |
| EP080: ortho-Xylene                                 | 95-47-6    | 2   | μg/L  | <2                | 10 μg/L                               | 98.6               | 72       | 122        |  |  |
| EP080: Toluene                                      | 108-88-3   | 2   | μg/L  | <2                | 10 μg/L                               | 98.4               | 65       | 129        |  |  |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                            |            | Matrix Spike (MS) Report  |      |            |           |  |  |
|----------------------|------------------|----------------------------|------------|---------------------------|------|------------|-----------|--|--|
|                      |                  |                            |            | Spike SpikeRecovery(%) Re |      | Recovery L | imits (%) |  |  |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration             | MS   | Low        | High      |  |  |
| EP080: BTEXN (Q      | CLot: 159949)    |                            |            |                           |      |            |           |  |  |
| ES1526478-001        | AST2             | EP080: Benzene             | 71-43-2    | 25 μg/L                   | 92.9 | 70         | 130       |  |  |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L                   | 93.9 | 70         | 130       |  |  |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L                   | 94.6 | 70         | 130       |  |  |
|                      |                  |                            | 106-42-3   |                           |      |            |           |  |  |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L                   | 81.8 | 70         | 130       |  |  |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L                   | 95.1 | 70         | 130       |  |  |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L                   | 91.8 | 70         | 130       |  |  |



# **QA/QC Compliance Assessment for DQO Reporting**

Work Order : **ES1526478** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 21-Jul-2015

 Site
 : -- Issue Date
 : 21-Jul-2015

Sampler : PAUL WATSON No. of samples received : 6
Order number : ---- No. of samples analysed : 6

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

# **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

# **Outliers : Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 Work Order : ES1526478

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      | Count |         | Rate (%) |          | Quality Control Specification                    |
|----------------------------------|-------|---------|----------|----------|--------------------------------------------------|
| Method                           | QC    | Regular | Actual   | Expected |                                                  |
| Laboratory Duplicates (DUP)      |       |         |          |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0     | 6       | 0.00     | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |       |         |          |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0     | 6       | 0.00     | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |       |         |          |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0     | 6       | 0.00     | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER | Evaluation: × = Holding time breach; ✓ = Within holding time. |
|---------------|---------------------------------------------------------------|
|               |                                                               |

|                                                  |                                 |             |             |                         |            |               |                  | g tim      |
|--------------------------------------------------|---------------------------------|-------------|-------------|-------------------------|------------|---------------|------------------|------------|
| Method                                           |                                 | Sample Date | E.          | xtraction / Preparation |            | Analysis      |                  |            |
| Container / Client Sample ID(s)                  | container / Client Sample ID(s) |             |             |                         | Evaluation | Date analysed | Due for analysis | Evaluation |
| EA010P: Conductivity by PC Titrator              |                                 |             |             |                         |            |               |                  |            |
| Clear Plastic Bottle - Natural (EA010-P)<br>AST2 |                                 | 20-Jul-2015 |             |                         |            | 21-Jul-2015   | 17-Aug-2015      | <b>✓</b>   |
| Clear Plastic Bottle - Natural (EA010-P)<br>AST2 |                                 | 21-Jul-2015 |             |                         |            | 21-Jul-2015   | 18-Aug-2015      | <b>√</b>   |
| EP080: BTEXN                                     |                                 |             |             |                         |            |               |                  |            |
| Amber VOC Vial - Sulfuric Acid (EP080)           |                                 |             |             |                         |            |               |                  |            |
| AST2,                                            | WK11,                           | 20-Jul-2015 | 21-Jul-2015 | 03-Aug-2015             | ✓          | 21-Jul-2015   | 03-Aug-2015      | ✓          |
| WK12,                                            | QA9                             |             |             |                         |            |               |                  |            |
| Amber VOC Vial - Sulfuric Acid (EP080)           |                                 |             |             |                         |            |               |                  |            |
| AST2,                                            | WK12                            | 21-Jul-2015 | 21-Jul-2015 | 04-Aug-2015             | ✓          | 21-Jul-2015   | 04-Aug-2015      | <b>✓</b>   |

Page : 3 of 4 Work Order ES1526478

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    |         |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specification. |
|----------------------------------|---------|----|---------|-----------|-------------------|-----------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type      |         | Co | ount    | Rate (%)  |                   |                 | Quality Control Specification                                                 |
| Analytical Methods               | Method  | QC | Regular | Actual    | Expected          | Evaluation      |                                                                               |
| Laboratory Duplicates (DUP)      |         |    |         |           |                   |                 |                                                                               |
| Conductivity by PC Titrator      | EA010-P | 1  | 2       | 50.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX               | EP080   | 1  | 6       | 16.67     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 6       | 0.00      | 10.00             | æ               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Laboratory Control Samples (LCS) |         |    |         |           |                   |                 |                                                                               |
| Conductivity by PC Titrator      | EA010-P | 1  | 2       | 50.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX               | EP080   | 1  | 6       | 16.67     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 6       | 0.00      | 5.00              | ×               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Method Blanks (MB)               |         |    |         |           |                   |                 |                                                                               |
| Conductivity by PC Titrator      | EA010-P | 1  | 2       | 50.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX               | EP080   | 1  | 6       | 16.67     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 6       | 0.00      | 5.00              | Ŀ               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Matrix Spikes (MS)               |         |    |         |           |                   |                 |                                                                               |
| TRH Volatiles/BTEX               | EP080   | 1  | 6       | 16.67     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |

Page : 4 of 4 Work Order : ES1526478

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                             |
|-----------------------------|---------|--------|-----------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method       |
|                             |         |        | is compliant with NEPM (2013) Schedule B(3)                                                                     |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions |
|                             |         |        | by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)           |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                 |
|                             |         |        | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is    |
|                             |         |        | equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is     |
|                             |         |        | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                 |



## **QUALITY CONTROL REPORT**

**Work Order** : **ES1526602** Page : 1 of 16

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ---Date Samples Received: 22-Jul-2015C-O-C number: 22-Jul-2015Date Analysis Commenced: 22-Jul-2015

Sampler : DAVID WATSON, S DAYKIN Issue Date : 04-Sep-2015

Site : --- No. of samples received : 2

Quote number : --- No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

## Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position               | Accreditation Category |
|------------------|------------------------|------------------------|
| Alex Rossi       | Organic Chemist        | Sydney Organics        |
| Ankit Joshi      | Inorganic Chemist      | Sydney Inorganics      |
| Ashesh Patel     | Inorganic Chemist      | Sydney Inorganics      |
| Celine Conceicao | Senior Spectroscopist  | Sydney Inorganics      |
| Pabi Subba       | Senior Organic Chemist | Sydney Organics        |
|                  |                        |                        |

Page : 2 of 16

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 16

Work Order : ES1526602 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER    |                           |                                          |             |      |         | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|---------------------------|------------------------------------------|-------------|------|---------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID          | Method: Compound                         | CAS Number  | LOR  | Unit    | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA005P: pH by PC     | Titrator (QC Lot: 161191) |                                          |             |      |         |                 |                        |         |                     |
| ES1526567-001        | Anonymous                 | EA005-P: pH Value                        |             | 0.01 | pH Unit | 7.17            | 6.99                   | 2.54    | 0% - 20%            |
| ES1526602-001        | AST2                      | EA005-P: pH Value                        |             | 0.01 | pH Unit | 8.97            | 8.97                   | 0.00    | 0% - 20%            |
| EA010P: Conductiv    | ity by PC Titrator (QC Lo | ot: 161192)                              |             |      |         |                 |                        |         |                     |
| ES1526581-001        | Anonymous                 | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 1530            | 1530                   | 0.00    | 0% - 20%            |
| ES1526567-001        | Anonymous                 | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 74              | 72                     | 1.65    | 0% - 20%            |
| EA015: Total Dissol  | ved Solids (QC Lot: 163   | 688)                                     |             |      |         |                 |                        |         |                     |
| ES1526602-001        | AST2                      | EA015H: Total Dissolved Solids @180°C    |             | 10   | mg/L    | 5240            | 4770                   | 9.31    | 0% - 20%            |
| EW1511013-001        | Anonymous                 | EA015H: Total Dissolved Solids @180°C    |             | 10   | mg/L    | 215             | 216                    | 0.00    | 0% - 20%            |
| EA025: Suspended     | Solids (QC Lot: 163689)   |                                          |             |      |         |                 |                        |         |                     |
| ES1526602-001        | AST2                      | EA025H: Suspended Solids (SS)            |             | 5    | mg/L    | 48              | 44                     | 9.21    | No Limit            |
| EW1511013-001        | Anonymous                 | EA025H: Suspended Solids (SS)            |             | 5    | mg/L    | 11              | 12                     | 0.00    | No Limit            |
| ED009: Anions (Q     | C Lot: 163073)            |                                          |             |      |         |                 |                        |         |                     |
| ES1526588-005        | Anonymous                 | ED009-X: Chloride                        | 16887-00-6  | 0.1  | mg/L    | 14.0            | 14.1                   | 0.413   | 0% - 20%            |
| ES1526601-001        | Anonymous                 | ED009-X: Chloride                        | 16887-00-6  | 0.1  | mg/L    | 87.6            | 88.4                   | 0.896   | 0% - 20%            |
| ED037P: Alkalinity I | by PC Titrator (QC Lot: 1 |                                          |             |      |         |                 |                        |         |                     |
| ME1510156-005        | Anonymous                 | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L    | 5               | 5                      | 0.00    | No Limit            |
|                      |                           | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                           | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                           | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L    | 5               | 5                      | 0.00    | No Limit            |
| ES1526602-001        | AST2                      | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L    | 3320            | 3350                   | 0.749   | 0% - 20%            |
|                      |                           | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L    | 600             | 600                    | 0.00    | 0% - 20%            |
|                      |                           | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                           | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L    | 3920            | 3950                   | 0.635   | 0% - 20%            |
| ED041G: Sulfate (Ti  | urbidimetric) as SO4 2- b | y DA (QC Lot: 161327)                    |             |      |         |                 |                        |         |                     |
| ES1526497-001        | Anonymous                 | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L    | 43              | 43                     | 0.00    | 0% - 20%            |
| ES1526602-002        | WK14                      | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L    | <10             | <10                    | 0.00    | No Limit            |
| ED045G: Chloride b   | y Discrete Analyser (QC   | C Lot: 161325)                           |             |      |         |                 |                        |         |                     |
| ES1526497-001        | Anonymous                 | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L    | 74              | 74                     | 0.00    | 0% - 20%            |
| ES1526602-002        | WK14                      | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L    | 1280            | 1270                   | 0.700   | 0% - 20%            |
| ED093F: Dissolved    | Major Cations (QC Lot:    | 165987)                                  |             |      |         |                 |                        |         |                     |
| ES1526727-004        | Anonymous                 | ED093F: Calcium                          | 7440-70-2   | 1    | mg/L    | 21              | 21                     | 0.00    | No Limit            |
|                      |                           | ED093F: Magnesium                        | 7439-95-4   | 1    | mg/L    | <10             | <10                    | 0.00    | No Limit            |
|                      |                           | ED093F: Potassium                        | 7440-09-7   | 1    | mg/L    | 49              | 48                     | 0.00    | No Limit            |
|                      |                           | ED093F: Sodium                           | 7440-23-5   | 1    | mg/L    | 5200            | 5090                   | 2.24    | 0% - 20%            |



Page : 4 of 16

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                            |                      |            |        | Laboratory I | Duplicate (DUP) Report |                  |         |                     |  |
|----------------------|----------------------------|----------------------|------------|--------|--------------|------------------------|------------------|---------|---------------------|--|
| Laboratory sample ID | Client sample ID           | Method: Compound     | CAS Number | LOR    | Unit         | Original Result        | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| ED093F: Dissolved N  | Major Cations (QC Lot: 165 | 987) - continued     |            |        |              |                        |                  |         |                     |  |
| ES1526602-001        | AST2                       | ED093F: Calcium      | 7440-70-2  | 1      | mg/L         | 24                     | 25               | 5.16    | No Limit            |  |
|                      |                            | ED093F: Magnesium    | 7439-95-4  | 1      | mg/L         | <10                    | <10              | 0.00    | No Limit            |  |
|                      |                            | ED093F: Potassium    | 7440-09-7  | 1      | mg/L         | 15                     | 15               | 0.00    | No Limit            |  |
|                      |                            | ED093F: Sodium       | 7440-23-5  | 1      | mg/L         | 2110                   | 2100             | 0.165   | 0% - 20%            |  |
| EG020F: Dissolved N  | Metals by ICP-MS (QC Lot:  | 165986)              |            |        |              |                        |                  |         |                     |  |
| ES1526730-002        | Anonymous                  | EG020B-F: Strontium  | 7440-24-6  | 0.001  | mg/L         | 3.06                   | 3.01             | 1.82    | 0% - 20%            |  |
|                      |                            | EG020B-F: Uranium    | 7440-61-1  | 0.001  | mg/L         | <0.010                 | <0.010           | 0.00    | No Limit            |  |
| ES1526602-001        | AST2                       | EG020B-F: Strontium  | 7440-24-6  | 0.001  | mg/L         | 3.33                   | 3.29             | 1.44    | 0% - 20%            |  |
|                      |                            | EG020B-F: Uranium    | 7440-61-1  | 0.001  | mg/L         | <0.010                 | <0.010           | 0.00    | No Limit            |  |
| EG020F: Dissolved N  | Metals by ICP-MS (QC Lot:  | 165988)              |            |        |              |                        |                  |         |                     |  |
| ES1526693-009        | Anonymous                  | EG020A-F: Cadmium    | 7440-43-9  | 0.0001 | mg/L         | <0.0001                | <0.0001          | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Antimony   | 7440-36-0  | 0.001  | mg/L         | <0.001                 | <0.001           | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Arsenic    | 7440-38-2  | 0.001  | mg/L         | 0.018                  | 0.019            | 0.00    | 0% - 50%            |  |
|                      |                            | EG020A-F: Barium     | 7440-39-3  | 0.001  | mg/L         | 0.781                  | 0.779            | 0.272   | 0% - 20%            |  |
|                      |                            | EG020A-F: Beryllium  | 7440-41-7  | 0.001  | mg/L         | <0.001                 | <0.001           | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Chromium   | 7440-47-3  | 0.001  | mg/L         | <0.001                 | <0.001           | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Cobalt     | 7440-48-4  | 0.001  | mg/L         | 0.013                  | 0.013            | 0.00    | 0% - 50%            |  |
|                      |                            | EG020A-F: Copper     | 7440-50-8  | 0.001  | mg/L         | <0.001                 | <0.001           | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Lead       | 7439-92-1  | 0.001  | mg/L         | <0.001                 | <0.001           | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Manganese  | 7439-96-5  | 0.001  | mg/L         | 5.83                   | 5.73             | 1.64    | 0% - 20%            |  |
|                      |                            | EG020A-F: Molybdenum | 7439-98-7  | 0.001  | mg/L         | 0.002                  | 0.001            | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Nickel     | 7440-02-0  | 0.001  | mg/L         | 0.017                  | 0.016            | 0.00    | 0% - 50%            |  |
|                      |                            | EG020A-F: Tin        | 7440-31-5  | 0.001  | mg/L         | <0.001                 | <0.001           | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Zinc       | 7440-66-6  | 0.005  | mg/L         | 0.017                  | 0.017            | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Aluminium  | 7429-90-5  | 0.01   | mg/L         | 0.01                   | <0.01            | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Selenium   | 7782-49-2  | 0.01   | mg/L         | <0.01                  | <0.01            | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Vanadium   | 7440-62-2  | 0.01   | mg/L         | <0.01                  | <0.01            | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Boron      | 7440-42-8  | 0.05   | mg/L         | <0.05                  | <0.05            | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Iron       | 7439-89-6  | 0.05   | mg/L         | 2.99                   | 3.06             | 2.04    | 0% - 20%            |  |
|                      |                            | EG020A-F: Bromine    | 7726-95-6  | 0.1    | mg/L         | 1.6                    | 1.6              | 0.00    | 0% - 50%            |  |
| ES1526602-001        | AST2                       | EG020A-F: Cadmium    | 7440-43-9  | 0.0001 | mg/L         | <0.0010                | <0.0010          | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Antimony   | 7440-36-0  | 0.001  | mg/L         | <0.010                 | <0.010           | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Arsenic    | 7440-38-2  | 0.001  | mg/L         | <0.010                 | <0.010           | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Barium     | 7440-39-3  | 0.001  | mg/L         | 5.11                   | 5.06             | 1.07    | 0% - 20%            |  |
|                      |                            | EG020A-F: Beryllium  | 7440-41-7  | 0.001  | mg/L         | <0.010                 | <0.010           | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Chromium   | 7440-47-3  | 0.001  | mg/L         | <0.010                 | <0.010           | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Cobalt     | 7440-48-4  | 0.001  | mg/L         | <0.010                 | <0.010           | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Copper     | 7440-50-8  | 0.001  | mg/L         | <0.010                 | <0.010           | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Lead       | 7439-92-1  | 0.001  | mg/L         | <0.010                 | <0.010           | 0.00    | No Limit            |  |
|                      |                            | EG020A-F: Manganese  | 7439-96-5  | 0.001  | mg/L         | 0.021                  | 0.018            | 12.7    | No Limit            |  |

Page : 5 of 16

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| ub-Matrix: WATER     |                          |                                      |            | Laboratory Duplicate (DUP) Report |        |                 |                  |         |                    |  |  |
|----------------------|--------------------------|--------------------------------------|------------|-----------------------------------|--------|-----------------|------------------|---------|--------------------|--|--|
| Laboratory sample ID | Client sample ID         | Method: Compound                     | CAS Number | LOR                               | Unit   | Original Result | Duplicate Result | RPD (%) | Recovery Limits (% |  |  |
| EG020F: Dissolved    | Metals by ICP-MS (QC     | Lot: 165988) - continued             |            |                                   |        |                 |                  |         |                    |  |  |
| ES1526602-001        | AST2                     | EG020A-F: Molybdenum                 | 7439-98-7  | 0.001                             | mg/L   | <0.010          | <0.010           | 0.00    | No Limit           |  |  |
|                      |                          | EG020A-F: Nickel                     | 7440-02-0  | 0.001                             | mg/L   | <0.010          | <0.010           | 0.00    | No Limit           |  |  |
|                      |                          | EG020A-F: Tin                        | 7440-31-5  | 0.001                             | mg/L   | <0.010          | <0.010           | 0.00    | No Limit           |  |  |
|                      |                          | EG020A-F: Zinc                       | 7440-66-6  | 0.005                             | mg/L   | <0.050          | <0.050           | 0.00    | No Limit           |  |  |
|                      |                          | EG020A-F: Aluminium                  | 7429-90-5  | 0.01                              | mg/L   | <0.10           | <0.10            | 0.00    | No Limit           |  |  |
|                      |                          | EG020A-F: Selenium                   | 7782-49-2  | 0.01                              | mg/L   | <0.10           | <0.10            | 0.00    | No Limit           |  |  |
|                      |                          | EG020A-F: Vanadium                   | 7440-62-2  | 0.01                              | mg/L   | <0.10           | <0.10            | 0.00    | No Limit           |  |  |
|                      |                          | EG020A-F: Boron                      | 7440-42-8  | 0.05                              | mg/L   | 8.52            | 8.58             | 0.782   | 0% - 50%           |  |  |
|                      |                          | EG020A-F: Iron                       | 7439-89-6  | 0.05                              | mg/L   | 0.55            | 0.52             | 5.53    | No Limit           |  |  |
|                      |                          | EG020A-F: Bromine                    | 7726-95-6  | 0.1                               | mg/L   | 3.3             | 3.2              | 0.00    | No Limit           |  |  |
| G035F: Dissolved     | Mercury by FIMS (QC L    | Lot: 165985)                         |            |                                   |        |                 |                  |         |                    |  |  |
| ES1526602-002        | WK14                     | EG035F: Mercury                      | 7439-97-6  | 0.0001                            | mg/L   | <0.0001         | <0.0001          | 0.00    | No Limit           |  |  |
| ES1526693-008        | Anonymous                | EG035F: Mercury                      | 7439-97-6  | 0.0001                            | mg/L   | <0.0001         | <0.0001          | 0.00    | No Limit           |  |  |
| G052G: Silica by I   | Discrete Analyser (QC L  | _ot: 161330)                         |            |                                   |        |                 |                  |         |                    |  |  |
| ES1526602-001        | AST2                     | EG052G: Reactive Silica              |            | 0.05                              | mg/L   | 22.7            | 23.2             | 2.16    | 0% - 20%           |  |  |
| K010/011: Chlorin    | e (QC Lot: 161222)       |                                      |            |                                   |        |                 |                  |         |                    |  |  |
| S1526541-001         | Anonymous                | EK010: Chlorine - Free               |            | 0.2                               | mg/L   | <0.2            | <0.2             | 0.00    | No Limit           |  |  |
|                      | 7                        | EK010: Chlorine - Total Residual     |            | 0.2                               | mg/L   | <0.2            | <0.2             | 0.00    | No Limit           |  |  |
| ME1510170-006        | Anonymous                | EK010: Chlorine - Free               |            | 0.2                               | mg/L   | 0.4             | 0.4              | 0.00    | No Limit           |  |  |
|                      | ,                        | EK010: Chlorine - Total Residual     |            | 0.2                               | mg/L   | 0.5             | 0.5              | 0.00    | No Limit           |  |  |
| -K040P: Eluorido b   | y PC Titrator (QC Lot: 1 |                                      |            |                                   | 3      |                 |                  |         |                    |  |  |
| ES1526581-001        | Anonymous                |                                      | 16984-48-8 | 0.1                               | mg/L   | 0.2             | 0.2              | 0.00    | No Limit           |  |  |
| ES1526602-001        | AST2                     | EK040P: Fluoride                     | 16984-48-8 | 0.1                               | mg/L   | 1.2             | 1.2              | 0.00    | 0% - 50%           |  |  |
|                      |                          | EK040P: Fluoride                     | 10904-40-0 | 0.1                               | IIIg/L | 1.2             | 1.2              | 0.00    | 0 /0 - 30 /0       |  |  |
|                      | as N by Discrete Analys  |                                      | 7004.44.7  | 0.04                              |        | 0.00            | 0.40             | 2.22    | N. 11 11           |  |  |
| ES1526581-002        | Anonymous                | EK055G: Ammonia as N                 | 7664-41-7  | 0.01                              | mg/L   | 0.09            | 0.10             | 0.00    | No Limit           |  |  |
| ES1526477-001        | Anonymous                | EK055G: Ammonia as N                 | 7664-41-7  | 0.01                              | mg/L   | 1210            | 1230             | 1.40    | 0% - 20%           |  |  |
|                      | N by Discrete Analyser   | (QC Lot: 161328)                     |            |                                   |        |                 |                  |         |                    |  |  |
| ES1526602-002        | WK14                     | EK057G: Nitrite as N                 | 14797-65-0 | 0.01                              | mg/L   | <0.01           | <0.01            | 0.00    | No Limit           |  |  |
| ES1526602-001        | AST2                     | EK057G: Nitrite as N                 | 14797-65-0 | 0.01                              | mg/L   | <0.01           | 0.09             | 159     | No Limit           |  |  |
| EK059G: Nitrite plu  | us Nitrate as N (NOx) by | / Discrete Analyser (QC Lot: 163199) |            |                                   |        |                 |                  |         |                    |  |  |
| ES1526602-001        | AST2                     | EK059G: Nitrite + Nitrate as N       |            | 0.01                              | mg/L   | 0.02            | 0.02             | 0.00    | No Limit           |  |  |
| ES1526477-001        | Anonymous                | EK059G: Nitrite + Nitrate as N       |            | 0.01                              | mg/L   | 0.67            | 0.63             | 6.15    | 0% - 20%           |  |  |
| K061G: Total Kjel    | dahl Nitrogen By Discre  | te Analyser (QC Lot: 163928)         |            |                                   |        |                 |                  |         |                    |  |  |
| ES1526626-001        | Anonymous                | EK061G: Total Kjeldahl Nitrogen as N |            | 0.1                               | mg/L   | 114             | 138              | 19.3    | 0% - 20%           |  |  |
| K067G: Total Pho     | sphorus as P by Discret  | te Analyser (QC Lot: 163927)         |            |                                   |        |                 |                  |         |                    |  |  |
| ES1526591-001        | Anonymous                | EK067G: Total Phosphorus as P        |            | 0.01                              | mg/L   | <0.01           | <0.01            | 0.00    | No Limit           |  |  |
| ES1526729-007        | Anonymous                | EK067G: Total Phosphorus as P        |            | 0.01                              | mg/L   | 0.36            | 0.36             | 0.00    | 0% - 20%           |  |  |
| .0.020,20 00,        |                          | ENGOTO. Total i filospilorus as i    |            | 0.01                              | y, =   | 0.00            | 0.00             | 0.00    | 070 2070           |  |  |

Page : 6 of 16

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                        |                                              |            |      |              | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------|----------------------------------------------|------------|------|--------------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                             | CAS Number | LOR  | Unit         | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EK071G: Reactive     | Phosphorus as P by dis | screte analyser (QC Lot: 161329) - continued |            |      |              |                 |                        |         |                     |
| ES1526602-001        | AST2                   | EK071G: Reactive Phosphorus as P             | 14265-44-2 | 0.01 | mg/L         | 0.02            | 0.02                   | 0.00    | No Limit            |
| EP005: Total Orgai   | nic Carbon (TOC) (QC L | Lot: 161132)                                 |            |      |              |                 |                        |         |                     |
| ES1526416-002        | Anonymous              | EP005: Total Organic Carbon                  |            | 1    | mg/L         | 3230            | 3260                   | 1.11    | 0% - 20%            |
| ES1526575-004        | Anonymous              | EP005: Total Organic Carbon                  |            | 1    | mg/L         | 5               | 5                      | 0.00    | No Limit            |
| EP033: C1 - C4 Hy    | drocarbon Gases (QC L  |                                              |            |      | _            |                 |                        |         |                     |
| EM1512285-001        | Anonymous              | EP033: Butane                                | 106-97-8   | 10   | μg/L         | 34              | 34                     | 0.00    | No Limit            |
|                      |                        | EP033: Butene                                | 25167-67-3 | 10   | μg/L         | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Ethane                                | 74-84-0    | 10   | μg/L         | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Ethene                                | 74-85-1    | 10   | μg/L         | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Methane                               | 74-82-8    | 10   | μg/L         | 3070            | 2810                   | 8.84    | 0% - 20%            |
|                      |                        | EP033: Propane                               | 74-98-6    | 10   | μg/L         | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Propene                               | 115-07-1   | 10   | μg/L         | <10             | <10                    | 0.00    | No Limit            |
| EP1512210-001        | Anonymous              | EP033: Butane                                | 106-97-8   | 10   | μg/L         | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Butene                                | 25167-67-3 | 10   | μg/L         | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Ethane                                | 74-84-0    | 10   | μg/L         | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Ethene                                | 74-85-1    | 10   | μg/L         | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Methane                               | 74-82-8    | 10   | μg/L         | 5880            | 5770                   | 2.00    | 0% - 20%            |
|                      |                        | EP033: Propane                               | 74-98-6    | 10   | μg/L         | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Propene                               | 115-07-1   | 10   | μg/L         | <10             | <10                    | 0.00    | No Limit            |
| EP074A: Monocycl     | ic Aromatic Hydrocarbo | ons (QC Lot: 161084)                         |            |      |              |                 |                        |         |                     |
| ES1526602-001        | AST2                   | EP074: 1.2.4-Trimethylbenzene                | 95-63-6    | 5    | μg/L         | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.3.5-Trimethylbenzene                | 108-67-8   | 5    | μg/L         | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Isopropylbenzene                      | 98-82-8    | 5    | μg/L         | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: n-Butylbenzene                        | 104-51-8   | 5    | μg/L         | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: n-Propylbenzene                       | 103-65-1   | 5    | μg/L         | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: p-Isopropyltoluene                    | 99-87-6    | 5    | μg/L         | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: sec-Butylbenzene                      | 135-98-8   | 5    | μg/L         | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Styrene                               | 100-42-5   | 5    | μg/L         | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: tert-Butylbenzene                     | 98-06-6    | 5    | μg/L         | <5              | <5                     | 0.00    | No Limit            |
| EP074B: Oxygenat     | ed Compounds (QC Lo    | ot: 161084)                                  |            |      |              |                 |                        |         |                     |
| ES1526602-001        | AST2                   | EP074: 2-Butanone (MEK)                      | 78-93-3    | 50   | μg/L         | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP074: 2-Hexanone (MBK)                      | 591-78-6   | 50   | μg/L         | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP074: 4-Methyl-2-pentanone (MIBK)           | 108-10-1   | 50   | μg/L         | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP074: Vinyl Acetate                         | 108-05-4   | 50   | μg/L         | <50             | <50                    | 0.00    | No Limit            |
| EP074C: Sulfonate    | d Compounds (QC Lot    |                                              |            |      |              | <u> </u>        |                        |         |                     |
| ES1526602-001        | AST2                   | EP074: Carbon disulfide                      | 75-15-0    | 5    | μg/L         | <5              | <5                     | 0.00    | No Limit            |
| EP074D: Fumigant     |                        |                                              |            |      |              |                 |                        |         |                     |
| ES1526602-001        | AST2                   | EP074: 1.2-Dibromoethane (EDB)               | 106-93-4   | 5    | μg/L         | <5              | <5                     | 0.00    | No Limit            |
| LO 1020002-00 I      | A012                   |                                              | 78-87-5    | 5    | μg/L<br>μg/L | <5<br><5        | <5<br><5               | 0.00    | No Limit            |
|                      |                        | EP074: 1.2-Dichloropropane                   | 10-01-3    | -    | ₽9/ L        |                 | •0                     | 0.00    | 140 LIIIII          |

Page : 7 of 16

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                        |                                    |            |     |      | Laboratory      | Duplicate (DUP) Report | •       |                     |
|----------------------|------------------------|------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                   | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074D: Fumigants    | (QC Lot: 161084) - con |                                    |            |     |      |                 |                        |         |                     |
| ES1526602-001        | AST2                   | EP074: 2.2-Dichloropropane         | 594-20-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: cis-1.3-Dichloropropylene   | 10061-01-5 | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: trans-1.3-Dichloropropylene | 10061-02-6 | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074E: Halogenate   | d Aliphatic Compounds  | (QC Lot: 161084)                   |            |     |      |                 |                        |         |                     |
| ES1526602-001        | AST2                   | EP074: 1.1.1.2-Tetrachloroethane   | 630-20-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.1.1-Trichloroethane       | 71-55-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.1.2.2-Tetrachloroethane   | 79-34-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.1.2-Trichloroethane       | 79-00-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.1-Dichloroethane          | 75-34-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.1-Dichloroethene          | 75-35-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.1-Dichloropropylene       | 563-58-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.2.3-Trichloropropane      | 96-18-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.2-Dibromo-3-chloropropane | 96-12-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.2-Dichloroethane          | 107-06-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.3-Dichloropropane         | 142-28-9   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Carbon Tetrachloride        | 56-23-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: cis-1.2-Dichloroethene      | 156-59-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: cis-1.4-Dichloro-2-butene   | 1476-11-5  | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Dibromomethane              | 74-95-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Hexachlorobutadiene         | 87-68-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Iodomethane                 | 74-88-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Pentachloroethane           | 76-01-7    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Tetrachloroethene           | 127-18-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: trans-1.2-Dichloroethene    | 156-60-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Trichloroethene             | 79-01-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Bromomethane                | 74-83-9    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP074: Chloroethane                | 75-00-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP074: Chloromethane               | 74-87-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP074: Dichlorodifluoromethane     | 75-71-8    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP074: Trichlorofluoromethane      | 75-69-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP074: Vinyl chloride              | 75-01-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| EP074F: Halogenate   | d Aromatic Compounds   | s (QC Lot: 161084)                 |            |     |      |                 |                        |         |                     |
| ES1526602-001        | AST2                   | EP074: 1.2.3-Trichlorobenzene      | 87-61-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.2.4-Trichlorobenzene      | 120-82-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.2-Dichlorobenzene         | 95-50-1    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.3-Dichlorobenzene         | 541-73-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.4-Dichlorobenzene         | 106-46-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 2-Chlorotoluene             | 95-49-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 4-Chlorotoluene             | 106-43-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |

Page : 8 of 16

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                          |                                      |            |     |      | Laboratory L    | Duplicate (DUP) Report |         |                     |
|----------------------|--------------------------|--------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID         | Method: Compound                     | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074F: Halogenate   | ed Aromatic Compounds (0 | QC Lot: 161084) - continued          |            |     |      |                 |                        |         |                     |
| ES1526602-001        | AST2                     | EP074: Bromobenzene                  | 108-86-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                          | EP074: Chlorobenzene                 | 108-90-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074G: Trihalome    | thanes (QC Lot: 161084)  |                                      |            |     |      |                 |                        |         |                     |
| ES1526602-001        | AST2                     | EP074: Bromodichloromethane          | 75-27-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                          | EP074: Bromoform                     | 75-25-2    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                          | EP074: Chloroform                    | 67-66-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                          | EP074: Dibromochloromethane          | 124-48-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP080/071: Total Pe  | troleum Hydrocarbons (Q  | C Lot: 161083)                       |            |     |      |                 |                        |         |                     |
| ES1526571-005        | Anonymous                | EP080: C6 - C9 Fraction              |            | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| ES1526602-001        | AST2                     | EP080: C6 - C9 Fraction              |            | 20  | μg/L | 40              | 30                     | 0.00    | No Limit            |
| EP080/071: Total Re  | coverable Hydrocarbons - | NEPM 2013 Fractions (QC Lot: 161083) |            |     |      |                 |                        |         |                     |
| ES1526571-005        | Anonymous                | EP080: C6 - C10 Fraction             | C6_C10     | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| ES1526602-001        | AST2                     | EP080: C6 - C10 Fraction             | C6_C10     | 20  | μg/L | 40              | 30                     | 0.00    | No Limit            |
| EP262: Ethanolamir   | nes (QC Lot: 162157)     |                                      |            |     |      |                 |                        |         |                     |
| EB1523400-001        | Anonymous                | EP262: Diethanolamine                | 111-42-2   | 1   | μg/L | 0.046           | 38                     | 18.9    | 0% - 20%            |
|                      |                          | EP262: Ethanolamine                  | 141-43-5   | 1   | μg/L | <0.001          | <1                     | 0.00    | No Limit            |

Page : 9 of 16

Work Order : ES1526602 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                 |                |        |       | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|---------------------------------------------------|----------------|--------|-------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                   |                |        |       | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                  | CAS Number     | LOR    | Unit  | Result            | Concentration | LCS                           | Low       | High       |
| EA010P: Conductivity by PC Titrator (QCLot: 1611  | 92)            |        |       |                   |               |                               |           |            |
| EA010-P: Electrical Conductivity @ 25°C           |                | 1      | μS/cm | <1                | 2000 μS/cm    | 105                           | 95        | 113        |
| EA015: Total Dissolved Solids (QCLot: 163688)     |                |        |       |                   |               |                               |           |            |
| EA015H: Total Dissolved Solids @180°C             |                | 10     | mg/L  | <10               | 2000 mg/L     | 99.6                          | 87        | 109        |
|                                                   |                |        |       | <10               | 293 mg/L      | 105                           | 66        | 126        |
| EA025: Suspended Solids (QCLot: 163689)           |                |        |       |                   |               |                               |           |            |
| EA025H: Suspended Solids (SS)                     |                | 5      | mg/L  | <5                | 150 mg/L      | 103                           | 83        | 129        |
|                                                   |                |        |       | <5                | 1000 mg/L     | 90.8                          | 84        | 110        |
| ED009: Anions (QCLot: 163073)                     |                |        |       |                   |               |                               |           |            |
| ED009-X: Chloride                                 | 16887-00-6     | 0.1    | mg/L  | <0.100            | 2 mg/L        | 100                           | 89        | 107        |
| ED037P: Alkalinity by PC Titrator (QCLot: 161195) |                |        |       |                   |               |                               |           |            |
| ED037-P: Total Alkalinity as CaCO3                |                |        | mg/L  |                   | 200 mg/L      | 105                           | 81        | 111        |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA   | QCLot: 161327) |        |       |                   |               |                               |           |            |
| ED041G: Sulfate as SO4 - Turbidimetric            | 14808-79-8     | 1      | mg/L  | <1                | 25 mg/L       | 99.9                          | 86        | 122        |
| ED045G: Chloride by Discrete Analyser (QCLot: 16  | 31325)         |        |       |                   |               |                               |           |            |
| ED045G: Chloride                                  | 16887-00-6     | 1      | mg/L  | <1                | 10 mg/L       | 119                           | 75        | 123        |
|                                                   |                |        |       | <1                | 1000 mg/L     | 94.1                          | 77        | 119        |
| ED093F: Dissolved Major Cations (QCLot: 165987)   |                |        |       |                   |               |                               |           |            |
| ED093F: Calcium                                   | 7440-70-2      | 1      | mg/L  | <1                | 50 mg/L       | 97.9                          | 90        | 114        |
| ED093F: Magnesium                                 | 7439-95-4      | 1      | mg/L  | <1                | 50 mg/L       | 105                           | 90        | 110        |
| ED093F: Potassium                                 | 7440-09-7      | 1      | mg/L  | <1                | 50 mg/L       | 101                           | 87        | 117        |
| ED093F: Sodium                                    | 7440-23-5      | 1      | mg/L  | <1                | 50 mg/L       | 110                           | 82        | 118        |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 1659   | 986)           |        |       |                   |               |                               |           |            |
| EG020B-F: Strontium                               | 7440-24-6      | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 99.7                          | 80        | 112        |
| EG020B-F: Uranium                                 | 7440-61-1      | 0.001  | mg/L  | <0.001            |               |                               |           |            |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 1659   | 988)           |        |       |                   |               |                               |           |            |
| EG020A-F: Aluminium                               | 7429-90-5      | 0.01   | mg/L  | <0.01             | 0.5 mg/L      | 91.9                          | 85        | 115        |
| EG020A-F: Antimony                                | 7440-36-0      | 0.001  | mg/L  | <0.001            | 0.01 mg/L     | 114                           | 85        | 115        |
| EG020A-F: Arsenic                                 | 7440-38-2      | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 109                           | 85        | 115        |
| EG020A-F: Barium                                  | 7440-39-3      | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 90.5                          | 85        | 115        |
| EG020A-F: Beryllium                               | 7440-41-7      | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 93.5                          | 85        | 115        |
| EG020A-F: Boron                                   | 7440-42-8      | 0.05   | mg/L  | <0.05             | 0.1 mg/L      | 93.1                          | 85        | 115        |
| EG020A-F: Bromine                                 | 7726-95-6      | 0.1    | mg/L  | <0.1              |               |                               |           |            |
| EG020A-F: Cadmium                                 | 7440-43-9      | 0.0001 | mg/L  | <0.0001           | 0.1 mg/L      | 90.0                          | 85        | 115        |

Page : 10 of 16

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                                 |                 |             |      | Method Blank (MB) |               | Laboratory Control Spike (LCS | ) Report   |            |
|-------------------------------------------------------------------|-----------------|-------------|------|-------------------|---------------|-------------------------------|------------|------------|
|                                                                   |                 |             |      | Report            | Spike         | Spike Recovery (%)            | Recovery I | Limits (%) |
| Method: Compound                                                  | CAS Number      | LOR         | Unit | Result            | Concentration | LCS                           | Low        | High       |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 165988)                | continued       |             |      |                   |               |                               |            |            |
| EG020A-F: Chromium                                                | 7440-47-3       | 0.001       | mg/L | <0.001            | 0.1 mg/L      | 90.1                          | 85         | 115        |
| EG020A-F: Cobalt                                                  | 7440-48-4       | 0.001       | mg/L | <0.001            | 0.1 mg/L      | 93.2                          | 85         | 115        |
| EG020A-F: Copper                                                  | 7440-50-8       | 0.001       | mg/L | <0.001            | 0.1 mg/L      | 106                           | 85         | 115        |
| EG020A-F: Iron                                                    | 7439-89-6       | 0.05        | mg/L | <0.05             | 0.5 mg/L      | 91.3                          | 85         | 115        |
| EG020A-F: Lead                                                    | 7439-92-1       | 0.001       | mg/L | <0.001            | 0.1 mg/L      | 95.3                          | 85         | 115        |
| EG020A-F: Manganese                                               | 7439-96-5       | 0.001       | mg/L | <0.001            | 0.1 mg/L      | 91.5                          | 85         | 115        |
| EG020A-F: Molybdenum                                              | 7439-98-7       | 0.001       | mg/L | <0.001            | 0.1 mg/L      | 95.9                          | 85         | 115        |
| EG020A-F: Nickel                                                  | 7440-02-0       | 0.001       | mg/L | <0.001            | 0.1 mg/L      | 104                           | 85         | 115        |
| EG020A-F: Selenium                                                | 7782-49-2       | 0.01        | mg/L | <0.01             | 0.1 mg/L      | 102                           | 85         | 115        |
| EG020A-F: Tin                                                     | 7440-31-5       | 0.001       | mg/L | <0.001            | 0.1 mg/L      | 90.6                          | 85         | 115        |
| EG020A-F: Vanadium                                                | 7440-62-2       | 0.01        | mg/L | <0.01             | 0.1 mg/L      | 90.4                          | 85         | 115        |
| EG020A-F: Zinc                                                    | 7440-66-6       | 0.005       | mg/L | <0.005            | 0.1 mg/L      | 112                           | 85         | 115        |
| EG035F: Dissolved Mercury by FIMS (QCLot: 165985)                 |                 |             |      |                   |               |                               |            |            |
| EG035F: Mercury                                                   | 7439-97-6       | 0.0001      | mg/L | <0.0001           | 0.01 mg/L     | 98.0                          | 78         | 114        |
| EG052G: Silica by Discrete Analyser (QCLot: 161330)               |                 |             |      |                   |               |                               |            |            |
| EG052G: Reactive Silica                                           |                 | 0.05        | mg/L | <0.05             | 5 mg/L        | 100                           | 94         | 114        |
| EK010/011: Chlorine (QCLot: 161222)                               |                 |             |      |                   |               |                               |            |            |
| EK010: Chlorine - Free                                            |                 | 0.2         | mg/L | <0.2              |               |                               |            |            |
| EK010: Chlorine - Total Residual                                  |                 | 0.2         | mg/L | <0.2              |               |                               |            |            |
|                                                                   |                 | Ų. <u> </u> | 9.2  | <u> </u>          |               |                               |            |            |
| EK040P: Fluoride by PC Titrator (QCLot: 161194)  EK040P: Fluoride | 16984-48-8      | 0.1         | mg/L | <0.1              | 5 mg/L        | 92.0                          | 75         | 119        |
|                                                                   |                 | 0.1         | mg/L | <b>~0.1</b>       | 3 Hig/L       | 92.0                          | 73         | 119        |
| EK055G: Ammonia as N by Discrete Analyser (QCLot: 16              |                 | 0.01        | O    | 10.04             | 4             | 404                           | 00         | 444        |
| EK055G: Ammonia as N                                              | 7664-41-7       | 0.01        | mg/L | <0.01             | 1 mg/L        | 101                           | 90         | 114        |
| EK057G: Nitrite as N by Discrete Analyser (QCLot: 1613)           |                 |             |      |                   |               |                               |            |            |
| EK057G: Nitrite as N                                              | 14797-65-0      | 0.01        | mg/L | <0.01             | 0.5 mg/L      | 96.6                          | 82         | 114        |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Anal          | yser (QCLot: 16 | 3199)       |      |                   |               |                               |            |            |
| EK059G: Nitrite + Nitrate as N                                    |                 | 0.01        | mg/L | <0.01             | 0.5 mg/L      | 101                           | 91         | 113        |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (C           | (CLot: 163928)  |             |      |                   |               |                               |            |            |
| EK061G: Total Kjeldahl Nitrogen as N                              |                 | 0.1         | mg/L | <0.1              | 10 mg/L       | 76.0                          | 69         | 101        |
|                                                                   |                 |             |      | <0.1              | 1 mg/L        | 82.2                          | 70         | 118        |
|                                                                   |                 |             |      | <0.1              | 5 mg/L        | 88.4                          | 74         | 118        |
| EK067G: Total Phosphorus as P by Discrete Analyser (Q             | CLot: 163927)   |             |      |                   |               |                               |            |            |
| EK067G: Total Phosphorus as P                                     |                 | 0.01        | mg/L | <0.01             | 4.42 mg/L     | 76.2                          | 71         | 101        |
|                                                                   |                 |             |      | <0.01             | 0.442 mg/L    | 79.4                          | 72         | 108        |
|                                                                   |                 |             |      | <0.01             | 1 mg/L        | 86.8                          | 78         | 118        |
| EK071G: Reactive Phosphorus as P by discrete analyser             | (QCLot: 161329  | )           |      |                   |               |                               |            |            |
| EK071G: Reactive Phosphorus as P                                  | 14265-44-2      | 0.01        |      |                   |               |                               |            |            |

Page : 11 of 16

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                   |            |     |      | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|-----------------------------------------------------|------------|-----|------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                     |            |     |      | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                    | CAS Number | LOR | Unit | Result            | Concentration | LCS                           | Low       | High       |
| EP005: Total Organic Carbon (TOC) (QCLot: 161132)   |            |     |      |                   |               |                               |           |            |
| EP005: Total Organic Carbon                         |            | 1   | mg/L | <1                | 10 mg/L       | 97.9                          | 76        | 120        |
| EP020: Oil and Grease (O&G) (QCLot: 167588)         |            |     |      |                   |               |                               |           |            |
| EP020: Oil & Grease                                 |            | 5   | mg/L | <5                | 5000 mg/L     | 102                           | 80        | 120        |
| EP033: C1 - C4 Hydrocarbon Gases (QCLot: 162223)    |            |     |      |                   |               |                               |           |            |
| EP033: Butane                                       | 106-97-8   | 10  | μg/L | <10               | 102.18 μg/L   | 98.9                          | 85        | 115        |
| EP033: Butene                                       | 25167-67-3 | 10  | μg/L | <10               | 99.61 μg/L    | 98.8                          | 83        | 115        |
| EP033: Ethane                                       | 74-84-0    | 10  | μg/L | <10               | 54.43 µg/L    | 98.4                          | 87        | 111        |
| EP033: Ethene                                       | 74-85-1    | 10  | μg/L | <10               | 50.29 μg/L    | 98.2                          | 87        | 111        |
| EP033: Methane                                      | 74-82-8    | 10  | μg/L | <10               | 28.48 μg/L    | 96.4                          | 86        | 114        |
| EP033: Propane                                      | 74-98-6    | 10  | μg/L | <10               | 78.28 μg/L    | 101                           | 84        | 112        |
| EP033: Propene                                      | 115-07-1   | 10  | μg/L | <10               | 73.97 μg/L    | 100                           | 85        | 113        |
| EP074A: Monocyclic Aromatic Hydrocarbons (QCLot: 16 | 61084)     |     |      |                   |               |                               |           |            |
| EP074: 1.2.4-Trimethylbenzene                       | 95-63-6    | 5   | μg/L | <5                | 10 μg/L       | 109                           | 71        | 121        |
| EP074: 1.3.5-Trimethylbenzene                       | 108-67-8   | 5   | μg/L | <5                | 10 μg/L       | 108                           | 70        | 122        |
| EP074: Isopropylbenzene                             | 98-82-8    | 5   | μg/L | <5                | 10 μg/L       | 109                           | 75        | 121        |
| EP074: n-Butylbenzene                               | 104-51-8   | 5   | μg/L | <5                | 10 μg/L       | 104                           | 62        | 126        |
| EP074: n-Propylbenzene                              | 103-65-1   | 5   | μg/L | <5                | 10 μg/L       | 107                           | 67        | 123        |
| EP074: p-Isopropyltoluene                           | 99-87-6    | 5   | μg/L | <5                | 10 μg/L       | 107                           | 67        | 123        |
| EP074: sec-Butylbenzene                             | 135-98-8   | 5   | μg/L | <5                | 10 μg/L       | 109                           | 69        | 123        |
| EP074: Styrene                                      | 100-42-5   | 5   | μg/L | <5                | 10 μg/L       | 112                           | 74        | 118        |
| EP074: tert-Butylbenzene                            | 98-06-6    | 5   | μg/L | <5                | 10 μg/L       | 108                           | 70        | 122        |
| EP074B: Oxygenated Compounds (QCLot: 161084)        |            |     |      |                   |               |                               |           |            |
| EP074: 2-Butanone (MEK)                             | 78-93-3    | 50  | μg/L | <50               | 100 μg/L      | 93.0                          | 74        | 130        |
| EP074: 2-Hexanone (MBK)                             | 591-78-6   | 50  | μg/L | <50               | 100 μg/L      | 101                           | 65        | 137        |
| EP074: 4-Methyl-2-pentanone (MIBK)                  | 108-10-1   | 50  | μg/L | <50               | 100 μg/L      | 122                           | 61        | 139        |
| EP074: Vinyl Acetate                                | 108-05-4   | 50  | μg/L | <50               | 100 μg/L      | 95.3                          | 61        | 134        |
| EP074C: Sulfonated Compounds (QCLot: 161084)        |            |     |      |                   |               |                               |           |            |
| EP074: Carbon disulfide                             | 75-15-0    | 5   | μg/L | <5                | 10 μg/L       | 90.8                          | 73        | 127        |
| EP074D: Fumigants (QCLot: 161084)                   |            |     |      |                   |               |                               |           |            |
| EP074: 1.2-Dibromoethane (EDB)                      | 106-93-4   | 5   | μg/L | <5                | 10 μg/L       | 100                           | 69        | 117        |
| EP074: 1.2-Dichloropropane                          | 78-87-5    | 5   | μg/L | <5                | 10 μg/L       | 112                           | 76        | 120        |
| EP074: 2.2-Dichloropropane                          | 594-20-7   | 5   | μg/L | <5                | 10 μg/L       | 84.3                          | 61        | 119        |
| EP074: cis-1.3-Dichloropropylene                    | 10061-01-5 | 5   | μg/L | <5                | 10 μg/L       | 92.6                          | 62        | 120        |
| EP074: trans-1.3-Dichloropropylene                  | 10061-02-6 | 5   | μg/L | <5                | 10 μg/L       | 95.2                          | 61        | 119        |
| EP074E: Halogenated Aliphatic Compounds (QCLot: 161 | 1084)      |     |      |                   |               |                               |           |            |
| EP074: 1.1.1.2-Tetrachloroethane                    | 630-20-6   | 5   | μg/L | <5                | 10 μg/L       | 92.4                          | 66        | 114        |
| EP074: 1.1.1-Trichloroethane                        | 71-55-6    | 5   | μg/L | <5                | 10 μg/L       | 87.4                          | 61        | 119        |
| EP074: 1.1.2.2-Tetrachloroethane                    | 79-34-5    | 5   | μg/L | <5                | 10 μg/L       | 113                           | 70        | 124        |

Page : 12 of 16

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                  |                    |     |      | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|----------------------------------------------------|--------------------|-----|------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                    |                    |     |      | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                   | CAS Number         | LOR | Unit | Result            | Concentration | LCS                           | Low       | High       |
| EP074E: Halogenated Aliphatic Compounds (QCLot: 16 | 61084) - continued |     |      |                   |               |                               |           |            |
| EP074: 1.1.2-Trichloroethane                       | 79-00-5            | 5   | μg/L | <5                | 10 μg/L       | 121                           | 75        | 123        |
| EP074: 1.1-Dichloroethane                          | 75-34-3            | 5   | μg/L | <5                | 10 μg/L       | 109                           | 75        | 119        |
| EP074: 1.1-Dichloroethene                          | 75-35-4            | 5   | μg/L | <5                | 10 μg/L       | 102                           | 69        | 123        |
| EP074: 1.1-Dichloropropylene                       | 563-58-6           | 5   | μg/L | <5                | 10 μg/L       | 108                           | 73        | 119        |
| EP074: 1.2.3-Trichloropropane                      | 96-18-4            | 5   | μg/L | <5                | 10 μg/L       | 116                           | 74        | 128        |
| EP074: 1.2-Dibromo-3-chloropropane                 | 96-12-8            | 5   | μg/L | <5                | 10 μg/L       | 112                           | 66        | 136        |
| EP074: 1.2-Dichloroethane                          | 107-06-2           | 5   | μg/L | <5                | 10 μg/L       | 111                           | 78        | 122        |
| EP074: 1.3-Dichloropropane                         | 142-28-9           | 5   | μg/L | <5                | 10 μg/L       | 114                           | 79        | 121        |
| EP074: Bromomethane                                | 74-83-9            | 50  | μg/L | <50               | 100 μg/L      | 87.3                          | 56        | 140        |
| EP074: Carbon Tetrachloride                        | 56-23-5            | 5   | μg/L | <5                | 10 μg/L       | 102                           | 63        | 121        |
| EP074: Chloroethane                                | 75-00-3            | 50  | μg/L | <50               | 100 μg/L      | 95.7                          | 63        | 135        |
| EP074: Chloromethane                               | 74-87-3            | 50  | μg/L | <50               | 100 μg/L      | 82.2                          | 67        | 130        |
| EP074: cis-1.2-Dichloroethene                      | 156-59-2           | 5   | μg/L | <5                | 10 μg/L       | 109                           | 77        | 117        |
| EP074: cis-1.4-Dichloro-2-butene                   | 1476-11-5          | 5   | μg/L | <5                | 10 μg/L       | 112                           | 71        | 128        |
| EP074: Dibromomethane                              | 74-95-3            | 5   | μg/L | <5                | 10 μg/L       | 113                           | 74        | 118        |
| EP074: Dichlorodifluoromethane                     | 75-71-8            | 50  | μg/L | <50               | 100 μg/L      | 87.7                          | 61        | 138        |
| EP074: Hexachlorobutadiene                         | 87-68-3            | 5   | μg/L | <5                | 10 μg/L       | 100                           | 58        | 132        |
| EP074: lodomethane                                 | 74-88-4            | 5   | μg/L | <5                | 10 μg/L       | 71.8                          | 70        | 128        |
| EP074: Pentachloroethane                           | 76-01-7            | 5   | μg/L | <5                | 10 μg/L       | 96.7                          | 72        | 126        |
| EP074: Tetrachloroethene                           | 127-18-4           | 5   | μg/L | <5                | 10 μg/L       | 109                           | 72        | 124        |
| EP074: trans-1.2-Dichloroethene                    | 156-60-5           | 5   | μg/L | <5                | 10 μg/L       | 108                           | 71        | 119        |
| EP074: trans-1.4-Dichloro-2-butene                 | 110-57-6           | 5   | μg/L | <5                | 10 μg/L       | 107                           | 60        | 120        |
| EP074: Trichloroethene                             | 79-01-6            | 5   | μg/L | <5                | 10 μg/L       | 110                           | 74        | 120        |
| EP074: Trichlorofluoromethane                      | 75-69-4            | 50  | μg/L | <50               | 100 μg/L      | 98.9                          | 65        | 131        |
| EP074: Vinyl chloride                              | 75-01-4            | 50  | μg/L | <50               | 100 μg/L      | 95.5                          | 69        | 129        |
| EP074F: Halogenated Aromatic Compounds (QCLot: 10  | 51084)             |     |      |                   |               |                               |           |            |
| EP074: 1.2.3-Trichlorobenzene                      | 87-61-6            | 5   | μg/L | <5                | 10 μg/L       | 102                           | 67        | 125        |
| EP074: 1.2.4-Trichlorobenzene                      | 120-82-1           | 5   | μg/L | <5                | 10 μg/L       | 99.1                          | 60        | 126        |
| EP074: 1.2-Dichlorobenzene                         | 95-50-1            | 5   | μg/L | <5                | 10 μg/L       | 108                           | 77        | 117        |
| EP074: 1.3-Dichlorobenzene                         | 541-73-1           | 5   | μg/L | <5                | 10 μg/L       | 109                           | 74        | 120        |
| EP074: 1.4-Dichlorobenzene                         | 106-46-7           | 5   | μg/L | <5                | 10 μg/L       | 108                           | 72        | 120        |
| EP074: 2-Chlorotoluene                             | 95-49-8            | 5   | μg/L | <5                | 10 μg/L       | 109                           | 71        | 121        |
| EP074: 4-Chlorotoluene                             | 106-43-4           | 5   | μg/L | <5                | 10 μg/L       | 107                           | 71        | 121        |
| EP074: Bromobenzene                                | 108-86-1           | 5   | μg/L | <5                | 10 μg/L       | 108                           | 76        | 116        |
| EP074: Chlorobenzene                               | 108-90-7           | 5   | μg/L | <5                | 10 μg/L       | 110                           | 80        | 118        |
| EP074G: Trihalomethanes (QCLot: 161084)            |                    |     |      |                   |               |                               |           |            |
| EP074: Bromodichloromethane                        | 75-27-4            | 5   | μg/L | <5                | 10 μg/L       | 99.8                          | 64        | 118        |
| EP074: Bromoform                                   | 75-25-2            | 5   | μg/L | <5                | 10 μg/L       | 110                           | 74        | 126        |
| EP074: Chloroform                                  | 67-66-3            | 5   | μg/L | <5                | 10 μg/L       | 106                           | 76        | 118        |

Page : 13 of 16

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                      |            |     |      | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|--------------------------------------------------------|------------|-----|------|-------------------|---------------|------------------------------|-----------|------------|
|                                                        |            |     |      | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                       | CAS Number | LOR | Unit | Result            | Concentration | LCS                          | Low       | High       |
| EP074G: Trihalomethanes (QCLot: 161084) - continued    |            |     |      |                   |               |                              |           |            |
| EP074: Dibromochloromethane                            | 124-48-1   | 5   | μg/L | <5                | 10 μg/L       | 96.0                         | 65        | 115        |
| EP075(SIM)A: Phenolic Compounds (QCLot: 161052)        |            |     |      |                   |               |                              |           |            |
| EP075(SIM): 2.4.5-Trichlorophenol                      | 95-95-4    | 1   | μg/L | <1.0              | 5 μg/L        | 76.6                         | 50        | 108        |
| EP075(SIM): 2.4.6-Trichlorophenol                      | 88-06-2    | 1   | μg/L | <1.0              | 5 μg/L        | 75.9                         | 59        | 118        |
| EP075(SIM): 2.4-Dichlorophenol                         | 120-83-2   | 1   | μg/L | <1.0              | 5 μg/L        | 77.3                         | 59        | 122        |
| EP075(SIM): 2.4-Dimethylphenol                         | 105-67-9   | 1   | μg/L | <1.0              | 5 μg/L        | 78.4                         | 60        | 112        |
| EP075(SIM): 2.6-Dichlorophenol                         | 87-65-0    | 1   | μg/L | <1.0              | 5 μg/L        | 80.6                         | 64        | 118        |
| EP075(SIM): 2-Chlorophenol                             | 95-57-8    | 1   | μg/L | <1.0              | 5 μg/L        | 68.5                         | 64        | 110        |
| EP075(SIM): 2-Methylphenol                             | 95-48-7    | 1   | μg/L | <1.0              | 5 μg/L        | 72.8                         | 56        | 112        |
| EP075(SIM): 2-Nitrophenol                              | 88-75-5    | 1   | μg/L | <1.0              | 5 μg/L        | 67.9                         | 63        | 117        |
| EP075(SIM): 3- & 4-Methylphenol                        | 1319-77-3  | 2   | μg/L | <2.0              | 10 μg/L       | 74.6                         | 43        | 114        |
| EP075(SIM): 4-Chloro-3-methylphenol                    | 59-50-7    | 1   | μg/L | <1.0              | 5 μg/L        | 75.2                         | 63        | 119        |
| EP075(SIM): Pentachlorophenol                          | 87-86-5    | 2   | μg/L | <2.0              | 10 μg/L       | 41.0                         | 10        | 95         |
| EP075(SIM): Phenol                                     | 108-95-2   | 1   | μg/L | <1.0              | 5 μg/L        | 48.1                         | 25        | 62         |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLo   | t: 161052) |     |      |                   |               |                              |           |            |
| EP075(SIM): Acenaphthene                               | 83-32-9    | 1   | μg/L | <1.0              | 5 μg/L        | 79.8                         | 62        | 113        |
| EP075(SIM): Acenaphthylene                             | 208-96-8   | 1   | μg/L | <1.0              | 5 μg/L        | 83.2                         | 64        | 114        |
| EP075(SIM): Anthracene                                 | 120-12-7   | 1   | μg/L | <1.0              | 5 μg/L        | 86.4                         | 64        | 116        |
| EP075(SIM): Benz(a)anthracene                          | 56-55-3    | 1   | μg/L | <1.0              | 5 μg/L        | 83.0                         | 64        | 117        |
| EP075(SIM): Benzo(a)pyrene                             | 50-32-8    | 0.5 | μg/L | <0.5              | 5 μg/L        | 89.7                         | 63        | 117        |
| EP075(SIM): Benzo(b+j)fluoranthene                     | 205-99-2   | 1   | μg/L | <1.0              | 5 μg/L        | 88.7                         | 62        | 119        |
|                                                        | 205-82-3   |     |      |                   |               |                              |           |            |
| EP075(SIM): Benzo(g.h.i)perylene                       | 191-24-2   | 1   | μg/L | <1.0              | 5 μg/L        | 87.2                         | 59        | 118        |
| EP075(SIM): Benzo(k)fluoranthene                       | 207-08-9   | 1   | μg/L | <1.0              | 5 μg/L        | 103                          | 62        | 117        |
| EP075(SIM): Chrysene                                   | 218-01-9   | 1   | μg/L | <1.0              | 5 μg/L        | 89.0                         | 63        | 116        |
| EP075(SIM): Dibenz(a.h)anthracene                      | 53-70-3    | 1   | μg/L | <1.0              | 5 μg/L        | 89.8                         | 61        | 117        |
| EP075(SIM): Fluoranthene                               | 206-44-0   | 1   | μg/L | <1.0              | 5 μg/L        | 88.2                         | 64        | 118        |
| EP075(SIM): Fluorene                                   | 86-73-7    | 1   | μg/L | <1.0              | 5 μg/L        | 85.7                         | 64        | 115        |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                     | 193-39-5   | 1   | μg/L | <1.0              | 5 μg/L        | 90.3                         | 60        | 118        |
| EP075(SIM): Naphthalene                                | 91-20-3    | 1   | μg/L | <1.0              | 5 μg/L        | 74.3                         | 59        | 119        |
| EP075(SIM): Phenanthrene                               | 85-01-8    | 1   | μg/L | <1.0              | 5 μg/L        | 85.6                         | 63        | 116        |
| EP075(SIM): Pyrene                                     | 129-00-0   | 1   | μg/L | <1.0              | 5 μg/L        | 89.2                         | 63        | 118        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 16105  | 3)         |     |      |                   |               |                              |           |            |
| EP071: C10 - C14 Fraction                              |            | 50  | μg/L | <50               | 2000 μg/L     | 98.7                         | 59        | 129        |
| EP071: C15 - C28 Fraction                              |            | 100 | μg/L | <100              | 3000 μg/L     | 103                          | 71        | 131        |
| EP071: C29 - C36 Fraction                              |            | 50  | μg/L | <50               | 2000 μg/L     | 90.1                         | 62        | 120        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 16108) | 3)         |     |      |                   |               |                              |           |            |
| EP080: C6 - C9 Fraction                                |            | 20  | μg/L | <20               | 260 μg/L      | 75.8                         | 75        | 127        |

Page : 14 of 16

Work Order : ES1526602 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Sub-Matrix: WATER                                |                     |              |      | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|--------------------------------------------------|---------------------|--------------|------|-------------------|---------------|------------------------------|-----------|------------|
|                                                  |                     |              |      | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                 | CAS Number          | LOR          | Unit | Result            | Concentration | LCS                          | Low       | High       |
| EP080/071: Total Recoverable Hydrocarbons - NEPM | 2013 Fractions (QCL | _ot: 161053) |      |                   |               |                              |           |            |
| EP071: >C10 - C16 Fraction                       | >C10_C16            | 100          | μg/L | <100              | 2500 μg/L     | 90.4                         | 59        | 131        |
| EP071: >C16 - C34 Fraction                       |                     | 100          | μg/L | <100              | 3500 μg/L     | 92.4                         | 74        | 138        |
| EP071: >C34 - C40 Fraction                       |                     | 100          | μg/L | <100              | 1500 μg/L     | 98.1                         | 67        | 127        |
| EP080/071: Total Recoverable Hydrocarbons - NEPM | 2013 Fractions (QCL | _ot: 161083) |      |                   |               |                              |           |            |
| EP080: C6 - C10 Fraction                         | C6_C10              | 20           | μg/L | <20               | 310 μg/L      | 78.2                         | 75        | 127        |
| EP262: Ethanolamines (QCLot: 162157)             |                     |              |      |                   |               |                              |           |            |
| EP262: Diethanolamine                            | 111-42-2            | 1            | μg/L | <1                | 10 μg/L       | 104                          | 50        | 130        |
| EP262: Ethanolamine                              | 141-43-5            | 1            | μg/L | <1                | 10 μg/L       | 126                          | 50        | 130        |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                                             |                                        |            | Ma            | atrix Spike (MS) Report |            |           |
|----------------------|---------------------------------------------|----------------------------------------|------------|---------------|-------------------------|------------|-----------|
|                      |                                             |                                        |            | Spike         | SpikeRecovery(%)        | Recovery I | imits (%) |
| Laboratory sample ID | Client sample ID                            | Method: Compound                       | CAS Number | Concentration | MS                      | Low        | High      |
| ED009: Anions (C     | QCLot: 163073)                              |                                        |            |               |                         |            |           |
| ES1526588-005        | Anonymous                                   | ED009-X: Chloride                      | 16887-00-6 | 4 mg/L        | 106                     | 70         | 130       |
| ED041G: Sulfate (    | Turbidimetric) as SO4 2- by DA(QCLot: 16132 | 27)                                    |            |               |                         |            |           |
| ES1526497-001        | Anonymous                                   | ED041G: Sulfate as SO4 - Turbidimetric | 14808-79-8 | 10 mg/L       | # Not<br>Determined     | 70         | 130       |
| ED045G: Chloride     | by Discrete Analyser (QCLot: 161325)        |                                        |            |               |                         |            |           |
| ES1526497-001        | Anonymous                                   | ED045G: Chloride                       | 16887-00-6 | 250 mg/L      | 79.7                    | 70         | 130       |
| EG020F: Dissolve     | d Metals by ICP-MS (QCLot: 165988)          |                                        |            |               |                         |            |           |
| ES1526602-002        | WK14                                        | EG020A-F: Arsenic                      | 7440-38-2  | 0.2 mg/L      | 105                     | 70         | 130       |
|                      |                                             | EG020A-F: Barium                       | 7440-39-3  | 0.2 mg/L      | # Not<br>Determined     | 70         | 130       |
|                      |                                             | EG020A-F: Beryllium                    | 7440-41-7  | 0.2 mg/L      | 99.0                    | 70         | 130       |
|                      |                                             | EG020A-F: Cadmium                      | 7440-43-9  | 0.05 mg/L     | 100                     | 70         | 130       |
|                      |                                             | EG020A-F: Chromium                     | 7440-47-3  | 0.2 mg/L      | 96.8                    | 70         | 130       |
|                      |                                             | EG020A-F: Cobalt                       | 7440-48-4  | 0.2 mg/L      | 106                     | 70         | 130       |
|                      |                                             | EG020A-F: Copper                       | 7440-50-8  | 0.2 mg/L      | 102                     | 70         | 130       |
|                      |                                             | EG020A-F: Lead                         | 7439-92-1  | 0.2 mg/L      | 94.2                    | 70         | 130       |
|                      |                                             | EG020A-F: Manganese                    | 7439-96-5  | 0.2 mg/L      | 97.6                    | 70         | 130       |
|                      |                                             | EG020A-F: Nickel                       | 7440-02-0  | 0.2 mg/L      | 98.7                    | 70         | 130       |
|                      |                                             | EG020A-F: Vanadium                     | 7440-62-2  | 0.2 mg/L      | 99.6                    | 70         | 130       |
|                      |                                             | EG020A-F: Zinc                         | 7440-66-6  | 0.2 mg/L      | 111                     | 70         | 130       |

Page : 15 of 16

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| ub-Matrix: WATER   |                                                       |                                      |            |               | atrix Spike (MS) Report |            |            |
|--------------------|-------------------------------------------------------|--------------------------------------|------------|---------------|-------------------------|------------|------------|
|                    |                                                       |                                      |            | Spike         | SpikeRecovery(%)        | Recovery L | Limits (%) |
| boratory sample ID | Client sample ID                                      | Method: Compound                     | CAS Number | Concentration | MS                      | Low        | High       |
| G035F: Dissolved   | Mercury by FIMS (QCLot: 165985)                       |                                      |            |               |                         |            |            |
| S1526602-001       | AST2                                                  | EG035F: Mercury                      | 7439-97-6  | 0.01 mg/L     | 75.9                    | 70         | 130        |
| G052G: Silica by   | Discrete Analyser (QCLot: 161330)                     |                                      |            |               |                         |            |            |
| S1526602-001       | AST2                                                  | EG052G: Reactive Silica              |            | 5 mg/L        | # Not<br>Determined     | 70         | 130        |
| K040P: Fluoride l  | by PC Titrator (QCLot: 161194)                        |                                      |            |               |                         |            |            |
| S1526575-001       | Anonymous                                             | EK040P: Fluoride                     | 16984-48-8 | 5 mg/L        | 92.0                    | 70         | 130        |
| (055G: Ammonia     | as N by Discrete Analyser (QCLot: 163198)             |                                      |            |               |                         |            |            |
| S1526477-001       | Anonymous                                             | EK055G: Ammonia as N                 | 7664-41-7  | 1 mg/L        | # Not<br>Determined     | 70         | 130        |
| K057G: Nitrite as  | N by Discrete Analyser (QCLot: 161328)                |                                      |            |               |                         |            |            |
| S1526602-001       | AST2                                                  | EK057G: Nitrite as N                 | 14797-65-0 | 0.5 mg/L      | 99.2                    | 70         | 130        |
| K059G: Nitrite pl  | us Nitrate as N (NOx) by Discrete Analyser (QCLot: 16 | 33199)                               |            |               |                         |            |            |
| S1526477-001       | Anonymous                                             | EK059G: Nitrite + Nitrate as N       |            | 0.5 mg/L      | 73.6                    | 70         | 130        |
| K061G: Total Kjel  | dahl Nitrogen By Discrete Analyser (QCLot: 163928)    |                                      |            |               |                         |            |            |
| S1526628-001       | Anonymous                                             | EK061G: Total Kjeldahl Nitrogen as N |            | 5 mg/L        | 80.2                    | 70         | 130        |
| K067G: Total Pho   | sphorus as P by Discrete Analyser (QCLot: 163927)     |                                      |            |               |                         |            |            |
| S1526628-001       | Anonymous                                             | EK067G: Total Phosphorus as P        |            | 1 mg/L        | 121                     | 70         | 130        |
| K071G: Reactive    | Phosphorus as P by discrete analyser(QCLot: 161329    |                                      |            |               |                         |            |            |
| S1526602-001       | AST2                                                  | EK071G: Reactive Phosphorus as P     | 14265-44-2 | 0.5 mg/L      | 99.8                    | 70         | 130        |
|                    | nic Carbon (TOC) (QCLot: 161132)                      | ENOTICE Redelive Filosphorus as i    |            |               | 22.2                    |            |            |
| S1526416-003       | Anonymous                                             | EDOOF: Total Organia Carbon          |            | 100 mg/L      | 100                     | 70         | 130        |
|                    |                                                       | EP005: Total Organic Carbon          |            | 100 Hig/L     | 100                     | 70         | 130        |
|                    | drocarbon Gases (QCLot: 162223)                       |                                      | 100.07.0   | 100.10 #      | 100                     |            | 100        |
| P1512210-002       | Anonymous                                             | EP033: Butane                        | 106-97-8   | 102.18 μg/L   | 100                     | 70         | 130        |
|                    |                                                       | EP033: Butene                        | 25167-67-3 | 99.61 µg/L    | 98.8                    | 70         | 130        |
|                    |                                                       | EP033: Ethane                        | 74-84-0    | 54.43 µg/L    | 96.9                    | 70         | 130        |
|                    |                                                       | EP033: Ethene                        | 74-85-1    | 50.29 μg/L    | 96.5                    | 70         | 130        |
|                    |                                                       | EP033: Methane                       | 74-82-8    | 28.48 μg/L    | 88.8                    | 70         | 130        |
|                    |                                                       | EP033: Propane                       | 74-98-6    | 78.28 µg/L    | 99.5                    | 70         | 130        |
|                    |                                                       | EP033: Propene                       | 115-07-1   | 73.97 µg/L    | 95.7                    | 70         | 130        |
| P074E: Halogena    | ted Aliphatic Compounds (QCLot: 161084)               |                                      |            |               |                         |            |            |
| S1526602-001       | AST2                                                  | EP074: 1.1-Dichloroethene            | 75-35-4    | 25 μg/L       | 80.9                    | 70         | 130        |
|                    |                                                       | EP074: Trichloroethene               | 79-01-6    | 25 μg/L       | 98.3                    | 70         | 130        |
| P074F: Halogena    | ted Aromatic Compounds (QCLot: 161084)                |                                      |            |               |                         |            |            |
| S1526602-001       | AST2                                                  | EP074: Chlorobenzene                 | 108-90-7   | 25 μg/L       | 99.0                    | 70         | 130        |

Page : 16 of 16

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                                                     |                          |            | Ma            | trix Spike (MS) Repor | t          |           |
|----------------------|-----------------------------------------------------|--------------------------|------------|---------------|-----------------------|------------|-----------|
|                      |                                                     |                          |            | Spike         | SpikeRecovery(%)      | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                                    | Method: Compound         | CAS Number | Concentration | MS                    | Low        | High      |
| EP080/071: Total F   | Petroleum Hydrocarbons (QCLot: 161083)              |                          |            |               |                       |            |           |
| ES1526602-001        | AST2                                                | EP080: C6 - C9 Fraction  |            | 325 μg/L      | 98.2                  | 70         | 130       |
| EP080/071: Total F   | Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL | ot: 161083)              |            |               |                       |            |           |
| ES1526602-001        | AST2                                                | EP080: C6 - C10 Fraction | C6_C10     | 375 μg/L      | 94.0                  | 70         | 130       |
| EP262: Ethanolam     | ines (QCLot: 162157)                                |                          |            |               |                       |            |           |
| EB1523400-001        | Anonymous                                           | EP262: Diethanolamine    | 111-42-2   | 10 μg/L       | # Not                 | 50         | 130       |
|                      |                                                     |                          |            |               | Determined            |            |           |
|                      |                                                     | EP262: Ethanolamine      | 141-43-5   | 10 μg/L       | 71.0                  | 50         | 130       |



# QA/QC Compliance Assessment for DQO Reporting

Work Order : **ES1526602** Page : 1 of 11

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 22-Jul-2015

 Site
 : --- Issue Date
 : 04-Sep-2015

Sampler : DAVID WATSON, S DAYKIN No. of samples received : 2
Order number : ---- No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

## **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

## **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 11

Work Order : ES1526602 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **Outliers: Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

| Compound Group Name                             | Laboratory Sample ID | Client Sample ID | Analyte          | CAS Number | Data       | Limits | Comment                          |
|-------------------------------------------------|----------------------|------------------|------------------|------------|------------|--------|----------------------------------|
| Matrix Spike (MS) Recoveries                    |                      |                  |                  |            |            |        |                                  |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA | ES1526497001         | Anonymous        | Sulfate as SO4 - | 14808-79-8 | Not        |        | MS recovery not determined,      |
|                                                 |                      |                  | Turbidimetric    |            | Determined |        | background level greater than or |
|                                                 |                      |                  |                  |            |            |        | equal to 4x spike level.         |
| EG020F: Dissolved Metals by ICP-MS              | ES1526602002         | WK14             | Barium           | 7440-39-3  | Not        |        | MS recovery not determined,      |
|                                                 |                      |                  |                  |            | Determined |        | background level greater than or |
|                                                 |                      |                  |                  |            |            |        | equal to 4x spike level.         |
| EG052G: Silica by Discrete Analyser             | ES1526602001         | AST2             | Reactive Silica  |            | Not        |        | MS recovery not determined,      |
|                                                 |                      |                  |                  |            | Determined |        | background level greater than or |
|                                                 |                      |                  |                  |            |            |        | equal to 4x spike level.         |
| EK055G: Ammonia as N by Discrete Analyser       | ES1526477001         | Anonymous        | Ammonia as N     | 7664-41-7  | Not        |        | MS recovery not determined,      |
|                                                 |                      |                  |                  |            | Determined |        | background level greater than or |
|                                                 |                      |                  |                  |            |            |        | equal to 4x spike level.         |
| EP262: Ethanolamines                            | EB1523400001         | Anonymous        | Diethanolamine   | 111-42-2   | Not        |        | MS recovery not determined,      |
|                                                 |                      |                  |                  |            | Determined |        | background level greater than or |
|                                                 |                      |                  |                  |            |            |        | equal to 4x spike level.         |

#### **Outliers: Frequency of Quality Control Samples**

Matrix: WATER

| Quality Control Sample Type | Co | ount    | Rat    | e (%)    | Quality Control Specification                    |
|-----------------------------|----|---------|--------|----------|--------------------------------------------------|
| Method                      | QC | Regular | Actual | Expected |                                                  |
| _aboratory Duplicates (DUP) |    |         |        |          |                                                  |
| PAH/Phenols (GC/MS - SIM)   | 0  | 14      | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction | 0  | 9       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Matrix Spikes (MS)          |    |         |        |          |                                                  |
| PAH/Phenols (GC/MS - SIM)   | 0  | 14      | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| FRH - Semivolatile Fraction | 0  | 9       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

| Evaluation: $\times$ = Holding time breach; $\checkmark$ = Within holding time. |
|---------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------|

| Method                          | Sample Date | Extraction / Preparation |                    |            | Analysis      |                  |            |
|---------------------------------|-------------|--------------------------|--------------------|------------|---------------|------------------|------------|
| Container / Client Sample ID(s) |             | Date extracted           | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation |

Page : 3 of 11

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                              |          |              |                |                         | Evaluation | ı: 🗴 = Holding time | breach ; ✓ = Withi | n holding time. |
|----------------------------------------------------------------------------|----------|--------------|----------------|-------------------------|------------|---------------------|--------------------|-----------------|
| Method                                                                     |          | Sample Date  | E              | ktraction / Preparation |            |                     | Analysis           |                 |
| Container / Client Sample ID(s)                                            |          |              | Date extracted | Due for extraction      | Evaluation | Date analysed       | Due for analysis   | Evaluation      |
| EA005P: pH by PC Titrator                                                  |          |              |                |                         |            |                     |                    |                 |
| Clear Plastic Bottle - Natural (EA005-P)                                   |          |              |                |                         |            |                     |                    |                 |
| AST2,                                                                      | WK14     | 22-Jul-2015  |                |                         |            | 22-Jul-2015         | 22-Jul-2015        | ✓               |
| EA010P: Conductivity by PC Titrator                                        |          |              |                |                         |            |                     |                    |                 |
| Clear Plastic Bottle - Natural (EA010-P)                                   |          |              |                |                         |            |                     | 40.4 0045          | _               |
| WK14                                                                       |          | 22-Jul-2015  |                |                         |            | 22-Jul-2015         | 19-Aug-2015        | ✓               |
| EA015: Total Dissolved Solids                                              |          |              |                |                         |            |                     |                    |                 |
| Clear Plastic Bottle - Natural (EA015H)                                    | NAME A   | 22-Jul-2015  |                |                         |            | 24-Jul-2015         | 29-Jul-2015        | ,               |
| AST2,                                                                      | WK14     | 22-Jul-2015  |                |                         |            | 24-Jul-2015         | 29-Jul-2015        | ✓               |
| EA025: Suspended Solids                                                    |          |              | 1              |                         |            | 1                   | ı                  | I               |
| Clear Plastic Bottle - Natural (EA025H) AST2,                              | WK14     | 22-Jul-2015  |                |                         |            | 24-Jul-2015         | 29-Jul-2015        | <b>√</b>        |
|                                                                            | WK14     | 22-3ui-2013  |                |                         |            | 24-3ul-2013         | 29-301-2013        | <b>V</b>        |
| ED009: Anions                                                              |          |              | 1              |                         |            | I                   |                    |                 |
| Clear Plastic Bottle - Natural (ED009-X) AST2,                             | WK14     | 22-Jul-2015  |                |                         |            | 24-Jul-2015         | 19-Aug-2015        | ✓               |
|                                                                            | WICH     |              |                |                         |            | 2.00.20.0           |                    | •               |
| ED037P: Alkalinity by PC Titrator Clear Plastic Bottle - Natural (ED037-P) |          |              | T T            |                         |            | 1                   |                    |                 |
| AST2,                                                                      | WK14     | 22-Jul-2015  |                |                         |            | 22-Jul-2015         | 05-Aug-2015        | ✓               |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA                            |          |              |                |                         |            |                     |                    | , ,             |
| Clear Plastic Bottle - Natural (ED041G)                                    |          |              | <u> </u>       |                         |            |                     |                    |                 |
| AST2,                                                                      | WK14     | 22-Jul-2015  |                |                         |            | 22-Jul-2015         | 19-Aug-2015        | ✓               |
| ED045G: Chloride by Discrete Analyser                                      |          |              |                |                         |            |                     |                    |                 |
| Clear Plastic Bottle - Natural (ED045G)                                    |          |              |                |                         |            |                     |                    |                 |
| AST2,                                                                      | WK14     | 22-Jul-2015  |                |                         |            | 22-Jul-2015         | 19-Aug-2015        | ✓               |
| ED093F: Dissolved Major Cations                                            |          |              |                |                         |            |                     |                    |                 |
| Clear Plastic Bottle - Nitric Acid; Filtered (ED093F)                      |          |              |                |                         |            |                     |                    |                 |
| AST2,                                                                      | WK14     | 22-Jul-2015  |                |                         |            | 28-Jul-2015         | 19-Aug-2015        | ✓               |
| EG020F: Dissolved Metals by ICP-MS                                         |          |              |                |                         |            |                     |                    |                 |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)                    |          |              |                |                         |            |                     | 40 1 0040          |                 |
| AST2,                                                                      | WK14     | 22-Jul-2015  |                |                         |            | 28-Jul-2015         | 18-Jan-2016        | ✓               |
| EG020F: Dissolved Metals by ICP-MS                                         |          |              |                |                         |            |                     |                    |                 |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F)                    | NATION A | 22-Jul-2015  |                |                         |            | 28-Jul-2015         | 18-Jan-2016        |                 |
| AST2,                                                                      | WK14     | 22-Jul-2015  |                |                         |            | 20-Jul-2015         | 10-3411-2010       | ✓               |
| EG035F: Dissolved Mercury by FIMS                                          |          |              |                |                         |            |                     |                    |                 |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) AST2.                | WK14     | 22-Jul-2015  |                |                         |            | 29-Jul-2015         | 19-Aug-2015        | <b>✓</b>        |
|                                                                            | VVICIT   | ZE-JUI-ZV 13 |                |                         |            | 20-0ui-2010         | 10 / 10g 2010      | •               |
| EG052G: Silica by Discrete Analyser                                        |          |              | I              |                         |            | I                   |                    |                 |
| Clear Plastic Bottle - Natural (EG052G) AST2,                              | WK14     | 22-Jul-2015  |                |                         |            | 22-Jul-2015         | 19-Aug-2015        | <b>✓</b>        |
| 11012,                                                                     | TILLIT   |              |                |                         |            |                     |                    | Ψ               |

Page : 4 of 11

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                                                    |         |                                              | Evaluation: × = Holding time breach; ✓ = Within holding time |                        |            |               |                  |            |  |  |
|--------------------------------------------------------------------------------------------------|---------|----------------------------------------------|--------------------------------------------------------------|------------------------|------------|---------------|------------------|------------|--|--|
| Method                                                                                           |         | Sample Date                                  | Ex                                                           | traction / Preparation |            | Analysis      |                  |            |  |  |
| Container / Client Sample ID(s)                                                                  |         |                                              | Date extracted                                               | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation |  |  |
| EK010/011: Chlorine                                                                              |         |                                              |                                                              |                        |            |               |                  |            |  |  |
| Clear Plastic Bottle - Natural (EK010)                                                           | MIZAA   | 22-Jul-2015                                  |                                                              |                        |            | 22-Jul-2015   | 22-Jul-2015      | ,          |  |  |
| AST2,                                                                                            | WK14    | 22-Jul-2015                                  |                                                              |                        |            | 22-Jul-2015   | 22-Jul-2015      | ✓          |  |  |
| EK040P: Fluoride by PC Titrator                                                                  |         | <u>                                     </u> | <u> </u>                                                     |                        |            | I             | I                |            |  |  |
| Clear Plastic Bottle - Natural (EK040P) AST2,                                                    | WK14    | 22-Jul-2015                                  |                                                              |                        |            | 22-Jul-2015   | 19-Aug-2015      | ✓          |  |  |
| EK055G: Ammonia as N by Discrete Analyser                                                        |         |                                              |                                                              |                        |            |               |                  |            |  |  |
| Clear Plastic Bottle - Sulfuric Acid (EK055G)                                                    |         |                                              |                                                              |                        |            |               |                  |            |  |  |
| AST2,                                                                                            | WK14    | 22-Jul-2015                                  |                                                              |                        |            | 24-Jul-2015   | 19-Aug-2015      | ✓          |  |  |
| EK057G: Nitrite as N by Discrete Analyser                                                        |         |                                              |                                                              |                        |            |               |                  |            |  |  |
| Clear Plastic Bottle - Natural (EK057G)                                                          |         |                                              |                                                              |                        |            |               | 04 1 1 0045      | _          |  |  |
| AST2,                                                                                            | WK14    | 22-Jul-2015                                  |                                                              |                        |            | 22-Jul-2015   | 24-Jul-2015      | ✓          |  |  |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana                                          | alyser  |                                              |                                                              |                        |            |               |                  |            |  |  |
| Clear Plastic Bottle - Sulfuric Acid (EK059G)                                                    | VAUCA A | 22-Jul-2015                                  |                                                              |                        |            | 24-Jul-2015   | 19-Aug-2015      |            |  |  |
| AST2,                                                                                            | WK14    | 22-Jul-2015                                  |                                                              |                        |            | 24-Jui-2015   | 19-Aug-2015      | ✓          |  |  |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser                                             |         |                                              |                                                              |                        |            |               | I                |            |  |  |
| Clear Plastic Bottle - Sulfuric Acid (EK061G) AST2.                                              | WK14    | 22-Jul-2015                                  | 24-Jul-2015                                                  | 19-Aug-2015            | 1          | 24-Jul-2015   | 19-Aug-2015      | <b>√</b>   |  |  |
|                                                                                                  | WK14    | 22-5ul-2015                                  | 24-5ul-2015                                                  | 10 / tag 2010          | <b>V</b>   | 24-301-2013   | 10 / lug 2010    | <b>V</b>   |  |  |
| EK067G: Total Phosphorus as P by Discrete Analyser Clear Plastic Bottle - Sulfuric Acid (EK067G) |         | <u> </u>                                     | <u> </u>                                                     |                        |            | I             | l                | l          |  |  |
| AST2,                                                                                            | WK14    | 22-Jul-2015                                  | 24-Jul-2015                                                  | 19-Aug-2015            | 1          | 24-Jul-2015   | 19-Aug-2015      | ✓          |  |  |
| EK071G: Reactive Phosphorus as P by discrete analyse                                             |         |                                              |                                                              |                        |            |               |                  | •          |  |  |
| Clear Plastic Bottle - Natural (EK071G)                                                          |         |                                              |                                                              |                        |            | I             |                  |            |  |  |
| AST2,                                                                                            | WK14    | 22-Jul-2015                                  |                                                              |                        |            | 22-Jul-2015   | 24-Jul-2015      | ✓          |  |  |
| EP005: Total Organic Carbon (TOC)                                                                |         |                                              |                                                              |                        |            |               |                  |            |  |  |
| Amber TOC Vial - Sulfuric Acid (EP005)                                                           |         |                                              |                                                              |                        |            |               |                  |            |  |  |
| AST2,                                                                                            | WK14    | 22-Jul-2015                                  |                                                              |                        |            | 22-Jul-2015   | 19-Aug-2015      | ✓          |  |  |
| EP020: Oil and Grease (O&G)                                                                      |         |                                              |                                                              |                        |            |               |                  |            |  |  |
| Amber Jar - Sulfuric Acid or Sodium Bisulfate (EP020)                                            |         |                                              |                                                              |                        |            |               |                  |            |  |  |
| AST2,                                                                                            | WK14    | 22-Jul-2015                                  |                                                              |                        |            | 29-Jul-2015   | 19-Aug-2015      | ✓          |  |  |
| EP033: C1 - C4 Hydrocarbon Gases                                                                 |         |                                              |                                                              |                        |            |               |                  |            |  |  |
| Amber VOC Vial - Sulfuric Acid (EP033)                                                           |         |                                              |                                                              |                        |            |               | 05.4 00.45       | _          |  |  |
| AST2,                                                                                            | WK14    | 22-Jul-2015                                  |                                                              |                        |            | 23-Jul-2015   | 05-Aug-2015      | ✓          |  |  |
| EP080/071: Total Petroleum Hydrocarbons                                                          |         |                                              |                                                              |                        |            |               |                  |            |  |  |
| Amber Glass Bottle - Unpreserved (EP071)                                                         | MIZZZ   | 22 1.1 2045                                  | 22 1.1 2045                                                  | 29-Jul-2015            |            | 22 1 2045     | 21 Aug 2015      |            |  |  |
| AST2,                                                                                            | WK14    | 22-Jul-2015                                  | 22-Jul-2015                                                  | 29-Jul-2015            | ✓          | 23-Jul-2015   | 31-Aug-2015      | ✓          |  |  |
| EP074A: Monocyclic Aromatic Hydrocarbons                                                         |         |                                              |                                                              |                        |            |               | I                |            |  |  |
| Amber VOC Vial - Sulfuric Acid (EP074) AST2.                                                     | WK14    | 22-Jul-2015                                  | 22-Jul-2015                                                  | 05-Aug-2015            | 1          | 22-Jul-2015   | 05-Aug-2015      | <b>√</b>   |  |  |
| A012,                                                                                            | VVIX.1º |                                              |                                                              | 55 / lug 2015          | <b>~</b>   |               | 55 / lug 2010    | <b>V</b>   |  |  |

Page : 5 of 11

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                 |      |                |                          |             | Evaluation    | : × = Holding time | breach ; ✓ = Withi | n holding time. |
|-----------------------------------------------|------|----------------|--------------------------|-------------|---------------|--------------------|--------------------|-----------------|
| Method                                        |      | Sample Date    | Extraction / Preparation |             |               |                    | Analysis           |                 |
| Container / Client Sample ID(s)               |      | Date extracted | Due for extraction       | Evaluation  | Date analysed | Due for analysis   | Evaluation         |                 |
| EP075(SIM)T: PAH Surrogates                   |      |                |                          |             |               |                    |                    |                 |
| Amber Glass Bottle - Unpreserved (EP075(SIM)) | )    |                |                          |             |               |                    |                    |                 |
| AST2,                                         | WK14 | 22-Jul-2015    | 22-Jul-2015              | 29-Jul-2015 | ✓             | 23-Jul-2015        | 31-Aug-2015        | ✓               |
| EP080/071: Total Petroleum Hydrocarbons       |      |                |                          |             |               |                    |                    |                 |
| Amber VOC Vial - Sulfuric Acid (EP080)        |      |                |                          |             |               |                    |                    |                 |
| AST2,                                         | WK14 | 22-Jul-2015    | 22-Jul-2015              | 05-Aug-2015 | ✓             | 22-Jul-2015        | 05-Aug-2015        | ✓               |
| EP262: Ethanolamines                          |      |                |                          |             |               |                    |                    |                 |
| Amber Glass Bottle - Unpreserved (EP262)      |      |                |                          |             |               |                    |                    |                 |
| AST2,                                         | WK14 | 22-Jul-2015    |                          |             |               | 23-Jul-2015        | 29-Jul-2015        | ✓               |

Page 6 of 11

Work Order ES1526602 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                                          |            | Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency |         |        |          |            |                                                  |  |  |
|--------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------|---------|--------|----------|------------|--------------------------------------------------|--|--|
| Quality Control Sample Type                            |            |                                                                                                   | ount    |        | Rate (%) |            | Quality Control Specification                    |  |  |
| Analytical Methods                                     | Method     | QC                                                                                                | Regular | Actual | Expected | Evaluation |                                                  |  |  |
| Laboratory Duplicates (DUP)                            |            |                                                                                                   |         |        |          |            |                                                  |  |  |
| Alkalinity by PC Titrator                              | ED037-P    | 2                                                                                                 | 11      | 18.18  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Ammonia as N by Discrete analyser                      | EK055G     | 2                                                                                                 | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| C1 - C4 Gases                                          | EP033      | 2                                                                                                 | 19      | 10.53  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Chloride by Discrete Analyser                          | ED045G     | 2                                                                                                 | 15      | 13.33  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Chlorine                                               | EK010      | 2                                                                                                 | 14      | 14.29  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Conductivity by PC Titrator                            | EA010-P    | 2                                                                                                 | 18      | 11.11  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Dissolved Mercury by FIMS                              | EG035F     | 2                                                                                                 | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 2                                                                                                 | 19      | 10.53  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 2                                                                                                 | 12      | 16.67  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Ethanolamines by LCMSMS                                | EP262      | 1                                                                                                 | 5       | 20.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Fluoride by PC Titrator                                | EK040P     | 2                                                                                                 | 13      | 15.38  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Major Cations - Dissolved                              | ED093F     | 2                                                                                                 | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 2                                                                                                 | 11      | 18.18  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Nitrite as N by Discrete Analyser                      | EK057G     | 2                                                                                                 | 14      | 14.29  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0                                                                                                 | 14      | 0.00   | 10.00    | x          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| oH by PC Titrator                                      | EA005-P    | 2                                                                                                 | 18      | 11.11  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1                                                                                                 | 3       | 33.33  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1                                                                                                 | 2       | 50.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 2                                                                                                 | 9       | 22.22  | 10.00    | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 2                                                                                                 | 13      | 15.38  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Suspended Solids (High Level)                          | EA025H     | 2                                                                                                 | 20      | 10.00  | 9.52     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Total Dissolved Solids (High Level)                    | EA015H     | 2                                                                                                 | 20      | 10.00  | 10.00    | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1                                                                                                 | 9       | 11.11  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Total Organic Carbon                                   | EP005      | 2                                                                                                 | 19      | 10.53  | 10.00    | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 2                                                                                                 | 17      | 11.76  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| TRH - Semivolatile Fraction                            | EP071      | 0                                                                                                 | 9       | 0.00   | 10.00    | JC .       | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| TRH Volatiles/BTEX                                     | EP080      | 2                                                                                                 | 15      | 13.33  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Volatile Organic Compounds                             | EP074      | 1                                                                                                 | 9       | 11.11  | 10.00    | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Laboratory Control Samples (LCS)                       |            |                                                                                                   |         |        |          |            |                                                  |  |  |
| Alkalinity by PC Titrator                              | ED037-P    | 1                                                                                                 | 11      | 9.09   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Ammonia as N by Discrete analyser                      | EK055G     | 1                                                                                                 | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| C1 - C4 Gases                                          | EP033      | 1                                                                                                 | 19      | 5.26   | 5.00     | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Chloride by Discrete Analyser                          | ED045G     | 2                                                                                                 | 15      | 13.33  | 10.00    | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Conductivity by PC Titrator                            | EA010-P    | 1                                                                                                 | 18      | 5.56   | 5.00     | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Dissolved Mercury by FIMS                              | EG035F     | 1                                                                                                 | 20      | 5.00   | 5.00     | <u> </u>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1                                                                                                 | 19      | 5.26   | 5.00     |            | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |

Page : 7 of 11

Work Order : ES1526602 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                          |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification ; ✓ = Quality Control frequency within specification. |  |  |
|--------------------------------------------------------|------------|----|---------|-----------|-------------------|-----------------|--------------------------------------------------------------------------------|--|--|
| Quality Control Sample Type                            |            | Co | ount    |           | Rate (%)          |                 | Quality Control Specification                                                  |  |  |
| Analytical Methods                                     | Method     | OC | Regular | Actual    | Expected          | Evaluation      |                                                                                |  |  |
| Laboratory Control Samples (LCS) - Continued           |            |    |         |           |                   |                 |                                                                                |  |  |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 12      | 8.33      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 5       | 20.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Fluoride by PC Titrator                                | EK040P     | 1  | 13      | 7.69      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Major Cations - Dissolved                              | ED093F     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 14      | 7.14      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Oil and Grease                                         | EP020      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 14      | 7.14      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 3       | 33.33     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 2       | 50.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 9       | 11.11     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 13      | 7.69      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Suspended Solids (High Level)                          | EA025H     | 2  | 20      | 10.00     | 9.52              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Total Dissolved Solids (High Level)                    | EA015H     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 3  | 9       | 33.33     | 15.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Total Organic Carbon                                   | EP005      | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 3  | 17      | 17.65     | 15.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 9       | 11.11     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 15      | 6.67      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Volatile Organic Compounds                             | EP074      | 1  | 9       | 11.11     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Method Blanks (MB)                                     |            |    |         |           |                   |                 |                                                                                |  |  |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 20      | 5.00      | 5.00              | 1               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| C1 - C4 Gases                                          | EP033      | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 15      | 6.67      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Chlorine                                               | EK010      | 1  | 14      | 7.14      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Conductivity by PC Titrator                            | EA010-P    | 1  | 18      | 5.56      | 5.00              | 1               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 20      | 5.00      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 12      | 8.33      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 5       | 20.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Fluoride by PC Titrator                                | EK040P     | 1  | 13      | 7.69      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Major Cations - Dissolved                              | ED093F     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 14      | 7.14      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Oil and Grease                                         | EP020      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 14      | 7.14      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 3       | 33.33     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 2       | 50.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 9       | 11.11     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 13      | 7.69      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |  |  |

Page : 8 of 11

Work Order : ES1526602 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L



| Quality Control Sample Type                            |            | Count |         |        | D-4- (0/) |            | Quality Central Specification                    |  |  |
|--------------------------------------------------------|------------|-------|---------|--------|-----------|------------|--------------------------------------------------|--|--|
|                                                        | Method     |       | 1       | 4.7.1  | Rate (%)  | Evaluation | Quality Control Specification                    |  |  |
| Analytical Methods                                     | Welliou    | OC    | Regular | Actual | Expected  | Evaluation |                                                  |  |  |
| Method Blanks (MB) - Continued                         |            |       |         | - 44   |           |            |                                                  |  |  |
| Suspended Solids (High Level)                          | EA025H     | 1     | 20      | 5.00   | 4.76      | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Total Dissolved Solids (High Level)                    | EA015H     | 1     | 20      | 5.00   | 5.00      | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1     | 9       | 11.11  | 5.00      | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| otal Organic Carbon                                    | EP005      | 1     | 19      | 5.26   | 5.00      | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| otal Phosphorus as P By Discrete Analyser              | EK067G     | 1     | 17      | 5.88   | 5.00      | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| RH - Semivolatile Fraction                             | EP071      | 1     | 9       | 11.11  | 5.00      | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| RH Volatiles/BTEX                                      | EP080      | 1     | 15      | 6.67   | 5.00      | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| /olatile Organic Compounds                             | EP074      | 1     | 9       | 11.11  | 5.00      | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Matrix Spikes (MS)                                     |            |       |         |        |           |            |                                                  |  |  |
| Ammonia as N by Discrete analyser                      | EK055G     | 1     | 20      | 5.00   | 5.00      | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| C1 - C4 Gases                                          | EP033      | 1     | 19      | 5.26   | 5.00      | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Chloride by Discrete Analyser                          | ED045G     | 1     | 15      | 6.67   | 5.00      | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Dissolved Mercury by FIMS                              | EG035F     | 1     | 20      | 5.00   | 5.00      | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1     | 19      | 5.26   | 5.00      | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Ethanolamines by LCMSMS                                | EP262      | 1     | 5       | 20.00  | 5.00      | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Fluoride by PC Titrator                                | EK040P     | 1     | 13      | 7.69   | 5.00      | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1     | 11      | 9.09   | 5.00      | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1     | 14      | 7.14   | 5.00      | <u>√</u>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0     | 14      | 0.00   | 5.00      | <u>.</u>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1     | 3       | 33.33  | 5.00      | <u> </u>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1     | 2       | 50.00  | 5.00      |            | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1     | 9       | 11.11  | 5.00      | <u> </u>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1     | 13      | 7.69   | 5.00      | <u> </u>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| otal Kjeldahl Nitrogen as N By Discrete Analyser       | EK061G     | 1     | 9       | 11.11  | 5.00      | <u> </u>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| otal Organic Carbon                                    | EP005      | 1     | 19      | 5.26   | 5.00      | <u> </u>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| otal Phosphorus as P By Discrete Analyser              | EK067G     | 1     | 17      | 5.88   | 5.00      |            | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| RH - Semivolatile Fraction                             | EP071      | 0     | 9       | 0.00   | 5.00      | <u></u>    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| RH Volatiles/BTEX                                      | EP080      | 1     | 15      | 6.67   | 5.00      |            | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| /olatile Organic Compounds                             | EP074      | 1     | 9       | 11.11  | 5.00      |            | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |

Page : 9 of 11

Work Order : ES1526602 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                     | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pH by PC Titrator                                      | EA005-P  | WATER  | In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                              |
| Conductivity by PC Titrator                            | EA010-P  | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                         |
| Total Dissolved Solids (High Level)                    | EA015H   | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |
| Suspended Solids (High Level)                          | EA025H   | WATER  | In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of 'non-filterable' residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (2013) Schedule B(3)                                 |
| Standard Anions -by IC (Extended Method)               | ED009-X  | WATER  | In house: Referenced to APHA 4110. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                    |
| Alkalinity by PC Titrator                              | ED037-P  | WATER  | In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                       |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G   | WATER  | In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)                                       |
| Chloride by Discrete Analyser                          | ED045G   | WATER  | In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003                                                                                                  |
| Major Cations - Dissolved                              | ED093F   | WATER  | In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3)  Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3)  Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) |
| Disaster d Matala had OD MO. Quita A                   | 500004 5 | WATER  | Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                        |

Page : 10 of 11

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Analytical Methods                                   | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Metals by ICP-MS - Suite B                 | EG020B-F   | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                                                                                                        |
| Dissolved Mercury by FIMS                            | EG035F     | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) |
| Silica (Reactive) by Discrete Analyser               | EG052G     | WATER  | In house: Referenced to APHA 4500-SiO2 D: Under Acdic conditions reactive silicon combines with ammonium molybdate to form a yellow molybdosilicic acid complex. This is reduced by 1-amino-2-naphthol-4-sulfonic acid to a silicomolybdenum blue complex which is measured by discrete analyser at 670 nm. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                           |
| Chlorine                                             | EK010      | WATER  | In-house (DPD colourimetry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fluoride by PC Titrator                              | EK040P     | WATER  | In house: Referenced to APHA 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                               |
| Ammonia as N by Discrete analyser                    | EK055G     | WATER  | In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ammonium as N                                        | EK055G-NH4 | WATER  | Ammonium in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH and Temperature. Ammonia is determined by direct colorimetry by Discrete Analyser according to APHA 4500-NH3 G. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                  |
| Nitrite as N by Discrete Analyser                    | EK057G     | WATER  | In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nitrate as N by Discrete Analyser                    | EK058G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                          |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser  | EK059G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                      |
| Total Kjeldahl Nitrogen as N By Discrete Analyser    | EK061G     | WATER  | In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                           |
| Total Nitrogen as N (TKN + Nox) By Discrete Analyser | EK062G     | WATER  | In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total Phosphorus as P By Discrete<br>Analyser        | EK067G     | WATER  | In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |

Page : 11 of 11

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Analytical Methods                       | Method      | Matrix   | Method Descriptions                                                                                                                                    |
|------------------------------------------|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reactive Phosphorus as P-By Discrete     | EK071G      | WATER    | In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid                                               |
| Analyser                                 |             |          | medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely                                              |
|                                          |             |          | coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant                                            |
|                                          |             | 14/4-    | with NEPM (2013) Schedule B(3)                                                                                                                         |
| Ionic Balance by PCT DA and Turbi SO4 DA | EN055 - PG  | WATER    | In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)                                                            |
| Total Organic Carbon                     | EP005       | WATER    | In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by                                               |
|                                          |             |          | IR cell. TOC is calculated as the difference. This method is compliant with NEPM (2013) Schedule B(3)                                                  |
| Oil and Grease                           | EP020       | WATER    | In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil &                                          |
|                                          |             |          | grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant                                              |
|                                          |             |          | extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant                                        |
|                                          |             |          | with NEPM (2013) Schedule B(3)                                                                                                                         |
| C1 - C4 Gases                            | EP033       | WATER    | Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, US EPA - Region 1,                                             |
|                                          |             |          | EPA New England, July 2001. Automated static headspace, dual column GC/FID. A 12 mL sample is pipetted                                                 |
|                                          |             |          | into a 20 mL headspace vial containing 3g of sodium chloride and sealed. Each sample is equilibrated with                                              |
|                                          |             |          | shaking at 40 degrees C for 10 minutes prior to analysis by GC/FID using a pair of PLOT columns of different                                           |
| TDU O : LET E E                          |             | NAVA TED | polarity.                                                                                                                                              |
| TRH - Semivolatile Fraction              | EP071       | WATER    | USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison                                            |
|                                          |             |          | against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3) |
| Volatile Organic Compounds               | EP074       | WATER    | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                                                        |
|                                          |             |          | quantification is by comparison against an established 5 point calibration curve. This method is compliant with                                        |
|                                          |             |          | NEPM (2013) Schedule B(3)                                                                                                                              |
| PAH/Phenols (GC/MS - SIM)                | EP075(SIM)  | WATER    | USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by                                              |
|                                          |             |          | comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013)                                                 |
|                                          |             |          | Schedule B(3)                                                                                                                                          |
| TRH Volatiles/BTEX                       | EP080       | WATER    | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                                                        |
|                                          |             |          | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is                                           |
|                                          |             |          | equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is                                            |
|                                          |             |          | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                        |
| Ethanolamines by LCMSMS                  | EP262       | WATER    | In-house LC-MSMS: Benzoyl derivatives of target compounds are analysed by LC/MSMS in ESI Positive Mode.                                                |
| Preparation Methods                      | Method      | Matrix   | Method Descriptions                                                                                                                                    |
| TKN/TP Digestion                         | EK061/EK067 | WATER    | APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)                                                           |



## **QUALITY CONTROL REPORT**

**Work Order** : **ES1526604** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ----Date Samples Received: 22-Jul-2015C-O-C number: ----Date Analysis Commenced: 22-Jul-2015

Sampler : DAVID WATSON Issue Date : 22-Jul-2015

Site : --- No. of samples received : 2

Quote number : --- No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

SYDNEY NSW. AUSTRALIA 2001

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



NATA Accredited Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Sanjeshni Jyoti Senior Chemist Volatiles Sydney Organics

Page : 2 of 4 Work Order : ES1526604

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1526604

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER    |                              |                                         |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |  |
|----------------------|------------------------------|-----------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID | Client sample ID             | Method: Compound                        | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EA010P: Conductivit  | y by PC Titrator (QC Lot: 16 | 61153)                                  |            |                                   |       |                 |                  |         |                     |  |
| EN1512413-001        | Anonymous                    | EA010-P: Electrical Conductivity @ 25°C |            | 1                                 | μS/cm | 4130            | 4150             | 0.496   | 0% - 20%            |  |
| EK084: Un-ionized H  | ydrogen Sulfide (QC Lot: 16  |                                         |            |                                   |       |                 |                  |         |                     |  |
| ES1526470-004        | Anonymous                    | EK084: Unionized Hydrogen Sulfide       |            | 0.1                               | mg/L  | <0.1            | <0.1             | 0.00    | 0% - 20%            |  |
| EP080: BTEXN (QC     | Lot: 160984)                 |                                         |            |                                   |       |                 |                  |         |                     |  |
| ES1526604-001        | AST2                         | EP080: Benzene                          | 71-43-2    | 1                                 | μg/L  | 8               | 7                | 0.00    | No Limit            |  |
|                      |                              | EP080: Ethylbenzene                     | 100-41-4   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |
|                      |                              | EP080: meta- & para-Xylene              | 108-38-3   | 2                                 | μg/L  | 2               | 2                | 0.00    | No Limit            |  |
|                      |                              |                                         | 106-42-3   |                                   |       |                 |                  |         |                     |  |
|                      |                              | EP080: ortho-Xylene                     | 95-47-6    | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |
|                      |                              | EP080: Toluene                          | 108-88-3   | 2                                 | μg/L  | 9               | 9                | 0.00    | No Limit            |  |
|                      |                              | EP080: Naphthalene                      | 91-20-3    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit            |  |



Page : 4 of 4 Work Order : ES1526604

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   | ub-Matrix: WATER |     |       |        |               |                    | Laboratory Control Spike (LCS) Report |            |  |  |  |
|-----------------------------------------------------|------------------|-----|-------|--------|---------------|--------------------|---------------------------------------|------------|--|--|--|
|                                                     |                  |     |       | Report | Spike         | Spike Recovery (%) | Recovery                              | Limits (%) |  |  |  |
| Method: Compound                                    | CAS Number       | LOR | Unit  | Result | Concentration | LCS                | Low                                   | High       |  |  |  |
| EA010P: Conductivity by PC Titrator (QCLot: 161153) |                  |     |       |        |               |                    |                                       |            |  |  |  |
| EA010-P: Electrical Conductivity @ 25°C             |                  | 1   | μS/cm | <1     | 2000 μS/cm    | 104                | 95                                    | 113        |  |  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 161104)  |                  |     |       |        |               |                    |                                       |            |  |  |  |
| EK084: Unionized Hydrogen Sulfide                   |                  | 0.1 | mg/L  | <0.1   | 0.05 mg/L     | 103                | 72                                    | 126        |  |  |  |
| EP080: BTEXN (QCLot: 160984)                        |                  |     |       |        |               |                    |                                       |            |  |  |  |
| EP080: Benzene                                      | 71-43-2          | 1   | μg/L  | <1     | 10 μg/L       | 104                | 70                                    | 124        |  |  |  |
| EP080: Ethylbenzene                                 | 100-41-4         | 2   | μg/L  | <2     | 10 μg/L       | 80.6               | 70                                    | 120        |  |  |  |
| EP080: meta- & para-Xylene                          | 108-38-3         | 2   | μg/L  | <2     | 10 μg/L       | 81.8               | 69                                    | 121        |  |  |  |
|                                                     | 106-42-3         |     |       |        |               |                    |                                       |            |  |  |  |
| EP080: Naphthalene                                  | 91-20-3          | 5   | μg/L  | <5     | 10 μg/L       | 114                | 70                                    | 124        |  |  |  |
| EP080: ortho-Xylene                                 | 95-47-6          | 2   | μg/L  | <2     | 10 μg/L       | 81.2               | 72                                    | 122        |  |  |  |
| EP080: Toluene                                      | 108-88-3         | 2   | μg/L  | <2     | 10 μg/L       | 104                | 65                                    | 129        |  |  |  |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                            |            | Matrix Spike (MS) Report |                  |                     |      |  |  |
|----------------------|------------------|----------------------------|------------|--------------------------|------------------|---------------------|------|--|--|
|                      |                  |                            |            |                          | SpikeRecovery(%) | Recovery Limits (%) |      |  |  |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration            | MS               | Low                 | High |  |  |
| EP080: BTEXN (Q      | CLot: 160984)    |                            |            |                          |                  |                     |      |  |  |
| ES1526604-001        | AST2             | EP080: Benzene             | 71-43-2    | 25 μg/L                  | 83.8             | 70                  | 130  |  |  |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L                  | 83.1             | 70                  | 130  |  |  |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L                  | 85.7             | 70                  | 130  |  |  |
|                      |                  |                            | 106-42-3   |                          |                  |                     |      |  |  |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L                  | 72.0             | 70                  | 130  |  |  |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L                  | 84.0             | 70                  | 130  |  |  |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L                  | 83.8             | 70                  | 130  |  |  |



# **QA/QC Compliance Assessment for DQO Reporting**

Work Order : **ES1526604** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 22-Jul-2015

 Site
 : --- Issue Date
 : 22-Jul-2015

Sampler : DAVID WATSON No. of samples received : 2
Order number : ---- No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

## **Outliers : Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 Work Order : ES1526604

Client : PARSONS BRINCKERHOFF AUST P/L

Project · 2268523B



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      |    | Count   |        | : (%)    | Quality Control Specification                    |
|----------------------------------|----|---------|--------|----------|--------------------------------------------------|
| Method                           | QC | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 4       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 4       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 4       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER Evaluation: ★ = Holding time breach; ✓ = Within holding time.

| IVIALIIA. WATER                          |      |             |                          |                    | Lvaiuation | I loluling time | breach, • - with | ir noluling time |
|------------------------------------------|------|-------------|--------------------------|--------------------|------------|-----------------|------------------|------------------|
| Method                                   |      | Sample Date | Extraction / Preparation |                    | Analysis   |                 |                  |                  |
| Container / Client Sample ID(s)          |      |             | Date extracted           | Due for extraction | Evaluation | Date analysed   | Due for analysis | Evaluation       |
| EA010P: Conductivity by PC Titrator      |      |             |                          |                    |            |                 |                  |                  |
| Clear Plastic Bottle - Natural (EA010-P) |      |             |                          |                    |            |                 |                  |                  |
| AST2                                     |      | 22-Jul-2015 |                          |                    |            | 22-Jul-2015     | 19-Aug-2015      | ✓                |
| EP080: BTEXN                             |      |             |                          |                    |            |                 |                  |                  |
| Amber VOC Vial - Sulfuric Acid (EP080)   |      |             |                          |                    |            |                 |                  |                  |
| AST2,                                    | WK14 | 22-Jul-2015 | 22-Jul-2015              | 05-Aug-2015        | ✓          | 22-Jul-2015     | 05-Aug-2015      | ✓                |

Page : 3 of 4 Work Order ES1526604

PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    |         |            |   | Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specificati |       |            |                                                  |  |  |  |
|----------------------------------|---------|------------|---|----------------------------------------------------------------------------------------------------------------------|-------|------------|--------------------------------------------------|--|--|--|
| Quality Control Sample Type      |         | Count      |   | Rate (%)                                                                                                             |       |            | Quality Control Specification                    |  |  |  |
| Analytical Methods               | Method  | OC Reaular |   | Actual Expected                                                                                                      |       | Evaluation |                                                  |  |  |  |
| Laboratory Duplicates (DUP)      |         |            |   |                                                                                                                      |       |            |                                                  |  |  |  |
| Conductivity by PC Titrator      | EA010-P | 1          | 2 | 50.00                                                                                                                | 10.00 | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| TRH Volatiles/BTEX               | EP080   | 1          | 2 | 50.00                                                                                                                | 10.00 | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Un-ionized Hydrogen Sulfide      | EK084   | 0          | 4 | 0.00                                                                                                                 | 10.00 | Je.        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Laboratory Control Samples (LCS) |         |            |   |                                                                                                                      |       |            |                                                  |  |  |  |
| Conductivity by PC Titrator      | EA010-P | 1          | 2 | 50.00                                                                                                                | 5.00  | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| TRH Volatiles/BTEX               | EP080   | 1          | 2 | 50.00                                                                                                                | 5.00  | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Un-ionized Hydrogen Sulfide      | EK084   | 0          | 4 | 0.00                                                                                                                 | 5.00  | 3c         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Method Blanks (MB)               |         |            |   |                                                                                                                      |       |            |                                                  |  |  |  |
| Conductivity by PC Titrator      | EA010-P | 1          | 2 | 50.00                                                                                                                | 5.00  | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| TRH Volatiles/BTEX               | EP080   | 1          | 2 | 50.00                                                                                                                | 5.00  | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Un-ionized Hydrogen Sulfide      | EK084   | 0          | 4 | 0.00                                                                                                                 | 5.00  | Je .       | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Matrix Spikes (MS)               |         |            |   |                                                                                                                      |       |            |                                                  |  |  |  |
| TRH Volatiles/BTEX               | EP080   | 1          | 2 | 50.00                                                                                                                | 5.00  | 1          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |

Page : 4 of 4 Work Order : ES1526604

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                    |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                    |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3) |



#### **QUALITY CONTROL REPORT**

**Work Order** : **ES1526718** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ----Date Samples Received: 23-Jul-2015C-O-C number: ----: 23-Jul-2015

Sampler : DAVID WATSON Issue Date : 23-Jul-2015

Site : --- No. of samples received : 3

Quote number : --- No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

SYDNEY NSW. AUSTRALIA 2001

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



NATA Accredited Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ashesh Patel Inorganic Chemist Sydney Inorganics
Sanjeshni Jyoti Senior Chemist Volatiles Sydney Organics

Page : 2 of 4
Work Order : ES1526718

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1526718

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER             |                                              |                                         |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |  |  |
|-------------------------------|----------------------------------------------|-----------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|--|--|
| Laboratory sample ID          | Client sample ID                             | Method: Compound                        | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |
| <b>EA010P: Conductivit</b>    | y by PC Titrator (QC Lot: 16                 |                                         |            |                                   |       |                 |                  |         |                     |  |  |
| ES1526718-001                 | AST2                                         | EA010-P: Electrical Conductivity @ 25°C |            | 1                                 | μS/cm | 8000            | 8000             | 0.00    | 0% - 20%            |  |  |
| EK084: Un-ionized Hy          | /drogen Sulfide (QC Lot: 10                  | 62307)                                  |            |                                   |       |                 |                  |         |                     |  |  |
| ES1526718-001                 | 8-001 AST2 EK084: Unionized Hydrogen Sulfide |                                         |            |                                   |       | <0.1            | <0.1             | 0.00    | 0% - 20%            |  |  |
| EP080: BTEXN (QC Lot: 162213) |                                              |                                         |            |                                   |       |                 |                  |         |                     |  |  |
| ES1526718-002                 | WK12                                         | EP080: Benzene                          | 71-43-2    | 1                                 | μg/L  | 1               | 1                | 0.00    | No Limit            |  |  |
|                               |                                              | EP080: Ethylbenzene                     | 100-41-4   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |
|                               |                                              | EP080: meta- & para-Xylene              | 108-38-3   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |
|                               |                                              |                                         | 106-42-3   |                                   |       |                 |                  |         |                     |  |  |
|                               |                                              | EP080: ortho-Xylene                     | 95-47-6    | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |
|                               |                                              | EP080: Toluene                          | 108-88-3   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |
|                               |                                              | EP080: Naphthalene                      | 91-20-3    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit            |  |  |

Page : 4 of 4 Work Order : ES1526718

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   | ub-Matrix: WATER |     |       |        |               |                    | Laboratory Control Spike (LCS) Report |            |  |  |  |
|-----------------------------------------------------|------------------|-----|-------|--------|---------------|--------------------|---------------------------------------|------------|--|--|--|
|                                                     |                  |     |       | Report | Spike         | Spike Recovery (%) | Recovery                              | Limits (%) |  |  |  |
| Method: Compound                                    | CAS Number       | LOR | Unit  | Result | Concentration | LCS                | Low                                   | High       |  |  |  |
| EA010P: Conductivity by PC Titrator (QCLot: 162406) |                  |     |       |        |               |                    |                                       |            |  |  |  |
| EA010-P: Electrical Conductivity @ 25°C             |                  | 1   | μS/cm | <1     | 2000 μS/cm    | 106                | 95                                    | 113        |  |  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 162307)  |                  |     |       |        |               |                    |                                       |            |  |  |  |
| EK084: Unionized Hydrogen Sulfide                   |                  | 0.1 | mg/L  | <0.1   | 0.05 mg/L     | 100                | 72                                    | 126        |  |  |  |
| EP080: BTEXN (QCLot: 162213)                        |                  |     |       |        |               |                    |                                       |            |  |  |  |
| EP080: Benzene                                      | 71-43-2          | 1   | μg/L  | <1     | 10 μg/L       | 94.6               | 70                                    | 124        |  |  |  |
| EP080: Ethylbenzene                                 | 100-41-4         | 2   | μg/L  | <2     | 10 μg/L       | 86.6               | 70                                    | 120        |  |  |  |
| EP080: meta- & para-Xylene                          | 108-38-3         | 2   | μg/L  | <2     | 10 μg/L       | 86.6               | 69                                    | 121        |  |  |  |
|                                                     | 106-42-3         |     |       |        |               |                    |                                       |            |  |  |  |
| EP080: Naphthalene                                  | 91-20-3          | 5   | μg/L  | <5     | 10 μg/L       | 91.2               | 70                                    | 124        |  |  |  |
| EP080: ortho-Xylene                                 | 95-47-6          | 2   | μg/L  | <2     | 10 μg/L       | 97.1               | 72                                    | 122        |  |  |  |
| EP080: Toluene                                      | 108-88-3         | 2   | μg/L  | <2     | 10 μg/L       | 87.7               | 65                                    | 129        |  |  |  |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                            | Matrix Spike (MS) Report |               |                  |            |           |  |
|----------------------|------------------|----------------------------|--------------------------|---------------|------------------|------------|-----------|--|
|                      |                  |                            |                          | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |  |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number               | Concentration | MS               | Low        | High      |  |
| EP080: BTEXN (QC     | CLot: 162213)    |                            |                          |               |                  |            |           |  |
| ES1526718-002        | WK12             | EP080: Benzene             | 71-43-2                  | 25 μg/L       | 82.4             | 70         | 130       |  |
|                      |                  | EP080: Ethylbenzene        | 100-41-4                 | 25 μg/L       | 86.5             | 70         | 130       |  |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3                 | 25 μg/L       | 83.2             | 70         | 130       |  |
|                      |                  |                            | 106-42-3                 |               |                  |            |           |  |
|                      |                  | EP080: Naphthalene         | 91-20-3                  | 25 μg/L       | 94.3             | 70         | 130       |  |
|                      |                  | EP080: ortho-Xylene        | 95-47-6                  | 25 μg/L       | 89.6             | 70         | 130       |  |
|                      |                  | EP080: Toluene             | 108-88-3                 | 25 μg/L       | 84.3             | 70         | 130       |  |



# **QA/QC Compliance Assessment for DQO Reporting**

Work Order : **ES1526718** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 23-Jul-2015

 Site
 : -- Issue Date
 : 23-Jul-2015

Sampler : DAVID WATSON No. of samples received : 3
Order number : ---- No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

### **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 Work Order : ES1526718

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      | C  | Count Rate (%) Quality C |        | e (%)    | Quality Control Specification                    |
|----------------------------------|----|--------------------------|--------|----------|--------------------------------------------------|
| Method                           | QC | Regular                  | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |                          |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 3                        | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |    |                          |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 3                        | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |                          |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 3                        | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

#### **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER |  | Evaluation | i: × = Holding time breach; | ✓ = Within holding time. |
|---------------|--|------------|-----------------------------|--------------------------|
|               |  |            |                             |                          |

| Maula. WAILI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | Evaluation: " - Holding time breach, " - Within Holding time. |                    |                        |               |                  |             |          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------|--------------------|------------------------|---------------|------------------|-------------|----------|--|
| Method Service Control of the Contro |       |                                                               | Ex                 | traction / Preparation |               | Analysis         |             |          |  |
| Container / Client Sample ID(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Date extracted                                                | Due for extraction | Evaluation             | Date analysed | Due for analysis | Evaluation  |          |  |
| EA010P: Conductivity by PC Titrator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                               |                    |                        |               |                  |             |          |  |
| Clear Plastic Bottle - Natural (EA010-P)<br>AST2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 23-Jul-2015                                                   |                    |                        |               | 23-Jul-2015      | 20-Aug-2015 | ✓        |  |
| EP080: BTEXN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                               |                    |                        |               |                  |             |          |  |
| Amber VOC Vial - Sulfuric Acid (EP080) AST2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WK12, | 23-Jul-2015                                                   | 23-Jul-2015        | 06-Aug-2015            | ✓             | 23-Jul-2015      | 06-Aug-2015 | <b>√</b> |  |
| WK13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                                               |                    |                        |               |                  |             |          |  |

Page : 3 of 4 Work Order ES1526718

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    |         |    |         | Evaluation | n: 🗴 = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specificatio |
|----------------------------------|---------|----|---------|------------|-------------------|-----------------|-----------------------------------------------------------------------------|
| Quality Control Sample Type      |         | Co | Count   |            | Rate (%)          |                 | Quality Control Specification                                               |
| Analytical Methods               | Method  | QC | Regular | Actual     | Expected          | Evaluation      |                                                                             |
| Laboratory Duplicates (DUP)      |         |    |         |            |                   |                 |                                                                             |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| TRH Volatiles/BTEX               | EP080   | 1  | 3       | 33.33      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 3       | 0.00       | 10.00             | æ               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Laboratory Control Samples (LCS) |         |    |         |            |                   |                 |                                                                             |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| TRH Volatiles/BTEX               | EP080   | 1  | 3       | 33.33      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 3       | 0.00       | 5.00              | .sc             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Method Blanks (MB)               |         |    |         |            |                   |                 |                                                                             |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| TRH Volatiles/BTEX               | EP080   | 1  | 3       | 33.33      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 3       | 0.00       | 5.00              | .sc             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Matrix Spikes (MS)               |         |    |         |            |                   |                 |                                                                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 3       | 33.33      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |

Page : 4 of 4 Work Order : ES1526718

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                                                                                                                                      |
|-----------------------------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                    |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)    |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                                                                                                                          |
|                             |         |        | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is |
|                             |         |        | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                          |



#### **QUALITY CONTROL REPORT**

Work Order : **ES1526833** Page : 1 of 4

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : --- Date Samples Received : 24-Jul-2015
C-O-C number Date Analysis Commenced : 24-Jul-2015

Sampler : DAVID WATSON Issue Date : 03-Aug-2015

Site : --- No. of samples received : 3

Quote number : --- No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

NATA Accredited

Laboratory 825

Accredited for compliance with

ISO/IEC 17025.

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit JoshiInorganic ChemistSydney InorganicsPabi SubbaSenior Organic ChemistSydney Organics

Page : 2 of 4

Work Order : ES1526833 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4

Work Order : ES1526833 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER             |                              |                                         | Laboratory Duplicate (DUP) Report |     |       |                 |                  |         |                     |  |
|-------------------------------|------------------------------|-----------------------------------------|-----------------------------------|-----|-------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID          | Client sample ID             | Method: Compound                        | CAS Number                        | LOR | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EA010P: Conductivit           | y by PC Titrator (QC Lot: 16 |                                         |                                   |     |       |                 |                  |         |                     |  |
| ES1526833-001                 | AST2                         | EA010-P: Electrical Conductivity @ 25°C |                                   | 1   | μS/cm | 7720            | 7930             | 2.62    | 0% - 20%            |  |
| EK084: Un-ionized H           |                              |                                         |                                   |     |       |                 |                  |         |                     |  |
| ES1526833-001                 | AST2                         | EK084: Unionized Hydrogen Sulfide       |                                   | 0.1 | mg/L  | <0.1            | <0.1             | 0.00    | 0% - 20%            |  |
| EP080: BTEXN (QC Lot: 163719) |                              |                                         |                                   |     |       |                 |                  |         |                     |  |
| ES1526833-001                 | AST2                         | EP080: Benzene                          | 71-43-2                           | 1   | μg/L  | 6               | 6                | 0.00    | No Limit            |  |
|                               |                              | EP080: Ethylbenzene                     | 100-41-4                          | 2   | μg/L  | <2              | <2               | 0.00    | No Limit            |  |
|                               |                              | EP080: meta- & para-Xylene              | 108-38-3                          | 2   | μg/L  | 2               | 2                | 0.00    | No Limit            |  |
|                               |                              |                                         | 106-42-3                          |     |       |                 |                  |         |                     |  |
|                               |                              | EP080: ortho-Xylene                     | 95-47-6                           | 2   | μg/L  | <2              | <2               | 0.00    | No Limit            |  |
|                               |                              | EP080: Toluene                          | 108-88-3                          | 2   | μg/L  | 7               | 7                | 0.00    | No Limit            |  |
|                               |                              | EP080: Naphthalene                      | 91-20-3                           | 5   | μg/L  | <5              | <5               | 0.00    | No Limit            |  |



Page : 4 of 4

Work Order : ES1526833 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            | Method Blank (MB) | Laboratory Control Spike (LCS) Report |        |               |                    |          |            |
|-----------------------------------------------------|------------|-------------------|---------------------------------------|--------|---------------|--------------------|----------|------------|
|                                                     |            |                   |                                       | Report | Spike         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                    | CAS Number | LOR               | Unit                                  | Result | Concentration | LCS                | Low      | High       |
| EA010P: Conductivity by PC Titrator (QCLot: 163775) |            |                   |                                       |        |               |                    |          |            |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1                 | μS/cm                                 | <1     | 2000 μS/cm    | 104                | 95       | 113        |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 163720)  |            |                   |                                       |        |               |                    |          |            |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1               | mg/L                                  | <0.1   | 0.05 mg/L     | 92.8               | 72       | 126        |
| EP080: BTEXN (QCLot: 163719)                        |            |                   |                                       |        |               |                    |          |            |
| EP080: Benzene                                      | 71-43-2    | 1                 | μg/L                                  | <1     | 10 μg/L       | 90.0               | 70       | 124        |
| EP080: Ethylbenzene                                 | 100-41-4   | 2                 | μg/L                                  | <2     | 10 μg/L       | 91.1               | 70       | 120        |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2                 | μg/L                                  | <2     | 10 μg/L       | 91.0               | 69       | 121        |
|                                                     | 106-42-3   |                   |                                       |        |               |                    |          |            |
| EP080: Naphthalene                                  | 91-20-3    | 5                 | μg/L                                  | <5     | 10 μg/L       | 96.0               | 70       | 124        |
| EP080: ortho-Xylene                                 | 95-47-6    | 2                 | μg/L                                  | <2     | 10 μg/L       | 92.0               | 72       | 122        |
| EP080: Toluene                                      | 108-88-3   | 2                 | μg/L                                  | <2     | 10 μg/L       | 92.9               | 65       | 129        |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                            |                             | Matrix Spike (MS) Report |                  |                     |      |  |  |
|----------------------|------------------|----------------------------|-----------------------------|--------------------------|------------------|---------------------|------|--|--|
|                      |                  |                            |                             | Spike                    | SpikeRecovery(%) | Recovery Limits (%) |      |  |  |
| Laboratory sample ID | Client sample ID | Method: Compound           | Method: Compound CAS Number |                          |                  |                     | High |  |  |
| EP080: BTEXN (Q      | CLot: 163719)    |                            |                             |                          |                  |                     |      |  |  |
| ES1526833-001 AST2   | EP080: Benzene   | 71-43-2                    | 25 μg/L                     | 94.6                     | 70               | 130                 |      |  |  |
|                      |                  | EP080: Ethylbenzene        | 100-41-4                    | 25 μg/L                  | 91.0             | 70                  | 130  |  |  |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3                    | 25 μg/L                  | 92.0             | 70                  | 130  |  |  |
|                      |                  |                            | 106-42-3                    |                          |                  |                     |      |  |  |
|                      |                  | EP080: Naphthalene         | 91-20-3                     | 25 μg/L                  | 96.1             | 70                  | 130  |  |  |
|                      |                  | EP080: ortho-Xylene        | 95-47-6                     | 25 μg/L                  | 93.5             | 70                  | 130  |  |  |
|                      |                  | EP080: Toluene             | 108-88-3                    | 25 μg/L                  | 93.6             | 70                  | 130  |  |  |



# QA/QC Compliance Assessment for DQO Reporting

Work Order : **ES1526833** Page : 1 of 4

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 24-Jul-2015

 Site
 : --- Issue Date
 : 03-Aug-2015

Sampler : DAVID WATSON No. of samples received : 3

Order number : ---- No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

#### **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page 2 of 4

ES1526833 Amendment 1 Work Order

PARSONS BRINCKERHOFF AUST P/L Client

Project 2268523B



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      | Count F |         | Rate   | : (%)    | Quality Control Specification                    |
|----------------------------------|---------|---------|--------|----------|--------------------------------------------------|
| Method                           | QC      | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |         |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0       | 3       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |         |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0       | 3       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |         |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0       | 3       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

#### **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER |  | Evaluation | i: × = Holding time breach; | ✓ = Within holding time. |
|---------------|--|------------|-----------------------------|--------------------------|
|               |  |            |                             |                          |

| Matrix. WATER                            |       |             |                          |                    | Evaluation | . 🗸 – Holding time | breach, V - Willin | ir noluling time. |
|------------------------------------------|-------|-------------|--------------------------|--------------------|------------|--------------------|--------------------|-------------------|
| Method Method                            |       | Sample Date | Extraction / Preparation |                    |            | Analysis           |                    |                   |
| Container / Client Sample ID(s)          |       |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis   | Evaluation        |
| EA010P: Conductivity by PC Titrator      |       |             |                          |                    |            |                    |                    |                   |
| Clear Plastic Bottle - Natural (EA010-P) |       |             |                          |                    |            |                    |                    |                   |
| AST2,                                    | QA10  | 24-Jul-2015 |                          |                    |            | 24-Jul-2015        | 21-Aug-2015        | ✓                 |
| EP080: BTEXN                             |       |             |                          |                    |            |                    |                    |                   |
| Amber VOC Vial - Sulfuric Acid (EP080)   |       |             |                          |                    |            |                    |                    |                   |
| AST2,                                    | WK14, | 24-Jul-2015 | 24-Jul-2015              | 07-Aug-2015        | ✓          | 24-Jul-2015        | 07-Aug-2015        | ✓                 |
| QA10                                     |       |             |                          |                    |            |                    |                    |                   |

Page : 3 of 4

Work Order ES1526833 Amendment 1

PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    |         |            |      | Evaluatio       | n: 🗴 = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within speci |
|----------------------------------|---------|------------|------|-----------------|-------------------|-----------------|----------------------------------------------------------------------|
| Quality Control Sample Type      |         | Co         | ount | Rate (%)        |                   |                 | Quality Control Specification                                        |
| Analytical Methods               | Method  | QC Regular |      | Actual Expected |                   | Evaluation      |                                                                      |
| Laboratory Duplicates (DUP)      |         |            |      |                 |                   |                 |                                                                      |
| Conductivity by PC Titrator      | EA010-P | 1          | 2    | 50.00           | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| TRH Volatiles/BTEX               | EP080   | 1          | 3    | 33.33           | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| Un-ionized Hydrogen Sulfide      | EK084   | 0          | 3    | 0.00            | 10.00             | <b>sc</b>       | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| Laboratory Control Samples (LCS) |         |            |      |                 |                   |                 |                                                                      |
| Conductivity by PC Titrator      | EA010-P | 1          | 2    | 50.00           | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| TRH Volatiles/BTEX               | EP080   | 1          | 3    | 33.33           | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| Un-ionized Hydrogen Sulfide      | EK084   | 0          | 3    | 0.00            | 5.00              | <b>.</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| Method Blanks (MB)               |         |            |      |                 |                   |                 |                                                                      |
| Conductivity by PC Titrator      | EA010-P | 1          | 2    | 50.00           | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| TRH Volatiles/BTEX               | EP080   | 1          | 3    | 33.33           | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| Un-ionized Hydrogen Sulfide      | EK084   | 0          | 3    | 0.00            | 5.00              | 3c              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |
| Matrix Spikes (MS)               |         |            |      |                 |                   |                 |                                                                      |
| TRH Volatiles/BTEX               | EP080   | 1          | 3    | 33.33           | 5.00              | 1               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                     |

Page : 4 of 4

Work Order : ES1526833 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                    |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                    |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3) |



#### **QUALITY CONTROL REPORT**

**Work Order** : **ES1526838** Page : 1 of 4

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

 E-mail
 : SDaykin@pb.com.au
 E-mail
 : loren.schiavon@alsglobal.com

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : --- Date Samples Received : 24-Jul-2015

C-O-C number Date Analysis Commenced : 27-Jul-2015

Sampler DAVID WATSON Issue Date : 03-Aug-2015

Site : --- No. of samples received : 2
Quote number : --- No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

NATA Accredited

Laboratory 825

Accredited for compliance with

ISO/IEC 17025.

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit JoshiInorganic ChemistSydney InorganicsPabi SubbaSenior Organic ChemistSydney Organics

Page : 2 of 4

Work Order : ES1526838 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4

Work Order : ES1526838 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER    |                              |                                         | Laboratory Duplicate (DUP) Report |     |       |                 |                  |         |                     |  |
|----------------------|------------------------------|-----------------------------------------|-----------------------------------|-----|-------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID | Client sample ID             | Method: Compound                        | CAS Number                        | LOR | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EA010P: Conductivit  | y by PC Titrator (QC Lot: 16 | 34879)                                  |                                   |     |       |                 |                  |         |                     |  |
| ES1526838-001        | AST2                         | EA010-P: Electrical Conductivity @ 25°C |                                   | 1   | μS/cm | 8460            | 8500             | 0.519   | 0% - 20%            |  |
| EK084: Un-ionized H  | ydrogen Sulfide (QC Lot: 16  |                                         |                                   |     |       |                 |                  |         |                     |  |
| ES1526838-001        | AST2                         | EK084: Unionized Hydrogen Sulfide       |                                   | 0.1 | mg/L  | <0.1            | <0.1             | 0.00    | 0% - 20%            |  |
| EP080: BTEXN (QC     | Lot: 164715)                 |                                         |                                   |     |       |                 |                  |         |                     |  |
| ES1526838-002        | WK12                         | EP080: Benzene                          | 71-43-2                           | 1   | μg/L  | 1               | 1                | 0.00    | No Limit            |  |
|                      |                              | EP080: Ethylbenzene                     | 100-41-4                          | 2   | μg/L  | <2              | <2               | 0.00    | No Limit            |  |
|                      |                              | EP080: meta- & para-Xylene              | 108-38-3                          | 2   | μg/L  | <2              | <2               | 0.00    | No Limit            |  |
|                      |                              |                                         | 106-42-3                          |     |       |                 |                  |         |                     |  |
|                      |                              | EP080: ortho-Xylene                     | 95-47-6                           | 2   | μg/L  | <2              | <2               | 0.00    | No Limit            |  |
|                      |                              | EP080: Toluene                          | 108-88-3                          | 2   | μg/L  | <2              | <2               | 0.00    | No Limit            |  |
|                      |                              | EP080: Naphthalene                      | 91-20-3                           | 5   | μg/L  | <5              | <5               | 0.00    | No Limit            |  |



Page : 4 of 4

Work Order : ES1526838 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   | b-Matrix: WATER |     |       |        |               |                    | Laboratory Control Spike (LCS) Report |            |  |  |  |  |
|-----------------------------------------------------|-----------------|-----|-------|--------|---------------|--------------------|---------------------------------------|------------|--|--|--|--|
|                                                     |                 |     |       | Report | Spike         | Spike Recovery (%) | Recovery                              | Limits (%) |  |  |  |  |
| Method: Compound                                    | CAS Number      | LOR | Unit  | Result | Concentration | LCS                | Low                                   | High       |  |  |  |  |
| EA010P: Conductivity by PC Titrator (QCLot: 164879) |                 |     |       |        |               |                    |                                       |            |  |  |  |  |
| EA010-P: Electrical Conductivity @ 25°C             |                 | 1   | μS/cm | <1     | 2000 μS/cm    | 110                | 95                                    | 113        |  |  |  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 164784)  |                 |     |       |        |               |                    |                                       |            |  |  |  |  |
| EK084: Unionized Hydrogen Sulfide                   |                 | 0.1 | mg/L  | <0.1   | 0.05 mg/L     | 99.0               | 72                                    | 126        |  |  |  |  |
| EP080: BTEXN (QCLot: 164715)                        |                 |     |       |        |               |                    |                                       |            |  |  |  |  |
| EP080: Benzene                                      | 71-43-2         | 1   | μg/L  | <1     | 10 μg/L       | 94.6               | 70                                    | 124        |  |  |  |  |
| EP080: Ethylbenzene                                 | 100-41-4        | 2   | μg/L  | <2     | 10 μg/L       | 94.8               | 70                                    | 120        |  |  |  |  |
| EP080: meta- & para-Xylene                          | 108-38-3        | 2   | μg/L  | <2     | 10 μg/L       | 97.5               | 69                                    | 121        |  |  |  |  |
|                                                     | 106-42-3        |     |       |        |               |                    |                                       |            |  |  |  |  |
| EP080: Naphthalene                                  | 91-20-3         | 5   | μg/L  | <5     | 10 μg/L       | 91.6               | 70                                    | 124        |  |  |  |  |
| EP080: ortho-Xylene                                 | 95-47-6         | 2   | μg/L  | <2     | 10 μg/L       | 98.3               | 72                                    | 122        |  |  |  |  |
| EP080: Toluene                                      | 108-88-3        | 2   | μg/L  | <2     | 10 μg/L       | 97.6               | 65                                    | 129        |  |  |  |  |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                            |                             | Matrix Spike (MS) Report |                  |                         |      |  |  |
|----------------------|------------------|----------------------------|-----------------------------|--------------------------|------------------|-------------------------|------|--|--|
|                      |                  |                            |                             | Spike                    | SpikeRecovery(%) | (%) Recovery Limits (%) |      |  |  |
| Laboratory sample ID | Client sample ID | Method: Compound           | Method: Compound CAS Number |                          |                  |                         | High |  |  |
| EP080: BTEXN (Q      | CLot: 164715)    |                            |                             |                          |                  |                         |      |  |  |
| S1526838-002 WK12    | EP080: Benzene   | 71-43-2                    | 25 μg/L                     | 89.9                     | 70               | 130                     |      |  |  |
|                      |                  | EP080: Ethylbenzene        | 100-41-4                    | 25 μg/L                  | 95.6             | 70                      | 130  |  |  |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3                    | 25 μg/L                  | 98.0             | 70                      | 130  |  |  |
|                      |                  |                            | 106-42-3                    |                          |                  |                         |      |  |  |
|                      |                  | EP080: Naphthalene         | 91-20-3                     | 25 μg/L                  | 89.7             | 70                      | 130  |  |  |
|                      |                  | EP080: ortho-Xylene        | 95-47-6                     | 25 μg/L                  | 99.5             | 70                      | 130  |  |  |
|                      |                  | EP080: Toluene             | 108-88-3                    | 25 μg/L                  | 92.1             | 70                      | 130  |  |  |



# QA/QC Compliance Assessment for DQO Reporting

Work Order : **ES1526838** Page : 1 of 4

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 24-Jul-2015

 Site
 : --- Issue Date
 : 03-Aug-2015

Sampler : DAVID WATSON No. of samples received : 2
Order number : ---- No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

#### **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4

Work Order : ES1526838 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      | C  | Count Rate (%) Quality C |        | € (%)    | Quality Control Specification                    |
|----------------------------------|----|--------------------------|--------|----------|--------------------------------------------------|
| Method                           | QC | Regular                  | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |                          |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 2                        | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |    |                          |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 2                        | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |                          |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 2                        | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

#### **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER | Evaluation: <b>×</b> = Holding time breach ; ✓ = Within holding time. |
|---------------|-----------------------------------------------------------------------|

| Matrix: WATER                            |             |                          |                    | Evaluation | : × = Holding time | breach; ▼ = withi | n nolaing time. |
|------------------------------------------|-------------|--------------------------|--------------------|------------|--------------------|-------------------|-----------------|
| Method                                   | Sample Date | Extraction / Preparation |                    |            | Analysis           |                   |                 |
| Container / Client Sample ID(s)          |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis  | Evaluation      |
| EA010P: Conductivity by PC Titrator      |             |                          |                    |            |                    |                   |                 |
| Clear Plastic Bottle - Natural (EA010-P) |             |                          |                    |            |                    |                   |                 |
| AST2                                     | 25-Jul-2015 |                          |                    |            | 27-Jul-2015        | 22-Aug-2015       | ✓               |
| EP080: BTEXN                             |             |                          |                    |            |                    |                   |                 |
| Amber VOC Vial - Sulfuric Acid (EP080)   |             |                          |                    |            |                    |                   |                 |
| AST2, WK12                               | 25-Jul-2015 | 27-Jul-2015              | 08-Aug-2015        | ✓          | 27-Jul-2015        | 08-Aug-2015       | ✓               |

Page : 3 of 4

Work Order ES1526838 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: <b>WATER</b> Evaluation: ★ = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification. |         |    |         |          |          |            |                                                  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------|----|---------|----------|----------|------------|--------------------------------------------------|--|--|
| Quality Control Sample Type                                                                                                                  |         | Co | ount    | Rate (%) |          |            | Quality Control Specification                    |  |  |
| Analytical Methods                                                                                                                           | Method  | QC | Regular | Actual   | Expected | Evaluation |                                                  |  |  |
| Laboratory Duplicates (DUP)                                                                                                                  |         |    |         |          |          |            |                                                  |  |  |
| Conductivity by PC Titrator                                                                                                                  | EA010-P | 1  | 1       | 100.00   | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| TRH Volatiles/BTEX                                                                                                                           | EP080   | 1  | 2       | 50.00    | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Un-ionized Hydrogen Sulfide                                                                                                                  | EK084   | 0  | 2       | 0.00     | 10.00    | se.        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Laboratory Control Samples (LCS)                                                                                                             |         |    |         |          |          |            |                                                  |  |  |
| Conductivity by PC Titrator                                                                                                                  | EA010-P | 1  | 1       | 100.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| TRH Volatiles/BTEX                                                                                                                           | EP080   | 1  | 2       | 50.00    | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Un-ionized Hydrogen Sulfide                                                                                                                  | EK084   | 0  | 2       | 0.00     | 5.00     | <b>x</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Method Blanks (MB)                                                                                                                           |         |    |         |          |          |            |                                                  |  |  |
| Conductivity by PC Titrator                                                                                                                  | EA010-P | 1  | 1       | 100.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| TRH Volatiles/BTEX                                                                                                                           | EP080   | 1  | 2       | 50.00    | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Un-ionized Hydrogen Sulfide                                                                                                                  | EK084   | 0  | 2       | 0.00     | 5.00     | se.        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Matrix Spikes (MS)                                                                                                                           |         |    |         |          |          |            |                                                  |  |  |
| TRH Volatiles/BTEX                                                                                                                           | EP080   | 1  | 2       | 50.00    | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |

Page : 4 of 4

Work Order : ES1526838 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                             |
|-----------------------------|---------|--------|-----------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method       |
|                             |         |        | is compliant with NEPM (2013) Schedule B(3)                                                                     |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions |
|                             |         |        | by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)           |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                 |
|                             |         |        | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is    |
|                             |         |        | equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is     |
|                             |         |        | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                 |



#### **QUALITY CONTROL REPORT**

**Work Order** : **ES1527015** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ----Date Samples Received: 28-Jul-2015C-O-C number: ----: 28-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 28-Jul-2015

Site : --- No. of samples received : 6
Quote number : --- No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

Accredited for

compliance with

ISO/IEC 17025.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

SYDNEY NSW. AUSTRALIA 2001

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



NATA Accredited
Laboratory 825

Signatories
This documen

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Sanjeshni Jyoti Senior Chemist Volatiles Sydney Organics

Page : 2 of 4
Work Order : ES1527015

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1527015

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER                                    |                               |                                         |            |     |       | Laboratory D    | Ouplicate (DUP) Report |         |                     |
|------------------------------------------------------|-------------------------------|-----------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID                                 | Client sample ID              | Method: Compound                        | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA010P: Conductivity by PC Titrator (QC Lot: 166339) |                               |                                         |            |     |       |                 |                        |         |                     |
| ES1527015-001                                        | AST2                          | EA010-P: Electrical Conductivity @ 25°C |            | 1   | μS/cm | 7220            | 7650                   | 5.73    | 0% - 20%            |
| EK084: Un-ionized Hydrogen Sulfide (QC Lot: 166227)  |                               |                                         |            |     |       |                 |                        |         |                     |
| ES1527015-001                                        | AST2                          | EK084: Unionized Hydrogen Sulfide       |            | 0.1 | mg/L  | <0.1            | <0.1                   | 0.00    | 0% - 20%            |
| EP080: BTEXN (QC I                                   | EP080: BTEXN (QC Lot: 166261) |                                         |            |     |       |                 |                        |         |                     |
| ES1527015-001                                        | AST2                          | EP080: Benzene                          | 71-43-2    | 1   | μg/L  | 5               | 5                      | 0.00    | No Limit            |
|                                                      |                               | EP080: Ethylbenzene                     | 100-41-4   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                                                      |                               | EP080: meta- & para-Xylene              | 108-38-3   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                                                      |                               |                                         | 106-42-3   |     |       |                 |                        |         |                     |
|                                                      |                               | EP080: ortho-Xylene                     | 95-47-6    | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                                                      |                               | EP080: Toluene                          | 108-88-3   | 2   | μg/L  | 6               | 6                      | 0.00    | No Limit            |
|                                                      |                               | EP080: Naphthalene                      | 91-20-3    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |

Page : 4 of 4 Work Order : ES1527015

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   | Method Blank (MB) | Laboratory Control Spike (LCS) Report |       |        |               |                    |          |            |
|-----------------------------------------------------|-------------------|---------------------------------------|-------|--------|---------------|--------------------|----------|------------|
|                                                     |                   |                                       |       | Report | Spike         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                    | CAS Number        | LOR                                   | Unit  | Result | Concentration | LCS                | Low      | High       |
| EA010P: Conductivity by PC Titrator (QCLot: 166339) |                   |                                       |       |        |               |                    |          |            |
| EA010-P: Electrical Conductivity @ 25°C             |                   | 1                                     | μS/cm | <1     | 2000 μS/cm    | 101                | 95       | 113        |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 166227)  |                   |                                       |       |        |               |                    |          |            |
| EK084: Unionized Hydrogen Sulfide                   |                   | 0.1                                   | mg/L  | <0.1   | 0.05 mg/L     | 89.8               | 72       | 126        |
| EP080: BTEXN (QCLot: 166261)                        |                   |                                       |       |        |               |                    |          |            |
| EP080: Benzene                                      | 71-43-2           | 1                                     | μg/L  | <1     | 10 μg/L       | 79.7               | 70       | 124        |
| EP080: Ethylbenzene                                 | 100-41-4          | 2                                     | μg/L  | <2     | 10 μg/L       | 88.8               | 70       | 120        |
| EP080: meta- & para-Xylene                          | 108-38-3          | 2                                     | μg/L  | <2     | 10 μg/L       | 91.8               | 69       | 121        |
|                                                     | 106-42-3          |                                       |       |        |               |                    |          |            |
| EP080: Naphthalene                                  | 91-20-3           | 5                                     | μg/L  | <5     | 10 μg/L       | 83.7               | 70       | 124        |
| EP080: ortho-Xylene                                 | 95-47-6           | 2                                     | μg/L  | <2     | 10 μg/L       | 88.1               | 72       | 122        |
| EP080: Toluene                                      | 108-88-3          | 2                                     | μg/L  | <2     | 10 μg/L       | 89.6               | 65       | 129        |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                    |                            |            | Matrix Spike (MS) Report |                  |            |           |  |
|----------------------|--------------------|----------------------------|------------|--------------------------|------------------|------------|-----------|--|
|                      |                    |                            |            | Spike                    | SpikeRecovery(%) | Recovery L | imits (%) |  |
| Laboratory sample ID | Client sample ID   | Method: Compound           | CAS Number | Concentration            | MS               | Low        | High      |  |
| EP080: BTEXN (Q      | CLot: 166261)      |                            |            |                          |                  |            |           |  |
| ES1527015-001        | ES1527015-001 AST2 | EP080: Benzene             | 71-43-2    | 25 μg/L                  | 77.6             | 70         | 130       |  |
|                      |                    | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L                  | 86.8             | 70         | 130       |  |
|                      |                    | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L                  | 86.8             | 70         | 130       |  |
|                      |                    |                            | 106-42-3   |                          |                  |            |           |  |
|                      |                    | EP080: Naphthalene         | 91-20-3    | 25 μg/L                  | 74.0             | 70         | 130       |  |
|                      |                    | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L                  | 86.7             | 70         | 130       |  |
|                      |                    | EP080: Toluene             | 108-88-3   | 25 μg/L                  | 86.4             | 70         | 130       |  |



### **QA/QC Compliance Assessment for DQO Reporting**

Work Order : **ES1527015** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 28-Jul-2015

 Site
 : --- Issue Date
 : 28-Jul-2015

Sampler : CAROLINA SARDELLA No. of samples received : 6
Order number : ---- No. of samples analysed : 6

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

#### **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 ES1527015 Work Order

PARSONS BRINCKERHOFF AUST P/L Client

Project 2268523B



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      | C  | ount    | Rate   | e (%)    | Quality Control Specification                    |
|----------------------------------|----|---------|--------|----------|--------------------------------------------------|
| Method                           | QC | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 6       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 6       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 6       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

#### **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER | Evaluation: × = Hold | ding time breach; ✓ = Within holding time. |
|---------------|----------------------|--------------------------------------------|
|               |                      |                                            |

| Matrix: WATER                                           | Evaluation: <b>x</b> = Holding time breach ; <b>√</b> = Within holding |             |                          |                    |            |               |                  |            |
|---------------------------------------------------------|------------------------------------------------------------------------|-------------|--------------------------|--------------------|------------|---------------|------------------|------------|
| Method                                                  |                                                                        |             | Extraction / Preparation |                    |            | Analysis      |                  |            |
| Container / Client Sample ID(s)                         |                                                                        |             | Date extracted           | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation |
| EA010P: Conductivity by PC Titrator                     |                                                                        |             |                          |                    |            |               |                  |            |
| Clear Plastic Bottle - Natural (EA010-P) AST2           |                                                                        | 27-Jul-2015 |                          |                    |            | 28-Jul-2015   | 24-Aug-2015      | <b>✓</b>   |
| Clear Plastic Bottle - Natural (EA010-P) AST2           |                                                                        | 28-Jul-2015 |                          |                    |            | 28-Jul-2015   | 25-Aug-2015      | <b>✓</b>   |
| EP080: BTEXN                                            |                                                                        |             |                          |                    |            |               |                  |            |
| Amber VOC Vial - Sulfuric Acid (EP080)<br>AST2,<br>WK13 | WK11,                                                                  | 27-Jul-2015 | 28-Jul-2015              | 10-Aug-2015        | ✓          | 28-Jul-2015   | 10-Aug-2015      | ✓          |
| Amber VOC Vial - Sulfuric Acid (EP080)<br>WK14,<br>WK13 | AST2,                                                                  | 28-Jul-2015 | 28-Jul-2015              | 11-Aug-2015        | 1          | 28-Jul-2015   | 11-Aug-2015      | ✓          |

Page : 3 of 4 Work Order ES1527015

PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    |         | Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification |         |        |          |            |                                                  |  |  |  |
|----------------------------------|---------|------------------------------------------------------------------------------------------------------------------------|---------|--------|----------|------------|--------------------------------------------------|--|--|--|
| Quality Control Sample Type      |         | Count                                                                                                                  |         |        | Rate (%) |            | Quality Control Specification                    |  |  |  |
| Analytical Methods               | Method  | OC                                                                                                                     | Regular | Actual | Expected | Evaluation |                                                  |  |  |  |
| Laboratory Duplicates (DUP)      |         |                                                                                                                        |         |        |          |            |                                                  |  |  |  |
| Conductivity by PC Titrator      | EA010-P | 1                                                                                                                      | 2       | 50.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| TRH Volatiles/BTEX               | EP080   | 1                                                                                                                      | 6       | 16.67  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Un-ionized Hydrogen Sulfide      | EK084   | 0                                                                                                                      | 6       | 0.00   | 10.00    | Je.        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Laboratory Control Samples (LCS) |         |                                                                                                                        |         |        |          |            |                                                  |  |  |  |
| Conductivity by PC Titrator      | EA010-P | 1                                                                                                                      | 2       | 50.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| TRH Volatiles/BTEX               | EP080   | 1                                                                                                                      | 6       | 16.67  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Un-ionized Hydrogen Sulfide      | EK084   | 0                                                                                                                      | 6       | 0.00   | 5.00     | .sc        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Method Blanks (MB)               |         |                                                                                                                        |         |        |          |            |                                                  |  |  |  |
| Conductivity by PC Titrator      | EA010-P | 1                                                                                                                      | 2       | 50.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| TRH Volatiles/BTEX               | EP080   | 1                                                                                                                      | 6       | 16.67  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Un-ionized Hydrogen Sulfide      | EK084   | 0                                                                                                                      | 6       | 0.00   | 5.00     | .sc        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Matrix Spikes (MS)               |         |                                                                                                                        |         |        |          |            |                                                  |  |  |  |
| TRH Volatiles/BTEX               | EP080   | 1                                                                                                                      | 6       | 16.67  | 5.00     | 1          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |

Page : 4 of 4 Work Order : ES1527015

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                             |
|-----------------------------|---------|--------|-----------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method       |
|                             |         |        | is compliant with NEPM (2013) Schedule B(3)                                                                     |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions |
|                             |         |        | by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)           |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                 |
|                             |         |        | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is    |
|                             |         |        | equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is     |
|                             |         |        | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                 |



#### **QUALITY CONTROL REPORT**

**Work Order** : **ES1527133** Page : 1 of 18

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ---Date Samples Received: 29-Jul-2015C-O-C number: 29-Jul-2015Date Analysis Commenced: 29-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 02-Sep-2015

Site : --- No. of samples received : 3

Quote number : --- No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position               | Accreditation Category |  |
|------------------|------------------------|------------------------|--|
| Ankit Joshi      | Inorganic Chemist      | Sydney Inorganics      |  |
| Celine Conceicao | Senior Spectroscopist  | Sydney Inorganics      |  |
| Lana Nguyen      | Senior LCMS Chemist    | Sydney Organics        |  |
| Pabi Subba       | Senior Organic Chemist | Sydney Organics        |  |
| Shobhna Chandra  | Metals Coordinator     | Sydney Inorganics      |  |
|                  |                        |                        |  |

Page : 2 of 18

Work Order : ES1527133 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 18

Work Order · ES1527133 Amendment 1

· PARSONS BRINCKERHOFF AUST P/L Client

Project

# · 2268523B Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER    |                           |                                          |             |      |         | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|---------------------------|------------------------------------------|-------------|------|---------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID          | Method: Compound                         | CAS Number  | LOR  | Unit    | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA005P: pH by PC     | Titrator (QC Lot: 167666) |                                          |             |      |         |                 |                        |         |                     |
| ES1527095-008        | Anonymous                 | EA005-P: pH Value                        |             | 0.01 | pH Unit | 6.41            | 6.43                   | 0.312   | 0% - 20%            |
| ES1527133-001        | AST2                      | EA005-P: pH Value                        |             | 0.01 | pH Unit | 9.18            | 9.18                   | 0.00    | 0% - 20%            |
| EA010P: Conductiv    | ity by PC Titrator (QC Lo | ot: 167667)                              |             |      |         |                 |                        |         |                     |
| ES1527133-001        | AST2                      | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 8220            | 8190                   | 0.374   | 0% - 20%            |
| EA015: Total Dissol  | ved Solids (QC Lot: 168   | 8606)                                    |             |      |         |                 |                        |         |                     |
| ES1527133-001        | AST2                      | EA015H: Total Dissolved Solids @180°C    |             | 10   | mg/L    | 5330            | 5220                   | 2.08    | 0% - 20%            |
| ES1527134-008        | Anonymous                 | EA015H: Total Dissolved Solids @180°C    |             | 10   | mg/L    | 261             | 264                    | 0.953   | 0% - 20%            |
| EA025: Suspended     | Solids (QC Lot: 168607)   |                                          |             |      |         |                 |                        |         |                     |
| ES1527133-001        | AST2                      | EA025H: Suspended Solids (SS)            |             | 5    | mg/L    | 42              | 38                     | 9.40    | No Limit            |
| ES1527134-008        | Anonymous                 | EA025H: Suspended Solids (SS)            |             | 5    | mg/L    | <5              | <5                     | 0.00    | No Limit            |
| ED009: Anions (Q     | C Lot: 169754)            |                                          |             |      |         |                 |                        |         |                     |
| ES1527059-001        | Anonymous                 | ED009-X: Chloride                        | 16887-00-6  | 0.1  | mg/L    | 6.33            | 6.29                   | 0.634   | 0% - 20%            |
| ES1527116-007        | Anonymous                 | ED009-X: Chloride                        | 16887-00-6  | 0.1  | mg/L    | 26.6            | 26.6                   | 0.282   | 0% - 20%            |
| ED037P: Alkalinity I | by PC Titrator (QC Lot: 1 | 167665)                                  |             |      |         |                 |                        |         |                     |
| ES1527163-001        | Anonymous                 | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L    | 45              | 44                     | 2.94    | 0% - 20%            |
|                      |                           | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                           | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                           | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L    | 45              | 44                     | 2.94    | 0% - 20%            |
| ES1527095-008        | Anonymous                 | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L    | 33              | 32                     | 0.00    | 0% - 20%            |
|                      |                           | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                           | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                           | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L    | 33              | 32                     | 0.00    | 0% - 20%            |
| ED041G: Sulfate (To  | urbidimetric) as SO4 2- b | y DA (QC Lot: 167773)                    |             |      |         |                 |                        |         |                     |
| ES1527095-001        | Anonymous                 | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L    | 352             | 355                    | 0.725   | 0% - 20%            |
| ES1527095-008        | Anonymous                 | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
| ED045G: Chloride b   | y Discrete Analyser (QC   | C Lot: 167774)                           |             |      |         |                 |                        |         |                     |
| ES1527095-001        | Anonymous                 | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L    | 191             | 194                    | 1.20    | 0% - 20%            |
| ES1527095-008        | Anonymous                 | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L    | 3               | 3                      | 0.00    | No Limit            |
| ED093F: Dissolved    | Major Cations (QC Lot:    | 168892)                                  |             |      |         |                 |                        |         |                     |
| ES1526961-001        | Anonymous                 | ED093F: Calcium                          | 7440-70-2   | 1    | mg/L    | 6               | 6                      | 0.00    | No Limit            |
|                      |                           | ED093F: Magnesium                        | 7439-95-4   | 1    | mg/L    | 4               | 4                      | 0.00    | No Limit            |
|                      |                           | ED093F: Potassium                        | 7440-09-7   | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                           | ED093F: Sodium                           | 7440-23-5   | 1    | mg/L    | 3               | 3                      | 0.00    | No Limit            |
| ES1527095-003        | Anonymous                 | ED093F: Calcium                          | 7440-70-2   | 1    | mg/L    | 33              | 33                     | 0.00    | 0% - 20%            |



Page : 4 of 18

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                      |                        |        |        | Laboratory      | Duplicate (DUP) Report | t       |                     |
|----------------------|-----------------------|----------------------|------------------------|--------|--------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound     | CAS Number             | LOR    | Unit   | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| ED093F: Dissolved    | Major Cations (QC Lot |                      |                        |        |        |                 |                        |         |                     |
| ES1527095-003        | Anonymous             | ED093F: Magnesium    | 7439-95-4              | 1      | mg/L   | 28              | 28                     | 0.00    | 0% - 20%            |
|                      | -                     | ED093F: Potassium    | 7440-09-7              | 1      | mg/L   | 3               | 3                      | 0.00    | No Limit            |
|                      |                       | ED093F: Sodium       | 7440-23-5              | 1      | mg/L   | 24              | 24                     | 0.00    | 0% - 20%            |
| ED093F: Dissolved I  | Major Cations (QC Lot | :: 168896)           |                        |        |        |                 |                        |         |                     |
| ES1527133-003        | WK13                  | ED093F: Calcium      | 7440-70-2              | 1      | mg/L   | 11              | 10                     | 16.1    | 0% - 50%            |
|                      |                       | ED093F: Magnesium    | 7439-95-4              | 1      | mg/L   | 2               | 2                      | 0.00    | No Limit            |
|                      |                       | ED093F: Potassium    | 7440-09-7              | 1      | mg/L   | 11              | 11                     | 0.00    | 0% - 50%            |
|                      |                       | ED093F: Sodium       | 7440-23-5              | 1      | mg/L   | 1880            | 1850                   | 1.87    | 0% - 20%            |
| ES1527158-005        | Anonymous             | ED093F: Calcium      | 7440-70-2              | 1      | mg/L   | 8               | 7                      | 0.00    | No Limit            |
| 20.0200 000          | 7 a.io.i.y.iiioao     | ED093F: Magnesium    | 7439-95-4              | 1      | mg/L   | 4               | 4                      | 0.00    | No Limit            |
|                      |                       | ED093F: Potassium    | 7440-09-7              | 1      | mg/L   | 4               | 3                      | 0.00    | No Limit            |
|                      |                       | ED093F: Polassium    | 7440-23-5              | 1      | mg/L   | 10              | 8                      | 18.0    | No Limit            |
| EC020E: Dissolved    | Metals by ICP-MS (QC  |                      | 1440-25-5              | '      | IIIg/L | 10              | 0                      | 10.0    | 140 Littit          |
| ES1526961-001        |                       |                      | 7440 42 0              | 0.0004 |        | 40,0004         | <b>*0.0004</b>         | 0.00    | NIn I innit         |
| ES1520901-001        | Anonymous             | EG020A-F: Cadmium    | 7440-43-9<br>7440-36-0 | 0.0001 | mg/L   | <0.0001         | <0.0001                | 0.00    | No Limit            |
|                      |                       | EG020A-F: Antimony   |                        | 0.001  | mg/L   | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                       | EG020A-F: Arsenic    | 7440-38-2              | 0.001  | mg/L   | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                       | EG020A-F: Barium     | 7440-39-3              | 0.001  | mg/L   | 0.019           | 0.018                  | 5.55    | 0% - 50%            |
|                      |                       | EG020A-F: Beryllium  | 7440-41-7              | 0.001  | mg/L   | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                       | EG020A-F: Chromium   | 7440-47-3              | 0.001  | mg/L   | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                       | EG020A-F: Cobalt     | 7440-48-4              | 0.001  | mg/L   | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                       | EG020A-F: Copper     | 7440-50-8              | 0.001  | mg/L   | 0.002           | <0.001                 | 0.00    | No Limit            |
|                      |                       | EG020A-F: Lead       | 7439-92-1              | 0.001  | mg/L   | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                       | EG020A-F: Manganese  | 7439-96-5              | 0.001  | mg/L   | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                       | EG020A-F: Molybdenum | 7439-98-7              | 0.001  | mg/L   | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                       | EG020A-F: Nickel     | 7440-02-0              | 0.001  | mg/L   | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                       | EG020A-F: Tin        | 7440-31-5              | 0.001  | mg/L   | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                       | EG020A-F: Zinc       | 7440-66-6              | 0.005  | mg/L   | 0.008           | 0.007                  | 14.6    | No Limit            |
|                      |                       | EG020A-F: Aluminium  | 7429-90-5              | 0.01   | mg/L   | 0.02            | 0.02                   | 0.00    | No Limit            |
|                      |                       | EG020A-F: Selenium   | 7782-49-2              | 0.01   | mg/L   | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                       | EG020A-F: Vanadium   | 7440-62-2              | 0.01   | mg/L   | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                       | EG020A-F: Boron      | 7440-42-8              | 0.05   | mg/L   | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                       | EG020A-F: Iron       | 7439-89-6              | 0.05   | mg/L   | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                       | EG020A-F: Bromine    | 7726-95-6              | 0.1    | mg/L   | <0.1            | <0.1                   | 0.00    | No Limit            |
| ES1527133-001        | AST2                  | EG020A-F: Cadmium    | 7440-43-9              | 0.0001 | mg/L   | <0.0001         | <0.0001                | 0.00    | No Limit            |
|                      |                       | EG020A-F: Antimony   | 7440-36-0              | 0.001  | mg/L   | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                       | EG020A-F: Arsenic    | 7440-38-2              | 0.001  | mg/L   | 0.006           | 0.004                  | 45.5    | No Limit            |
|                      |                       | EG020A-F: Barium     | 7440-39-3              | 0.001  | mg/L   | 5.91            | 6.04                   | 2.22    | 0% - 20%            |
|                      |                       | EG020A-F: Beryllium  | 7440-41-7              | 0.001  | mg/L   | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                       | EG020A-F: Chromium   | 7440-47-3              | 0.001  | mg/L   | 0.003           | 0.001                  | 64.4    | No Limit            |
|                      |                       | EG020A-F: Cobalt     | 7440-48-4              | 0.001  | mg/L   | <0.001          | <0.001                 | 0.00    | No Limit            |

Page : 5 of 18

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER              |                        |                                      |            |        |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|--------------------------------|------------------------|--------------------------------------|------------|--------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID           | Client sample ID       | Method: Compound                     | CAS Number | LOR    | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EG020F: Dissolved              | Metals by ICP-MS (QC   | Lot: 168893) - continued             |            |        |      |                 |                        |         |                     |
| ES1527133-001                  | AST2                   | EG020A-F: Copper                     | 7440-50-8  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                                |                        | EG020A-F: Lead                       | 7439-92-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                                |                        | EG020A-F: Manganese                  | 7439-96-5  | 0.001  | mg/L | 0.009           | 0.007                  | 15.2    | No Limit            |
|                                |                        | EG020A-F: Molybdenum                 | 7439-98-7  | 0.001  | mg/L | 0.009           | 0.008                  | 12.4    | No Limit            |
|                                |                        | EG020A-F: Nickel                     | 7440-02-0  | 0.001  | mg/L | 0.002           | <0.001                 | 0.00    | No Limit            |
|                                |                        | EG020A-F: Tin                        | 7440-31-5  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                                |                        | EG020A-F: Zinc                       | 7440-66-6  | 0.005  | mg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                                |                        | EG020A-F: Aluminium                  | 7429-90-5  | 0.01   | mg/L | <0.01           | 0.01                   | 0.00    | No Limit            |
|                                |                        | EG020A-F: Selenium                   | 7782-49-2  | 0.01   | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                                |                        | EG020A-F: Vanadium                   | 7440-62-2  | 0.01   | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                                |                        | EG020A-F: Boron                      | 7440-42-8  | 0.05   | mg/L | 6.93            | 6.87                   | 0.878   | 0% - 20%            |
|                                |                        | EG020A-F: Iron                       | 7439-89-6  | 0.05   | mg/L | 0.30            | 0.19                   | 42.7    | No Limit            |
|                                |                        | EG020A-F: Bromine                    | 7726-95-6  | 0.1    | mg/L | 1.4             | 1.3                    | 7.90    | 0% - 50%            |
| EG020F: Dissolved              | Metals by ICP-MS (QC   | Lot: 168895)                         |            |        |      |                 |                        |         |                     |
| ES1527133-001                  | AST2                   | EG020B-F: Strontium                  | 7440-24-6  | 0.001  | mg/L | 3.74            | 3.77                   | 0.660   | 0% - 20%            |
|                                |                        | EG020B-F: Uranium                    | 7440-61-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
| FG035F: Dissolved              | Mercury by FIMS (QC    |                                      |            |        |      |                 |                        |         |                     |
| ES1527095-003                  | Anonymous              | EG035F: Mercury                      | 7439-97-6  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.00    | No Limit            |
| ES1527158-005                  | Anonymous              | EG035F: Mercury                      | 7439-97-6  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.00    | No Limit            |
|                                | •                      |                                      | 7400 07 0  | 0.0001 | mg/L | 10.0001         | 40.0001                | 0.00    | 140 Lillit          |
|                                | Discrete Analyser (QC  |                                      |            | 0.05   |      | 24.0            | 24.7                   | 0.400   | 00/ 000/            |
| ES1527133-001                  | AST2                   | EG052G: Reactive Silica              |            | 0.05   | mg/L | 24.6            | 24.7                   | 0.480   | 0% - 20%            |
| EK010/011: Chlorin             |                        |                                      |            |        |      |                 |                        |         |                     |
| ES1527133-001                  | AST2                   | EK010: Chlorine - Free               |            | 0.2    | mg/L | <0.2            | <0.2                   | 0.00    | No Limit            |
|                                |                        | EK010: Chlorine - Total Residual     |            | 0.2    | mg/L | <0.2            | <0.2                   | 0.00    | No Limit            |
| EK040P: Fluoride by            | y PC Titrator (QC Lot: | 167662)                              |            |        |      |                 |                        |         |                     |
| ES1527098-003                  | Anonymous              | EK040P: Fluoride                     | 16984-48-8 | 0.1    | mg/L | 1.2             | 1.1                    | 0.00    | 0% - 50%            |
| ES1527047-002                  | Anonymous              | EK040P: Fluoride                     | 16984-48-8 | 0.1    | mg/L | 2.8             | 2.9                    | 0.00    | 0% - 20%            |
| EK055G: Ammonia                | as N by Discrete Analy | rser (QC Lot: 168488)                |            |        |      |                 |                        |         |                     |
| ME1510208-003                  | Anonymous              | EK055G: Ammonia as N                 | 7664-41-7  | 0.01   | mg/L | 8.58            | 8.05                   | 6.35    | 0% - 20%            |
| ES1527122-010                  | Anonymous              | EK055G: Ammonia as N                 | 7664-41-7  | 0.01   | mg/L | 0.05            | 0.05                   | 0.00    | No Limit            |
| EK057G: Nitrite as             | N by Discrete Analysei | r (QC Lot: 167775)                   |            |        |      |                 |                        |         |                     |
| ES1527133-001                  | AST2                   | EK057G: Nitrite as N                 | 14797-65-0 | 0.01   | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| ES1527095-008                  | Anonymous              | EK057G: Nitrite as N                 | 14797-65-0 | 0.01   | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                                | ,                      | y Discrete Analyser (QC Lot: 168487) |            | 0.0.   |      | 0.0.            | 3.3.                   | 0.00    |                     |
| ES1527122-007                  | ```                    |                                      |            | 0.01   | ma/l | 0.04            | 0.04                   | 0.00    | No Limit            |
| ES1527122-007<br>ES1527122-010 | Anonymous              | EK059G: Nitrite + Nitrate as N       |            | 0.01   | mg/L | 0.04            | 0.04                   | 0.00    | No Limit            |
|                                | Anonymous              | EK059G: Nitrite + Nitrate as N       |            | 0.01   | mg/L | 0.05            | 0.05                   | 0.00    | INO LIITIIL         |
|                                |                        | ete Analyser (QC Lot: 168480)        |            |        |      |                 |                        |         |                     |
| ES1527133-002                  | WK12                   | EK061G: Total Kjeldahl Nitrogen as N |            | 0.1    | mg/L | 3.6             | 3.6                    | 0.00    | 0% - 20%            |

Page : 6 of 18

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                            |                                       |            |      |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|----------------------------|---------------------------------------|------------|------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID           | Method: Compound                      | CAS Number | LOR  | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EK061G: Total Kjeld  | ahl Nitrogen By Discrete A | Analyser (QC Lot: 168480) - continued |            |      |      |                 |                        |         |                     |
| ES1527122-008        | Anonymous                  | EK061G: Total Kjeldahl Nitrogen as N  |            | 0.1  | mg/L | 0.4             | 0.4                    | 0.00    | No Limit            |
| EK067G: Total Phos   | phorus as P by Discrete A  | nalyser (QC Lot: 168479)              |            |      |      |                 |                        |         |                     |
| ES1527133-002        | WK12                       | EK067G: Total Phosphorus as P         |            | 0.01 | mg/L | 1.55            | 1.57                   | 0.956   | 0% - 20%            |
| ES1527122-008        | Anonymous                  | EK067G: Total Phosphorus as P         |            | 0.01 | mg/L | <0.01           | 0.01                   | 0.00    | No Limit            |
| EK071G: Reactive P   | hosphorus as P by discret  | te analyser (QC Lot: 167771)          |            |      |      |                 |                        |         |                     |
| ES1526956-001        | Anonymous                  | EK071G: Reactive Phosphorus as P      | 14265-44-2 | 0.01 | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| ES1526956-010        | Anonymous                  | EK071G: Reactive Phosphorus as P      | 14265-44-2 | 0.01 | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| EP005: Total Organi  | c Carbon (TOC) (QC Lot:    | 168780)                               |            |      |      |                 |                        |         |                     |
| ES1527047-002        | Anonymous                  | EP005: Total Organic Carbon           |            | 1    | mg/L | 8               | 9                      | 14.1    | No Limit            |
| ES1527133-003        | WK13                       | EP005: Total Organic Carbon           |            | 1    | mg/L | 81              | 82                     | 1.27    | 0% - 20%            |
| EP033: C1 - C4 Hydr  | ocarbon Gases (QC Lot:     |                                       |            |      |      |                 |                        |         |                     |
| EB1524134-002        | Anonymous                  | EP033: Butane                         | 106-97-8   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                            | EP033: Butene                         | 25167-67-3 | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                            | EP033: Ethane                         | 74-84-0    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                            | EP033: Ethene                         | 74-85-1    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                            | EP033: Methane                        | 74-82-8    | 10   | μg/L | 5440            | 5010                   | 8.06    | 0% - 20%            |
|                      |                            | EP033: Propane                        | 74-98-6    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                            | EP033: Propene                        | 115-07-1   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
| ES1527110-009        | Anonymous                  | EP033: Butane                         | 106-97-8   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                            | EP033: Butene                         | 25167-67-3 | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                            | EP033: Ethane                         | 74-84-0    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                            | EP033: Ethene                         | 74-85-1    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                            | EP033: Methane                        | 74-82-8    | 10   | μg/L | 6010            | 5650                   | 6.23    | 0% - 20%            |
|                      |                            | EP033: Propane                        | 74-98-6    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                            | EP033: Propene                        | 115-07-1   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
| EP074A: Monocyclic   | Aromatic Hydrocarbons      | (QC Lot: 168530)                      |            |      |      |                 |                        |         |                     |
| ES1527110-001        | Anonymous                  | EP074: 1.2.4-Trimethylbenzene         | 95-63-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                            | EP074: 1.3.5-Trimethylbenzene         | 108-67-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                            | EP074: Isopropylbenzene               | 98-82-8    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                            | EP074: n-Butylbenzene                 | 104-51-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                            | EP074: n-Propylbenzene                | 103-65-1   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                            | EP074: p-lsopropyltoluene             | 99-87-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                            | EP074: sec-Butylbenzene               | 135-98-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                            | EP074: Styrene                        | 100-42-5   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                            | EP074: tert-Butylbenzene              | 98-06-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1527133-002        | WK12                       | EP074: 1.2.4-Trimethylbenzene         | 95-63-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                            | EP074: 1.3.5-Trimethylbenzene         | 108-67-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                            | EP074: Isopropylbenzene               | 98-82-8    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                            | EP074: n-Butylbenzene                 | 104-51-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |

Page : 7 of 18

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| EP0744: Moncyclip Administry Hydrocarbons (OC Lots: 188530)                                                                                                                                                                                                                                                                                                                           | Matrix: WATER      |                       |                                       |            |     |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|---------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| ES152713-002   WK12                                                                                                                                                                                                                                                                                                                                                                   | ratory sample ID   | Client sample ID      | Method: Compound                      | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| Page                                                                                                                                                                                                                                                                                                                                                                                  | 74A: Monocyclic A  | Aromatic Hydrocarbons | (QC Lot: 168530) - continued          |            |     |      |                 |                        |         |                     |
| P074: sec-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                | 527133-002         | WK12                  | EP074: n-Propylbenzene                | 103-65-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| PO74: Sylnen                                                                                                                                                                                                                                                                                                                                                                          |                    |                       | EP074: p-Isopropyltoluene             | 99-87-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| Pool                                                                                                                                                                                                                                                                                                                                                                                  |                    |                       | EP074: sec-Butylbenzene               | 135-98-8   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074B: Oxygenated Compounds (OC Lot: 188530)                                                                                                                                                                                                                                                                                                                                         |                    |                       | EP074: Styrene                        | 100-42-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| E9074; 2-Butanone (MEK)                                                                                                                                                                                                                                                                                                                                                               |                    |                       | EP074: tert-Butylbenzene              | 98-06-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074: 2-Hexanone (MBK)                                                                                                                                                                                                                                                                                                                                                               | 74B: Oxygenated C  | Compounds (QC Lot: 1  | (68530)                               |            |     |      |                 |                        |         |                     |
| EP074                                                                                                                                                                                                                                                                                                                                                                                 | 527110-001         | Anonymous             | EP074: 2-Butanone (MEK)               | 78-93-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| EP074                                                                                                                                                                                                                                                                                                                                                                                 |                    |                       |                                       | 591-78-6   | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| ES1527133-002   WK12   EP074; 2-Butanone (MEK)   78-93-3   50   µg/L   <50   <50   0.00                                                                                                                                                                                                                                                                                               |                    |                       | EP074: 4-Methyl-2-pentanone (MIBK)    | 108-10-1   | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| EP074: 2-Hexanone (MBK)   591-78-6   50                                                                                                                                                                                                                                                                                                                                               |                    |                       |                                       | 108-05-4   | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| EP074: 4-Methyl-2-pentanone (MIBK)   108-10-1   50   µg/L   <50   <50   0.00                                                                                                                                                                                                                                                                                                          | 527133-002         | WK12                  | EP074: 2-Butanone (MEK)               | 78-93-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| EP074C; Sulfonated Compounds (QC Lot: 168530)   EP074: Carbon disulfide   75-15-0   5   µg/L   <50   <50   0.00                                                                                                                                                                                                                                                                       |                    |                       | EP074: 2-Hexanone (MBK)               | 591-78-6   | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| EP074C; Sulfonated Compounds (QC Lot: 168530)   EP074: Carbon disulfide   75-15-0   5   µg/L   <50   <50   0.00                                                                                                                                                                                                                                                                       |                    |                       | EP074: 4-Methyl-2-pentanone (MIBK)    | 108-10-1   | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| ES1527110-001   Anonymous   EP074: Carbon disulfide   75-15-0   5   μg/L   <5   <5   0.00                                                                                                                                                                                                                                                                                             |                    |                       | EP074: Vinyl Acetate                  | 108-05-4   | 50  |      | <50             | <50                    | 0.00    | No Limit            |
| ES1527110-001   Anonymous   EP074: Carbon disulfide   75-15-0   5   μg/L   <5   <5   0.00                                                                                                                                                                                                                                                                                             | 74C: Sulfonated Co | ompounds (QC Lot: 16  | 68530)                                |            |     |      |                 |                        |         |                     |
| ES1527133-002   WK12                                                                                                                                                                                                                                                                                                                                                                  |                    |                       |                                       | 75-15-0    | 5   | µg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074: 1.2-Dibromoethane (EDB)   106-93-4   5                                                                                                                                                                                                                                                                                                                                         |                    |                       |                                       |            |     |      | <5              | <5                     |         | No Limit            |
| EP074: 1.2-Dibromoethane (EDB)   106-93-4   5                                                                                                                                                                                                                                                                                                                                         | 74D: Fumigants (C  | QC Lot: 168530)       |                                       |            |     | 10   |                 |                        |         |                     |
| EP074: 1.2-Dichloropropane   78-87-5   5                                                                                                                                                                                                                                                                                                                                              | •                  | · ·                   | EP074: 1 2-Dibromoethane (EDB)        | 106-93-4   | 5   | ug/l | <5              | <5                     | 0.00    | No Limit            |
| EP074: 2.2-Dichloropropane   594-20-7   5                                                                                                                                                                                                                                                                                                                                             |                    | 7oyouo                |                                       |            |     | -    |                 |                        |         | No Limit            |
| EP074: cis-1.3-Dichloropropylene   10061-01-5   5                                                                                                                                                                                                                                                                                                                                     |                    |                       | •                                     |            |     |      |                 |                        |         | No Limit            |
| EP074: trans-1.3-Dichloropropylene   10061-02-6   5                                                                                                                                                                                                                                                                                                                                   |                    |                       | • •                                   |            |     |      |                 | -                      |         | No Limit            |
| ES1527133-002 WK12                                                                                                                                                                                                                                                                                                                                                                    |                    |                       |                                       |            |     |      |                 |                        |         | No Limit            |
| EP074: 1.2-Dichloropropane   78-87-5   5                                                                                                                                                                                                                                                                                                                                              | 527133-002         | WK12                  |                                       |            |     |      | -               | -                      |         | No Limit            |
| EP074: 2.2-Dichloropropane   594-20-7   5   μg/L   <5   <5   0.00                                                                                                                                                                                                                                                                                                                     |                    |                       |                                       |            |     |      | -               | -                      |         | No Limit            |
| EP074: cis-1.3-Dichloropropylene   10061-01-5   5   μg/L   <5   <5   0.00                                                                                                                                                                                                                                                                                                             |                    |                       |                                       |            |     |      |                 |                        |         | No Limit            |
| EP074: trans-1.3-Dichloropropylene   10061-02-6   5   μg/L   <5   <5   0.00                                                                                                                                                                                                                                                                                                           |                    |                       | • •                                   | 10061-01-5 | 5   | -    | <5              | <5                     | 0.00    | No Limit            |
| EP074E: Halogenated Aliphatic Compounds (QC Lot: 168530)  ES1527110-001  Anonymous  EP074: 1.1.1.2-Tetrachloroethane  EP074: 1.1.1-Trichloroethane  71-55-6  EP074: 1.1.2-Tetrachloroethane  79-34-5  EP074: 1.1.2-Trichloroethane  79-00-5  EP074: 1.1.2-Trichloroethane  79-00-5  EP074: 1.1-Dichloroethane  75-34-3  EP074: 1.1-Dichloroethane  75-34-3  EP074: 1.1-Dichloroethane |                    |                       | 1 13                                  | 10061-02-6 | 5   | -    | <5              | <5                     | 0.00    | No Limit            |
| ES1527110-001       Anonymous       EP074: 1.1.1.2-Tetrachloroethane       630-20-6       5       μg/L       <5                                                                                                                                                                                                                                                                       | 74E: Halogenated   | Aliphatic Compounds   |                                       |            |     |      |                 |                        |         |                     |
| EP074: 1.1.1-Trichloroethane 71-55-6 5 μg/L <5 <5 0.00 EP074: 1.1.2.2-Tetrachloroethane 79-34-5 5 μg/L <5 <5 0.00 EP074: 1.1.2-Trichloroethane 79-00-5 5 μg/L <5 <5 0.00 EP074: 1.1-Dichloroethane 75-34-3 5 μg/L <5 <5 0.00                                                                                                                                                          |                    |                       | · · · · · · · · · · · · · · · · · · · | 630-20-6   | 5   | ug/l | <5              | <5                     | 0.00    | No Limit            |
| EP074: 1.1.2.2-Tetrachloroethane 79-34-5 5 μg/L <5 <5 0.00 EP074: 1.1.2-Trichloroethane 79-00-5 5 μg/L <5 <5 0.00 EP074: 1.1-Dichloroethane 75-34-3 5 μg/L <5 <5 0.00                                                                                                                                                                                                                 |                    |                       |                                       | 111 11     |     | -    | -               | -                      |         | No Limit            |
| EP074: 1.1.2-Trichloroethane 79-00-5 5 μg/L <5 <5 0.00 EP074: 1.1-Dichloroethane 75-34-3 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                            |                    |                       |                                       |            |     |      |                 |                        |         | No Limit            |
| EP074: 1.1-Dichloroethane 75-34-3 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                   |                    |                       |                                       |            |     |      |                 |                        |         | No Limit            |
|                                                                                                                                                                                                                                                                                                                                                                                       |                    |                       |                                       | 1 11 1     |     |      | -               | -                      |         | No Limit            |
|                                                                                                                                                                                                                                                                                                                                                                                       |                    |                       |                                       |            |     |      |                 | -                      |         | No Limit            |
| EP074: 1.1-Dichloropropylene 563-58-6 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                               |                    |                       |                                       |            |     | -    |                 |                        |         | No Limit            |
| EP074: 1.2.3-Trichloropropane 96-18-4 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                               |                    |                       |                                       |            |     |      |                 |                        |         | No Limit            |
| EP074: 1.2-Dibromo-3-chloropropane 96-12-8 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                          |                    |                       | • •                                   |            |     | -    |                 |                        |         | No Limit            |
| EP074: 1.2-Dichloroethane 107-06-2 5 μg/L <5 <5 0.00                                                                                                                                                                                                                                                                                                                                  |                    |                       | • •                                   |            |     | -    |                 |                        |         | No Limit            |

Page : 8 of 18

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                                    |            |     |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|-----------------------|------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                   | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074E: Halogenate   | ed Aliphatic Compound | ds (QC Lot: 168530) - continued    |            |     |      |                 |                        |         |                     |
| ES1527110-001        | Anonymous             | EP074: 1.3-Dichloropropane         | 142-28-9   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Carbon Tetrachloride        | 56-23-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.2-Dichloroethene      | 156-59-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.4-Dichloro-2-butene   | 1476-11-5  | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromomethane              | 74-95-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Hexachlorobutadiene         | 87-68-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Iodomethane                 | 74-88-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Pentachloroethane           | 76-01-7    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Tetrachloroethene           | 127-18-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.2-Dichloroethene    | 156-60-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Trichloroethene             | 79-01-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromomethane                | 74-83-9    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloroethane                | 75-00-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloromethane               | 74-87-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Dichlorodifluoromethane     | 75-71-8    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Trichlorofluoromethane      | 75-69-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Vinyl chloride              | 75-01-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| ES1527133-002        | WK12                  | EP074: 1.1.1.2-Tetrachloroethane   | 630-20-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.1-Trichloroethane       | 71-55-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.2.2-Tetrachloroethane   | 79-34-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.2-Trichloroethane       | 79-00-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloroethane          | 75-34-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloroethene          | 75-35-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloropropylene       | 563-58-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2.3-Trichloropropane      | 96-18-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dibromo-3-chloropropane | 96-12-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichloroethane          | 107-06-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.3-Dichloropropane         | 142-28-9   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Carbon Tetrachloride        | 56-23-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.2-Dichloroethene      | 156-59-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.4-Dichloro-2-butene   | 1476-11-5  | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromomethane              | 74-95-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Hexachlorobutadiene         | 87-68-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Iodomethane                 | 74-88-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Pentachloroethane           | 76-01-7    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Tetrachloroethene           | 127-18-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.2-Dichloroethene    | 156-60-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Trichloroethene             | 79-01-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |

Page : 9 of 18

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                                           |            |     |       | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|-----------------------|-------------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                          | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| P074E: Halogenate    | ed Aliphatic Compound | ds (QC Lot: 168530) - continued           |            |     |       |                 |                        |         |                     |
| ES1527133-002        | WK12                  | EP074: Bromomethane                       | 74-83-9    | 50  | μg/L  | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloroethane                       | 75-00-3    | 50  | μg/L  | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloromethane                      | 74-87-3    | 50  | μg/L  | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Dichlorodifluoromethane            | 75-71-8    | 50  | μg/L  | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Trichlorofluoromethane             | 75-69-4    | 50  | μg/L  | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Vinyl chloride                     | 75-01-4    | 50  | μg/L  | <50             | <50                    | 0.00    | No Limit            |
| P074F: Halogenate    | d Aromatic Compound   | ds (QC Lot: 168530)                       |            |     |       |                 |                        |         |                     |
| ES1527110-001        | Anonymous             | EP074: 1.2.3-Trichlorobenzene             | 87-61-6    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2.4-Trichlorobenzene             | 120-82-1   | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichlorobenzene                | 95-50-1    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.3-Dichlorobenzene                | 541-73-1   | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.4-Dichlorobenzene                | 106-46-7   | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 2-Chlorotoluene                    | 95-49-8    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 4-Chlorotoluene                    | 106-43-4   | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromobenzene                       | 108-86-1   | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Chlorobenzene                      | 108-90-7   | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
| ES1527133-002        | WK12                  | EP074: 1.2.3-Trichlorobenzene             | 87-61-6    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2.4-Trichlorobenzene             | 120-82-1   | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichlorobenzene                | 95-50-1    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.3-Dichlorobenzene                | 541-73-1   | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.4-Dichlorobenzene                | 106-46-7   | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 2-Chlorotoluene                    | 95-49-8    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 4-Chlorotoluene                    | 106-43-4   | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromobenzene                       | 108-86-1   | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Chlorobenzene                      | 108-90-7   | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
| P074G: Trihalomet    | hanes (QC Lot: 16853  | 0)                                        |            |     |       |                 |                        |         |                     |
| ES1527110-001        | Anonymous             | EP074: Bromodichloromethane               | 75-27-4    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      | , , , , , , ,         | EP074: Bromoform                          | 75-25-2    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Chloroform                         | 67-66-3    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromochloromethane               | 124-48-1   | 5   | µg/L  | <5              | <5                     | 0.00    | No Limit            |
| ES1527133-002        | WK12                  | EP074: Bromodichloromethane               | 75-27-4    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromoform                          | 75-25-2    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Chloroform                         | 67-66-3    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromochloromethane               | 124-48-1   | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
| P080/071: Total Pe   | troleum Hydrocarbons  |                                           |            |     |       |                 |                        |         |                     |
| ES1527110-001        | Anonymous             | EP080: C6 - C9 Fraction                   |            | 20  | μg/L  | <20             | <20                    | 0.00    | No Limit            |
| ES1527110-001        | WK12                  | EP080: C6 - C9 Fraction                   |            | 20  | μg/L  | <20             | <20                    | 0.00    | No Limit            |
|                      |                       |                                           |            | 20  | P9, ⊏ | -20             | -20                    | 0.00    | 140 Entit           |
|                      |                       | ns - NEPM 2013 Fractions (QC Lot: 168529) | 00.040     | 20  |       | 400             | 400                    | 0.00    | NIa Lineit          |
| ES1527110-001        | Anonymous             | EP080: C6 - C10 Fraction                  | C6_C10     | 20  | μg/L  | <20             | <20                    | 0.00    | No Limit            |

Page : 10 of 18

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                            |                                                 |            | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |  |
|----------------------|----------------------------|-------------------------------------------------|------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID | Client sample ID           | Method: Compound                                | CAS Number | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EP080/071: Total Re  | coverable Hydrocarbons - N | EPM 2013 Fractions (QC Lot: 168529) - continued |            |                                   |      |                 |                  |         |                     |  |
| ES1527133-002        | WK12                       | EP080: C6 - C10 Fraction                        | C6_C10     | 20                                | μg/L | <20             | <20              | 0.00    | No Limit            |  |
| EP262: Ethanolamin   | es (QC Lot: 168376)        |                                                 |            |                                   |      |                 |                  |         |                     |  |
| ES1527133-001        | AST2                       | EP262: Diethanolamine                           | 111-42-2   | 1                                 | μg/L | <1              | <1               | 0.00    | No Limit            |  |
|                      |                            | EP262: Ethanolamine                             | 141-43-5   | 1                                 | μg/L | 20              | 17               | 13.8    | 0% - 50%            |  |

Page : 11 of 18

Work Order : ES1527133 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                 |                |       |       | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|---------------------------------------------------|----------------|-------|-------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                   |                |       |       | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                  | CAS Number     | LOR   | Unit  | Result            | Concentration | LCS                           | Low       | High       |
| EA010P: Conductivity by PC Titrator (QCLot: 1676  | 67)            |       |       |                   |               |                               |           |            |
| EA010-P: Electrical Conductivity @ 25°C           |                | 1     | μS/cm | <1                | 2000 μS/cm    | 105                           | 95        | 113        |
| EA015: Total Dissolved Solids (QCLot: 168606)     |                |       |       |                   |               |                               |           |            |
| EA015H: Total Dissolved Solids @180°C             |                | 10    | mg/L  | <10               | 2000 mg/L     | 96.1                          | 87        | 109        |
|                                                   |                |       |       | <10               | 293 mg/L      | 99.3                          | 66        | 126        |
| EA025: Suspended Solids (QCLot: 168607)           |                |       |       |                   |               |                               |           |            |
| EA025H: Suspended Solids (SS)                     |                | 5     | mg/L  | <5                | 150 mg/L      | 90.7                          | 83        | 129        |
|                                                   |                |       |       | <5                | 1000 mg/L     | 97.5                          | 84        | 110        |
| ED009: Anions (QCLot: 169754)                     |                |       |       |                   |               |                               |           |            |
| ED009-X: Chloride                                 | 16887-00-6     | 0.1   | mg/L  | <0.100            | 2 mg/L        | 103                           | 89        | 107        |
| ED037P: Alkalinity by PC Titrator (QCLot: 167665) |                |       |       |                   |               |                               |           |            |
| ED037-P: Total Alkalinity as CaCO3                |                |       | mg/L  |                   | 200 mg/L      | 102                           | 81        | 111        |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA(  | QCLot: 167773) |       |       |                   |               |                               |           |            |
| ED041G: Sulfate as SO4 - Turbidimetric            | 14808-79-8     | 1     | mg/L  | <1                | 25 mg/L       | 96.7                          | 86        | 122        |
| ED045G: Chloride by Discrete Analyser (QCLot: 16  | 7774)          |       |       |                   |               |                               |           |            |
| ED045G: Chloride                                  | 16887-00-6     | 1     | mg/L  | <1                | 10 mg/L       | 109                           | 75        | 123        |
|                                                   |                |       |       | <1                | 1000 mg/L     | 88.2                          | 77        | 119        |
| ED093F: Dissolved Major Cations (QCLot: 168892)   |                |       |       |                   |               |                               |           |            |
| ED093F: Calcium                                   | 7440-70-2      | 1     | mg/L  | <1                | 50 mg/L       | 96.4                          | 90        | 114        |
| ED093F: Magnesium                                 | 7439-95-4      | 1     | mg/L  | <1                | 50 mg/L       | 98.1                          | 90        | 110        |
| ED093F: Potassium                                 | 7440-09-7      | 1     | mg/L  | <1                | 50 mg/L       | 98.0                          | 87        | 117        |
| ED093F: Sodium                                    | 7440-23-5      | 1     | mg/L  | <1                | 50 mg/L       | 90.3                          | 82        | 118        |
| ED093F: Dissolved Major Cations (QCLot: 168896)   |                |       |       |                   |               |                               |           |            |
| ED093F: Calcium                                   | 7440-70-2      | 1     | mg/L  | <1                | 50 mg/L       | 93.2                          | 90        | 114        |
| ED093F: Magnesium                                 | 7439-95-4      | 1     | mg/L  | <1                | 50 mg/L       | 93.2                          | 90        | 110        |
| ED093F: Potassium                                 | 7440-09-7      | 1     | mg/L  | <1                | 50 mg/L       | 92.6                          | 87        | 117        |
| ED093F: Sodium                                    | 7440-23-5      | 1     | mg/L  | <1                | 50 mg/L       | 97.6                          | 82        | 118        |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 1688   | 393)           |       |       |                   |               |                               |           |            |
| EG020A-F: Aluminium                               | 7429-90-5      | 0.01  | mg/L  | <0.01             | 0.5 mg/L      | 96.8                          | 85        | 115        |
| EG020A-F: Antimony                                | 7440-36-0      | 0.001 | mg/L  | <0.001            | 0.01 mg/L     | 90.9                          | 85        | 115        |
| EG020A-F: Arsenic                                 | 7440-38-2      | 0.001 | mg/L  | <0.001            | 0.1 mg/L      | 90.3                          | 85        | 115        |
| EG020A-F: Barium                                  | 7440-39-3      | 0.001 | mg/L  | <0.001            | 0.1 mg/L      | 86.1                          | 85        | 115        |
| EG020A-F: Beryllium                               | 7440-41-7      | 0.001 | mg/L  | <0.001            | 0.1 mg/L      | 86.3                          | 85        | 115        |
| EG020A-F: Boron                                   | 7440-42-8      | 0.05  | mg/L  | <0.05             | 0.1 mg/L      | 88.2                          | 85        | 115        |

Page : 12 of 18

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                             |                      |        |        | Method Blank (MB) |               | Laboratory Control Spike (LCS) Report |                                                                                          |            |
|---------------------------------------------------------------|----------------------|--------|--------|-------------------|---------------|---------------------------------------|------------------------------------------------------------------------------------------|------------|
|                                                               |                      |        |        | Report            | Spike         | Spike Recovery (%)                    | Recovery                                                                                 | Limits (%) |
| Method: Compound                                              | CAS Number           | LOR    | Unit   | Result            | Concentration | LCS                                   | Low                                                                                      | High       |
| G020F: Dissolved Metals by ICP-MS (QCLot: 16889               | 3) - continued       |        |        |                   |               |                                       |                                                                                          |            |
| G020A-F: Bromine                                              | 7726-95-6            | 0.1    | mg/L   | <0.1              |               |                                       |                                                                                          |            |
| G020A-F: Cadmium                                              | 7440-43-9            | 0.0001 | mg/L   | <0.0001           | 0.1 mg/L      | 87.6                                  | 85                                                                                       | 115        |
| G020A-F: Chromium                                             | 7440-47-3            | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 88.4                                  | 85                                                                                       | 115        |
| G020A-F: Cobalt                                               | 7440-48-4            | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 88.3                                  | 85                                                                                       | 115        |
| G020A-F: Copper                                               | 7440-50-8            | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 92.2                                  | 85                                                                                       | 115        |
| G020A-F: Iron                                                 | 7439-89-6            | 0.05   | mg/L   | <0.05             | 0.5 mg/L      | 90.6                                  | 85                                                                                       | 115        |
| G020A-F: Lead                                                 | 7439-92-1            | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 89.1                                  | 85                                                                                       | 115        |
| G020A-F: Manganese                                            | 7439-96-5            | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 96.7                                  | 85                                                                                       | 115        |
| G020A-F: Molybdenum                                           | 7439-98-7            | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 93.9                                  | 85                                                                                       | 115        |
| G020A-F: Nickel                                               | 7440-02-0            | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 87.0                                  | 85                                                                                       | 115        |
| G020A-F: Selenium                                             | 7782-49-2            | 0.01   | mg/L   | <0.01             | 0.1 mg/L      | 94.1                                  | 85                                                                                       | 115        |
| G020A-F: Tin                                                  | 7440-31-5            | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 95.6                                  | 85                                                                                       | 115        |
| G020A-F: Vanadium                                             | 7440-62-2            | 0.01   | mg/L   | <0.01             | 0.1 mg/L      | 89.8                                  | 85                                                                                       | 115        |
| G020A-F: Zinc                                                 | 7440-66-6            | 0.005  | mg/L   | <0.005            | 0.1 mg/L      | 88.0                                  | 85                                                                                       | 115        |
| G020F: Dissolved Metals by ICP-MS (QCLot: 16889               | )5)                  |        |        |                   |               |                                       |                                                                                          |            |
| G020B-F: Strontium                                            | 7440-24-6            | 0.001  | mg/L   | <0.001            | 0.1 mg/L      | 85.8                                  | 80                                                                                       | 112        |
| G020B-F: Uranium                                              | 7440-61-1            | 0.001  | mg/L   | <0.001            |               |                                       |                                                                                          |            |
| G035F: Dissolved Mercury by FIMS (QCLot: 168894               | 4)                   |        |        |                   |               |                                       |                                                                                          |            |
| G035F: Mercury                                                | 7439-97-6            | 0.0001 | mg/L   | <0.0001           | 0.01 mg/L     | 91.5                                  | 78                                                                                       | 114        |
| G052G: Silica by Discrete Analyser (QCLot: 167776             | (3)                  |        |        |                   |               |                                       |                                                                                          |            |
| G052G: Reactive Silica                                        |                      | 0.05   | mg/L   | <0.05             | 5 mg/L        | 104                                   | 94                                                                                       | 114        |
|                                                               |                      |        | 11.9.2 |                   |               |                                       |                                                                                          |            |
| :K010/011: Chlorine (QCLot: 167969)<br>:K010: Chlorine - Free |                      | 0.2    | mg/L   | <0.2              |               |                                       |                                                                                          |            |
| K010: Chlorine - Free                                         |                      | 0.2    | mg/L   | <0.2              |               |                                       |                                                                                          |            |
|                                                               |                      | 0.2    | IIIg/L | 40.2              |               |                                       |                                                                                          |            |
| K040P: Fluoride by PC Titrator (QCLot: 167662)                | 10001 10 0           | 0.4    |        | -0.4              | F             | 00.0                                  | 7.5                                                                                      | 110        |
| K040P: Fluoride                                               | 16984-48-8           | 0.1    | mg/L   | <0.1              | 5 mg/L        | 93.2                                  | 75                                                                                       | 119        |
| K055G: Ammonia as N by Discrete Analyser (QCLo                |                      |        |        |                   |               |                                       |                                                                                          |            |
| K055G: Ammonia as N                                           | 7664-41-7            | 0.01   | mg/L   | <0.01             | 1 mg/L        | 93.8                                  | 90                                                                                       | 114        |
| K057G: Nitrite as N by Discrete Analyser (QCLot:              | 167775)              |        |        |                   |               |                                       |                                                                                          |            |
| K057G: Nitrite as N                                           | 14797-65-0           | 0.01   | mg/L   | <0.01             | 0.5 mg/L      | 101                                   | 82                                                                                       | 114        |
| K059G: Nitrite plus Nitrate as N (NOx) by Discrete            | Analyser (QCLot: 168 | 3487)  |        |                   |               |                                       |                                                                                          |            |
| K059G: Nitrite + Nitrate as N                                 |                      | 0.01   | mg/L   | <0.01             | 0.5 mg/L      | 103                                   | 91                                                                                       | 113        |
| K061G: Total Kjeldahl Nitrogen By Discrete Analyse            | er (QCLot: 168480)   |        |        |                   |               |                                       |                                                                                          |            |
| K061G: Total Kjeldahl Nitrogen as N                           |                      | 0.1    | mg/L   | <0.1              | 10 mg/L       | 101                                   | 69                                                                                       | 101        |
|                                                               |                      |        |        | <0.1              | 1 mg/L        | 99.2                                  | 70                                                                                       | 118        |
|                                                               |                      |        |        | <0.1              | 5 mg/L        | 110                                   | 85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>86<br>80<br><br>78<br>94<br><br>75<br>90 | 118        |

Page : 13 of 18

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                        |                  |           |              | Method Blank (MB) |                    | Laboratory Control Spike (LCS | S) Report |            |
|----------------------------------------------------------|------------------|-----------|--------------|-------------------|--------------------|-------------------------------|-----------|------------|
|                                                          |                  |           |              | Report            | Spike              | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                         | CAS Number       | LOR       | Unit         | Result            | Concentration      | LCS                           | Low       | High       |
| EK067G: Total Phosphorus as P by Discrete Analyser (QCI  | Lot: 168479) - ( | continued |              |                   |                    |                               |           |            |
| EK067G: Total Phosphorus as P                            |                  | 0.01      | mg/L         | <0.01             | 4.42 mg/L          | 95.2                          | 71        | 101        |
|                                                          |                  |           |              | <0.01             | 0.442 mg/L         | 95.5                          | 72        | 108        |
|                                                          |                  |           |              | <0.01             | 1 mg/L             | 110                           | 78        | 118        |
| EK071G: Reactive Phosphorus as P by discrete analyser (0 | QCLot: 167771)   |           |              |                   |                    |                               |           |            |
| EK071G: Reactive Phosphorus as P                         | 14265-44-2       | 0.01      | mg/L         | <0.01             | 0.5 mg/L           | 110                           | 85        | 117        |
| EP005: Total Organic Carbon (TOC) (QCLot: 168780)        |                  |           |              |                   |                    |                               |           |            |
| EP005: Total Organic Carbon                              |                  | 1         | mg/L         | <1                | 10 mg/L            | 90.7                          | 76        | 120        |
| EP020: Oil and Grease (O&G) (QCLot: 171895)              |                  |           |              |                   |                    |                               |           |            |
| EP020: Oil & Grease                                      |                  | 5         | mg/L         | <5                | 5000 mg/L          | 112                           | 80        | 120        |
| EP033: C1 - C4 Hydrocarbon Gases (QCLot: 168632)         |                  |           |              |                   |                    |                               |           |            |
| EP033: Butane                                            | 106-97-8         | 10        | μg/L         | <10               | 102.18 μg/L        | 110                           | 85        | 115        |
| EP033: Butene                                            | 25167-67-3       | 10        | μg/L         | <10               | 99.61 µg/L         | 110                           | 83        | 115        |
| EP033: Ethane                                            | 74-84-0          | 10        | μg/L         | <10               | 54.43 μg/L         | 97.4                          | 87        | 111        |
| EP033: Ethene                                            | 74-85-1          | 10        | μg/L         | <10               | 50.29 μg/L         | 102                           | 87        | 111        |
| EP033: Methane                                           | 74-82-8          | 10        | μg/L         | <10               | 28.48 µg/L         | 86.7                          | 86        | 114        |
| EP033: Propane                                           | 74-98-6          | 10        | μg/L         | <10               | 78.28 µg/L         | 97.1                          | 84        | 112        |
| EP033: Propene                                           | 115-07-1         | 10        | μg/L         | <10               | 73.97 µg/L         | 94.0                          | 85        | 113        |
|                                                          |                  |           | pg/L         |                   | 7 0.01 pg/L        | 01.0                          |           | 110        |
| EP074A: Monocyclic Aromatic Hydrocarbons (QCLot: 1685    | 95-63-6          | 5         | ua/l         | <5                | 10 μg/L            | 89.9                          | 71        | 121        |
| EP074: 1.2.4-Trimethylbenzene                            | 108-67-8         | 5         | μg/L         | <5                | 10 μg/L            | 91.1                          | 71        | 121        |
| EP074: 1.3.5-Trimethylbenzene                            | 98-82-8          | 5         | μg/L         | <5                | 10 μg/L            | 87.9                          | 75        | 121        |
| EP074: Isopropylbenzene                                  | 104-51-8         | 5         | μg/L         | <5                | 10 μg/L            | 88.1                          | 62        | 126        |
| EP074: n-Butylbenzene                                    | 103-65-1         | 5         | μg/L         | <5                |                    | 87.4                          | 67        | 123        |
| EP074: n-Propylbenzene                                   | 99-87-6          | 5         | μg/L         | <5                | 10 μg/L<br>10 μg/L | 87.9                          | 67        | 123        |
| EP074: p-Isopropyltoluene                                | 135-98-8         | 5         | μg/L         | <5                |                    | 89.7                          | 69        | 123        |
| EP074: sec-Butylbenzene                                  | 100-42-5         | 5         | μg/L         | <5                | 10 μg/L            | 87.2                          | 74        | 118        |
| EP074: Styrene                                           | 98-06-6          | 5         | μg/L<br>μg/L | <5                | 10 μg/L<br>10 μg/L | 88.9                          | 74        | 122        |
| EP074: tert-Butylbenzene                                 | 96-00-0          | 3         | μу/∟         | <b>\\</b> 5       | το μg/L            | 80.9                          | 70        | 122        |
| EP074B: Oxygenated Compounds (QCLot: 168530)             | 70.00            |           |              |                   | 100 "              | 20.0                          |           | 100        |
| EP074: 2-Butanone (MEK)                                  | 78-93-3          | 50        | μg/L         | <50               | 100 μg/L           | 90.0                          | 74        | 130        |
| EP074: 2-Hexanone (MBK)                                  | 591-78-6         | 50        | μg/L         | <50               | 100 μg/L           | 83.5                          | 65        | 137        |
| EP074: 4-Methyl-2-pentanone (MIBK)                       | 108-10-1         | 50        | μg/L         | <50               | 100 μg/L           | 81.8                          | 61        | 139        |
| EP074: Vinyl Acetate                                     | 108-05-4         | 50        | μg/L         | <50               | 100 μg/L           | 79.1                          | 61        | 134        |
| EP074C: Sulfonated Compounds (QCLot: 168530)             |                  |           |              |                   |                    |                               |           |            |
| EP074: Carbon disulfide                                  | 75-15-0          | 5         | μg/L         | <5                | 10 μg/L            | 83.0                          | 73        | 127        |
| EP074D: Fumigants (QCLot: 168530)                        |                  |           |              |                   |                    |                               |           |            |
| EP074: 1.2-Dibromoethane (EDB)                           | 106-93-4         | 5         | μg/L         | <5                | 10 μg/L            | 88.2                          | 69        | 117        |
| EP074: 1.2-Dichloropropane                               | 78-87-5          | 5         | μg/L         | <5                | 10 μg/L            | 85.2                          | 76        | 120        |
| EP074: 2.2-Dichloropropane                               | 594-20-7         | 5         | μg/L         | <5                | 10 μg/L            | 84.1                          | 61        | 119        |

Page : 14 of 18

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                  |            |     |      | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|----------------------------------------------------|------------|-----|------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                    |            |     |      | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                   | CAS Number | LOR | Unit | Result            | Concentration | LCS                           | Low       | High       |
| EP074D: Fumigants (QCLot: 168530) - continued      |            |     |      |                   |               |                               |           |            |
| EP074: cis-1.3-Dichloropropylene                   | 10061-01-5 | 5   | μg/L | <5                | 10 μg/L       | 88.0                          | 62        | 120        |
| EP074: trans-1.3-Dichloropropylene                 | 10061-02-6 | 5   | μg/L | <5                | 10 μg/L       | 92.8                          | 61        | 119        |
| EP074E: Halogenated Aliphatic Compounds (QCLot: 16 | 8530)      |     |      |                   |               |                               |           |            |
| EP074: 1.1.1.2-Tetrachloroethane                   | 630-20-6   | 5   | μg/L | <5                | 10 μg/L       | 92.3                          | 66        | 114        |
| EP074: 1.1.1-Trichloroethane                       | 71-55-6    | 5   | μg/L | <5                | 10 μg/L       | 87.7                          | 61        | 119        |
| EP074: 1.1.2.2-Tetrachloroethane                   | 79-34-5    | 5   | μg/L | <5                | 10 μg/L       | 92.1                          | 70        | 124        |
| EP074: 1.1.2-Trichloroethane                       | 79-00-5    | 5   | μg/L | <5                | 10 μg/L       | 87.2                          | 75        | 123        |
| EP074: 1.1-Dichloroethane                          | 75-34-3    | 5   | μg/L | <5                | 10 μg/L       | 84.5                          | 75        | 119        |
| EP074: 1.1-Dichloroethene                          | 75-35-4    | 5   | μg/L | <5                | 10 μg/L       | 91.6                          | 69        | 123        |
| EP074: 1.1-Dichloropropylene                       | 563-58-6   | 5   | μg/L | <5                | 10 μg/L       | 84.1                          | 73        | 119        |
| EP074: 1.2.3-Trichloropropane                      | 96-18-4    | 5   | μg/L | <5                | 10 μg/L       | 93.1                          | 74        | 128        |
| EP074: 1.2-Dibromo-3-chloropropane                 | 96-12-8    | 5   | μg/L | <5                | 10 μg/L       | 91.1                          | 66        | 136        |
| EP074: 1.2-Dichloroethane                          | 107-06-2   | 5   | μg/L | <5                | 10 μg/L       | 89.4                          | 78        | 122        |
| EP074: 1.3-Dichloropropane                         | 142-28-9   | 5   | μg/L | <5                | 10 μg/L       | 89.1                          | 79        | 121        |
| EP074: Bromomethane                                | 74-83-9    | 50  | μg/L | <50               | 100 μg/L      | 97.8                          | 56        | 140        |
| EP074: Carbon Tetrachloride                        | 56-23-5    | 5   | μg/L | <5                | 10 μg/L       | 91.5                          | 63        | 121        |
| EP074: Chloroethane                                | 75-00-3    | 50  | μg/L | <50               | 100 μg/L      | 118                           | 63        | 135        |
| EP074: Chloromethane                               | 74-87-3    | 50  | μg/L | <50               | 100 μg/L      | 105                           | 67        | 130        |
| EP074: cis-1.2-Dichloroethene                      | 156-59-2   | 5   | μg/L | <5                | 10 μg/L       | 88.3                          | 77        | 117        |
| EP074: cis-1.4-Dichloro-2-butene                   | 1476-11-5  | 5   | μg/L | <5                | 10 μg/L       | 81.4                          | 71        | 128        |
| EP074: Dibromomethane                              | 74-95-3    | 5   | μg/L | <5                | 10 μg/L       | 83.9                          | 74        | 118        |
| EP074: Dichlorodifluoromethane                     | 75-71-8    | 50  | μg/L | <50               | 100 μg/L      | 87.0                          | 61        | 138        |
| EP074: Hexachlorobutadiene                         | 87-68-3    | 5   | μg/L | <5                | 10 μg/L       | 89.8                          | 58        | 132        |
| EP074: lodomethane                                 | 74-88-4    | 5   | μg/L | <5                | 10 μg/L       | 85.2                          | 70        | 128        |
| EP074: Pentachloroethane                           | 76-01-7    | 5   | μg/L | <5                | 10 μg/L       | 86.4                          | 72        | 126        |
| EP074: Tetrachloroethene                           | 127-18-4   | 5   | μg/L | <5                | 10 μg/L       | 88.6                          | 72        | 124        |
| EP074: trans-1.2-Dichloroethene                    | 156-60-5   | 5   | μg/L | <5                | 10 μg/L       | 85.1                          | 71        | 119        |
| EP074: trans-1.4-Dichloro-2-butene                 | 110-57-6   | 5   | μg/L | <5                | 10 μg/L       | 75.6                          | 60        | 120        |
| EP074: Trichloroethene                             | 79-01-6    | 5   | μg/L | <5                | 10 μg/L       | 84.2                          | 74        | 120        |
| EP074: Trichlorofluoromethane                      | 75-69-4    | 50  | μg/L | <50               | 100 μg/L      | 97.7                          | 65        | 131        |
| EP074: Vinyl chloride                              | 75-01-4    | 50  | μg/L | <50               | 100 μg/L      | 104                           | 69        | 129        |
| EP074F: Halogenated Aromatic Compounds (QCLot: 16  | 8530)      |     |      |                   |               |                               |           |            |
| EP074: 1.2.3-Trichlorobenzene                      | 87-61-6    | 5   | μg/L | <5                | 10 μg/L       | 88.4                          | 67        | 125        |
| EP074: 1.2.4-Trichlorobenzene                      | 120-82-1   | 5   | μg/L | <5                | 10 μg/L       | 86.6                          | 60        | 126        |
| EP074: 1.2-Dichlorobenzene                         | 95-50-1    | 5   | μg/L | <5                | 10 μg/L       | 90.8                          | 77        | 117        |
| EP074: 1.3-Dichlorobenzene                         | 541-73-1   | 5   | μg/L | <5                | 10 μg/L       | 91.4                          | 74        | 120        |
| EP074: 1.4-Dichlorobenzene                         | 106-46-7   | 5   | μg/L | <5                | 10 μg/L       | 92.4                          | 72        | 120        |
| EP074: 2-Chlorotoluene                             | 95-49-8    | 5   | μg/L | <5                | 10 μg/L       | 84.8                          | 71        | 121        |
| EP074: 4-Chlorotoluene                             | 106-43-4   | 5   | μg/L | <5                | 10 μg/L       | 90.5                          | 71        | 121        |

Page : 15 of 18

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                 |                     |     |      | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|---------------------------------------------------|---------------------|-----|------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                   |                     |     |      | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                  | CAS Number          | LOR | Unit | Result            | Concentration | LCS                           | Low       | High       |
| EP074F: Halogenated Aromatic Compounds (QCLot: 1  | 168530) - continued |     |      |                   |               |                               |           |            |
| EP074: Bromobenzene                               | 108-86-1            | 5   | μg/L | <5                | 10 μg/L       | 87.1                          | 76        | 116        |
| EP074: Chlorobenzene                              | 108-90-7            | 5   | μg/L | <5                | 10 μg/L       | 87.3                          | 80        | 118        |
| EP074G: Trihalomethanes (QCLot: 168530)           |                     |     |      |                   |               |                               |           |            |
| EP074: Bromodichloromethane                       | 75-27-4             | 5   | μg/L | <5                | 10 μg/L       | 96.2                          | 64        | 118        |
| EP074: Bromoform                                  | 75-25-2             | 5   | μg/L | <5                | 10 μg/L       | 85.9                          | 74        | 126        |
| EP074: Chloroform                                 | 67-66-3             | 5   | μg/L | <5                | 10 μg/L       | 87.7                          | 76        | 118        |
| EP074: Dibromochloromethane                       | 124-48-1            | 5   | μg/L | <5                | 10 μg/L       | 86.0                          | 65        | 115        |
| EP075(SIM)A: Phenolic Compounds (QCLot: 167619)   |                     |     |      |                   |               |                               |           |            |
| EP075(SIM): 2.4.5-Trichlorophenol                 | 95-95-4             | 1   | μg/L | <1.0              | 5 μg/L        | 69.6                          | 50        | 108        |
| EP075(SIM): 2.4.6-Trichlorophenol                 | 88-06-2             | 1   | μg/L | <1.0              | 5 μg/L        | 86.5                          | 59        | 118        |
| EP075(SIM): 2.4-Dichlorophenol                    | 120-83-2            | 1   | μg/L | <1.0              | 5 μg/L        | 73.9                          | 59        | 122        |
| EP075(SIM): 2.4-Dimethylphenol                    | 105-67-9            | 1   | μg/L | <1.0              | 5 μg/L        | 72.7                          | 60        | 112        |
| EP075(SIM): 2.6-Dichlorophenol                    | 87-65-0             | 1   | μg/L | <1.0              | 5 μg/L        | 80.2                          | 64        | 118        |
| EP075(SIM): 2-Chlorophenol                        | 95-57-8             | 1   | μg/L | <1.0              | 5 μg/L        | 68.8                          | 64        | 110        |
| EP075(SIM): 2-Methylphenol                        | 95-48-7             | 1   | μg/L | <1.0              | 5 μg/L        | 72.5                          | 56        | 112        |
| EP075(SIM): 2-Nitrophenol                         | 88-75-5             | 1   | μg/L | <1.0              | 5 μg/L        | 83.7                          | 63        | 117        |
| EP075(SIM): 3- & 4-Methylphenol                   | 1319-77-3           | 2   | μg/L | <2.0              | 10 μg/L       | 70.7                          | 43        | 114        |
| EP075(SIM): 4-Chloro-3-methylphenol               | 59-50-7             | 1   | μg/L | <1.0              | 5 μg/L        | 72.1                          | 63        | 119        |
| EP075(SIM): Pentachlorophenol                     | 87-86-5             | 2   | μg/L | <2.0              | 10 μg/L       | 46.6                          | 10        | 95         |
| EP075(SIM): Phenol                                | 108-95-2            | 1   | μg/L | <1.0              | 5 μg/L        | 35.7                          | 25        | 62         |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (Q | CLot: 167619)       |     |      |                   |               |                               |           |            |
| EP075(SIM): Acenaphthene                          | 83-32-9             | 1   | μg/L | <1.0              | 5 μg/L        | 76.6                          | 62        | 113        |
| EP075(SIM): Acenaphthylene                        | 208-96-8            | 1   | μg/L | <1.0              | 5 μg/L        | 77.2                          | 64        | 114        |
| EP075(SIM): Anthracene                            | 120-12-7            | 1   | μg/L | <1.0              | 5 μg/L        | 81.3                          | 64        | 116        |
| EP075(SIM): Benz(a)anthracene                     | 56-55-3             | 1   | μg/L | <1.0              | 5 μg/L        | 77.5                          | 64        | 117        |
| EP075(SIM): Benzo(a)pyrene                        | 50-32-8             | 0.5 | μg/L | <0.5              | 5 μg/L        | 85.9                          | 63        | 117        |
| EP075(SIM): Benzo(b+j)fluoranthene                | 205-99-2            | 1   | μg/L | <1.0              | 5 μg/L        | 66.7                          | 62        | 119        |
|                                                   | 205-82-3            |     |      |                   |               |                               |           |            |
| EP075(SIM): Benzo(g.h.i)perylene                  | 191-24-2            | 1   | μg/L | <1.0              | 5 μg/L        | 76.8                          | 59        | 118        |
| EP075(SIM): Benzo(k)fluoranthene                  | 207-08-9            | 1   | μg/L | <1.0              | 5 μg/L        | 88.4                          | 62        | 117        |
| EP075(SIM): Chrysene                              | 218-01-9            | 1   | μg/L | <1.0              | 5 μg/L        | 87.7                          | 63        | 116        |
| EP075(SIM): Dibenz(a.h)anthracene                 | 53-70-3             | 1   | μg/L | <1.0              | 5 μg/L        | 85.4                          | 61        | 117        |
| EP075(SIM): Fluoranthene                          | 206-44-0            | 1   | μg/L | <1.0              | 5 μg/L        | 83.5                          | 64        | 118        |
| EP075(SIM): Fluorene                              | 86-73-7             | 1   | μg/L | <1.0              | 5 μg/L        | 82.1                          | 64        | 115        |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                | 193-39-5            | 1   | μg/L | <1.0              | 5 μg/L        | 83.3                          | 60        | 118        |
| EP075(SIM): Naphthalene                           | 91-20-3             | 1   | μg/L | <1.0              | 5 μg/L        | 68.9                          | 59        | 119        |
| EP075(SIM): Phenanthrene                          | 85-01-8             | 1   | μg/L | <1.0              | 5 μg/L        | 98.0                          | 63        | 116        |
| EP075(SIM): Pyrene                                | 129-00-0            | 1   | μg/L | <1.0              | 5 μg/L        | 85.5                          | 63        | 118        |

Page : 16 of 18

Work Order : ES1527133 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Sub-Matrix: WATER                                |                       |             |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |
|--------------------------------------------------|-----------------------|-------------|------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|
|                                                  |                       |             |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound                                 | CAS Number            | LOR         | Unit | Result            | Concentration                         | LCS                | Low      | High       |  |  |
| EP080/071: Total Petroleum Hydrocarbons (QCLot:  | 167620)               |             |      |                   |                                       |                    |          |            |  |  |
| EP071: C10 - C14 Fraction                        |                       | 50          | μg/L | <50               | 2000 μg/L                             | 95.9               | 59       | 129        |  |  |
| EP071: C15 - C28 Fraction                        |                       | 100         | μg/L | <100              | 3000 μg/L                             | 94.5               | 71       | 131        |  |  |
| EP071: C29 - C36 Fraction                        |                       | 50          | μg/L | <50               | 2000 μg/L                             | 98.0               | 62       | 120        |  |  |
| EP080/071: Total Petroleum Hydrocarbons (QCLot:  | 168529)               |             |      |                   |                                       |                    |          |            |  |  |
| EP080: C6 - C9 Fraction                          |                       | 20          | μg/L | <20               | 260 μg/L                              | 95.0               | 75       | 127        |  |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPN | 1 2013 Fractions (QCL | ot: 167620) |      |                   |                                       |                    |          |            |  |  |
| EP071: >C10 - C16 Fraction                       | >C10_C16              | 100         | μg/L | <100              | 2500 μg/L                             | 90.9               | 59       | 131        |  |  |
| EP071: >C16 - C34 Fraction                       |                       | 100         | μg/L | <100              | 3500 μg/L                             | 93.7               | 74       | 138        |  |  |
| EP071: >C34 - C40 Fraction                       |                       | 100         | μg/L | <100              | 1500 μg/L                             | 103                | 67       | 127        |  |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPN | 1 2013 Fractions (QCL | ot: 168529) |      |                   |                                       |                    |          |            |  |  |
| EP080: C6 - C10 Fraction                         | C6_C10                | 20          | μg/L | <20               | 310 μg/L                              | 95.6               | 75       | 127        |  |  |
| EP262: Ethanolamines (QCLot: 168376)             |                       |             |      |                   |                                       |                    |          |            |  |  |
| EP262: Diethanolamine                            | 111-42-2              | 1           | μg/L | <1                | 10 μg/L                               | 107                | 50       | 130        |  |  |
| EP262: Ethanolamine                              | 141-43-5              | 1           | μg/L | <1                | 10 μg/L                               | 95.5               | 50       | 130        |  |  |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                                                |                                        |            | Ma            | atrix Spike (MS) Report |            |            |
|----------------------|------------------------------------------------|----------------------------------------|------------|---------------|-------------------------|------------|------------|
|                      |                                                |                                        |            | Spike         | SpikeRecovery(%)        | Recovery L | _imits (%) |
| Laboratory sample ID | Client sample ID                               | Method: Compound                       | CAS Number | Concentration | MS                      | Low        | High       |
| ED009: Anions (      | QCLot: 169754)                                 |                                        |            |               |                         |            |            |
| ES1527059-001        | Anonymous                                      | ED009-X: Chloride                      | 16887-00-6 | 4 mg/L        | 102                     | 70         | 130        |
| ED041G: Sulfate (    | Turbidimetric) as SO4 2- by DA (QCLot: 167773) |                                        |            |               |                         |            |            |
| ES1527095-001        | Anonymous                                      | ED041G: Sulfate as SO4 - Turbidimetric | 14808-79-8 | 10 mg/L       | # Not                   | 70         | 130        |
|                      |                                                |                                        |            |               | Determined              |            |            |
| ED045G: Chloride     | by Discrete Analyser (QCLot: 167774)           |                                        |            |               |                         |            |            |
| ES1527095-001        | Anonymous                                      | ED045G: Chloride                       | 16887-00-6 | 250 mg/L      | 73.1                    | 70         | 130        |
| EG020F: Dissolve     | d Metals by ICP-MS (QCLot: 168893)             |                                        |            |               |                         |            |            |
| ES1526961-002        | Anonymous                                      | EG020A-F: Arsenic                      | 7440-38-2  | 0.2 mg/L      | 114                     | 70         | 130        |
|                      |                                                | EG020A-F: Barium                       | 7440-39-3  | 0.2 mg/L      | 107                     | 70         | 130        |
|                      |                                                | EG020A-F: Beryllium                    | 7440-41-7  | 0.2 mg/L      | 109                     | 70         | 130        |
|                      |                                                | EG020A-F: Cadmium                      | 7440-43-9  | 0.05 mg/L     | 112                     | 70         | 130        |
|                      |                                                | EG020A-F: Chromium                     | 7440-47-3  | 0.2 mg/L      | 80.6                    | 70         | 130        |
|                      |                                                | EG020A-F: Cobalt                       | 7440-48-4  | 0.2 mg/L      | 110                     | 70         | 130        |
|                      |                                                | EG020A-F: Copper                       | 7440-50-8  | 0.2 mg/L      | 110                     | 70         | 130        |

Page : 17 of 18

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER   |                                                    |                                          |            | M             | atrix Spike (MS) Report |            |           |
|---------------------|----------------------------------------------------|------------------------------------------|------------|---------------|-------------------------|------------|-----------|
|                     |                                                    |                                          |            | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| aboratory sample ID | Client sample ID                                   | Method: Compound                         | CAS Number | Concentration | MS                      | Low        | High      |
| G020F: Dissolved    | Metals by ICP-MS (QCLot: 168893) - continued       |                                          |            |               |                         |            |           |
| ES1526961-002       | Anonymous                                          | EG020A-F: Lead                           | 7439-92-1  | 0.2 mg/L      | 80.3                    | 70         | 130       |
|                     |                                                    | EG020A-F: Manganese                      | 7439-96-5  | 0.2 mg/L      | 121                     | 70         | 130       |
|                     |                                                    | EG020A-F: Nickel                         | 7440-02-0  | 0.2 mg/L      | 107                     | 70         | 130       |
|                     |                                                    | EG020A-F: Vanadium                       | 7440-62-2  | 0.2 mg/L      | 94.7                    | 70         | 130       |
|                     |                                                    | EG020A-F: Zinc                           | 7440-66-6  | 0.2 mg/L      | 115                     | 70         | 130       |
| EG035F: Dissolved   | Mercury by FIMS (QCLot: 168894)                    |                                          |            |               |                         |            |           |
| ES1527091-001       | Anonymous                                          | EG035F: Mercury                          | 7439-97-6  | 0.01 mg/L     | 89.4                    | 70         | 130       |
| EG052G: Silica by   | Discrete Analyser (QCLot: 167776)                  |                                          |            |               |                         |            |           |
| ES1527133-001       | AST2                                               | EG052G: Reactive Silica                  |            | 5 mg/L        | # Not                   | 70         | 130       |
|                     |                                                    | EGGEG: Nodolive Gilled                   |            |               | Determined              |            |           |
| FK040P: Fluoride h  | by PC Titrator (QCLot: 167662)                     |                                          |            |               |                         |            |           |
| ES1527039-001       | Anonymous                                          | EK040P: Fluoride                         | 16984-48-8 | 5 mg/L        | 95.8                    | 70         | 130       |
|                     | ,                                                  | ER040F. Fluoride                         | 10001 10 0 | 0 mg/L        | 00.0                    |            | 100       |
|                     | as N by Discrete Analyser (QCLot: 168488)          |                                          | 7004 44 7  | 4 "           | 07.4                    |            | 100       |
| ES1527122-010       | Anonymous                                          | EK055G: Ammonia as N                     | 7664-41-7  | 1 mg/L        | 87.4                    | 70         | 130       |
| EK057G: Nitrite as  | N by Discrete Analyser (QCLot: 167775)             |                                          |            |               |                         |            |           |
| ES1527095-008       | Anonymous                                          | EK057G: Nitrite as N                     | 14797-65-0 | 0.5 mg/L      | 105                     | 70         | 130       |
| EK059G: Nitrite pl  | us Nitrate as N (NOx) by Discrete Analyser (QCLot: | 168487)                                  |            |               |                         |            |           |
| ES1527122-010       | Anonymous                                          | EK059G: Nitrite + Nitrate as N           |            | 0.5 mg/L      | 100                     | 70         | 130       |
| EK061G: Total Kiel  | dahl Nitrogen By Discrete Analyser (QCLot: 168480) |                                          |            |               |                         |            |           |
| ES1527122-009       | Anonymous                                          | EK061G: Total Kjeldahl Nitrogen as N     |            | 5 mg/L        | 111                     | 70         | 130       |
|                     | sphorus as P by Discrete Analyser (QCLot: 168479)  | EROOTO. Total Injerialiii Miliogen as IV |            |               |                         |            | 1 1 1 1   |
| ES1527122-009       | Anonymous                                          | EVOCZO, Tatal Divasala ana a D           |            | 1 mg/L        | 111                     | 70         | 130       |
|                     |                                                    | EK067G: Total Phosphorus as P            |            | T HIG/L       | 111                     | 70         | 130       |
|                     | Phosphorus as P by discrete analyser (QCLot: 1677  |                                          |            |               |                         |            |           |
| ES1526956-001       | Anonymous                                          | EK071G: Reactive Phosphorus as P         | 14265-44-2 | 0.5 mg/L      | 111                     | 70         | 130       |
| EP005: Total Orgai  | nic Carbon (TOC) (QCLot: 168780)                   |                                          |            |               |                         |            |           |
| ES1527047-001       | Anonymous                                          | EP005: Total Organic Carbon              |            | 100 mg/L      | 99.6                    | 70         | 130       |
| EP033: C1 - C4 Hy   | drocarbon Gases (QCLot: 168632)                    |                                          |            |               |                         |            |           |
| ES1527110-001       | Anonymous                                          | EP033: Butane                            | 106-97-8   | 102.18 μg/L   | 100                     | 70         | 130       |
|                     |                                                    | EP033: Butene                            | 25167-67-3 | 99.61 μg/L    | 99.0                    | 70         | 130       |
|                     |                                                    | EP033: Ethane                            | 74-84-0    | 54.43 μg/L    | 102                     | 70         | 130       |
|                     |                                                    | EP033: Ethene                            | 74-85-1    | 50.29 μg/L    | 100                     | 70         | 130       |
|                     |                                                    | EP033: Methane                           | 74-82-8    | 28.48 μg/L    | 108                     | 70         | 130       |
|                     |                                                    | EP033: Propane                           | 74-98-6    | 78.28 μg/L    | 104                     | 70         | 130       |
|                     |                                                    | EP033: Propene                           | 115-07-1   | 73.97 μg/L    | 100                     | 70         | 130       |

Page : 18 of 18

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                                                     |                           |            | Ma            | atrix Spike (MS) Report |            |           |
|----------------------|-----------------------------------------------------|---------------------------|------------|---------------|-------------------------|------------|-----------|
|                      |                                                     |                           |            | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                                    | Method: Compound          | CAS Number | Concentration | MS                      | Low        | High      |
| EP074E: Halogena     | ted Aliphatic Compounds (QCLot: 168530) - continued |                           |            |               |                         |            |           |
| ES1527110-001        | Anonymous                                           | EP074: 1.1-Dichloroethene | 75-35-4    | 25 μg/L       | 74.1                    | 70         | 130       |
|                      |                                                     | EP074: Trichloroethene    | 79-01-6    | 25 μg/L       | 86.5                    | 70         | 130       |
| EP074F: Halogena     | ted Aromatic Compounds (QCLot: 168530)              |                           |            |               |                         |            |           |
| ES1527110-001        | Anonymous                                           | EP074: Chlorobenzene      | 108-90-7   | 25 μg/L       | 93.7                    | 70         | 130       |
| EP080/071: Total P   | etroleum Hydrocarbons (QCLot: 168529)               |                           |            |               |                         |            |           |
| ES1527110-001        | Anonymous                                           | EP080: C6 - C9 Fraction   |            | 325 μg/L      | 108                     | 70         | 130       |
| EP080/071: Total R   | ecoverable Hydrocarbons - NEPM 2013 Fractions (QCL  | ot: 168529)               |            |               |                         |            |           |
| ES1527110-001        | Anonymous                                           | EP080: C6 - C10 Fraction  | C6_C10     | 375 μg/L      | 107                     | 70         | 130       |
| EP262: Ethanolam     | nes (QCLot: 168376)                                 |                           |            |               |                         |            |           |
| ES1527133-001        | AST2                                                | EP262: Diethanolamine     | 111-42-2   | 10 μg/L       | 85.3                    | 50         | 130       |
|                      |                                                     | EP262: Ethanolamine       | 141-43-5   | 10 μg/L       | 86.3                    | 50         | 130       |



# QA/QC Compliance Assessment for DQO Reporting

Work Order : **ES1527133** Page : 1 of 11

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 29-Jul-2015

 Site
 :-- Issue Date
 : 02-Sep-2015

Sampler : CAROLINA SARDELLA No. of samples received : 3
Order number : ---- No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

### **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 11

Work Order : ES1527133 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project · 2268523B

**Outliers: Quality Control Samples** 

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

| Compound Group Name                             | Laboratory Sample ID | Client Sample ID | Analyte          | CAS Number | Data       | Limits | Comment                          |
|-------------------------------------------------|----------------------|------------------|------------------|------------|------------|--------|----------------------------------|
| Matrix Spike (MS) Recoveries                    |                      |                  |                  |            |            |        |                                  |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA | ES1527095001         | Anonymous        | Sulfate as SO4 - | 14808-79-8 | Not        |        | MS recovery not determined,      |
|                                                 |                      |                  | Turbidimetric    |            | Determined |        | background level greater than or |
|                                                 |                      |                  |                  |            |            |        | equal to 4x spike level.         |
| EG052G: Silica by Discrete Analyser             | ES1527133001         | AST2             | Reactive Silica  |            | Not        |        | MS recovery not determined,      |
|                                                 |                      |                  |                  |            | Determined |        | background level greater than or |
|                                                 |                      |                  |                  |            |            |        | equal to 4x spike level.         |

#### **Outliers: Frequency of Quality Control Samples**

Matrix: WATER

| Quality Control Sample Type | Co | Count Rate (%) Quality |        | e (%)    | Quality Control Specification                    |
|-----------------------------|----|------------------------|--------|----------|--------------------------------------------------|
| Method                      | QC | Regular                | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP) |    |                        |        |          |                                                  |
| PAH/Phenols (GC/MS - SIM)   | 0  | 10                     | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction | 0  | 10                     | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Matrix Spikes (MS)          |    |                        |        |          |                                                  |
| PAH/Phenols (GC/MS - SIM)   | 0  | 10                     | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction | 0  | 10                     | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

#### **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

| Evaluation: × | = Holding tir | me breach : 🗸 | = Within holding t | ime. |
|---------------|---------------|---------------|--------------------|------|
|               |               |               |                    |      |

| Method                                            |       | Sample Date | E              | ktraction / Preparation |            |               | Analysis         |            |
|---------------------------------------------------|-------|-------------|----------------|-------------------------|------------|---------------|------------------|------------|
| Container / Client Sample ID(s)                   |       |             | Date extracted | Due for extraction      | Evaluation | Date analysed | Due for analysis | Evaluation |
| EA005P: pH by PC Titrator                         |       |             |                |                         |            |               |                  |            |
| Clear Plastic Bottle - Natural (EA005-P)<br>AST2, | WK12, | 29-Jul-2015 |                |                         |            | 29-Jul-2015   | 29-Jul-2015      | <b>✓</b>   |
| WK13                                              |       |             |                |                         |            |               |                  |            |
| EA010P: Conductivity by PC Titrator               |       |             |                |                         |            |               |                  |            |
| Clear Plastic Bottle - Natural (EA010-P) WK12.    | WK13  | 29-Jul-2015 |                |                         |            | 29-Jul-2015   | 26-Aug-2015      | 1          |

Page : 3 of 11

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                      |       |             |                |                        | Evaluation | i: 🗴 = Holding time | breach ; ✓ = Withi | n holding time. |
|--------------------------------------------------------------------|-------|-------------|----------------|------------------------|------------|---------------------|--------------------|-----------------|
| Method                                                             |       | Sample Date | Ex             | traction / Preparation |            |                     | Analysis           |                 |
| Container / Client Sample ID(s)                                    |       |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation      |
| EA015: Total Dissolved Solids                                      |       |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Natural (EA015H) AST2, WK13                 | WK12, | 29-Jul-2015 |                |                        |            | 30-Jul-2015         | 05-Aug-2015        | ✓               |
| EA025: Suspended Solids                                            |       |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Natural (EA025H) AST2, WK13                 | WK12, | 29-Jul-2015 |                |                        |            | 30-Jul-2015         | 05-Aug-2015        | ✓               |
| ED009: Anions                                                      |       |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Natural (ED009-X) AST2, WK13                | WK12, | 29-Jul-2015 |                |                        |            | 31-Jul-2015         | 26-Aug-2015        | ✓               |
| ED037P: Alkalinity by PC Titrator                                  |       |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Natural (ED037-P) AST2, WK13                | WK12, | 29-Jul-2015 |                |                        |            | 29-Jul-2015         | 12-Aug-2015        | ✓               |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA                    |       |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Natural (ED041G) AST2, WK13                 | WK12, | 29-Jul-2015 |                |                        |            | 29-Jul-2015         | 26-Aug-2015        | ✓               |
| ED045G: Chloride by Discrete Analyser                              |       |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Natural (ED045G) AST2, WK13                 | WK12, | 29-Jul-2015 |                |                        |            | 29-Jul-2015         | 26-Aug-2015        | ✓               |
| ED093F: Dissolved Major Cations                                    |       |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) AST2, WK13   | WK12, | 29-Jul-2015 |                |                        |            | 30-Jul-2015         | 26-Aug-2015        | ✓               |
| EG020F: Dissolved Metals by ICP-MS                                 |       |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) AST2, WK13 | WK12, | 29-Jul-2015 |                |                        |            | 30-Jul-2015         | 25-Jan-2016        | ✓               |
| EG020F: Dissolved Metals by ICP-MS                                 |       |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F) AST2, WK13 | WK12, | 29-Jul-2015 |                |                        |            | 30-Jul-2015         | 25-Jan-2016        | ✓               |
| EG035F: Dissolved Mercury by FIMS                                  |       |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) AST2, WK13   | WK12, | 29-Jul-2015 |                |                        |            | 04-Aug-2015         | 26-Aug-2015        | ✓               |

Page : 4 of 11

Work Order : ES1527133 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                            |          |             |                |                        | Evaluation | i: 🗴 = Holding time | breach ; ✓ = With | n holding time. |
|----------------------------------------------------------|----------|-------------|----------------|------------------------|------------|---------------------|-------------------|-----------------|
| Method                                                   |          | Sample Date | Ex             | traction / Preparation |            |                     | Analysis          |                 |
| Container / Client Sample ID(s)                          |          |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis  | Evaluation      |
| EG052G: Silica by Discrete Analyser                      |          |             |                |                        |            |                     |                   |                 |
| Clear Plastic Bottle - Natural (EG052G) AST2, WK13       | WK12,    | 29-Jul-2015 |                |                        |            | 29-Jul-2015         | 26-Aug-2015       | ✓               |
| EK010/011: Chlorine                                      |          |             |                |                        |            |                     |                   |                 |
| Clear Plastic Bottle - Natural (EK010) AST2, WK13        | WK12,    | 29-Jul-2015 |                |                        |            | 29-Jul-2015         | 29-Jul-2015       | ✓               |
| EK040P: Fluoride by PC Titrator                          |          |             |                |                        |            |                     |                   |                 |
| Clear Plastic Bottle - Natural (EK040P) AST2, WK13       | WK12,    | 29-Jul-2015 |                |                        |            | 29-Jul-2015         | 26-Aug-2015       | ✓               |
| EK055G: Ammonia as N by Discrete Analyser                |          |             |                |                        |            |                     |                   |                 |
| Clear Plastic Bottle - Sulfuric Acid (EK055G) AST2, WK13 | WK12,    | 29-Jul-2015 |                |                        |            | 30-Jul-2015         | 26-Aug-2015       | ✓               |
| EK057G: Nitrite as N by Discrete Analyser                |          |             |                |                        |            |                     |                   |                 |
| Clear Plastic Bottle - Natural (EK057G) AST2, WK13       | WK12,    | 29-Jul-2015 |                |                        |            | 29-Jul-2015         | 31-Jul-2015       | ✓               |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A    | Analyser |             |                |                        |            |                     |                   |                 |
| Clear Plastic Bottle - Sulfuric Acid (EK059G) AST2, WK13 | WK12,    | 29-Jul-2015 |                |                        |            | 30-Jul-2015         | 26-Aug-2015       | ✓               |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyse      |          |             |                |                        |            |                     |                   |                 |
| Clear Plastic Bottle - Sulfuric Acid (EK061G) AST2, WK13 | WK12,    | 29-Jul-2015 | 30-Jul-2015    | 26-Aug-2015            | ✓          | 30-Jul-2015         | 26-Aug-2015       | ✓               |
| EK067G: Total Phosphorus as P by Discrete Analyser       |          |             |                |                        |            |                     |                   |                 |
| Clear Plastic Bottle - Sulfuric Acid (EK067G) AST2, WK13 | WK12,    | 29-Jul-2015 | 30-Jul-2015    | 26-Aug-2015            | ✓          | 30-Jul-2015         | 26-Aug-2015       | ✓               |
| EK071G: Reactive Phosphorus as P by discrete analy       | ser      |             |                |                        |            |                     |                   |                 |
| Clear Plastic Bottle - Natural (EK071G) AST2, WK13       | WK12,    | 29-Jul-2015 |                |                        |            | 29-Jul-2015         | 31-Jul-2015       | ✓               |
| EP005: Total Organic Carbon (TOC)                        |          |             |                |                        |            |                     |                   |                 |
| Amber TOC Vial - Sulfuric Acid (EP005) AST2, WK13        | WK12,    | 29-Jul-2015 |                |                        |            | 30-Jul-2015         | 26-Aug-2015       | ✓               |

Page : 5 of 11

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                          |       |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time. |
|------------------------------------------------------------------------|-------|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------|
| Method                                                                 |       | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                 |
| Container / Client Sample ID(s)                                        |       |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation      |
| EP020: Oil and Grease (O&G)                                            |       |             |                |                        |            |                    |                    |                 |
| Amber Jar - Sulfuric Acid or Sodium Bisulfate (EP020)<br>AST2,<br>WK13 | WK12, | 29-Jul-2015 |                |                        |            | 03-Aug-2015        | 26-Aug-2015        | ✓               |
| EP033: C1 - C4 Hydrocarbon Gases                                       |       |             |                |                        |            |                    |                    |                 |
| Amber VOC Vial - Sulfuric Acid (EP033) AST2, WK13                      | WK12, | 29-Jul-2015 |                |                        |            | 30-Jul-2015        | 12-Aug-2015        | ✓               |
| EP080/071: Total Petroleum Hydrocarbons                                |       |             |                |                        |            |                    |                    |                 |
| Amber Glass Bottle - Unpreserved (EP071) AST2, WK13                    | WK12, | 29-Jul-2015 | 30-Jul-2015    | 05-Aug-2015            | ✓          | 31-Jul-2015        | 08-Sep-2015        | ✓               |
| EP074A: Monocyclic Aromatic Hydrocarbons                               |       |             |                |                        |            |                    |                    |                 |
| Amber VOC Vial - Sulfuric Acid (EP074) AST2, WK13                      | WK12, | 29-Jul-2015 | 30-Jul-2015    | 12-Aug-2015            | ✓          | 30-Jul-2015        | 12-Aug-2015        | ✓               |
| EP075(SIM)T: PAH Surrogates                                            |       |             |                |                        |            |                    |                    |                 |
| Amber Glass Bottle - Unpreserved (EP075(SIM)) AST2, WK13               | WK12, | 29-Jul-2015 | 30-Jul-2015    | 05-Aug-2015            | ✓          | 31-Jul-2015        | 08-Sep-2015        | ✓               |
| EP080/071: Total Petroleum Hydrocarbons                                |       |             |                |                        |            |                    |                    |                 |
| Amber VOC Vial - Sulfuric Acid (EP080) AST2, WK13                      | WK12, | 29-Jul-2015 | 30-Jul-2015    | 12-Aug-2015            | ✓          | 30-Jul-2015        | 12-Aug-2015        | ✓               |
| EP262: Ethanolamines                                                   |       |             |                |                        |            |                    |                    |                 |
| Amber Glass Bottle - Unpreserved (EP262) AST2, WK13                    | WK12, | 29-Jul-2015 |                |                        |            | 30-Jul-2015        | 05-Aug-2015        | ✓               |

Page 6 of 11

Work Order ES1527133 Amendment 1

PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                                          |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specific |
|--------------------------------------------------------|------------|----|---------|-----------|-------------------|-----------------|-------------------------------------------------------------------------|
| Quality Control Sample Type                            |            | С  | ount    |           | Rate (%)          |                 | Quality Control Specification                                           |
| Analytical Methods                                     | Method     | QC | Regular | Actual    | Expected          | Evaluation      |                                                                         |
| Laboratory Duplicates (DUP)                            |            |    |         |           |                   |                 |                                                                         |
| Alkalinity by PC Titrator                              | ED037-P    | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Ammonia as N by Discrete analyser                      | EK055G     | 2  | 11      | 18.18     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| C1 - C4 Gases                                          | EP033      | 2  | 16      | 12.50     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Chloride by Discrete Analyser                          | ED045G     | 2  | 13      | 15.38     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Chlorine                                               | EK010      | 1  | 3       | 33.33     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Conductivity by PC Titrator                            | EA010-P    | 1  | 3       | 33.33     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Dissolved Mercury by FIMS                              | EG035F     | 2  | 10      | 20.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 4       | 25.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 3       | 33.33     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Fluoride by PC Titrator                                | EK040P     | 2  | 19      | 10.53     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Major Cations - Dissolved                              | ED093F     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 2  | 14      | 14.29     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Nitrite as N by Discrete Analyser                      | EK057G     | 2  | 15      | 13.33     | 10.00             | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0  | 10      | 0.00      | 10.00             | )£              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| oH by PC Titrator                                      | EA005-P    | 2  | 15      | 13.33     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 2  | 17      | 11.76     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 3       | 33.33     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 2  | 11      | 18.18     | 10.00             | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 2  | 14      | 14.29     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Suspended Solids (High Level)                          | EA025H     | 2  | 17      | 11.76     | 9.52              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Total Dissolved Solids (High Level)                    | EA015H     | 2  | 17      | 11.76     | 10.00             | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 2  | 12      | 16.67     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Total Organic Carbon                                   | EP005      | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 2  | 17      | 11.76     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| TRH - Semivolatile Fraction                            | EP071      | 0  | 10      | 0.00      | 10.00             | x               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| TRH Volatiles/BTEX                                     | EP080      | 2  | 18      | 11.11     | 10.00             | 1               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Volatile Organic Compounds                             | EP074      | 2  | 17      | 11.76     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| _aboratory Control Samples (LCS)                       |            |    |         |           |                   |                 |                                                                         |
| Alkalinity by PC Titrator                              | ED037-P    | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| C1 - C4 Gases                                          | EP033      | 1  | 16      | 6.25      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Chloride by Discrete Analyser                          | ED045G     | 2  | 13      | 15.38     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Conductivity by PC Titrator                            | EA010-P    | 1  | 3       | 33.33     | 5.00              | <u>√</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 10      | 10.00     | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 20      | 5.00      | 5.00              |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |

Page : 7 of 11

Work Order : ES1527133 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                          |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency r | not within specification ; ✓ = Quality Control frequency within specification |
|--------------------------------------------------------|------------|----|---------|-----------|-------------------|-------------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type                            |            | Co | unt     |           | Rate (%)          |                   | Quality Control Specification                                                 |
| Analytical Methods                                     | Method     | QC | Regular | Actual    | Expected          | Evaluation        |                                                                               |
| Laboratory Control Samples (LCS) - Continued           |            |    |         |           |                   |                   |                                                                               |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 4       | 25.00     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 3       | 33.33     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Fluoride by PC Titrator                                | EK040P     | 1  | 19      | 5.26      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Major Cations - Dissolved                              | ED093F     | 1  | 20      | 5.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 14      | 7.14      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 15      | 6.67      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Oil and Grease                                         | EP020      | 1  | 20      | 5.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 10      | 10.00     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 17      | 5.88      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 3       | 33.33     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 11      | 9.09      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 14      | 7.14      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Suspended Solids (High Level)                          | EA025H     | 2  | 17      | 11.76     | 9.52              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Dissolved Solids (High Level)                    | EA015H     | 2  | 17      | 11.76     | 10.00             | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 3  | 12      | 25.00     | 15.00             | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Organic Carbon                                   | EP005      | 1  | 20      | 5.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 3  | 17      | 17.65     | 15.00             | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 10      | 10.00     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 18      | 5.56      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Volatile Organic Compounds                             | EP074      | 1  | 17      | 5.88      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Method Blanks (MB)                                     |            |    |         |           |                   |                   |                                                                               |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 11      | 9.09      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| C1 - C4 Gases                                          | EP033      | 1  | 16      | 6.25      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 13      | 7.69      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Chlorine                                               | EK010      | 1  | 3       | 33.33     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Conductivity by PC Titrator                            | EA010-P    | 1  | 3       | 33.33     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 10      | 10.00     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 20      | 5.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 4       | 25.00     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 3       | 33.33     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Fluoride by PC Titrator                                | EK040P     | 1  | 19      | 5.26      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Major Cations - Dissolved                              | ED093F     | 1  | 20      | 5.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 14      | 7.14      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 15      | 6.67      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Oil and Grease                                         | EP020      | 1  | 20      | 5.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 10      | 10.00     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 17      | 5.88      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 3       | 33.33     | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 11      | 9.09      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 14      | 7.14      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |

Page : 8 of 11

Work Order : ES1527133 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                         |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specif |
|-------------------------------------------------------|------------|----|---------|-----------|-------------------|-----------------|-----------------------------------------------------------------------|
| Quality Control Sample Type                           |            |    | ount    |           | Rate (%)          |                 | Quality Control Specification                                         |
| Analytical Methods                                    | Method     | ОС | Reaular | Actual    | Expected          | Evaluation      |                                                                       |
| Method Blanks (MB) - Continued                        |            |    |         |           |                   |                 |                                                                       |
| Suspended Solids (High Level)                         | EA025H     | 1  | 17      | 5.88      | 4.76              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| Total Dissolved Solids (High Level)                   | EA015H     | 1  | 17      | 5.88      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| otal Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 12      | 8.33      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| otal Organic Carbon                                   | EP005      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| otal Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 17      | 5.88      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| RH - Semivolatile Fraction                            | EP071      | 1  | 10      | 10.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| RH Volatiles/BTEX                                     | EP080      | 1  | 18      | 5.56      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| olatile Organic Compounds                             | EP074      | 1  | 17      | 5.88      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| latrix Spikes (MS)                                    |            |    |         |           |                   |                 |                                                                       |
| mmonia as N by Discrete analyser                      | EK055G     | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| 1 - C4 Gases                                          | EP033      | 1  | 16      | 6.25      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| hloride by Discrete Analyser                          | ED045G     | 1  | 13      | 7.69      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| issolved Mercury by FIMS                              | EG035F     | 1  | 10      | 10.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| issolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| thanolamines by LCMSMS                                | EP262      | 1  | 3       | 33.33     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| luoride by PC Titrator                                | EK040P     | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| litrite and Nitrate as N (NOx) by Discrete Analyser   | EK059G     | 1  | 14      | 7.14      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| itrite as N by Discrete Analyser                      | EK057G     | 1  | 15      | 6.67      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| AH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0  | 10      | 0.00      | 5.00              | ×               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| eactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 17      | 5.88      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| ilica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 3       | 33.33     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| tandard Anions -by IC (Extended Method)               | ED009-X    | 1  | 11      | 9.09      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| ulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 14      | 7.14      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| otal Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 12      | 8.33      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| otal Organic Carbon                                   | EP005      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| otal Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 17      | 5.88      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| RH - Semivolatile Fraction                            | EP071      | 0  | 10      | 0.00      | 5.00              | ×               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| RH Volatiles/BTEX                                     | EP080      | 1  | 18      | 5.56      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |
| olatile Organic Compounds                             | EP074      | 1  | 17      | 5.88      | 5.00              | 1               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                      |

Page : 9 of 11

Work Order : ES1527133 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                     | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pH by PC Titrator                                      | EA005-P  | WATER  | In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                              |
| Conductivity by PC Titrator                            | EA010-P  | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                         |
| Total Dissolved Solids (High Level)                    | EA015H   | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |
| Suspended Solids (High Level)                          | EA025H   | WATER  | In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of 'non-filterable' residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (2013) Schedule B(3)                                 |
| Standard Anions -by IC (Extended Method)               | ED009-X  | WATER  | In house: Referenced to APHA 4110. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                    |
| Alkalinity by PC Titrator                              | ED037-P  | WATER  | In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                       |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G   | WATER  | In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)                                       |
| Chloride by Discrete Analyser                          | ED045G   | WATER  | In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003                                                                                                  |
| Major Cations - Dissolved                              | ED093F   | WATER  | In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3)  Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3)  Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) |
| Disaster d Matala had OD MO. Quita A                   | 500004 5 | MATER  | Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                        |

Page : 10 of 11

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Analytical Methods                                   | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Metals by ICP-MS - Suite B                 | EG020B-F   | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                                                                                                        |
| Dissolved Mercury by FIMS                            | EG035F     | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) |
| Silica (Reactive) by Discrete Analyser               | EG052G     | WATER  | In house: Referenced to APHA 4500-SiO2 D: Under Acdic conditions reactive silicon combines with ammonium molybdate to form a yellow molybdosilicic acid complex. This is reduced by 1-amino-2-naphthol-4-sulfonic acid to a silicomolybdenum blue complex which is measured by discrete analyser at 670 nm. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                           |
| Chlorine                                             | EK010      | WATER  | In-house (DPD colourimetry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fluoride by PC Titrator                              | EK040P     | WATER  | In house: Referenced to APHA 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                               |
| Ammonia as N by Discrete analyser                    | EK055G     | WATER  | In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ammonium as N                                        | EK055G-NH4 | WATER  | Ammonium in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH and Temperature. Ammonia is determined by direct colorimetry by Discrete Analyser according to APHA 4500-NH3 G. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                  |
| Nitrite as N by Discrete Analyser                    | EK057G     | WATER  | In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nitrate as N by Discrete Analyser                    | EK058G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                          |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser  | EK059G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                      |
| Total Kjeldahl Nitrogen as N By Discrete Analyser    | EK061G     | WATER  | In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                           |
| Total Nitrogen as N (TKN + Nox) By Discrete Analyser | EK062G     | WATER  | In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total Phosphorus as P By Discrete<br>Analyser        | EK067G     | WATER  | In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |

Page : 11 of 11

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Analytical Methods                               | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reactive Phosphorus as P-By Discrete<br>Analyser | EK071G      | WATER  | In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                      |
| Ionic Balance by PCT DA and Turbi SO4 DA         | EN055 - PG  | WATER  | In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                        |
| Total Organic Carbon                             | EP005       | WATER  | In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                     |
| Oil and Grease                                   | EP020       | WATER  | In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM (2013) Schedule B(3)                                                                             |
| C1 - C4 Gases                                    | EP033       | WATER  | Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, US EPA - Region 1, EPA New England, July 2001. Automated static headspace, dual column GC/FID. A 12 mL sample is pipetted into a 20 mL headspace vial containing 3g of sodium chloride and sealed. Each sample is equilibrated with shaking at 40 degrees C for 10 minutes prior to analysis by GC/FID using a pair of PLOT columns of different polarity. |
| TRH - Semivolatile Fraction                      | EP071       | WATER  | USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                                                 |
| Volatile Organic Compounds                       | EP074       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                          |
| PAH/Phenols (GC/MS - SIM)                        | EP075(SIM)  | WATER  | USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                     |
| TRH Volatiles/BTEX                               | EP080       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                           |
| Ethanolamines by LCMSMS                          | EP262       | WATER  | In-house LC-MSMS: Benzoyl derivatives of target compounds are analysed by LC/MSMS in ESI Positive Mode.                                                                                                                                                                                                                                                                                                                                            |
| Preparation Methods                              | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TKN/TP Digestion                                 | EK061/EK067 | WATER  | APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                       |



#### **QUALITY CONTROL REPORT**

**Work Order** : **ES1527135** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ---- Date Samples Received : 29-Jul-2015
C-O-C number : ---- Date Analysis Commenced : 29-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 29-Jul-2015

Site : --- No. of samples received : 4
Quote number : --- No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

SYDNEY NSW. AUSTRALIA 2001

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



NATA Accredited Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Sanjeshni Jyoti Senior Chemist Volatiles Sydney Organics

Page : 2 of 4
Work Order : ES1527135

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1527135

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER          |                              |                                         |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |  |  |
|----------------------------|------------------------------|-----------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|--|--|
| Laboratory sample ID       | Client sample ID             | Method: Compound                        | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |
| <b>EA010P: Conductivit</b> | y by PC Titrator (QC Lot: 16 |                                         |            |                                   |       |                 |                  |         |                     |  |  |
| EN1512466-001              | Anonymous                    | EA010-P: Electrical Conductivity @ 25°C |            | 1                                 | μS/cm | 3870            | 3640             | 6.20    | 0% - 20%            |  |  |
| EK084: Un-ionized Hy       | drogen Sulfide (QC Lot: 16   | 67458)                                  |            |                                   |       |                 |                  |         |                     |  |  |
| ES1527135-001              | AST2                         | EK084: Unionized Hydrogen Sulfide       |            | 0.1                               | mg/L  | <0.1            | <0.1             | 0.00    | 0% - 20%            |  |  |
| EP080: BTEXN (QC I         | ot: 167341)                  |                                         |            |                                   |       |                 |                  |         |                     |  |  |
| ES1527135-002              | WK12                         | EP080: Benzene                          | 71-43-2    | 1                                 | μg/L  | <1              | <1               | 0.00    | No Limit            |  |  |
|                            |                              | EP080: Ethylbenzene                     | 100-41-4   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |
|                            |                              | EP080: meta- & para-Xylene              | 108-38-3   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |
|                            |                              |                                         | 106-42-3   |                                   |       |                 |                  |         |                     |  |  |
|                            |                              | EP080: ortho-Xylene                     | 95-47-6    | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |
|                            |                              | EP080: Toluene                          | 108-88-3   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |
|                            |                              | EP080: Naphthalene                      | 91-20-3    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit            |  |  |

Page : 4 of 4 Work Order : ES1527135

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            |     |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|-----------------------------------------------------|------------|-----|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                     |            |     |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound                                    | CAS Number | LOR | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |
| EA010P: Conductivity by PC Titrator (QCLot: 167392) |            |     |       |                   |                                       |                    |          |            |  |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1   | μS/cm | <1                | 2000 μS/cm                            | 98.7               | 95       | 113        |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 167458)  |            |     |       |                   |                                       |                    |          |            |  |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1 | mg/L  | <0.1              | 0.05 mg/L                             | 102                | 72       | 126        |  |
| EP080: BTEXN (QCLot: 167341)                        |            |     |       |                   |                                       |                    |          |            |  |
| EP080: Benzene                                      | 71-43-2    | 1   | μg/L  | <1                | 10 μg/L                               | 79.1               | 70       | 124        |  |
| EP080: Ethylbenzene                                 | 100-41-4   | 2   | μg/L  | <2                | 10 μg/L                               | 80.9               | 70       | 120        |  |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2   | μg/L  | <2                | 10 μg/L                               | 78.5               | 69       | 121        |  |
|                                                     | 106-42-3   |     |       |                   |                                       |                    |          |            |  |
| EP080: Naphthalene                                  | 91-20-3    | 5   | μg/L  | <5                | 10 μg/L                               | 84.8               | 70       | 124        |  |
| EP080: ortho-Xylene                                 | 95-47-6    | 2   | μg/L  | <2                | 10 μg/L                               | 84.0               | 72       | 122        |  |
| EP080: Toluene                                      | 108-88-3   | 2   | μg/L  | <2                | 10 μg/L                               | 76.9               | 65       | 129        |  |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  | Matrix Spike (MS) Report   |            |               |                  |            |           |
|----------------------|------------------|----------------------------|------------|---------------|------------------|------------|-----------|
|                      |                  |                            |            | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration | MS               | Low        | High      |
| EP080: BTEXN (Q      | CLot: 167341)    |                            |            |               |                  |            |           |
| ES1527135-002        | WK12             | EP080: Benzene             | 71-43-2    | 25 μg/L       | 76.4             | 70         | 130       |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L       | 83.2             | 70         | 130       |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L       | 76.9             | 70         | 130       |
|                      |                  |                            | 106-42-3   |               |                  |            |           |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L       | 81.8             | 70         | 130       |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L       | 84.4             | 70         | 130       |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L       | 74.9             | 70         | 130       |



## **QA/QC Compliance Assessment for DQO Reporting**

Work Order : **ES1527135** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 29-Jul-2015

 Site
 :-- Issue Date
 : 29-Jul-2015

Sampler : CAROLINA SARDELLA No. of samples received : 4
Order number : ---- No. of samples analysed : 4

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 ES1527135 Work Order

PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      | Count Rate (%) Qualit |         | : (%)  | Quality Control Specification |                                                  |
|----------------------------------|-----------------------|---------|--------|-------------------------------|--------------------------------------------------|
| Method                           | QC                    | Regular | Actual | Expected                      |                                                  |
| Laboratory Duplicates (DUP)      |                       |         |        |                               |                                                  |
| Un-ionized Hydrogen Sulfide      | 0                     | 4       | 0.00   | 10.00                         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |                       |         |        |                               |                                                  |
| Un-ionized Hydrogen Sulfide      | 0                     | 4       | 0.00   | 5.00                          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |                       |         |        |                               |                                                  |
| Un-ionized Hydrogen Sulfide      | 0                     | 4       | 0.00   | 5.00                          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

#### **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER                                    |       |             |                          |                    | Evaluation | : × = Holding time | breach; ✓ = Within | n holding time. |
|--------------------------------------------------|-------|-------------|--------------------------|--------------------|------------|--------------------|--------------------|-----------------|
| Method                                           |       | Sample Date | Extraction / Preparation |                    |            | Analysis           |                    |                 |
| Container / Client Sample ID(s)                  |       |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis   | Evaluation      |
| EA010P: Conductivity by PC Titrator              |       |             |                          |                    |            |                    |                    |                 |
| Clear Plastic Bottle - Natural (EA010-P)<br>AST2 |       | 29-Jul-2015 |                          |                    |            | 29-Jul-2015        | 26-Aug-2015        | <b>✓</b>        |
| EP080: BTEXN                                     |       |             |                          |                    |            |                    |                    |                 |
| Amber VOC Vial - Sulfuric Acid (EP080)           |       |             |                          |                    |            |                    |                    |                 |
| AST2,                                            | WK12, | 29-Jul-2015 | 29-Jul-2015              | 12-Aug-2015        | ✓          | 29-Jul-2015        | 12-Aug-2015        | ✓               |
| WK13,                                            | QA11  |             |                          |                    |            |                    |                    |                 |

Page : 3 of 4 Work Order ES1527135

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    | Evaluation: ▼ = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification |    |         |        |          |            |                                                  |  |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------|----|---------|--------|----------|------------|--------------------------------------------------|--|--|--|
| Quality Control Sample Type      |                                                                                                                        | C  | ount    |        | Rate (%) |            | Quality Control Specification                    |  |  |  |
| Analytical Methods               | Method                                                                                                                 | QC | Regular | Actual | Expected | Evaluation |                                                  |  |  |  |
| Laboratory Duplicates (DUP)      |                                                                                                                        |    |         |        |          |            |                                                  |  |  |  |
| Conductivity by PC Titrator      | EA010-P                                                                                                                | 1  | 2       | 50.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| TRH Volatiles/BTEX               | EP080                                                                                                                  | 1  | 4       | 25.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Un-ionized Hydrogen Sulfide      | EK084                                                                                                                  | 0  | 4       | 0.00   | 10.00    | 3£         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Laboratory Control Samples (LCS) |                                                                                                                        |    |         |        |          |            |                                                  |  |  |  |
| Conductivity by PC Titrator      | EA010-P                                                                                                                | 1  | 2       | 50.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| TRH Volatiles/BTEX               | EP080                                                                                                                  | 1  | 4       | 25.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Un-ionized Hydrogen Sulfide      | EK084                                                                                                                  | 0  | 4       | 0.00   | 5.00     | 3c         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Method Blanks (MB)               |                                                                                                                        |    |         |        |          |            |                                                  |  |  |  |
| Conductivity by PC Titrator      | EA010-P                                                                                                                | 1  | 2       | 50.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| TRH Volatiles/BTEX               | EP080                                                                                                                  | 1  | 4       | 25.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Un-ionized Hydrogen Sulfide      | EK084                                                                                                                  | 0  | 4       | 0.00   | 5.00     | <b>32</b>  | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |
| Matrix Spikes (MS)               |                                                                                                                        |    |         |        |          |            |                                                  |  |  |  |
| TRH Volatiles/BTEX               | EP080                                                                                                                  | 1  | 4       | 25.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |

Page : 4 of 4
Work Order : ES1527135

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                             |
|-----------------------------|---------|--------|-----------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method       |
|                             |         |        | is compliant with NEPM (2013) Schedule B(3)                                                                     |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions |
|                             |         |        | by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)           |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                 |
|                             |         |        | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is    |
|                             |         |        | equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is     |
|                             |         |        | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                 |



#### **QUALITY CONTROL REPORT**

**Work Order** : **ES1528258** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ---Date Samples Received: 13-Aug-2015C-O-C number: ---Date Analysis Commenced: 13-Aug-2015

Sampler : CAROLINA SARDELLA Issue Date : 14-Aug-2015

Site : ---- No. of samples received : 3

Quote number : ---- No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

**NATA Accredited** 

Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

SYDNEY NSW. AUSTRALIA 2001

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Pabi Subba Senior Organic Chemist Sydney Organics

Page : 2 of 4
Work Order : ES1528258

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1528258

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER             |                              |                                         |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |  |
|-------------------------------|------------------------------|-----------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID          | Client sample ID             | Method: Compound                        | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EA010P: Conductivit           | y by PC Titrator (QC Lot: 18 |                                         |            |                                   |       |                 |                  |         |                     |  |
| ES1528258-001                 | AST2                         | EA010-P: Electrical Conductivity @ 25°C |            | 1                                 | μS/cm | 9020            | 8580             | 5.00    | 0% - 20%            |  |
| EK084: Un-ionized H           | ydrogen Sulfide (QC Lot: 18  |                                         |            |                                   |       |                 |                  |         |                     |  |
| ES1528258-001                 | AST2                         | EK084: Unionized Hydrogen Sulfide       |            | 0.1                               | mg/L  | <0.1            | <0.1             | 0.00    | 0% - 20%            |  |
| EP080: BTEXN (QC Lot: 181843) |                              |                                         |            |                                   |       |                 |                  |         |                     |  |
| ES1528258-002                 | WK12                         | EP080: Benzene                          | 71-43-2    | 1                                 | μg/L  | <1              | <1               | 0.00    | No Limit            |  |
|                               |                              | EP080: Ethylbenzene                     | 100-41-4   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |
|                               |                              | EP080: meta- & para-Xylene              | 108-38-3   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |
|                               |                              |                                         | 106-42-3   |                                   |       |                 |                  |         |                     |  |
|                               |                              | EP080: ortho-Xylene                     | 95-47-6    | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |
|                               |                              | EP080: Toluene                          | 108-88-3   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |
|                               |                              | EP080: Naphthalene                      | 91-20-3    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit            |  |



Page : 4 of 4 Work Order : ES1528258

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            |     |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |
|-----------------------------------------------------|------------|-----|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|
|                                                     |            |     |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound                                    | CAS Number | LOR | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |  |
| EA010P: Conductivity by PC Titrator (QCLot: 182154) |            |     |       |                   |                                       |                    |          |            |  |  |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1   | μS/cm | <1                | 2000 μS/cm                            | 108                | 95       | 113        |  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 183206)  |            |     |       |                   |                                       |                    |          |            |  |  |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1 | mg/L  | <0.1              | 0.05 mg/L                             | 116                | 72       | 126        |  |  |
| EP080: BTEXN (QCLot: 181843)                        |            |     |       |                   |                                       |                    |          |            |  |  |
| EP080: Benzene                                      | 71-43-2    | 1   | μg/L  | <1                | 10 μg/L                               | 86.7               | 70       | 124        |  |  |
| EP080: Ethylbenzene                                 | 100-41-4   | 2   | μg/L  | <2                | 10 μg/L                               | 96.2               | 70       | 120        |  |  |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2   | μg/L  | <2                | 10 μg/L                               | 95.7               | 69       | 121        |  |  |
|                                                     | 106-42-3   |     |       |                   |                                       |                    |          |            |  |  |
| EP080: Naphthalene                                  | 91-20-3    | 5   | μg/L  | <5                | 10 μg/L                               | 91.9               | 70       | 124        |  |  |
| EP080: ortho-Xylene                                 | 95-47-6    | 2   | μg/L  | <2                | 10 μg/L                               | 92.4               | 72       | 122        |  |  |
| EP080: Toluene                                      | 108-88-3   | 2   | μg/L  | <2                | 10 μg/L                               | 93.6               | 65       | 129        |  |  |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                            |            | Matrix Spike (MS) Report |                  |            |           |  |  |
|----------------------|------------------|----------------------------|------------|--------------------------|------------------|------------|-----------|--|--|
|                      |                  |                            |            | Spike                    | SpikeRecovery(%) | Recovery L | imits (%) |  |  |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration            | MS               | Low        | High      |  |  |
| EP080: BTEXN (QC     | CLot: 181843)    |                            |            |                          |                  |            |           |  |  |
| ES1528258-002        | WK12             | EP080: Benzene             | 71-43-2    | 25 μg/L                  | 85.2             | 70         | 130       |  |  |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L                  | 96.4             | 70         | 130       |  |  |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L                  | 95.4             | 70         | 130       |  |  |
|                      |                  |                            | 106-42-3   |                          |                  |            |           |  |  |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L                  | 93.1             | 70         | 130       |  |  |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L                  | 92.1             | 70         | 130       |  |  |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L                  | 90.1             | 70         | 130       |  |  |



# **QA/QC Compliance Assessment for DQO Reporting**

Work Order : **ES1528258** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 13-Aug-2015

 Site
 :-- Issue Date
 : 14-Aug-2015

Sampler : CAROLINA SARDELLA No. of samples received : 3
Order number : ---- No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

### **Outliers : Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4
Work Order : ES1528258

Client : PARSONS BRINCKERHOFF AUST P/L

Project · 2268523B



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      | Count |         | Rate   | e (%)    | Quality Control Specification                    |
|----------------------------------|-------|---------|--------|----------|--------------------------------------------------|
| Method                           | QC    | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |       |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0     | 3       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |       |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0     | 3       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |       |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0     | 3       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

### **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER |             | Evaluation               | : × = Holding time breach ; ✓ = Within holding time. |
|---------------|-------------|--------------------------|------------------------------------------------------|
| Mathead       | Commis Data | Extraction / Proporation | Analysis                                             |

| Method Service Control of the Contro |             | Ex             | traction / Preparation |            | Analysis      |                  |            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|------------------------|------------|---------------|------------------|------------|--|
| Container / Client Sample ID(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Date extracted | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation |  |
| EA010P: Conductivity by PC Titrator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                |                        |            |               |                  |            |  |
| Clear Plastic Bottle - Natural (EA010-P) AST2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12-Aug-2015 |                |                        |            | 13-Aug-2015   | 09-Sep-2015      | <b>√</b>   |  |
| EP080S: TPH(V)/BTEX Surrogates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                |                        |            |               |                  |            |  |
| Amber VOC Vial - Sulfuric Acid (EP080)  AST2, WK12,  WK13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12-Aug-2015 | 13-Aug-2015    | 26-Aug-2015            | ✓          | 13-Aug-2015   | 26-Aug-2015      | ✓          |  |

Page : 3 of 4 Work Order ES1528258

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    |         |    |         | Evaluation | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specification |
|----------------------------------|---------|----|---------|------------|-------------------|-----------------|------------------------------------------------------------------------------|
| Quality Control Sample Type      |         | C  | ount    |            | Rate (%)          |                 | Quality Control Specification                                                |
| Analytical Methods               | Method  | ОC | Reaular | Actual     | Expected          | Evaluation      |                                                                              |
| Laboratory Duplicates (DUP)      |         |    |         |            |                   |                 |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 3       | 33.33      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 3       | 0.00       | 10.00             | £               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Laboratory Control Samples (LCS) |         |    |         |            |                   |                 |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 3       | 33.33      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 3       | 0.00       | 5.00              | <b>s</b> c      | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Method Blanks (MB)               |         |    |         |            |                   |                 |                                                                              |
| Conductivity by PC Titrator      | EA010-P | 1  | 1       | 100.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 3       | 33.33      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 3       | 0.00       | 5.00              | <b>se</b>       | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Matrix Spikes (MS)               |         |    |         |            |                   |                 |                                                                              |
| TRH Volatiles/BTEX               | EP080   | 1  | 3       | 33.33      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |

Page : 4 of 4 Work Order : ES1528258

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                    |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                    |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3) |



## **QUALITY CONTROL REPORT**

E-mail

: ES1528259 Work Order Page : 1 of 17

: 1 Amendment

E-mail

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : GPO BOX 5394

SYDNEY NSW, AUSTRALIA 2001

: SDaykin@pb.com.au : loren.schiavon@alsglobal.com Telephone : +61 02 92725100 Telephone : +61 2 8784 8503 Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Date Samples Received Order number : 13-Aug-2015 **Date Analysis Commenced** : 13-Aug-2015 C-O-C number Issue Date : 02-Sep-2015 Sampler

No. of samples received : 3 Site Quote number No. of samples analysed : 3 : ----

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Page : 2 of 17

Work Order : ES1528259 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC



ed S

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories       | Position                 | Accreditation Category |
|-------------------|--------------------------|------------------------|
| Ankit Joshi       | Inorganic Chemist        | Sydney Inorganics      |
| Ashesh Patel      | Inorganic Chemist        | Sydney Inorganics      |
| Lana Nguyen       | Senior LCMS Chemist      | Sydney Organics        |
| Pabi Subba        | Senior Organic Chemist   | Sydney Organics        |
| Raymond Commodore | Instrument Chemist       | Sydney Inorganics      |
| Sanjeshni Jyoti   | Senior Chemist Volatiles | Sydney Organics        |

Page : 3 of 17

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER    |                          |                                          |             | Laboratory Duplicate (DUP) Report |         |                 |                  |         |                     |  |  |
|----------------------|--------------------------|------------------------------------------|-------------|-----------------------------------|---------|-----------------|------------------|---------|---------------------|--|--|
| Laboratory sample ID | Client sample ID         | Method: Compound                         | CAS Number  | LOR                               | Unit    | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |
| EA005P: pH by PC     | Titrator (QC Lot: 18231  | 4)                                       |             |                                   |         |                 |                  |         |                     |  |  |
| ES1528234-001        | Anonymous                | EA005-P: pH Value                        |             | 0.01                              | pH Unit | 7.38            | 7.40             | 0.271   | 0% - 20%            |  |  |
| ES1528259-001        | AST2                     | EA005-P: pH Value                        |             | 0.01                              | pH Unit | 9.13            | 9.12             | 0.110   | 0% - 20%            |  |  |
| EA010P: Conductiv    | vity by PC Titrator (QC  | Lot: 182313)                             |             |                                   |         |                 |                  |         |                     |  |  |
| ES1528234-001        | Anonymous                | EA010-P: Electrical Conductivity @ 25°C  |             | 1                                 | μS/cm   | 1860            | 1870             | 0.571   | 0% - 20%            |  |  |
| ES1528259-001        | AST2                     | EA010-P: Electrical Conductivity @ 25°C  |             | 1                                 | μS/cm   | 8790            | 8800             | 0.121   | 0% - 20%            |  |  |
| EA015: Total Disso   | olved Solids (QC Lot: 18 | 36094)                                   |             |                                   |         |                 |                  |         |                     |  |  |
| ES1528245-001        | Anonymous                | EA015H: Total Dissolved Solids @180°C    |             | 10                                | mg/L    | 772             | 942              | 19.8    | 0% - 20%            |  |  |
| EW1511333-005        | Anonymous                | EA015H: Total Dissolved Solids @180°C    |             | 10                                | mg/L    | 1540            | 1500             | 2.63    | 0% - 20%            |  |  |
| EA025: Suspended     | Solids (QC Lot: 18609    | 5)                                       |             |                                   |         |                 |                  |         |                     |  |  |
| ES1528245-001        | Anonymous                | EA025H: Suspended Solids (SS)            |             | 5                                 | mg/L    | 14              | 14               | 0.00    | No Limit            |  |  |
| EW1511333-005        | Anonymous                | EA025H: Suspended Solids (SS)            |             | 5                                 | mg/L    | 16              | 15               | 0.00    | No Limit            |  |  |
| ED009: Anions (C     | C Lot: 184098)           |                                          |             |                                   |         |                 |                  |         |                     |  |  |
| ES1528155-001        | Anonymous                | ED009-X: Chloride                        | 16887-00-6  | 0.1                               | mg/L    | 189             | 187              | 0.950   | 0% - 20%            |  |  |
| ES1528205-002        | Anonymous                | ED009-X: Chloride                        | 16887-00-6  | 0.1                               | mg/L    | 31.7            | 31.8             | 0.390   | 0% - 20%            |  |  |
| ED037P: Alkalinity   | by PC Titrator (QC Lot   |                                          |             |                                   |         |                 |                  |         |                     |  |  |
| ES1528234-001        | Anonymous                | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1                                 | mg/L    | 335             | 326              | 2.77    | 0% - 20%            |  |  |
|                      |                          | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1                                 | mg/L    | <1              | <1               | 0.00    | No Limit            |  |  |
|                      |                          | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1                                 | mg/L    | <1              | <1               | 0.00    | No Limit            |  |  |
|                      |                          | ED037-P: Total Alkalinity as CaCO3       |             | 1                                 | mg/L    | 335             | 326              | 2.77    | 0% - 20%            |  |  |
| ES1528259-001        | AST2                     | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1                                 | mg/L    | 3100            | 3080             | 0.810   | 0% - 20%            |  |  |
|                      |                          | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1                                 | mg/L    | 700             | 700              | 0.00    | 0% - 20%            |  |  |
|                      |                          | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1                                 | mg/L    | <1              | <1               | 0.00    | No Limit            |  |  |
|                      |                          | ED037-P: Total Alkalinity as CaCO3       |             | 1                                 | mg/L    | 3800            | 3780             | 0.660   | 0% - 20%            |  |  |
| ED041G: Sulfate (T   | urbidimetric) as SO4 2-  | by DA (QC Lot: 182384)                   |             |                                   |         |                 |                  |         |                     |  |  |
| ES1528234-006        | Anonymous                | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1                                 | mg/L    | 350             | 350              | 0.00    | 0% - 20%            |  |  |
| ES1528234-011        | Anonymous                | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1                                 | mg/L    | 38              | 38               | 0.00    | 0% - 20%            |  |  |
| ED045G: Chloride     | by Discrete Analyser (C  | QC Lot: 182385)                          |             |                                   |         |                 |                  |         |                     |  |  |
| ES1528234-006        | Anonymous                | ED045G: Chloride                         | 16887-00-6  | 1                                 | mg/L    | 217             | 218              | 0.00    | 0% - 20%            |  |  |
| ES1528234-011        | Anonymous                | ED045G: Chloride                         | 16887-00-6  | 1                                 | mg/L    | 11              | 11               | 0.00    | 0% - 50%            |  |  |
| ED093F: Dissolved    | Major Cations (QC Lot    | : 183349)                                |             |                                   |         |                 |                  |         |                     |  |  |
| ES1528173-001        | Anonymous                | ED093F: Calcium                          | 7440-70-2   | 1                                 | mg/L    | 109             | 105              | 3.82    | 0% - 20%            |  |  |
|                      |                          | ED093F: Magnesium                        | 7439-95-4   | 1                                 | mg/L    | 61              | 59               | 3.92    | 0% - 20%            |  |  |
|                      |                          | ED093F: Potassium                        | 7440-09-7   | 1                                 | mg/L    | 2               | 2                | 0.00    | No Limit            |  |  |
|                      |                          | ED093F: Sodium                           | 7440-23-5   | 1                                 | mg/L    | 71              | 71               | 0.00    | 0% - 20%            |  |  |

Page : 4 of 17

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                      |            | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |
|----------------------|-----------------------|----------------------|------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound     | CAS Number | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| ED093F: Dissolved    | Major Cations (QC Lot |                      |            |                                   |      |                 |                  |         |                     |
| ES1528283-001        | Anonymous             | ED093F: Calcium      | 7440-70-2  | 1                                 | mg/L | 107             | 107              | 0.00    | 0% - 20%            |
|                      |                       | ED093F: Magnesium    | 7439-95-4  | 1                                 | mg/L | 181             | 174              | 4.13    | 0% - 20%            |
|                      |                       | ED093F: Potassium    | 7440-09-7  | 1                                 | mg/L | 34              | 33               | 0.00    | 0% - 20%            |
|                      |                       | ED093F: Sodium       | 7440-23-5  | 1                                 | mg/L | 1890            | 1860             | 1.90    | 0% - 20%            |
| EG020F: Dissolved I  | Metals by ICP-MS (QC  | Lot: 183347)         |            |                                   |      |                 |                  |         |                     |
| ES1528173-001        | Anonymous             | EG020A-F: Cadmium    | 7440-43-9  | 0.0001                            | mg/L | <0.0001         | <0.0001          | 0.00    | No Limit            |
|                      |                       | EG020A-F: Antimony   | 7440-36-0  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Arsenic    | 7440-38-2  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Barium     | 7440-39-3  | 0.001                             | mg/L | 0.202           | 0.201            | 0.00    | 0% - 20%            |
|                      |                       | EG020A-F: Beryllium  | 7440-41-7  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Chromium   | 7440-47-3  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Cobalt     | 7440-48-4  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Copper     | 7440-50-8  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Lead       | 7439-92-1  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Manganese  | 7439-96-5  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Molybdenum | 7439-98-7  | 0.001                             | mg/L | 0.001           | 0.001            | 0.00    | No Limit            |
|                      |                       | EG020A-F: Nickel     | 7440-02-0  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Tin        | 7440-31-5  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Zinc       | 7440-66-6  | 0.005                             | mg/L | 0.030           | 0.029            | 3.55    | No Limit            |
|                      |                       | EG020A-F: Aluminium  | 7429-90-5  | 0.01                              | mg/L | <0.01           | <0.01            | 0.00    | No Limit            |
|                      |                       | EG020A-F: Selenium   | 7782-49-2  | 0.01                              | mg/L | <0.01           | <0.01            | 0.00    | No Limit            |
|                      |                       | EG020A-F: Vanadium   | 7440-62-2  | 0.01                              | mg/L | <0.01           | <0.01            | 0.00    | No Limit            |
|                      |                       | EG020A-F: Boron      | 7440-42-8  | 0.05                              | mg/L | 0.06            | 0.06             | 0.00    | No Limit            |
|                      |                       | EG020A-F: Iron       | 7439-89-6  | 0.05                              | mg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                       | EG020A-F: Bromine    | 7726-95-6  | 0.1                               | mg/L | 0.6             | 0.6              | 0.00    | No Limit            |
| ES1528283-001        | Anonymous             | EG020A-F: Cadmium    | 7440-43-9  | 0.0001                            | mg/L | <0.0001         | <0.0001          | 0.00    | No Limit            |
|                      | , , , , , ,           | EG020A-F: Antimony   | 7440-36-0  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Arsenic    | 7440-38-2  | 0.001                             | mg/L | 0.024           | 0.023            | 5.25    | 0% - 20%            |
|                      |                       | EG020A-F: Barium     | 7440-39-3  | 0.001                             | mg/L | 0.168           | 0.173            | 2.91    | 0% - 20%            |
|                      |                       | EG020A-F: Beryllium  | 7440-41-7  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Chromium   | 7440-47-3  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Cobalt     | 7440-48-4  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Copper     | 7440-50-8  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Lead       | 7439-92-1  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Manganese  | 7439-96-5  | 0.001                             | mg/L | 0.456           | 0.464            | 1.62    | 0% - 20%            |
|                      |                       | EG020A-F: Molybdenum | 7439-98-7  | 0.001                             | mg/L | 0.009           | 0.009            | 0.00    | No Limit            |
|                      |                       | EG020A-F: Nickel     | 7440-02-0  | 0.001                             | mg/L | 0.025           | 0.024            | 7.40    | 0% - 20%            |
|                      |                       | EG020A-F: Tin        | 7440-31-5  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Zinc       | 7440-66-6  | 0.005                             | mg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                       | EG020A-F: Aluminium  | 7429-90-5  | 0.01                              | mg/L | <0.01           | <0.01            | 0.00    | No Limit            |
| I                    | T                     | LG020A-1 . Aluminium | 1720 00-0  | 0.01                              | g/L  | -5.01           | -0.01            | 0.00    | 140 Ellilli         |

Page : 5 of 17

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                          |                                      |            | Laboratory Duplicate (DUP) Report |                                       |                 |                  |         |                     |  |  |
|----------------------|--------------------------|--------------------------------------|------------|-----------------------------------|---------------------------------------|-----------------|------------------|---------|---------------------|--|--|
| Laboratory sample ID | Client sample ID         | Method: Compound                     | CAS Number | LOR                               | Unit                                  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |
| EG020F: Dissolved    | Metals by ICP-MS (QC I   | Lot: 183347) - continued             |            |                                   |                                       |                 |                  |         |                     |  |  |
| ES1528283-001        | Anonymous                | EG020A-F: Selenium                   | 7782-49-2  | 0.01                              | mg/L                                  | <0.01           | <0.01            | 0.00    | No Limit            |  |  |
|                      |                          | EG020A-F: Vanadium                   | 7440-62-2  | 0.01                              | mg/L                                  | <0.01           | <0.01            | 0.00    | No Limit            |  |  |
|                      |                          | EG020A-F: Boron                      | 7440-42-8  | 0.05                              | mg/L                                  | 0.10            | 0.09             | 0.00    | No Limit            |  |  |
|                      |                          | EG020A-F: Iron                       | 7439-89-6  | 0.05                              | mg/L                                  | 3.07            | 3.05             | 0.670   | 0% - 20%            |  |  |
|                      |                          | EG020A-F: Bromine                    | 7726-95-6  | 0.1                               | mg/L                                  | 8.2             | 8.3              | 0.00    | 0% - 20%            |  |  |
| EG020F: Dissolved    | Metals by ICP-MS (QC I   | Lot: 183348)                         |            |                                   |                                       |                 |                  |         |                     |  |  |
| ES1528173-001        | Anonymous                | EG020B-F: Strontium                  | 7440-24-6  | 0.001                             | mg/L                                  | 0.896           | 0.902            | 0.701   | 0% - 20%            |  |  |
|                      |                          | EG020B-F: Uranium                    | 7440-61-1  | 0.001                             | mg/L                                  | 0.002           | 0.002            | 0.00    | No Limit            |  |  |
| ES1528283-001        | Anonymous                | EG020B-F: Strontium                  | 7440-24-6  | 0.001                             | mg/L                                  | 1.51            | 1.57             | 3.74    | 0% - 20%            |  |  |
|                      |                          | EG020B-F: Uranium                    | 7440-61-1  | 0.001                             | mg/L                                  | 0.001           | 0.002            | 0.00    | No Limit            |  |  |
| EG035F: Dissolved    | Mercury by FIMS (QC L    | .ot: 183350)                         |            |                                   |                                       |                 |                  |         |                     |  |  |
| ES1528202-001        | Anonymous                | EG035F: Mercury                      | 7439-97-6  | 0.0001                            | mg/L                                  | <0.1            | <0.0001          | 0.00    | No Limit            |  |  |
| ES1528283-001        | Anonymous                | EG035F: Mercury                      | 7439-97-6  | 0.0001                            | mg/L                                  | <0.0001         | <0.0001          | 0.00    | No Limit            |  |  |
| EG052G: Silica by D  | Discrete Analyser (QC L  | ot: 182379)                          |            |                                   | _                                     |                 |                  |         |                     |  |  |
| ES1528190-004        | Anonymous                | EG052G: Reactive Silica              |            | 0.05                              | mg/L                                  | 0.39            | 0.35             | 9.97    | No Limit            |  |  |
| EK010/011: Chlorine  | ,                        |                                      |            |                                   | 3                                     |                 |                  |         |                     |  |  |
| ES1527962-001        | Anonymous                | EK010: Chlorine - Free               |            | 0.2                               | mg/L                                  | <0.2            | <0.2             | 0.00    | No Limit            |  |  |
| 201027002 001        | 7 thonymous              | EK010: Chlorine - Total Residual     |            | 0.2                               | mg/L                                  | <200            | <0.2             | 0.00    | No Limit            |  |  |
| ES1528374-001        | Anonymous                | EK010: Chlorine - Free               |            | 0.2                               | mg/L                                  | <0.2            | <0.2             | 0.00    | No Limit            |  |  |
|                      | ,,                       | EK010: Chlorine - Total Residual     |            | 0.2                               | mg/L                                  | <0.2            | <0.2             | 0.00    | No Limit            |  |  |
| EK040P: Eluorida b   | y PC Titrator (QC Lot: 1 |                                      |            |                                   | 3                                     |                 |                  |         |                     |  |  |
| ES1528259-001        | AST2                     | EK040P: Fluoride                     | 16984-48-8 | 0.1                               | mg/L                                  | 1.7             | 1.7              | 0.00    | 0% - 50%            |  |  |
|                      | -                        |                                      | 10304 40 0 | 0.1                               | mg/L                                  | 1.7             | 1.7              | 0.00    | 070 0070            |  |  |
|                      | as N by Discrete Analys  |                                      | 7004 44 7  | 0.04                              |                                       | 0.04            | 0.04             | 0.00    | No. Limit           |  |  |
| ES1528259-001        | AST2                     | EK055G: Ammonia as N                 | 7664-41-7  | 0.01                              | mg/L                                  | 0.04            | 0.04             | 0.00    | No Limit            |  |  |
|                      | N by Discrete Analyser   |                                      |            |                                   |                                       |                 |                  |         |                     |  |  |
| ES1528234-011        | Anonymous                | EK057G: Nitrite as N                 | 14797-65-0 | 0.01                              | mg/L                                  | <0.01           | <0.01            | 0.00    | No Limit            |  |  |
|                      | is Nitrate as N (NOx) by | Discrete Analyser (QC Lot: 185359)   |            |                                   |                                       |                 |                  |         |                     |  |  |
| ES1528259-001        | AST2                     | EK059G: Nitrite + Nitrate as N       |            | 0.01                              | mg/L                                  | <0.01           | <0.01            | 0.00    | No Limit            |  |  |
| EK061G: Total Kjeld  | dahl Nitrogen By Discret | te Analyser (QC Lot: 185509)         |            |                                   |                                       |                 |                  |         |                     |  |  |
| ES1527962-001        | Anonymous                | EK061G: Total Kjeldahl Nitrogen as N |            | 0.1                               | mg/L                                  | 500             | 0.3              | 34.0    | No Limit            |  |  |
| ES1528271-001        | Anonymous                | EK061G: Total Kjeldahl Nitrogen as N |            | 0.1                               | mg/L                                  | 0.5             | 0.5              | 0.00    | No Limit            |  |  |
| EK067G: Total Phos   | sphorus as P by Discrete | e Analyser (QC Lot: 185510)          |            |                                   |                                       |                 |                  |         |                     |  |  |
| ES1527962-001        | Anonymous                | EK067G: Total Phosphorus as P        |            | 0.01                              | mg/L                                  | 60              | 0.04             | 22.2    | No Limit            |  |  |
| ES1528271-001        | Anonymous                | EK067G: Total Phosphorus as P        |            | 0.01                              | mg/L                                  | 0.09            | 0.09             | 0.00    | No Limit            |  |  |
| EK071G: Reactive P   | Phosphorus as P by disc  | crete analyser (QC Lot: 182378)      |            |                                   |                                       | <u> </u>        |                  |         |                     |  |  |
| ES1528190-004        | Anonymous                | EK071G: Reactive Phosphorus as P     | 14265-44-2 | 0.01                              | mg/L                                  | <0.01           | <0.01            | 0.00    | No Limit            |  |  |
|                      | rocarbon Gases (QC Lo    |                                      |            |                                   | , , , , , , , , , , , , , , , , , , , |                 |                  |         |                     |  |  |
| EB1525605-001        | Anonymous                | EP033: Butane                        | 106-97-8   | 10                                | μg/L                                  | <10             | <10              | 0.00    | No Limit            |  |  |
| LD 1020000-001       | Anonymous                | EMUSS. DUIAITE                       | 100-37-0   | 10                                | µg/L                                  | 110             | -10              | 0.00    | INO LIIIII          |  |  |

Page : 6 of 17

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                                     |            |     |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|-----------------------|-------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                    | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP033: C1 - C4 Hydi  | rocarbon Gases (QC L  | ot: 184041) - continued             |            |     |      |                 |                        |         |                     |
| EB1525605-001        | Anonymous             | EP033: Butene                       | 25167-67-3 | 10  | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                       | EP033: Ethane                       | 74-84-0    | 10  | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                       | EP033: Ethene                       | 74-85-1    | 10  | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                       | EP033: Methane                      | 74-82-8    | 10  | μg/L | 438             | 468                    | 6.53    | 0% - 20%            |
|                      |                       | EP033: Propane                      | 74-98-6    | 10  | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                       | EP033: Propene                      | 115-07-1   | 10  | μg/L | <10             | <10                    | 0.00    | No Limit            |
| ES1528259-001        | AST2                  | EP033: Butane                       | 106-97-8   | 10  | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                       | EP033: Butene                       | 25167-67-3 | 10  | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                       | EP033: Ethane                       | 74-84-0    | 10  | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                       | EP033: Ethene                       | 74-85-1    | 10  | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                       | EP033: Methane                      | 74-82-8    | 10  | μg/L | 462             | 499                    | 7.62    | 0% - 20%            |
|                      |                       | EP033: Propane                      | 74-98-6    | 10  | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                       | EP033: Propene                      | 115-07-1   | 10  | μg/L | <10             | <10                    | 0.00    | No Limit            |
| EP074A: Monocyclic   | c Aromatic Hydrocarbo | ons (QC Lot: 184479)                |            |     |      |                 |                        |         |                     |
| ES1528408-004        | Anonymous             | EP074: 1.2.4-Trimethylbenzene       | 95-63-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      | -                     | EP074: 1.3.5-Trimethylbenzene       | 108-67-8   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Isopropylbenzene             | 98-82-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: n-Butylbenzene               | 104-51-8   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: n-Propylbenzene              | 103-65-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: p-Isopropyltoluene           | 99-87-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: sec-Butylbenzene             | 135-98-8   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Styrene                      | 100-42-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: tert-Butylbenzene            | 98-06-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1528408-005        | Anonymous             | EP074: 1.2.4-Trimethylbenzene       | 95-63-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.3.5-Trimethylbenzene       | 108-67-8   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Isopropylbenzene             | 98-82-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: n-Butylbenzene               | 104-51-8   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: n-Propylbenzene              | 103-65-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: p-Isopropyltoluene           | 99-87-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: sec-Butylbenzene             | 135-98-8   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Styrene                      | 100-42-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: tert-Butylbenzene            | 98-06-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074B: Oxygenate    | d Compounds (QC Lo    |                                     |            |     |      |                 |                        |         |                     |
| ES1528408-004        | Anonymous             | EP074: 2-Butanone (MEK)             | 78-93-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: 2-Hexanone (MBK)             | 591-78-6   | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: 4-Methyl-2-pentanone (MIBK)  | 108-10-1   | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Vinelly 2 peritarione (WIBN) | 108-05-4   | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| ES1528408-005        | Anonymous             | EP074: 2-Butanone (MEK)             | 78-93-3    | 50  | µg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: 2-Hexanone (MBK)             | 591-78-6   | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: 4-Methyl-2-pentanone (MIBK)  | 108-10-1   | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |

Page : 7 of 17

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                      |                                    |            |     |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|----------------------|------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID     | Method: Compound                   | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074B: Oxygenate    | ed Compounds (QC L   | ot: 184479) - continued            |            |     |      |                 |                        |         |                     |
| ES1528408-005        | Anonymous            | EP074: Vinyl Acetate               | 108-05-4   | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| EP074C: Sulfonated   | d Compounds (QC Lo   | ot: 184479)                        |            |     |      |                 |                        |         |                     |
| ES1528408-004        | Anonymous            | EP074: Carbon disulfide            | 75-15-0    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1528408-005        | Anonymous            | EP074: Carbon disulfide            | 75-15-0    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074D: Fumigants    | (QC Lot: 184479)     |                                    |            |     |      |                 |                        |         |                     |
| ES1528408-004        | Anonymous            | EP074: 1.2-Dibromoethane (EDB)     | 106-93-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2-Dichloropropane         | 78-87-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 2.2-Dichloropropane         | 594-20-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: cis-1.3-Dichloropropylene   | 10061-01-5 | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: trans-1.3-Dichloropropylene | 10061-02-6 | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1528408-005        | Anonymous            | EP074: 1.2-Dibromoethane (EDB)     | 106-93-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2-Dichloropropane         | 78-87-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 2.2-Dichloropropane         | 594-20-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: cis-1.3-Dichloropropylene   | 10061-01-5 | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: trans-1.3-Dichloropropylene | 10061-02-6 | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074E: Halogenate   | ed Aliphatic Compour | nds (QC Lot: 184479)               |            |     |      |                 |                        |         |                     |
| ES1528408-004        | Anonymous            | EP074: 1.1.1.2-Tetrachloroethane   | 630-20-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1.1-Trichloroethane       | 71-55-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1.2.2-Tetrachloroethane   | 79-34-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1.2-Trichloroethane       | 79-00-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1-Dichloroethane          | 75-34-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1-Dichloroethene          | 75-35-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1-Dichloropropylene       | 563-58-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2.3-Trichloropropane      | 96-18-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2-Dibromo-3-chloropropane | 96-12-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2-Dichloroethane          | 107-06-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.3-Dichloropropane         | 142-28-9   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Carbon Tetrachloride        | 56-23-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: cis-1.2-Dichloroethene      | 156-59-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: cis-1.4-Dichloro-2-butene   | 1476-11-5  | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Dibromomethane              | 74-95-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Hexachlorobutadiene         | 87-68-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Iodomethane                 | 74-88-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Pentachloroethane           | 76-01-7    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Tetrachloroethene           | 127-18-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: trans-1.2-Dichloroethene    | 156-60-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Trichloroethene             | 79-01-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Bromomethane                | 74-83-9    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Chloroethane                | 75-00-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |

Page : 8 of 17

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                                    |            |     |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|-----------------------|------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                   | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074E: Halogenate   | ed Aliphatic Compound | ds (QC Lot: 184479) - continued    |            |     |      |                 |                        |         |                     |
| ES1528408-004        | Anonymous             | EP074: Chloromethane               | 74-87-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Dichlorodifluoromethane     | 75-71-8    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Trichlorofluoromethane      | 75-69-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Vinyl chloride              | 75-01-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| ES1528408-005        | Anonymous             | EP074: 1.1.1.2-Tetrachloroethane   | 630-20-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.1-Trichloroethane       | 71-55-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.2.2-Tetrachloroethane   | 79-34-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.2-Trichloroethane       | 79-00-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloroethane          | 75-34-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloroethene          | 75-35-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloropropylene       | 563-58-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2.3-Trichloropropane      | 96-18-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dibromo-3-chloropropane | 96-12-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichloroethane          | 107-06-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.3-Dichloropropane         | 142-28-9   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Carbon Tetrachloride        | 56-23-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.2-Dichloroethene      | 156-59-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.4-Dichloro-2-butene   | 1476-11-5  | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromomethane              | 74-95-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Hexachlorobutadiene         | 87-68-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Iodomethane                 | 74-88-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Pentachloroethane           | 76-01-7    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Tetrachloroethene           | 127-18-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.2-Dichloroethene    | 156-60-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Trichloroethene             | 79-01-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromomethane                | 74-83-9    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloroethane                | 75-00-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloromethane               | 74-87-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Dichlorodifluoromethane     | 75-71-8    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Trichlorofluoromethane      | 75-69-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Vinyl chloride              | 75-01-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| EP074F: Halogenate   | ed Aromatic Compound  |                                    |            |     |      |                 |                        |         |                     |
| ES1528408-004        | Anonymous             | EP074: 1.2.3-Trichlorobenzene      | 87-61-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2.4-Trichlorobenzene      | 120-82-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichlorobenzene         | 95-50-1    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.3-Dichlorobenzene         | 541-73-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.4-Dichlorobenzene         | 106-46-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 2-Chlorotoluene             | 95-49-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 4-Chlorotoluene             | 106-43-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |

Page : 9 of 17

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                                           |            |     |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|-----------------------|-------------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                          | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074F: Halogenate   | ed Aromatic Compound  | ds (QC Lot: 184479) - continued           |            |     |      |                 |                        |         |                     |
| ES1528408-004        | Anonymous             | EP074: Bromobenzene                       | 108-86-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Chlorobenzene                      | 108-90-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1528408-005        | Anonymous             | EP074: 1.2.3-Trichlorobenzene             | 87-61-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2.4-Trichlorobenzene             | 120-82-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichlorobenzene                | 95-50-1    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.3-Dichlorobenzene                | 541-73-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.4-Dichlorobenzene                | 106-46-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 2-Chlorotoluene                    | 95-49-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 4-Chlorotoluene                    | 106-43-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromobenzene                       | 108-86-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Chlorobenzene                      | 108-90-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074G: Trihalomet   | thanes (QC Lot: 18447 | 9)                                        |            |     |      |                 |                        |         |                     |
|                      | Anonymous             | EP074: Bromodichloromethane               | 75-27-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromoform                          | 75-25-2    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Chloroform                         | 67-66-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromochloromethane               | 124-48-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1528408-005        | Anonymous             | EP074: Bromodichloromethane               | 75-27-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromoform                          | 75-25-2    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Chloroform                         | 67-66-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromochloromethane               | 124-48-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP080/071: Total Pe  | troleum Hydrocarbons  | (QC Lot: 184478)                          |            |     |      |                 |                        |         |                     |
| ES1528408-004        | Anonymous             | EP080: C6 - C9 Fraction                   |            | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| ES1528408-005        | Anonymous             | EP080: C6 - C9 Fraction                   |            | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| EP080/071: Total Re  | coverable Hydrocarbo  | ns - NEPM 2013 Fractions (QC Lot: 184478) |            |     |      |                 |                        |         |                     |
| ES1528408-004        | Anonymous             | EP080: C6 - C10 Fraction                  | C6_C10     | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| ES1528408-005        | Anonymous             | EP080: C6 - C10 Fraction                  | C6_C10     | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| EP262: Ethanolamir   | nes (QC Lot: 182684)  |                                           |            |     |      |                 |                        |         |                     |
| ES1528259-001        | AST2                  | EP262: Diethanolamine                     | 111-42-2   | 1   | μg/L | 3               | 3                      | 0.00    | No Limit            |
|                      |                       | EP262: Ethanolamine                       | 141-43-5   | 1   | μg/L | 16              | 18                     | 9.47    | 0% - 50%            |

Page : 10 of 17

Work Order : ES1528259 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                     |            |        |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|-------------------------------------------------------|------------|--------|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                       |            |        |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound                                      | CAS Number | LOR    | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |
| EA010P: Conductivity by PC Titrator (QCLot: 182313)   |            |        |       |                   |                                       |                    |          |            |  |
| EA010-P: Electrical Conductivity @ 25°C               |            | 1      | μS/cm | <1                | 2000 μS/cm                            | 105                | 95       | 113        |  |
| EA015: Total Dissolved Solids (QCLot: 186094)         |            |        |       |                   |                                       |                    |          |            |  |
| EA015H: Total Dissolved Solids @180°C                 |            | 10     | mg/L  | <10               | 2000 mg/L                             | 96.8               | 87       | 109        |  |
|                                                       |            |        |       | <10               | 293 mg/L                              | 95.6               | 66       | 126        |  |
| EA025: Suspended Solids (QCLot: 186095)               |            |        |       |                   |                                       |                    |          |            |  |
| EA025H: Suspended Solids (SS)                         |            | 5      | mg/L  | <5                | 150 mg/L                              | 110                | 83       | 129        |  |
|                                                       |            |        |       | <5                | 1000 mg/L                             | 96.8               | 84       | 110        |  |
| ED009: Anions (QCLot: 184098)                         |            |        |       |                   |                                       |                    |          |            |  |
| ED009-X: Chloride                                     | 16887-00-6 | 0.1    | mg/L  | <0.100            | 2 mg/L                                | 98.1               | 89       | 107        |  |
| ED037P: Alkalinity by PC Titrator (QCLot: 182312)     |            |        |       |                   |                                       |                    |          |            |  |
| ED037-P: Total Alkalinity as CaCO3                    |            |        | mg/L  |                   | 200 mg/L                              | 89.1               | 81       | 111        |  |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLo | t· 182384) |        |       |                   |                                       |                    |          |            |  |
| ED041G: Sulfate as SO4 - Turbidimetric                | 14808-79-8 | 1      | mg/L  | <1                | 25 mg/L                               | 108                | 86       | 122        |  |
| ED045G: Chloride by Discrete Analyser (QCLot: 182385) |            |        |       |                   |                                       |                    |          |            |  |
| ED045G: Chloride                                      | 16887-00-6 | 1      | mg/L  | <1                | 10 mg/L                               | 112                | 75       | 123        |  |
| EB043G. Chiloride                                     | .000. 00 0 | •      | 9/ =  | <1                | 1000 mg/L                             | 106                | 77       | 119        |  |
| ED093F: Dissolved Major Cations (QCLot: 183349)       |            |        |       |                   |                                       |                    |          |            |  |
| ED093F: Dissolved Major Cattoris (QCLOt. 183349)      | 7440-70-2  | 1      | mg/L  | <1                | 50 mg/L                               | 102                | 90       | 114        |  |
| ED093F: Magnesium                                     | 7439-95-4  | <br>1  | mg/L  | <1                | 50 mg/L                               | 110                | 90       | 110        |  |
| ED093F: Potassium                                     | 7440-09-7  | 1      | mg/L  | <1                | 50 mg/L                               | 99.7               | 87       | 117        |  |
| ED093F: Sodium                                        | 7440-23-5  | 1      | mg/L  | <1                | 50 mg/L                               | 99.7               | 82       | 118        |  |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 183347)    |            |        |       |                   |                                       |                    |          |            |  |
| EG020A-F: Aluminium                                   | 7429-90-5  | 0.01   | mg/L  | <0.01             | 0.5 mg/L                              | 91.6               | 85       | 115        |  |
| EG020A-F: Antimony                                    | 7440-36-0  | 0.001  | mg/L  | <0.001            | 0.01 mg/L                             | 87.0               | 85       | 115        |  |
| EG020A-F: Arsenic                                     | 7440-38-2  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 89.1               | 85       | 115        |  |
| EG020A-F: Barium                                      | 7440-39-3  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 92.7               | 85       | 115        |  |
| EG020A-F: Beryllium                                   | 7440-41-7  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 91.0               | 85       | 115        |  |
| EG020A-F: Boron                                       | 7440-42-8  | 0.05   | mg/L  | <0.05             | 0.1 mg/L                              | 94.0               | 85       | 115        |  |
| EG020A-F: Bromine                                     | 7726-95-6  | 0.1    | mg/L  | <0.1              |                                       |                    |          |            |  |
| EG020A-F: Cadmium                                     | 7440-43-9  | 0.0001 | mg/L  | <0.0001           | 0.1 mg/L                              | 90.3               | 85       | 115        |  |
| EG020A-F: Chromium                                    | 7440-47-3  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 90.4               | 85       | 115        |  |
| EG020A-F: Cobalt                                      | 7440-48-4  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 92.5               | 85       | 115        |  |
| EG020A-F: Copper                                      | 7440-50-8  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 90.5               | 85       | 115        |  |

Page : 11 of 17

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| ### Space   Space Recovery (hi)   Recovery (mint of )   ### Recovery (mint of )   Recovery (mint of )   ### Recovery (mint | Sub-Matrix: WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |        |      | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|------|-------------------|---------------|-------------------------------|-----------|------------|
| E0000F-Discoved Metals by ICP-MS (Octot: 18347) - continued   C0000F-Discoved Metals by ICP-MS (Octot: 18347) - continued   C0000F-Discoved Metals by ICP-MS (Octot: 18348)   C0000F-Discoved Metals by Discoved Analyser (Octot: 18336)   C0000F-Discoved Metals by Discoved Analyser (   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |      | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| EGIZIOA-F-Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Method: Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AS Number   | LOR    | Unit | Result            | Concentration | LCS                           | Low       | High       |
| E8020AF-Luad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EG020F: Dissolved Metals by ICP-MS (QCLot: 183347) - conti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nued        |        |      |                   |               |                               |           |            |
| E8020AF Marginese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EG020A-F: Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7439-89-6   | 0.05   | mg/L | <0.05             | 0.5 mg/L      | 93.3                          | 85        | 115        |
| Second-F-Melphdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EG020A-F: Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7439-92-1   | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 92.3                          | 85        | 115        |
| EGG20A-F. Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EG020A-F: Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7439-96-5   | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 89.1                          | 85        | 115        |
| EGG20A-F; Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EG020A-F: Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7439-98-7   | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 100                           | 85        | 115        |
| EGG20A-F:Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EG020A-F: Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7440-02-0   | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 89.8                          | 85        | 115        |
| EGG20A-F; Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EG020A-F: Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7782-49-2   | 0.01   | mg/L | <0.01             | 0.1 mg/L      | 87.6                          | 85        | 115        |
| EG020A-F: Zinc 7440-86-6 0.005 mg/L <0.005 0.1 mg/L 87.0 85 115  EG020A-F: Zinc 7440-86-6 0.005 mg/L <0.005 0.1 mg/L 87.0 85 115  EG020A-F: Disableved Metals by ICP-MS (QCLot: 183348)  EG020B-F: Strohulm 7440-61-1 0.001 mg/L <0.001 0.1 mg/L 86.4 80 112  EG020B-F: Uranium 7440-61-1 0.001 mg/L <0.001 0.1 mg/L 94.7 78 114  EG035F: Mercury by FIMS (QCLot: 183350)  EG035F: Mercury by FIMS (QCLot: 182379)  EG035F: Strohulm 94.7 78 0.001 mg/L <0.001 0.01 mg/L 94.7 78 114  EG052G: Silica by Discrete Analyser (QCLot: 182379)  EG035F: Mercury 64.0 5 5 mg/L 112 94 114  EK010011: Chiorine (QCLot: 182382)  EK010: Chiorine 7 total Residual 0.2 mg/L <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EG020A-F: Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-31-5   | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 91.5                          | 85        | 115        |
| E6020F: Dissolved Metals by ICP-MS (QCLot: 183348)   E6020EF: Strontium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EG020A-F: Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7440-62-2   | 0.01   | mg/L | <0.01             | 0.1 mg/L      | 89.6                          | 85        | 115        |
| EG020BF: Unantium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EG020A-F: Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7440-66-6   | 0.005  | mg/L | <0.005            | 0.1 mg/L      | 87.0                          | 85        | 115        |
| EG020BF: Unantium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EG020F: Dissolved Metals by ICP-MS (QCLot: 183348)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |        |      |                   |               |                               |           |            |
| EG035: Dissolved Mercury by FIMS (QCLot: 183350) EG035F: Mercury 7439-97-6 0.0001 mg/L <0.0001 0.01 mg/L 94.7 78 114 EG052G: Silica by Discrete Analyser (QCLot: 182379) EG052G: Reactive Silica Color (CCLot: 182362) EK010: Chlorine (QCLot: 182362) EK010: Chlorine - Total Residual 0.2 mg/L <0.2 EK0400: Fluoride by PC Titrator (QCLot: 182315) EK04000: Fluoride by PC Titrator (QCLot: 182358) EK055G: Ammonia as N by Discrete Analyser (QCLot: 185358) EK055G: Ammonia as N m 7664-41-7 0.01 mg/L <0.01 1mg/L 100 90 114 EK055G: Nitrite as N by Discrete Analyser (QCLot: 185358) EK057G: Nitrite as N by Discrete Analyser (QCLot: 185359) EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 0.5 mg/L 103 82 114 EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 185599) EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 185599) EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 185510) EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 185510) EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 185310) EK067G: Total Phosphorus as P by discrete Analyser (QCLot: 182378)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7440-24-6   | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 86.4                          | 80        | 112        |
| EG035F: Mercury 7439-97-8 0.0001 mg/L <0.0001 0.01 mg/L 94.7 78 114  EG052G: Silica by Discrete Analyser (QCLot: 182379)  EG052G: Reactive Silica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EG020B-F: Uranium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7440-61-1   | 0.001  | mg/L | <0.001            |               |                               |           |            |
| EG035F: Mercury 7439-97-8 0.0001 mg/L <0.0001 0.01 mg/L 94.7 78 114  EG052G: Silica by Discrete Analyser (QCLot: 182379)  EG052G: Reactive Silica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EG035F: Dissolved Mercury by FIMS (QCLot: 183350)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |        |      |                   |               |                               |           |            |
| EG052G: Reactive Silica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7439-97-6   | 0.0001 | mg/L | <0.0001           | 0.01 mg/L     | 94.7                          | 78        | 114        |
| EG052G: Reactive Silica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EG052G: Silica by Discrete Analyser (QCLot: 182379)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |        |      |                   |               |                               |           |            |
| EK010: Chlorine - Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.05   | mg/L | <0.05             | 5 mg/L        | 112                           | 94        | 114        |
| EK010: Chlorine - Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EK010/011: Chlorine (QCLot: 183262)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |        |      |                   |               |                               |           |            |
| EK040P: Fluoride by PC Titrator (QCLot: 182315)  EK040P: Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.2    | mg/L | <0.2              |               |                               |           |            |
| EK040P: Fluoride 16984-48-8 0.1 mg/L <0.1 5 mg/L 104 75 119  EK055G: Ammonia as N by Discrete Analyser (QCLot: 185358)  EK055G: Ammonia as N Discrete Analyser (QCLot: 182386)  EK057G: Nitrite as N Discrete Analyser (QCLot: 182386)  EK057G: Nitrite as N Discrete Analyser (QCLot: 182386)  EK057G: Nitrite as N N 14797-65-0 0.01 mg/L <0.01 0.5 mg/L 103 82 114  EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 185359)  EK059G: Nitrite + Nitrate as N 0.01 mg/L <0.01 0.5 mg/L 99.6 91 113  EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 185509)  EK061G: Total Kjeldahl Nitrogen as N 0.1 mg/L <0.1 10 mg/L 98.5 69 101 <0.1 1 mg/L 110 70 118 <0.1 5 mg/L 110 74 118  EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 185510)  EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 185510)  EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 182378)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EK010: Chlorine - Total Residual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 0.2    | mg/L | <0.2              |               |                               |           |            |
| EK040P: Fluoride 16984-48-8 0.1 mg/L <0.1 5 mg/L 104 75 119  EK055G: Ammonia as N by Discrete Analyser (QCLot: 185358)  EK055G: Ammonia as N Discrete Analyser (QCLot: 185358)  EK057G: Nitrite as N Discrete Analyser (QCLot: 182386)  EK057G: Nitrite as N Discrete Analyser (QCLot: 185359)  EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 185359)  EK059G: Nitrite Pilus Nitrate as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EK040P: Fluoride by PC Titrator (QCLot: 182315)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |      |                   |               |                               |           |            |
| EK055G: Ammonia as N       7664-41-7       0.01       mg/L       <0.01       1 mg/L       100       90       114         EK057G: Nitrite as N by Discrete Analyser (QCLot: 182386)         EK059G: Nitrite as N       14797-65-0       0.01       mg/L       <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6984-48-8   | 0.1    | mg/L | <0.1              | 5 mg/L        | 104                           | 75        | 119        |
| EK055G: Ammonia as N       7664-41-7       0.01       mg/L       <0.01       1 mg/L       100       90       114         EK057G: Nitrite as N by Discrete Analyser (QCLot: 182386)         EK059G: Nitrite as N       14797-65-0       0.01       mg/L       <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EK055G: Ammonia as N by Discrete Analyser (QCLot: 185358)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |        |      |                   |               |                               |           |            |
| EK057G: Nitrite as N       14797-65-0       0.01       mg/L       <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.01   | mg/L | <0.01             | 1 mg/L        | 100                           | 90        | 114        |
| EK057G: Nitrite as N       14797-65-0       0.01       mg/L       <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EK057G: Nitrite as N by Discrete Analyser (QCLot: 182386)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |        |      |                   |               |                               |           |            |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 185359)  EK059G: Nitrite + Nitrate as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4797-65-0   | 0.01   | mg/L | <0.01             | 0.5 mg/L      | 103                           | 82        | 114        |
| EK059G: Nitrite + Nitrate as N        0.01       mg/L       <0.01       0.5 mg/L       99.6       91       113         EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 185509)         EK061G: Total Kjeldahl Nitrogen as N        0.1       mg/L       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (OCL of: 18 | 5359)  |      |                   |               |                               |           | ı          |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 185509)  EK061G: Total Kjeldahl Nitrogen as N 0.1 mg/L < 0.1 10 mg/L 98.5 69 101 < 0.1 1 mg/L 110 70 118 < 0.1 5 mg/L 110 74 118  EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 185510)  EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 185510)  EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 185510)  EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 185510)  EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 185510)  EK071G: Reactive Phosphorus as P by discrete analyser (QCLot: 182378)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        | ma/L | <0.01             | 0.5 mg/L      | 99.6                          | 91        | 113        |
| EK061G: Total Kjeldahl Nitrogen as N 0.1 mg/L <0.1 10 mg/L 98.5 69 101 <0.1 1 mg/L 110 70 118 <0.1 1 mg/L 110 70 118 <0.1 5 mg/L 110 74 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |      |                   |               |                               |           |            |
| Co.1   1 mg/L   110   70   118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.1    | ma/l | <0.1              | 10 mg/l       | 98.5                          | 69        | 101        |
| Column   C   | LINOTO. TOtal Njeluatil Militogeti as IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | V. I   | 9, ⊏ | -                 | •             |                               |           |            |
| EK067G: Total Phosphorus as P 0.01 mg/L <0.01 4.42 mg/L #109 71 101 <0.01 0.442 mg/L #112 72 108 <0.01 1 mg/L 112 78 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |      |                   | ŭ             |                               |           |            |
| EK067G: Total Phosphorus as P 0.01 mg/L <0.01 4.42 mg/L #109 71 101 <0.01 0.442 mg/L #112 72 108 <0.01 1 mg/L 112 78 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FK067G: Total Phosphorus as P by Discrete Analyser (OCL of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 185510)     |        |      |                   |               |                               |           |            |
| <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.01   | ma/L | <0.01             | 4.42 ma/L     | # 109                         | 71        | 101        |
| <0.01 1 mg/L 112 78 118 EK071G: Reactive Phosphorus as P by discrete analyser (QCLot: 182378)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and an independent of the second of the seco |             |        |      |                   | •             |                               |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |      | <0.01             | ū             | 112                           |           | 118        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EK071G: Reactive Phosphorus as P by discrete analyser (QCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ot: 182378  |        |      |                   |               |                               |           |            |
| IERD/ 10. Reduite Filospholus as F 17200-77-2 0.01 ling/L 0.01 ling/L 105 00 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4265-44-2   | 0.01   | mg/L | <0.01             | 0.5 mg/L      | 109                           | 85        | 117        |

Page : 12 of 17

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                    |            |        |              | Method Blank (MB) |                    | Laboratory Control Spike (LCS) Report |          |            |
|------------------------------------------------------|------------|--------|--------------|-------------------|--------------------|---------------------------------------|----------|------------|
|                                                      |            |        |              | Report            | Spike              | Spike Recovery (%)                    | Recovery | Limits (%) |
| Method: Compound                                     | CAS Number | LOR    | Unit         | Result            | Concentration      | LCS                                   | Low      | High       |
| EP020: Oil and Grease (O&G) (QCLot: 187024)          |            |        |              |                   |                    |                                       |          |            |
| EP020: Oil & Grease                                  |            | 5      | mg/L         | <5                | 5000 mg/L          | 118                                   | 80       | 120        |
| EP033: C1 - C4 Hydrocarbon Gases (QCLot: 184041)     |            |        |              |                   |                    |                                       |          |            |
| EP033: Butane                                        | 106-97-8   | 10     | μg/L         | <10               | 102.18 μg/L        | 92.8                                  | 85       | 115        |
| EP033: Butene                                        | 25167-67-3 | 10     | μg/L         | <10               | 99.61 μg/L         | 89.0                                  | 83       | 115        |
| EP033: Ethane                                        | 74-84-0    | 10     | μg/L         | <10               | 54.43 μg/L         | 101                                   | 87       | 111        |
| EP033: Ethene                                        | 74-85-1    | 10     | μg/L         | <10               | 50.29 μg/L         | 102                                   | 87       | 111        |
| EP033: Methane                                       | 74-82-8    | 10     | μg/L         | <10               | 28.48 μg/L         | 110                                   | 86       | 114        |
| P033: Propane                                        | 74-98-6    | 10     | μg/L         | <10               | 78.28 μg/L         | 98.7                                  | 84       | 112        |
| P033: Propene                                        | 115-07-1   | 10     | μg/L         | <10               | 73.97 μg/L         | 95.6                                  | 85       | 113        |
| P074A: Monocyclic Aromatic Hydrocarbons (QCLot: 184  | 479)       |        |              |                   |                    |                                       |          |            |
| P074: 1.2.4-Trimethylbenzene                         | 95-63-6    | 5      | μg/L         | <5                | 10 μg/L            | 95.8                                  | 71       | 121        |
| P074: 1.3.5-Trimethylbenzene                         | 108-67-8   | 5      | μg/L         | <5                | 10 μg/L            | 104                                   | 70       | 122        |
| P074: Isopropylbenzene                               | 98-82-8    | 5      | μg/L         | <5                | 10 μg/L            | 98.6                                  | 75       | 121        |
| P074: n-Butylbenzene                                 | 104-51-8   | 5      | μg/L         | <5                | 10 μg/L            | 99.7                                  | 62       | 126        |
| P074: n-Propylbenzene                                | 103-65-1   | 5      | μg/L         | <5                | 10 μg/L            | 96.2                                  | 67       | 123        |
| P074: p-Isopropyltoluene                             | 99-87-6    | 5      | μg/L         | <5                | 10 μg/L            | 106                                   | 67       | 123        |
| P074: sec-Butylbenzene                               | 135-98-8   | 5      | μg/L         | <5                | 10 μg/L            | 107                                   | 69       | 123        |
| P074: Styrene                                        | 100-42-5   | 5      | μg/L         | <5                | 10 μg/L            | 95.2                                  | 74       | 118        |
| P074: tert-Butylbenzene                              | 98-06-6    | 5      | μg/L         | <5                | 10 μg/L            | 104                                   | 70       | 122        |
| EP074B: Oxygenated Compounds (QCLot: 184479)         |            |        |              |                   |                    |                                       |          |            |
| P074: 2-Butanone (MEK)                               | 78-93-3    | 50     | μg/L         | <50               | 100 μg/L           | # 72.8                                | 74       | 130        |
| P074: 2-Hexanone (MBK)                               | 591-78-6   | 50     | μg/L         | <50               | 100 μg/L           | 73.3                                  | 65       | 137        |
| EP074: 4-Methyl-2-pentanone (MIBK)                   | 108-10-1   | 50     | μg/L         | <50               | 100 μg/L           | 84.3                                  | 61       | 139        |
| EP074: Vinyl Acetate                                 | 108-05-4   | 50     | μg/L         | <50               | 100 μg/L           | 96.4                                  | 61       | 134        |
| P074C: Sulfonated Compounds (QCLot: 184479)          |            |        |              |                   |                    |                                       |          |            |
| P074: Carbon disulfide                               | 75-15-0    | 5      | μg/L         | <5                | 10 μg/L            | 86.4                                  | 73       | 127        |
|                                                      | 70 10 0    |        | μ9/2         |                   | 10 μg/2            | 00.1                                  | 7.0      | 127        |
| EP074D: Fumigants (QCLot: 184479)                    | 106-93-4   | 5      | ug/l         | <5                | 10 ug/l            | 101                                   | 69       | 117        |
| P074: 1.2-Dibromoethane (EDB)                        | 78-87-5    | 5<br>5 | μg/L         | <5<br><5          | 10 μg/L            | 101                                   | 76       | 120        |
| P074: 1.2-Dichloropropane                            | 594-20-7   | 5<br>  | μg/L         | <5<br><5          | 10 μg/L<br>10 μg/L | 88.4                                  | 61       | 120        |
| P074: 2.2-Dichloropropane                            | 10061-01-5 | 5<br>  | μg/L         | <5<br><5          | 10 μg/L<br>10 μg/L | 87.1                                  | 62       | 119        |
| P074: cis-1.3-Dichloropropylene                      | 10061-01-5 | 5      | μg/L<br>μg/L | <5<br><5          | 10 μg/L<br>10 μg/L | 80.3                                  | 61       | 119        |
| P074: trans-1.3-Dichloropropylene                    |            | ິນ<br> | μg/L         | \ <u>\</u>        | το μg/L            | 00.3                                  | UI       | 119        |
| P074E: Halogenated Aliphatic Compounds (QCLot: 1844) |            |        |              |                   | 10 "               |                                       |          | 44:        |
| EP074: 1.1.1.2-Tetrachloroethane                     | 630-20-6   | 5      | μg/L         | <5                | 10 μg/L            | 94.1                                  | 66       | 114        |
| P074: 1.1.1-Trichloroethane                          | 71-55-6    | 5      | μg/L         | <5                | 10 μg/L            | 90.5                                  | 61       | 119        |
| P074: 1.1.2.2-Tetrachloroethane                      | 79-34-5    | 5      | μg/L         | <5                | 10 μg/L            | 104                                   | 70       | 124        |
| P074: 1.1.2-Trichloroethane                          | 79-00-5    | 5      | μg/L         | <5                | 10 μg/L            | 99.8                                  | 75       | 123        |
| EP074: 1.1-Dichloroethane                            | 75-34-3    | 5      | μg/L         | <5                | 10 μg/L            | 104                                   | 75       | 119        |

Page : 13 of 17

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                  |                    |     |      | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|----------------------------------------------------|--------------------|-----|------|-------------------|---------------|------------------------------|-----------|------------|
|                                                    |                    |     |      | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                   | CAS Number         | LOR | Unit | Result            | Concentration | LCS                          | Low       | High       |
| EP074E: Halogenated Aliphatic Compounds (QCLot: 18 | 84479) - continued |     |      |                   |               |                              |           |            |
| EP074: 1.1-Dichloroethene                          | 75-35-4            | 5   | μg/L | <5                | 10 μg/L       | 94.4                         | 69        | 123        |
| EP074: 1.1-Dichloropropylene                       | 563-58-6           | 5   | μg/L | <5                | 10 μg/L       | 98.4                         | 73        | 119        |
| EP074: 1.2.3-Trichloropropane                      | 96-18-4            | 5   | μg/L | <5                | 10 μg/L       | 98.8                         | 74        | 128        |
| EP074: 1.2-Dibromo-3-chloropropane                 | 96-12-8            | 5   | μg/L | <5                | 10 μg/L       | 101                          | 66        | 136        |
| EP074: 1.2-Dichloroethane                          | 107-06-2           | 5   | μg/L | <5                | 10 μg/L       | 81.7                         | 78        | 122        |
| EP074: 1.3-Dichloropropane                         | 142-28-9           | 5   | μg/L | <5                | 10 μg/L       | 101                          | 79        | 121        |
| EP074: Bromomethane                                | 74-83-9            | 50  | μg/L | <50               | 100 μg/L      | 79.3                         | 56        | 140        |
| EP074: Carbon Tetrachloride                        | 56-23-5            | 5   | μg/L | <5                | 10 μg/L       | 88.0                         | 63        | 121        |
| EP074: Chloroethane                                | 75-00-3            | 50  | μg/L | <50               | 100 μg/L      | 94.2                         | 63        | 135        |
| EP074: Chloromethane                               | 74-87-3            | 50  | μg/L | <50               | 100 μg/L      | 104                          | 67        | 130        |
| EP074: cis-1.2-Dichloroethene                      | 156-59-2           | 5   | μg/L | <5                | 10 μg/L       | 100                          | 77        | 117        |
| EP074: cis-1.4-Dichloro-2-butene                   | 1476-11-5          | 5   | μg/L | <5                | 10 μg/L       | 83.9                         | 71        | 128        |
| EP074: Dibromomethane                              | 74-95-3            | 5   | μg/L | <5                | 10 μg/L       | 99.3                         | 74        | 118        |
| EP074: Dichlorodifluoromethane                     | 75-71-8            | 50  | μg/L | <50               | 100 μg/L      | 86.1                         | 61        | 138        |
| EP074: Hexachlorobutadiene                         | 87-68-3            | 5   | μg/L | <5                | 10 μg/L       | 79.6                         | 58        | 132        |
| EP074: Iodomethane                                 | 74-88-4            | 5   | μg/L | <5                | 10 μg/L       | 91.2                         | 70        | 128        |
| EP074: Pentachloroethane                           | 76-01-7            | 5   | μg/L | <5                | 10 μg/L       | 107                          | 72        | 126        |
| EP074: Tetrachloroethene                           | 127-18-4           | 5   | μg/L | <5                | 10 μg/L       | 87.3                         | 72        | 124        |
| EP074: trans-1.2-Dichloroethene                    | 156-60-5           | 5   | μg/L | <5                | 10 μg/L       | 104                          | 71        | 119        |
| EP074: trans-1.4-Dichloro-2-butene                 | 110-57-6           | 5   | μg/L | <5                | 10 μg/L       | 82.9                         | 60        | 120        |
| EP074: Trichloroethene                             | 79-01-6            | 5   | μg/L | <5                | 10 μg/L       | 98.4                         | 74        | 120        |
| EP074: Trichlorofluoromethane                      | 75-69-4            | 50  | μg/L | <50               | 100 μg/L      | 90.2                         | 65        | 131        |
| EP074: Vinyl chloride                              | 75-01-4            | 50  | μg/L | <50               | 100 μg/L      | 81.6                         | 69        | 129        |
| EP074F: Halogenated Aromatic Compounds (QCLot: 18  | 84479)             |     |      |                   |               |                              |           |            |
| EP074: 1.2.3-Trichlorobenzene                      | 87-61-6            | 5   | μg/L | <5                | 10 μg/L       | 94.5                         | 67        | 125        |
| EP074: 1.2.4-Trichlorobenzene                      | 120-82-1           | 5   | μg/L | <5                | 10 μg/L       | 87.2                         | 60        | 126        |
| EP074: 1.2-Dichlorobenzene                         | 95-50-1            | 5   | μg/L | <5                | 10 μg/L       | 101                          | 77        | 117        |
| EP074: 1.3-Dichlorobenzene                         | 541-73-1           | 5   | μg/L | <5                | 10 μg/L       | 105                          | 74        | 120        |
| EP074: 1.4-Dichlorobenzene                         | 106-46-7           | 5   | μg/L | <5                | 10 μg/L       | 103                          | 72        | 120        |
| EP074: 2-Chlorotoluene                             | 95-49-8            | 5   | μg/L | <5                | 10 μg/L       | 101                          | 71        | 121        |
| EP074: 4-Chlorotoluene                             | 106-43-4           | 5   | μg/L | <5                | 10 μg/L       | 103                          | 71        | 121        |
| EP074: Bromobenzene                                | 108-86-1           | 5   | μg/L | <5                | 10 μg/L       | 95.9                         | 76        | 116        |
| EP074: Chlorobenzene                               | 108-90-7           | 5   | μg/L | <5                | 10 μg/L       | 106                          | 80        | 118        |
| EP074G: Trihalomethanes (QCLot: 184479)            |                    |     |      |                   |               |                              |           |            |
| EP074: Bromodichloromethane                        | 75-27-4            | 5   | μg/L | <5                | 10 μg/L       | 92.5                         | 64        | 118        |
| EP074: Bromoform                                   | 75-25-2            | 5   | μg/L | <5                | 10 μg/L       | 78.3                         | 74        | 126        |
| EP074: Chloroform                                  | 67-66-3            | 5   | μg/L | <5                | 10 μg/L       | 94.7                         | 76        | 118        |
| EP074: Dibromochloromethane                        | 124-48-1           | 5   | μg/L | <5                | 10 μg/L       | 91.3                         | 65        | 115        |

Page : 14 of 17

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                |                        |             |      | Method Blank (MB) |               | Laboratory Control Spike (LCS | ) Report |            |
|--------------------------------------------------|------------------------|-------------|------|-------------------|---------------|-------------------------------|----------|------------|
|                                                  |                        |             |      | Report            | Spike         | Spike Recovery (%)            | Recovery | Limits (%) |
| Method: Compound                                 | CAS Number             | LOR         | Unit | Result            | Concentration | LCS                           | Low      | High       |
| EP075(SIM)A: Phenolic Compounds (QCLot: 182299   | )                      |             |      |                   |               |                               |          |            |
| EP075(SIM): 2.4.5-Trichlorophenol                | 95-95-4                | 1           | μg/L | <1.0              | 5 μg/L        | 75.9                          | 50       | 108        |
| EP075(SIM): 2.4.6-Trichlorophenol                | 88-06-2                | 1           | μg/L | <1.0              | 5 μg/L        | 65.0                          | 59       | 118        |
| EP075(SIM): 2.4-Dichlorophenol                   | 120-83-2               | 1           | μg/L | <1.0              | 5 μg/L        | 62.2                          | 59       | 122        |
| EP075(SIM): 2.4-Dimethylphenol                   | 105-67-9               | 1           | μg/L | <1.0              | 5 μg/L        | 62.8                          | 60       | 112        |
| EP075(SIM): 2.6-Dichlorophenol                   | 87-65-0                | 1           | μg/L | <1.0              | 5 μg/L        | 70.6                          | 64       | 118        |
| EP075(SIM): 2-Chlorophenol                       | 95-57-8                | 1           | μg/L | <1.0              | 5 μg/L        | 66.7                          | 64       | 110        |
| EP075(SIM): 2-Methylphenol                       | 95-48-7                | 1           | μg/L | <1.0              | 5 μg/L        | 76.2                          | 56       | 112        |
| EP075(SIM): 2-Nitrophenol                        | 88-75-5                | 1           | μg/L | <1.0              | 5 μg/L        | 65.2                          | 63       | 117        |
| EP075(SIM): 3- & 4-Methylphenol                  | 1319-77-3              | 2           | μg/L | <2.0              | 10 μg/L       | 66.3                          | 43       | 114        |
| EP075(SIM): 4-Chloro-3-methylphenol              | 59-50-7                | 1           | μg/L | <1.0              | 5 μg/L        | 71.2                          | 63       | 119        |
| EP075(SIM): Pentachlorophenol                    | 87-86-5                | 2           | μg/L | <2.0              | 10 μg/L       | 31.9                          | 10       | 95         |
| EP075(SIM): Phenol                               | 108-95-2               | 1           | μg/L | <1.0              | 5 μg/L        | 36.9                          | 25       | 62         |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons   | (QCLot: 182299)        |             |      |                   |               |                               |          |            |
| EP075(SIM): Acenaphthene                         | 83-32-9                | 1           | μg/L | <1.0              | 5 μg/L        | 64.4                          | 62       | 113        |
| EP075(SIM): Acenaphthylene                       | 208-96-8               | 1           | μg/L | <1.0              | 5 μg/L        | 73.0                          | 64       | 114        |
| EP075(SIM): Anthracene                           | 120-12-7               | 1           | μg/L | <1.0              | 5 μg/L        | # 61.9                        | 64       | 116        |
| EP075(SIM): Benz(a)anthracene                    | 56-55-3                | 1           | μg/L | <1.0              | 5 μg/L        | 65.8                          | 64       | 117        |
| EP075(SIM): Benzo(a)pyrene                       | 50-32-8                | 0.5         | μg/L | <0.5              | 5 μg/L        | 65.5                          | 63       | 117        |
| EP075(SIM): Benzo(b+j)fluoranthene               | 205-99-2               | 1           | μg/L | <1.0              | 5 μg/L        | 65.6                          | 62       | 119        |
| EP075(SIM): Benzo(g.h.i)perylene                 | 205-82-3<br>191-24-2   | 1           | μg/L | <1.0              | 5 μg/L        | 67.6                          | 59       | 118        |
| EP075(SIM): Benzo(k)fluoranthene                 | 207-08-9               | 1           | μg/L | <1.0              | 5 μg/L        | 69.6                          | 62       | 117        |
| EP075(SIM): Chrysene                             | 218-01-9               | 1           | μg/L | <1.0              | 5 μg/L        | 72.5                          | 63       | 116        |
| EP075(SIM): Dibenz(a.h)anthracene                | 53-70-3                | 1           | μg/L | <1.0              | 5 μg/L        | 69.2                          | 61       | 117        |
| EP075(SIM): Fluoranthene                         | 206-44-0               | 1           | μg/L | <1.0              | 5 μg/L        | # 63.5                        | 64       | 118        |
| EP075(SIM): Fluorene                             | 86-73-7                | 1           | μg/L | <1.0              | 5 μg/L        | 69.5                          | 64       | 115        |
| EP075(SIM): Indeno(1.2.3.cd)pyrene               | 193-39-5               | 1           | μg/L | <1.0              | 5 μg/L        | 67.1                          | 60       | 118        |
| EP075(SIM): Naphthalene                          | 91-20-3                | 1           | μg/L | <1.0              | 5 μg/L        | 74.6                          | 59       | 119        |
| EP075(SIM): Phenanthrene                         | 85-01-8                | 1           | μg/L | <1.0              | 5 μg/L        | 74.8                          | 63       | 116        |
| EP075(SIM): Pyrene                               | 129-00-0               | 1           | μg/L | <1.0              | 5 μg/L        | 65.4                          | 63       | 118        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot:  | 182300)                |             |      |                   |               |                               |          |            |
| EP071: C10 - C14 Fraction                        |                        | 50          | μg/L | <50               | 2000 μg/L     | 91.7                          | 59       | 129        |
| EP071: C15 - C28 Fraction                        |                        | 100         | μg/L | <100              | 3000 μg/L     | 82.0                          | 71       | 131        |
| EP071: C29 - C36 Fraction                        |                        | 50          | μg/L | <50               | 2000 μg/L     | 95.9                          | 62       | 120        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot:  | 184478)                |             |      |                   |               |                               |          |            |
| EP080: C6 - C9 Fraction                          |                        | 20          | μg/L | <20               | 260 μg/L      | 124                           | 75       | 127        |
| EP080/071: Total Recoverable Hydrocarbons - NEPM | 1 2013 Fractions (QCLo | ot: 182300) |      |                   |               |                               |          |            |
| EP071: >C10 - C16 Fraction                       | >C10_C16               | 100         | μg/L | <100              | 2500 μg/L     | 88.9                          | 59       | 131        |

Page : 15 of 17

Work Order : ES1528259 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Sub-Matrix: WATER                                    |                 |                     |        | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |                     |      |  |
|------------------------------------------------------|-----------------|---------------------|--------|-------------------|---------------------------------------|--------------------|---------------------|------|--|
|                                                      |                 |                     |        | Report            | Spike                                 | Spike Recovery (%) | Recovery Limits (%) |      |  |
| Method: Compound                                     | CAS Number      | LOR                 | Unit   | Result            | Concentration                         | LCS                | Low                 | High |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 201 | 3 Fractions (QC | CLot: 182300) - con | tinued |                   |                                       |                    |                     |      |  |
| EP071: >C16 - C34 Fraction                           |                 | 100                 | μg/L   | <100              | 3500 μg/L                             | 108                | 74                  | 138  |  |
| EP071: >C34 - C40 Fraction                           |                 | 100                 | μg/L   | <100              | 1500 μg/L                             | 112                | 67                  | 127  |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 201 | 3 Fractions (QC | CLot: 184478)       |        |                   |                                       |                    |                     |      |  |
| EP080: C6 - C10 Fraction                             | C6_C10          | 20                  | μg/L   | <20               | 310 μg/L                              | 125                | 75                  | 127  |  |
| EP262: Ethanolamines (QCLot: 182684)                 |                 |                     |        |                   |                                       |                    |                     |      |  |
| EP262: Diethanolamine                                | 111-42-2        | 1                   | μg/L   | <1                | 10 μg/L                               | 76.0               | 50                  | 130  |  |
| EP262: Ethanolamine                                  | 141-43-5        | 1                   | μg/L   | <1                | 10 μg/L                               | 115                | 50                  | 130  |  |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs), Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER   |                                                |                                        |            | M             | atrix Spike (MS) Report |            |            |
|---------------------|------------------------------------------------|----------------------------------------|------------|---------------|-------------------------|------------|------------|
|                     |                                                |                                        |            | Spike         | SpikeRecovery(%)        | Recovery L | _imits (%) |
| aboratory sample ID | Client sample ID                               | Method: Compound                       | CAS Number | Concentration | MS                      | Low        | High       |
| ED009: Anions (     | QCLot: 184098)                                 |                                        |            |               |                         |            |            |
| ES1528155-001       | Anonymous                                      | ED009-X: Chloride                      | 16887-00-6 | 4 mg/L        | # Not<br>Determined     | 70         | 130        |
| ED041G: Sulfate (   | Furbidimetric) as SO4 2- by DA (QCLot: 182384) |                                        |            |               |                         |            |            |
| ES1528234-011       | Anonymous                                      | ED041G: Sulfate as SO4 - Turbidimetric | 14808-79-8 | 10 mg/L       | 90.4                    | 70         | 130        |
| ED045G: Chloride    | by Discrete Analyser (QCLot: 182385)           |                                        |            |               |                         |            |            |
| ES1528234-011       | Anonymous                                      | ED045G: Chloride                       | 16887-00-6 | 250 mg/L      | 110                     | 70         | 130        |
| EG020F: Dissolve    | d Metals by ICP-MS (QCLot: 183347)             |                                        |            |               |                         |            |            |
| ES1528175-001       | Anonymous                                      | EG020A-F: Arsenic                      | 7440-38-2  | 0.2 mg/L      | 106                     | 70         | 130        |
|                     |                                                | EG020A-F: Barium                       | 7440-39-3  | 0.2 mg/L      | 97.9                    | 70         | 130        |
|                     |                                                | EG020A-F: Beryllium                    | 7440-41-7  | 0.2 mg/L      | 101                     | 70         | 130        |
|                     |                                                | EG020A-F: Cadmium                      | 7440-43-9  | 0.05 mg/L     | 101                     | 70         | 130        |
|                     |                                                | EG020A-F: Chromium                     | 7440-47-3  | 0.2 mg/L      | 91.4                    | 70         | 130        |
|                     |                                                | EG020A-F: Cobalt                       | 7440-48-4  | 0.2 mg/L      | 94.3                    | 70         | 130        |
|                     |                                                | EG020A-F: Copper                       | 7440-50-8  | 0.2 mg/L      | 96.0                    | 70         | 130        |
|                     |                                                | EG020A-F: Lead                         | 7439-92-1  | 0.2 mg/L      | 93.5                    | 70         | 130        |
|                     |                                                | EG020A-F: Manganese                    | 7439-96-5  | 0.2 mg/L      | 87.0                    | 70         | 130        |
|                     |                                                | EG020A-F: Nickel                       | 7440-02-0  | 0.2 mg/L      | 90.7                    | 70         | 130        |
|                     |                                                | EG020A-F: Vanadium                     | 7440-62-2  | 0.2 mg/L      | 95.2                    | 70         | 130        |
|                     |                                                | EG020A-F: Zinc                         | 7440-66-6  | 0.2 mg/L      | 97.9                    | 70         | 130        |
| EG035F: Dissolve    | d Mercury by FIMS (QCLot: 183350)              |                                        |            |               |                         |            |            |
| ES1528178-001       | Anonymous                                      | EG035F: Mercury                        | 7439-97-6  | 0.01 mg/L     | 82.7                    | 70         | 130        |

Page : 16 of 17

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| ub-Matrix: WATER    |                                                              |                                      |            | Matrix Spike (MS) Report |                  |            |           |
|---------------------|--------------------------------------------------------------|--------------------------------------|------------|--------------------------|------------------|------------|-----------|
|                     |                                                              |                                      |            | Spike                    | SpikeRecovery(%) | Recovery L | imits (%) |
| aboratory sample ID | Client sample ID                                             | Method: Compound                     | CAS Number | Concentration            | MS               | Low        | High      |
| G052G: Silica by    | Discrete Analyser (QCLot: 182379)                            |                                      |            |                          |                  |            |           |
| ES1528190-004       | Anonymous                                                    | EG052G: Reactive Silica              |            | 5 mg/L                   | 99.3             | 70         | 130       |
| K040P: Fluoride     | by PC Titrator(QCLot: 182315)                                |                                      |            |                          |                  |            |           |
| ES1528259-001       | AST2                                                         | EK040P: Fluoride                     | 16984-48-8 | 5 mg/L                   | 118              | 70         | 130       |
| EK055G: Ammonia     | a as N by Discrete Analyser (QCLot: 185358)                  |                                      |            |                          |                  |            |           |
| ES1528259-001       | AST2                                                         | EK055G: Ammonia as N                 | 7664-41-7  | 1 mg/L                   | 88.6             | 70         | 130       |
| EK057G: Nitrite a   | s N by Discrete Analyser (QCLot: 182386)                     | Errosoe. 7 Millionia de 14           |            |                          |                  |            |           |
| ES1528234-011       | Anonymous                                                    | EK057G: Nitrite as N                 | 14797-65-0 | 0.5 mg/L                 | 103              | 70         | 130       |
|                     |                                                              |                                      | 14707 00 0 | 0.0 mg/L                 | 100              | 70         | 100       |
| ES1528259-001       | us Nitrate as N (NOx) by Discrete Analyser (QCLot: 1<br>AST2 |                                      |            | 0.5                      | 400              | 70         | 420       |
|                     |                                                              | EK059G: Nitrite + Nitrate as N       |            | 0.5 mg/L                 | 109              | 70         | 130       |
|                     | Idahl Nitrogen By Discrete Analyser (QCLot: 185509)          |                                      |            |                          |                  |            |           |
| ES1527962-002       | Anonymous                                                    | EK061G: Total Kjeldahl Nitrogen as N |            | 5 mg/L                   | 103              | 70         | 130       |
| EK067G: Total Pho   | osphorus as P by Discrete Analyser (QCLot: 185510)           |                                      |            |                          |                  |            |           |
| ES1527962-002       | Anonymous                                                    | EK067G: Total Phosphorus as P        |            | 1 mg/L                   | 113              | 70         | 130       |
| K071G: Reactive     | Phosphorus as P by discrete analyser (QCLot: 18237           | 8)                                   |            |                          |                  |            |           |
| ES1528190-004       | Anonymous                                                    | EK071G: Reactive Phosphorus as P     | 14265-44-2 | 0.5 mg/L                 | 105              | 70         | 130       |
| EP033: C1 - C4 Hy   | drocarbon Gases (QCLot: 184041)                              |                                      |            |                          |                  |            |           |
| ES1528251-003       | Anonymous                                                    | EP033: Butane                        | 106-97-8   | 102.18 μg/L              | 96.5             | 70         | 130       |
|                     |                                                              | EP033: Butene                        | 25167-67-3 | 99.61 μg/L               | 128              | 70         | 130       |
|                     |                                                              | EP033: Ethane                        | 74-84-0    | 54.43 μg/L               | 97.1             | 70         | 130       |
|                     |                                                              | EP033: Ethene                        | 74-85-1    | 50.29 μg/L               | 94.9             | 70         | 130       |
|                     |                                                              | EP033: Methane                       | 74-82-8    | 28.48 μg/L               | # Not            | 70         | 130       |
|                     |                                                              |                                      |            |                          | Determined       |            |           |
|                     |                                                              | EP033: Propane                       | 74-98-6    | 78.28 µg/L               | 93.4             | 70         | 130       |
|                     |                                                              | EP033: Propene                       | 115-07-1   | 73.97 µg/L               | 91.1             | 70         | 130       |
|                     | ted Aliphatic Compounds (QCLot: 184479)                      |                                      |            |                          |                  |            |           |
| ES1528408-004       | Anonymous                                                    | EP074: 1.1-Dichloroethene            | 75-35-4    | 25 μg/L                  | 72.2             | 70         | 130       |
|                     |                                                              | EP074: Trichloroethene               | 79-01-6    | 25 μg/L                  | 93.0             | 70         | 130       |
| EP074F: Halogena    | ted Aromatic Compounds (QCLot: 184479)                       |                                      |            |                          |                  |            |           |
| ES1528408-004       | Anonymous                                                    | EP074: Chlorobenzene                 | 108-90-7   | 25 μg/L                  | 112              | 70         | 130       |
| EP080/071: Total F  | etroleum Hydrocarbons (QCLot: 184478)                        |                                      |            |                          |                  |            |           |
| ES1528408-004       | Anonymous                                                    | EP080: C6 - C9 Fraction              |            | 325 μg/L                 | 114              | 70         | 130       |
| EP080/071: Total F  | Recoverable Hydrocarbons - NEPM 2013 Fractions(Qu            | CLot: 184478)                        |            |                          |                  |            |           |
| ES1528408-004       | Anonymous                                                    | EP080: C6 - C10 Fraction             | C6 C10     | 375 µg/L                 | 115              | 70         | 130       |
|                     | ines (QCLot: 182684)                                         | 2. 555. 55 61611464611               |            |                          | -                | -          |           |

Page : 17 of 17

Work Order : ES1528259 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L







# QA/QC Compliance Assessment for DQO Reporting

Work Order : **ES1528259** Page : 1 of 12

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 13-Aug-2015

 Site
 : -- Issue Date
 : 02-Sep-2015

Sampler :--- No. of samples received : 3
Order number :--- No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- Laboratory Control outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers: Analysis Holding Time Compliance**

Analysis Holding Time Outliers exist - please see following pages for full details.

#### **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 12

Work Order : ES1528259 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: WATER

| Compound Group Name                                | Laboratory Sample ID | Client Sample ID | Analyte               | CAS Number | Data       | Limits  | Comment                                |
|----------------------------------------------------|----------------------|------------------|-----------------------|------------|------------|---------|----------------------------------------|
| Laboratory Control Spike (LCS) Recoveries          |                      |                  |                       |            |            |         |                                        |
| EK067G: Total Phosphorus as P by Discrete Analyser | QC-MRG2-18550900     |                  | Total Phosphorus as P |            | 109 %      | 71-101% | Recovery greater than upper control    |
|                                                    |                      |                  |                       |            |            |         | limit                                  |
| EK067G: Total Phosphorus as P by Discrete Analyser | QC-MRG2-18550900     |                  | Total Phosphorus as P |            | 112 %      | 72-108% | Recovery greater than upper control    |
|                                                    |                      |                  |                       |            |            |         | limit                                  |
| EP074B: Oxygenated Compounds                       | QC-184479-002        |                  | 2-Butanone (MEK)      | 78-93-3    | 72.8 %     | 74-130% | Recovery less than lower control limit |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons     | QC-182299-002        |                  | Anthracene            | 120-12-7   | 61.9 %     | 64-116% | Recovery less than lower control limit |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons     | QC-182299-002        |                  | Fluoranthene          | 206-44-0   | 63.5 %     | 64-118% | Recovery less than lower control limit |
| Matrix Spike (MS) Recoveries                       |                      |                  |                       |            |            |         |                                        |
| ED009: Anions                                      | ES1528155001         | Anonymous        | Chloride              | 16887-00-6 | Not        |         | MS recovery not determined,            |
|                                                    |                      |                  |                       |            | Determined |         | background level greater than or       |
|                                                    |                      |                  |                       |            |            |         | equal to 4x spike level.               |
| EP033: C1 - C4 Hydrocarbon Gases                   | ES1528251003         | Anonymous        | Methane               | 74-82-8    | Not        |         | MS recovery not determined,            |
|                                                    |                      |                  |                       |            | Determined |         | background level greater than or       |
|                                                    |                      |                  |                       |            |            |         | equal to 4x spike level.               |

#### **Outliers: Analysis Holding Time Compliance**

#### Matrix: WATER

| Malix. WATER                    |       |                |                        |         |               |                  |         |
|---------------------------------|-------|----------------|------------------------|---------|---------------|------------------|---------|
| Method                          |       | Ex             | traction / Preparation |         |               | Analysis         |         |
| Container / Client Sample ID(s) |       | Date extracted | Due for extraction     | Days    | Date analysed | Due for analysis | Days    |
|                                 |       |                |                        | overdue |               |                  | overdue |
| EA005P: pH by PC Titrator       |       |                |                        |         |               |                  |         |
| Clear Plastic Bottle - Natural  |       |                |                        |         |               |                  |         |
| AST2,                           | WK12, |                |                        |         | 13-Aug-2015   | 12-Aug-2015      | 1       |
| WK13                            |       |                |                        |         |               |                  |         |
| EK010/011: Chlorine             |       |                |                        |         |               |                  |         |
| Clear Plastic Bottle - Natural  |       |                |                        |         |               |                  |         |
| AST2,                           | WK12, |                |                        |         | 14-Aug-2015   | 12-Aug-2015      | 2       |
| WK13                            |       |                |                        |         |               |                  |         |

#### **Outliers : Frequency of Quality Control Samples**

#### Matrix: WATER

| wathx: WATER                |       |         |        |          |                                                  |
|-----------------------------|-------|---------|--------|----------|--------------------------------------------------|
| Quality Control Sample Type | Count |         | Rate   | (%)      | Quality Control Specification                    |
| Method                      | QC    | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP) |       |         |        |          |                                                  |
| PAH/Phenols (GC/MS - SIM)   | 0     | 3       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction | 0     | 3       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Matrix Spikes (MS)          |       |         |        |          |                                                  |
| PAH/Phenols (GC/MS - SIM)   | 0     | 3       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction | 0     | 3       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |



Page : 3 of 12

Work Order · ES1528259 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER                                       | · _ , |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
|-----------------------------------------------------|-------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|
| Method                                              |       | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                |
| Container / Client Sample ID(s)                     |       |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EA005P: pH by PC Titrator                           |       |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (EA005-P) AST2, WK13 | WK12, | 12-Aug-2015 |                |                        |            | 13-Aug-2015        | 12-Aug-2015        | sc             |
| EA010P: Conductivity by PC Titrator                 |       |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (EA010-P)<br>WK12,   | WK13  | 12-Aug-2015 |                |                        |            | 13-Aug-2015        | 09-Sep-2015        | ✓              |
| EA015: Total Dissolved Solids                       |       |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (EA015H) AST2, WK13  | WK12, | 12-Aug-2015 |                |                        |            | 18-Aug-2015        | 19-Aug-2015        | ✓              |
| EA025: Suspended Solids                             |       |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (EA025H) AST2, WK13  | WK12, | 12-Aug-2015 |                |                        |            | 18-Aug-2015        | 19-Aug-2015        | ✓              |
| ED009: Anions                                       |       |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (ED009-X) AST2, WK13 | WK12, | 12-Aug-2015 |                |                        |            | 17-Aug-2015        | 09-Sep-2015        | ✓              |
| ED037P: Alkalinity by PC Titrator                   |       |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (ED037-P) AST2, WK13 | WK12, | 12-Aug-2015 |                |                        |            | 13-Aug-2015        | 26-Aug-2015        | ✓              |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA     |       |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (ED041G) AST2, WK13  | WK12, | 12-Aug-2015 |                |                        |            | 13-Aug-2015        | 09-Sep-2015        | <b>✓</b>       |
| ED045G: Chloride by Discrete Analyser               |       |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (ED045G) AST2, WK13  | WK12, | 12-Aug-2015 |                |                        |            | 13-Aug-2015        | 09-Sep-2015        | ✓              |

Page : 4 of 12

Work Order : ES1528259 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                            |        |             |                |                        | Evaluation | ı: × = Holding time | breach ; ✓ = Withi | n holding time |
|--------------------------------------------------------------------------|--------|-------------|----------------|------------------------|------------|---------------------|--------------------|----------------|
| Method                                                                   |        | Sample Date | Ex             | traction / Preparation |            |                     | Analysis           |                |
| Container / Client Sample ID(s)                                          |        |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation     |
| ED093F: Dissolved Major Cations                                          |        |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) AST2, WK13         | WK12,  | 12-Aug-2015 |                |                        |            | 14-Aug-2015         | 09-Sep-2015        | ✓              |
| EG020F: Dissolved Metals by ICP-MS                                       |        |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)<br>AST2,<br>WK13 | WK12,  | 12-Aug-2015 |                |                        |            | 14-Aug-2015         | 08-Feb-2016        | ✓              |
| EG020F: Dissolved Metals by ICP-MS                                       |        |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F)<br>AST2,<br>WK13 | WK12,  | 12-Aug-2015 |                |                        |            | 14-Aug-2015         | 08-Feb-2016        | ✓              |
| EG035F: Dissolved Mercury by FIMS                                        |        |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)<br>AST2,<br>WK13   | WK12,  | 12-Aug-2015 |                |                        |            | 18-Aug-2015         | 09-Sep-2015        | ✓              |
| EG052G: Silica by Discrete Analyser                                      |        |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EG052G) AST2, WK13                       | WK12,  | 12-Aug-2015 |                |                        |            | 13-Aug-2015         | 09-Sep-2015        | ✓              |
| EK010/011: Chlorine                                                      |        |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EK010) AST2, WK13                        | WK12,  | 12-Aug-2015 |                |                        |            | 14-Aug-2015         | 12-Aug-2015        | ×              |
| EK040P: Fluoride by PC Titrator                                          |        |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EK040P) AST2, WK13                       | WK12,  | 12-Aug-2015 |                |                        |            | 13-Aug-2015         | 09-Sep-2015        | ✓              |
| EK055G: Ammonia as N by Discrete Analyser                                |        |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK055G)<br>AST2,<br>WK13           | WK12,  | 12-Aug-2015 |                |                        |            | 18-Aug-2015         | 09-Sep-2015        | ✓              |
| EK057G: Nitrite as N by Discrete Analyser                                |        |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EK057G)<br>AST2,<br>WK13                 | WK12,  | 12-Aug-2015 |                |                        |            | 13-Aug-2015         | 14-Aug-2015        | ✓              |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete An                   | alyser |             |                |                        |            |                     |                    | :              |
| Clear Plastic Bottle - Sulfuric Acid (EK059G) AST2,                      | WK12,  | 12-Aug-2015 |                |                        |            | 18-Aug-2015         | 09-Sep-2015        | ✓              |
| WK13                                                                     |        |             |                |                        |            |                     |                    |                |

Page : 5 of 12

Work Order : ES1528259 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                   |       |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
|-----------------------------------------------------------------|-------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|
| Method                                                          |       | Sample Date | Ex             | traction / Preparation |            | Analysis           |                    |                |
| Container / Client Sample ID(s)                                 |       |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyse             | er    |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK061G)<br>AST2,<br>WK13  | WK12, | 12-Aug-2015 | 18-Aug-2015    | 09-Sep-2015            | ✓          | 18-Aug-2015        | 09-Sep-2015        | ✓              |
| EK067G: Total Phosphorus as P by Discrete Analyse               | er    |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK067G) AST2, WK13        | WK12, | 12-Aug-2015 | 18-Aug-2015    | 09-Sep-2015            | ✓          | 18-Aug-2015        | 09-Sep-2015        | ✓              |
| EK071G: Reactive Phosphorus as P by discrete anal               | lyser |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (EK071G) AST2, WK13              | WK12, | 12-Aug-2015 |                |                        |            | 13-Aug-2015        | 14-Aug-2015        | ✓              |
| EP005: Total Organic Carbon (TOC)                               |       |             |                |                        |            |                    |                    |                |
| Amber TOC Vial - Sulfuric Acid (EP005) AST2, WK13               | WK12, | 12-Aug-2015 |                |                        |            | 14-Aug-2015        | 09-Sep-2015        | ✓              |
| EP020: Oil and Grease (O&G)                                     |       |             |                |                        |            |                    |                    |                |
| Amber Jar - Sulfuric Acid or Sodium Bisulfate (EP020 AST2, WK13 | WK12, | 12-Aug-2015 |                |                        |            | 19-Aug-2015        | 09-Sep-2015        | ✓              |
| EP033: C1 - C4 Hydrocarbon Gases                                |       |             |                |                        |            |                    |                    |                |
| Amber VOC Vial - Sulfuric Acid (EP033) AST2, WK13               | WK12, | 12-Aug-2015 |                |                        |            | 17-Aug-2015        | 26-Aug-2015        | ✓              |
| EP080/071: Total Petroleum Hydrocarbons                         |       |             |                |                        |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP071) AST2, WK13             | WK12, | 12-Aug-2015 | 14-Aug-2015    | 19-Aug-2015            | 1          | 18-Aug-2015        | 23-Sep-2015        | ✓              |
| EP074A: Monocyclic Aromatic Hydrocarbons                        |       |             |                |                        |            |                    |                    |                |
| Amber VOC Vial - Sulfuric Acid (EP074) AST2, WK13               | WK12, | 12-Aug-2015 | 17-Aug-2015    | 26-Aug-2015            | ✓          | 17-Aug-2015        | 26-Aug-2015        | ✓              |
| EP075(SIM)T: PAH Surrogates                                     |       |             |                |                        |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP075(SIM)) AST2, WK13        | WK12, | 12-Aug-2015 | 14-Aug-2015    | 19-Aug-2015            | 1          | 18-Aug-2015        | 23-Sep-2015        | ✓              |
| EP080/071: Total Petroleum Hydrocarbons                         |       |             |                |                        |            |                    |                    | :              |
| Amber VOC Vial - Sulfuric Acid (EP080) AST2, WK13               | WK12, | 12-Aug-2015 | 17-Aug-2015    | 26-Aug-2015            | ✓          | 17-Aug-2015        | 26-Aug-2015        | ✓              |
| VVICIO                                                          |       |             |                |                        |            |                    |                    |                |

Page : 6 of 12

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                             |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time. |
|-----------------------------------------------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------|
| Method                                                    | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                 |
| Container / Client Sample ID(s)                           |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation      |
| EP262: Ethanolamines                                      |             |                |                        |            |                    |                    |                 |
| Amber Glass Bottle - Unpreserved (EP262) AST2, WK12, WK13 | 12-Aug-2015 |                |                        |            | 14-Aug-2015        | 19-Aug-2015        | ✓               |

Page : 7 of 12

Work Order : ES1528259 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                                          |            |       |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specific |
|--------------------------------------------------------|------------|-------|---------|-----------|-------------------|-----------------|-------------------------------------------------------------------------|
| uality Control Sample Type                             |            | Co    | ount    |           | Rate (%)          |                 | Quality Control Specification                                           |
| nalytical Methods                                      | Method     | QC    | Regular | Actual    | Expected          | Evaluation      |                                                                         |
| aboratory Duplicates (DUP)                             |            |       |         |           |                   |                 |                                                                         |
| Alkalinity by PC Titrator                              | ED037-P    | 2     | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Ammonia as N by Discrete analyser                      | EK055G     | 1     | 6       | 16.67     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| C1 - C4 Gases                                          | EP033      | 2     | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Chloride by Discrete Analyser                          | ED045G     | 2     | 11      | 18.18     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Chlorine                                               | EK010      | 2     | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Conductivity by PC Titrator                            | EA010-P    | 2     | 17      | 11.76     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Dissolved Mercury by FIMS                              | EG035F     | 2     | 10      | 20.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 2     | 11      | 18.18     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 2     | 6       | 33.33     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Ethanolamines by LCMSMS                                | EP262      | 1     | 3       | 33.33     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Fluoride by PC Titrator                                | EK040P     | 1     | 3       | 33.33     | 10.00             | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Major Cations - Dissolved                              | ED093F     | 2     | 17      | 11.76     | 10.00             | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| litrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1     | 8       | 12.50     | 10.00             | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| litrite as N by Discrete Analyser                      | EK057G     | 1     | 7       | 14.29     | 10.00             | <u>√</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| AH/Phenols (GC/MS - SIM)                               | EP075(SIM) | 0     | 3       | 0.00      | 10.00             | <u>.</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| H by PC Titrator                                       | EA005-P    | 2     | 20      | 10.00     | 10.00             | <u>√</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1     | 9       | 11.11     | 10.00             | <u> </u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1     | 7       | 14.29     | 10.00             | <u>√</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 2     | 11      | 18.18     | 10.00             | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 2     | 11      | 18.18     | 10.00             | <u>√</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Suspended Solids (High Level)                          | EA025H     | 2     | 12      | 16.67     | 9.52              |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| otal Dissolved Solids (High Level)                     | EA015H     | 2     | 12      | 16.67     | 10.00             | <u>√</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| otal Kjeldahl Nitrogen as N By Discrete Analyser       | EK061G     | 2     | 19      | 10.53     | 10.00             |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| otal Phosphorus as P By Discrete Analyser              | EK067G     | 2     | 19      | 10.53     | 10.00             | <u> </u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| RH - Semivolatile Fraction                             | EP071      | 0     | 3       | 0.00      | 10.00             | <u>.</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| RH Volatiles/BTEX                                      | EP080      | 2     | 16      | 12.50     | 10.00             | <u>√</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| /olatile Organic Compounds                             | EP074      | 2     | 19      | 10.53     | 10.00             | <u>√</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| aboratory Control Samples (LCS)                        |            |       |         |           |                   |                 |                                                                         |
| Alkalinity by PC Titrator                              | ED037-P    | 1     | 20      | 5.00      | 5.00              | <b>✓</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| mmonia as N by Discrete analyser                       | EK055G     | 1     | 6       | 16.67     | 5.00              |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| 11 - C4 Gases                                          | EP033      | 1     | 20      | 5.00      | 5.00              |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Chloride by Discrete Analyser                          | ED045G     | 2     | 11      | 18.18     | 10.00             |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Conductivity by PC Titrator                            | EA010-P    | 1     | 17      | 5.88      | 5.00              |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Dissolved Mercury by FIMS                              | EG035F     | <br>1 | 10      | 10.00     | 5.00              |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1     | 11      | 9.09      | 5.00              |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| Dissolved Metals by ICP-MS - Suite B                   | EG020A-F   | 1     | 6       | 16.67     | 5.00              |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                        |
| 33017Ca Mictais by 101 -1010 - Guite D                 | EGUZUB-F   |       | 0       | 10.07     | 5.00              | ▼               | THE W 2010 OCHECUIE D(0) AND ALO QUOUTEQUIETTETT                        |

Page : 8 of 12

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                          |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specification |
|--------------------------------------------------------|------------|----|---------|-----------|-------------------|-----------------|------------------------------------------------------------------------------|
| Quality Control Sample Type                            |            | Co | ount    |           | Rate (%)          |                 | Quality Control Specification                                                |
| Analytical Methods                                     | Method     | QC | Regular | Actual    | Expected          | Evaluation      |                                                                              |
| Laboratory Control Samples (LCS) - Continued           |            |    |         |           |                   |                 |                                                                              |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 3       | 33.33     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Fluoride by PC Titrator                                | EK040P     | 1  | 3       | 33.33     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Major Cations - Dissolved                              | ED093F     | 1  | 17      | 5.88      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 8       | 12.50     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 7       | 14.29     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Oil and Grease                                         | EP020      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 3       | 33.33     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 9       | 11.11     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 7       | 14.29     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Suspended Solids (High Level)                          | EA025H     | 2  | 12      | 16.67     | 9.52              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Total Dissolved Solids (High Level)                    | EA015H     | 2  | 12      | 16.67     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 3  | 19      | 15.79     | 15.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 3  | 19      | 15.79     | 15.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 3       | 33.33     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 16      | 6.25      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Volatile Organic Compounds                             | EP074      | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Method Blanks (MB)                                     |            |    |         |           |                   |                 |                                                                              |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 6       | 16.67     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| C1 - C4 Gases                                          | EP033      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Chlorine                                               | EK010      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Conductivity by PC Titrator                            | EA010-P    | 1  | 17      | 5.88      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 10      | 10.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 6       | 16.67     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 3       | 33.33     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Fluoride by PC Titrator                                | EK040P     | 1  | 3       | 33.33     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Major Cations - Dissolved                              | ED093F     | 1  | 17      | 5.88      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 8       | 12.50     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 7       | 14.29     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Oil and Grease                                         | EP020      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 3       | 33.33     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 9       | 11.11     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 7       | 14.29     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Suspended Solids (High Level)                          | EA025H     | 1  | 12      | 8.33      | 4.76              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Total Dissolved Solids (High Level)                    | EA015H     | 1  | 12      | 8.33      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |

Page : 9 of 12

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                          |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specification |
|--------------------------------------------------------|------------|----|---------|-----------|-------------------|-----------------|------------------------------------------------------------------------------|
| Quality Control Sample Type                            |            | С  | ount    |           | Rate (%)          |                 | Quality Control Specification                                                |
| Analytical Methods                                     | Method     | OC | Regular | Actual    | Expected          | Evaluation      |                                                                              |
| Method Blanks (MB) - Continued                         |            |    |         |           |                   |                 |                                                                              |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 3       | 33.33     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 16      | 6.25      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Volatile Organic Compounds                             | EP074      | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Matrix Spikes (MS)                                     |            |    |         |           |                   |                 |                                                                              |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 6       | 16.67     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| C1 - C4 Gases                                          | EP033      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 10      | 10.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 3       | 33.33     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Fluoride by PC Titrator                                | EK040P     | 1  | 3       | 33.33     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 8       | 12.50     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 7       | 14.29     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0  | 3       | 0.00      | 5.00              | x               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 9       | 11.11     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 7       | 14.29     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH - Semivolatile Fraction                            | EP071      | 0  | 3       | 0.00      | 5.00              | 3c              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 16      | 6.25      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Volatile Organic Compounds                             | EP074      | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |

Page : 10 of 12

Work Order : ES1528259 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                     | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pH by PC Titrator                                      | EA005-P  | WATER  | In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                               |
| Conductivity by PC Titrator                            | EA010-P  | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                         |
| Total Dissolved Solids (High Level)                    | EA015H   | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |
| Suspended Solids (High Level)                          | EA025H   | WATER  | In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of 'non-filterable' residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (2013) Schedule B(3)                                 |
| Standard Anions -by IC (Extended Method)               | ED009-X  | WATER  | In house: Referenced to APHA 4110. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                    |
| Alkalinity by PC Titrator                              | ED037-P  | WATER  | In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                       |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G   | WATER  | In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)                                       |
| Chloride by Discrete Analyser                          | ED045G   | WATER  | In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003                                                                                                  |
| Major Cations - Dissolved                              | ED093F   | WATER  | In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3)  Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3)  Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) |
| Disastrud Matela tru IOD MO. Ovita A                   | 50000 5  | MATER  | Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                        |

Page : 11 of 12

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Analytical Methods                                   | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Metals by ICP-MS - Suite B                 | EG020B-F   | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                                                                                                        |
| Dissolved Mercury by FIMS                            | EG035F     | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) |
| Silica (Reactive) by Discrete Analyser               | EG052G     | WATER  | In house: Referenced to APHA 4500-SiO2 D: Under Acdic conditions reactive silicon combines with ammonium molybdate to form a yellow molybdosilicic acid complex. This is reduced by 1-amino-2-naphthol-4-sulfonic acid to a silicomolybdenum blue complex which is measured by discrete analyser at 670 nm. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                           |
| Chlorine                                             | EK010      | WATER  | In-house (DPD colourimetry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fluoride by PC Titrator                              | EK040P     | WATER  | In house: Referenced to APHA 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                               |
| Ammonia as N by Discrete analyser                    | EK055G     | WATER  | In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ammonium as N                                        | EK055G-NH4 | WATER  | Ammonium in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH and Temperature. Ammonia is determined by direct colorimetry by Discrete Analyser according to APHA 4500-NH3 G. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                  |
| Nitrite as N by Discrete Analyser                    | EK057G     | WATER  | In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nitrate as N by Discrete Analyser                    | EK058G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                          |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser  | EK059G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                      |
| Total Kjeldahl Nitrogen as N By Discrete Analyser    | EK061G     | WATER  | In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                           |
| Total Nitrogen as N (TKN + Nox) By Discrete Analyser | EK062G     | WATER  | In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total Phosphorus as P By Discrete<br>Analyser        | EK067G     | WATER  | In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |

Page : 12 of 12

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Analytical Methods                               | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reactive Phosphorus as P-By Discrete<br>Analyser | EK071G      | WATER  | In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                      |
| Ionic Balance by PCT DA and Turbi SO4 DA         | EN055 - PG  | WATER  | In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                        |
| Total Organic Carbon                             | EP005       | WATER  | In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                     |
| Oil and Grease                                   | EP020       | WATER  | In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM (2013) Schedule B(3)                                                                             |
| C1 - C4 Gases                                    | EP033       | WATER  | Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, US EPA - Region 1, EPA New England, July 2001. Automated static headspace, dual column GC/FID. A 12 mL sample is pipetted into a 20 mL headspace vial containing 3g of sodium chloride and sealed. Each sample is equilibrated with shaking at 40 degrees C for 10 minutes prior to analysis by GC/FID using a pair of PLOT columns of different polarity. |
| TRH - Semivolatile Fraction                      | EP071       | WATER  | USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                                                 |
| Volatile Organic Compounds                       | EP074       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                          |
| PAH/Phenols (GC/MS - SIM)                        | EP075(SIM)  | WATER  | USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                     |
| TRH Volatiles/BTEX                               | EP080       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                           |
| Ethanolamines by LCMSMS                          | EP262       | WATER  | In-house LC-MSMS: Benzoyl derivatives of target compounds are analysed by LC/MSMS in ESI Positive Mode.                                                                                                                                                                                                                                                                                                                                            |
| Preparation Methods                              | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TKN/TP Digestion                                 | EK061/EK067 | WATER  | APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                       |



## **QUALITY CONTROL REPORT**

**Work Order** : **ES1529385** Page : 1 of 20

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ---Date Samples Received: 27-Aug-2015C-O-C number: ---Date Analysis Commenced: 28-Aug-2015Sampler: ---Issue Date: 14-Oct-2015

Site : --- No. of samples received : 3

Quote number : --- No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Page : 2 of 20

Work Order : ES1529385 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC



ited

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

## Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories       | Position               | Accreditation Category |
|-------------------|------------------------|------------------------|
| Ankit Joshi       | Inorganic Chemist      | Sydney Inorganics      |
| Ashesh Patel      | Inorganic Chemist      | Sydney Inorganics      |
| Lana Nguyen       | Senior LCMS Chemist    | Sydney Organics        |
| Pabi Subba        | Senior Organic Chemist | Sydney Organics        |
| Raymond Commodore | Instrument Chemist     | Sydney Inorganics      |
| Shobhna Chandra   | Metals Coordinator     | Sydney Inorganics      |

Page : 3 of 20

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER    |                           |                                          |             |      |         | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|---------------------------|------------------------------------------|-------------|------|---------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID          | Method: Compound                         | CAS Number  | LOR  | Unit    | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA005P: pH by PC     | Titrator (QC Lot: 197028  | 8)                                       |             |      |         |                 |                        |         |                     |
| ES1529385-001        | WKSW01                    | EA005-P: pH Value                        |             | 0.01 | pH Unit | 7.38            | 7.50                   | 1.61    | 0% - 20%            |
| ES1529535-007        | Anonymous                 | EA005-P: pH Value                        |             | 0.01 | pH Unit | 8.22            | 8.19                   | 0.366   | 0% - 20%            |
| EA010P: Conductiv    | ity by PC Titrator (QC L  | ot: 197027)                              |             |      |         |                 |                        |         |                     |
| ES1529385-001        | WKSW01                    | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 489             | 493                    | 0.768   | 0% - 20%            |
| ES1529535-007        | Anonymous                 | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 749             | 750                    | 0.00    | 0% - 20%            |
| EA015: Total Dissol  | lved Solids (QC Lot: 19   | 8216)                                    |             |      |         |                 |                        |         |                     |
| ES1529236-001        | Anonymous                 | EA015H: Total Dissolved Solids @180°C    |             | 10   | mg/L    | 556             | 542                    | 2.37    | 0% - 20%            |
| ES1529328-001        | Anonymous                 | EA015H: Total Dissolved Solids @180°C    |             | 10   | mg/L    | 7680            | 8040                   | 4.64    | 0% - 20%            |
| EA025: Suspended     | Solids (QC Lot: 198217    |                                          |             |      |         |                 |                        |         |                     |
| ES1529236-001        | Anonymous                 | EA025H: Suspended Solids (SS)            |             | 5    | mg/L    | 61              | 58                     | 4.61    | 0% - 50%            |
| ED009: Anions (Q     | C Lot: 195954)            |                                          |             |      |         |                 |                        |         |                     |
| ES1529279-013        | Anonymous                 | ED009-X: Chloride                        | 16887-00-6  | 0.1  | mg/L    | 98.1            | 97.9                   | 0.284   | 0% - 20%            |
| ES1529387-004        | Anonymous                 | ED009-X: Chloride                        | 16887-00-6  | 0.1  | mg/L    | 675             | 675                    | 0.00    | 0% - 20%            |
| ED037P: Alkalinity   | by PC Titrator (QC Lot:   |                                          |             |      | J       |                 |                        |         |                     |
| ES1529349-001        | Anonymous                 | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L    | 14              | 17                     | 15.7    | 0% - 50%            |
|                      |                           | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                           | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                           | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L    | 14              | 17                     | 15.7    | 0% - 50%            |
| ES1529385-001        | WKSW01                    | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L    | 52              | 53                     | 0.00    | 0% - 20%            |
|                      |                           | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                           | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                           | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L    | 52              | 53                     | 0.00    | 0% - 20%            |
| ED041G: Sulfate (To  | urbidimetric) as SO4 2- l | by DA (QC Lot: 197004)                   |             |      |         |                 |                        |         |                     |
| ES1529535-001        | Anonymous                 | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L    | 18              | 17                     | 0.00    | 0% - 50%            |
| ES1529385-001        | WKSW01                    | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L    | 25              | 25                     | 0.00    | 0% - 20%            |
| ED045G: Chloride b   | y Discrete Analyser (Q    | C Lot: 197002)                           |             |      |         |                 |                        |         |                     |
| ES1529349-001        | Anonymous                 | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L    | 12              | 13                     | 0.00    | 0% - 50%            |
| ES1529385-001        | WKSW01                    | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L    | 66              | 67                     | 1.55    | 0% - 20%            |
| ED093F: Dissolved    | Major Cations (QC Lot:    | : 197679)                                |             |      |         |                 |                        |         |                     |
| ES1529258-001        | Anonymous                 | ED093F: Calcium                          | 7440-70-2   | 1    | mg/L    | 1040            | 1060                   | 1.84    | 0% - 20%            |
|                      |                           | ED093F: Magnesium                        | 7439-95-4   | 1    | mg/L    | 1090            | 1140                   | 4.17    | 0% - 20%            |
|                      |                           | ED093F: Potassium                        | 7440-09-7   | 1    | mg/L    | 14              | 14                     | 0.00    | 0% - 50%            |
|                      |                           | ED093F: Sodium                           | 7440-23-5   | 1    | mg/L    | 6370            | 6480                   | 1.67    | 0% - 20%            |
| ES1529386-001        | Anonymous                 | ED093F: Calcium                          | 7440-70-2   | 1    | mg/L    | 15              | 15                     | 0.00    | 0% - 50%            |



Page : 4 of 20

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                           |                      |            | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |
|----------------------|---------------------------|----------------------|------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID          | Method: Compound     | CAS Number | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| ED093F: Dissolved I  | Major Cations (QC Lot: 19 | 7679) - continued    |            |                                   |      |                 |                  |         |                     |
| ES1529386-001        | Anonymous                 | ED093F: Magnesium    | 7439-95-4  | 1                                 | mg/L | 9               | 9                | 0.00    | No Limit            |
|                      |                           | ED093F: Potassium    | 7440-09-7  | 1                                 | mg/L | 4               | 4                | 0.00    | No Limit            |
|                      |                           | ED093F: Sodium       | 7440-23-5  | 1                                 | mg/L | 41              | 41               | 0.00    | 0% - 20%            |
| EG020F: Dissolved I  | Metals by ICP-MS (QC Lot  | t: 197676)           |            |                                   |      |                 |                  |         |                     |
| ES1529258-001        | Anonymous                 | EG020A-F: Cadmium    | 7440-43-9  | 0.0001                            | mg/L | <0.0010         | <0.0010          | 0.00    | No Limit            |
|                      |                           | EG020A-F: Antimony   | 7440-36-0  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Arsenic    | 7440-38-2  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Barium     | 7440-39-3  | 0.001                             | mg/L | 0.138           | 0.148            | 6.92    | 0% - 50%            |
|                      |                           | EG020A-F: Beryllium  | 7440-41-7  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Chromium   | 7440-47-3  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Cobalt     | 7440-48-4  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Copper     | 7440-50-8  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Lead       | 7439-92-1  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Manganese  | 7439-96-5  | 0.001                             | mg/L | 1.36            | 1.37             | 0.836   | 0% - 20%            |
|                      |                           | EG020A-F: Molybdenum | 7439-98-7  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Nickel     | 7440-02-0  | 0.001                             | mg/L | 0.046           | 0.038            | 19.1    | No Limit            |
|                      |                           | EG020A-F: Tin        | 7440-31-5  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Zinc       | 7440-66-6  | 0.005                             | mg/L | 0.166           | 0.176            | 5.48    | No Limit            |
|                      |                           | EG020A-F: Aluminium  | 7429-90-5  | 0.01                              | mg/L | <0.10           | <0.10            | 0.00    | No Limit            |
|                      |                           | EG020A-F: Selenium   | 7782-49-2  | 0.01                              | mg/L | <0.10           | <0.10            | 0.00    | No Limit            |
|                      |                           | EG020A-F: Vanadium   | 7440-62-2  | 0.01                              | mg/L | <0.10           | <0.10            | 0.00    | No Limit            |
|                      |                           | EG020A-F: Boron      | 7440-42-8  | 0.05                              | mg/L | 1.30            | 1.35             | 4.16    | 0% - 50%            |
|                      |                           | EG020A-F: Iron       | 7439-89-6  | 0.05                              | mg/L | <0.10           | <0.10            | 0.00    | No Limit            |
|                      |                           | EG020A-F: Bromine    | 7726-95-6  | 0.1                               | mg/L | 29.0            | 31.0             | 6.77    | 0% - 20%            |
| ES1529386-001        | Anonymous                 | EG020A-F: Cadmium    | 7440-43-9  | 0.0001                            | mg/L | <0.0001         | <0.0001          | 0.00    | No Limit            |
|                      |                           | EG020A-F: Antimony   | 7440-36-0  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Arsenic    | 7440-38-2  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Barium     | 7440-39-3  | 0.001                             | mg/L | 0.049           | 0.051            | 2.85    | 0% - 20%            |
|                      |                           | EG020A-F: Beryllium  | 7440-41-7  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Chromium   | 7440-47-3  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Cobalt     | 7440-48-4  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Copper     | 7440-50-8  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Lead       | 7439-92-1  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Manganese  | 7439-96-5  | 0.001                             | mg/L | 0.040           | 0.040            | 0.00    | 0% - 20%            |
|                      |                           | EG020A-F: Molybdenum | 7439-98-7  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Nickel     | 7440-02-0  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Tin        | 7440-31-5  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Zinc       | 7440-66-6  | 0.005                             | mg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                           | EG020A-F: Aluminium  | 7429-90-5  | 0.01                              | mg/L | <0.01           | 0.01             | 0.00    | No Limit            |
|                      |                           | EG020A-F: Selenium   | 7782-49-2  | 0.01                              | mg/L | <0.01           | <0.01            | 0.00    | No Limit            |

Page : 5 of 20

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER              |                         |                                           |            | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |  |
|--------------------------------|-------------------------|-------------------------------------------|------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID           | Client sample ID        | Method: Compound                          | CAS Number | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EG020F: Dissolved              | Metals by ICP-MS (QC    | Lot: 197676) - continued                  |            |                                   |      |                 |                  |         |                     |  |
| ES1529386-001                  | Anonymous               | EG020A-F: Vanadium                        | 7440-62-2  | 0.01                              | mg/L | <0.01           | <0.01            | 0.00    | No Limit            |  |
|                                |                         | EG020A-F: Boron                           | 7440-42-8  | 0.05                              | mg/L | <0.05           | <0.05            | 0.00    | No Limit            |  |
|                                |                         | EG020A-F: Iron                            | 7439-89-6  | 0.05                              | mg/L | 0.24            | 0.24             | 0.00    | No Limit            |  |
|                                |                         | EG020A-F: Bromine                         | 7726-95-6  | 0.1                               | mg/L | 0.2             | 0.2              | 0.00    | No Limit            |  |
| EG020F: Dissolved              | Metals by ICP-MS (QC    | Lot: 197677)                              |            |                                   |      |                 |                  |         |                     |  |
| ES1529258-001                  | Anonymous               | EG020B-F: Strontium                       | 7440-24-6  | 0.001                             | mg/L | 29.1            | 31.2             | 6.99    | 0% - 20%            |  |
|                                |                         | EG020B-F: Uranium                         | 7440-61-1  | 0.001                             | mg/L | 0.016           | 0.011            | 32.6    | No Limit            |  |
| ES1529386-001                  | Anonymous               | EG020B-F: Strontium                       | 7440-24-6  | 0.001                             | mg/L | 0.192           | 0.206            | 7.13    | 0% - 20%            |  |
|                                |                         | EG020B-F: Uranium                         | 7440-61-1  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
| EG035F: Dissolved              | Mercury by FIMS (QC I   | Lot: 197678)                              |            |                                   |      |                 |                  |         |                     |  |
| ES1529258-002                  | Anonymous               | EG035F: Mercury                           | 7439-97-6  | 0.0001                            | mg/L | <0.0001         | <0.0001          | 0.00    | No Limit            |  |
| ES1529387-001                  | Anonymous               | EG035F: Mercury                           | 7439-97-6  | 0.0001                            | mg/L | <0.0001         | <0.0001          | 0.00    | No Limit            |  |
| EG052G: Silica by D            | Discrete Analyser (QC I |                                           |            |                                   |      |                 |                  |         |                     |  |
| ES1529522-001                  | Anonymous               | EG052G: Reactive Silica                   |            | 0.05                              | mg/L | 8.46            | 8.33             | 1.46    | 0% - 20%            |  |
| ES1529385-001                  | WKSW01                  | EG052G: Reactive Silica                   |            | 0.05                              | mg/L | 6.11            | 6.00             | 1.76    | 0% - 20%            |  |
| EK010/011: Chlorin             | e (QC Lot: 197340)      |                                           |            |                                   |      |                 |                  |         |                     |  |
| ES1528883-001                  | Anonymous               | EK010: Chlorine - Free                    |            | 0.2                               | mg/L | <0.2            | <0.2             | 0.00    | No Limit            |  |
| 20.02000 00.                   | , a.o., youo            | EK010: Chlorine - Total Residual          |            | 0.2                               | mg/L | <200            | <0.2             | 0.00    | No Limit            |  |
| ES1529387-002                  | Anonymous               | EK010: Chlorine - Free                    |            | 0.2                               | mg/L | <0.2            | <0.2             | 0.00    | No Limit            |  |
|                                |                         | EK010: Chlorine - Total Residual          |            | 0.2                               | mg/L | <0.2            | <0.2             | 0.00    | No Limit            |  |
| EK040P: Fluoride b             | y PC Titrator (QC Lot:  |                                           |            |                                   |      |                 |                  |         |                     |  |
| ES1529385-001                  | WKSW01                  | EK040P: Fluoride                          | 16984-48-8 | 0.1                               | mg/L | 0.1             | <0.1             | 0.00    | No Limit            |  |
| ES1529535-007                  | Anonymous               | EK040P: Fluoride                          | 16984-48-8 | 0.1                               | mg/L | 0.6             | 0.7              | 0.00    | No Limit            |  |
| EK055G: Ammonia                | as N by Discrete Analys |                                           |            |                                   | 3    |                 |                  |         |                     |  |
| ES1529385-001                  | WKSW01                  | EK055G: Ammonia as N                      | 7664-41-7  | 0.01                              | mg/L | 0.01            | 0.02             | 0.00    | No Limit            |  |
| ES1529389-001                  | Anonymous               | EK055G: Ammonia as N                      | 7664-41-7  | 0.01                              | mg/L | 0.04            | 0.03             | 0.00    | No Limit            |  |
|                                | N by Discrete Analyser  |                                           | 7001117    | 0.01                              | mg/L | 0.01            | 0.00             | 0.00    | 110 Emile           |  |
| ES1529393-002                  | Anonymous               |                                           | 14797-65-0 | 0.01                              | mg/L | <0.01           | <0.01            | 0.00    | No Limit            |  |
| ES1529395-002<br>ES1529385-001 | WKSW01                  | EK057G: Nitrite as N EK057G: Nitrite as N | 14797-65-0 | 0.01                              | mg/L | <0.01           | <0.01            | 0.00    | No Limit            |  |
|                                |                         |                                           | 14797-00-0 | 0.01                              | mg/L | 40.01           | 40.01            | 0.00    | NO LITTIC           |  |
|                                | ```                     | y Discrete Analyser (QC Lot: 198628)      |            | 0.01                              | ma/l | 0.01            | 0.01             | 0.00    | No Limit            |  |
| ES1529385-001<br>ES1529389-001 | WKSW01                  | EK059G: Nitrite + Nitrate as N            |            | 0.01                              | mg/L | 0.01            | 0.01<br>0.11     | 0.00    | No Limit            |  |
|                                | Anonymous               | EK059G: Nitrite + Nitrate as N            |            | 0.01                              | mg/L | 0.11            | 0.11             | 0.00    | 0% - 50%            |  |
|                                |                         | ete Analyser (QC Lot: 198619)             |            |                                   |      |                 |                  |         |                     |  |
| ES1529385-001                  | WKSW01                  | EK061G: Total Kjeldahl Nitrogen as N      |            | 0.1                               | mg/L | 0.4             | 0.3              | 0.00    | No Limit            |  |
| ES1529389-001                  | Anonymous               | EK061G: Total Kjeldahl Nitrogen as N      |            | 0.1                               | mg/L | 1.4             | 1.5              | 7.58    | 0% - 50%            |  |
|                                | <u> </u>                | te Analyser (QC Lot: 198618)              |            |                                   |      |                 |                  |         |                     |  |
| ES1529385-001                  | WKSW01                  | EK067G: Total Phosphorus as P             |            | 0.01                              | mg/L | 0.02            | 0.02             | 0.00    | No Limit            |  |
| ES1529389-001                  | Anonymous               | EK067G: Total Phosphorus as P             |            | 0.01                              | mg/L | 0.15            | 0.16             | 0.00    | 0% - 50%            |  |

Page : 6 of 20

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                        |                                    |            |        |              | Laboratory      | uplicate (DUP) Report |         |                     |
|----------------------|------------------------|------------------------------------|------------|--------|--------------|-----------------|-----------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                   | CAS Number | LOR    | Unit         | Original Result | Duplicate Result      | RPD (%) | Recovery Limits (%) |
| EK071G: Reactive I   | Phosphorus as P by dis | screte analyser (QC Lot: 197003)   |            |        |              |                 |                       |         |                     |
| ES1529393-002        | Anonymous              | EK071G: Reactive Phosphorus as P   | 14265-44-2 | 0.01   | mg/L         | <0.01           | <0.01                 | 0.00    | No Limit            |
| ES1529385-001        | WKSW01                 | EK071G: Reactive Phosphorus as P   | 14265-44-2 | 0.01   | mg/L         | <0.01           | <0.01                 | 0.00    | No Limit            |
| EP005: Total Organ   | ic Carbon (TOC) (QC L  | _ot: 196523)                       |            |        |              |                 |                       |         |                     |
| ES1529258-001        | Anonymous              | EP005: Total Organic Carbon        |            | 1      | mg/L         | <1              | <1                    | 0.00    | No Limit            |
| ES1529399-020        | Anonymous              | EP005: Total Organic Carbon        |            | 1      | mg/L         | <1              | <1                    | 0.00    | No Limit            |
| EP033: C1 - C4 Hvd   | Irocarbon Gases (QC L  |                                    |            |        |              |                 |                       |         |                     |
| ES1529385-001        | WKSW01                 | EP033: Butane                      | 106-97-8   | 10     | μg/L         | <10             | <10                   | 0.00    | No Limit            |
|                      |                        | EP033: Butene                      | 25167-67-3 | 10     | µg/L         | <10             | <10                   | 0.00    | No Limit            |
|                      |                        | EP033: Ethane                      | 74-84-0    | 10     | µg/L         | <10             | <10                   | 0.00    | No Limit            |
|                      |                        | EP033: Ethene                      | 74-85-1    | 10     | μg/L         | <10             | <10                   | 0.00    | No Limit            |
|                      |                        | EP033: Methane                     | 74-82-8    | 10     | µg/L         | 11              | 11                    | 0.00    | No Limit            |
|                      |                        | EP033: Propane                     | 74-98-6    | 10     | µg/L         | <10             | <10                   | 0.00    | No Limit            |
|                      |                        | EP033: Propene                     | 115-07-1   | 10     | µg/L         | <10             | <10                   | 0.00    | No Limit            |
| ED074A: Monocycli    | ic Aromatic Hydrocarbo |                                    | 1.00.      |        | M3. =        |                 |                       | 0.00    | 110 2               |
| EB1526728-001        | Anonymous              |                                    | 95-63-6    | 5      | μg/L         | <5              | <5                    | 0.00    | No Limit            |
| LB 1320720-001       | Anonymous              | EP074: 1.2.4-Trimethylbenzene      | 108-67-8   | 5      | μg/L         | <5              | <5<br><5              | 0.00    | No Limit            |
|                      |                        | EP074: 1.3.5-Trimethylbenzene      | 98-82-8    | 5      | μg/L         | <5              | <5<br><5              | 0.00    | No Limit            |
|                      |                        | EP074: Isopropylbenzene            | 104-51-8   | 5      | μg/L         | <5              | <5<br><5              | 0.00    | No Limit            |
|                      |                        | EP074: n-Butylbenzene              | 103-65-1   | 5      | μg/L         | <5              | <5<br><5              | 0.00    | No Limit            |
|                      |                        | EP074: n-Propylbenzene             | 99-87-6    | 5      | μg/L         | <5              | <5<br><5              | 0.00    | No Limit            |
|                      |                        | EP074: p-lsopropyltoluene          | 135-98-8   | 5      | μg/L         | <5              | <5                    | 0.00    | No Limit            |
|                      |                        | EP074: Styrene                     | 100-42-5   | 5      | μg/L         | <5              | <5                    | 0.00    | No Limit            |
|                      |                        | EP074: Styrene                     | 98-06-6    | 5      | μg/L         | <5              | <5<br><5              | 0.00    | No Limit            |
| ES1529387-002        | Anonymous              | EP074: tert-Butylbenzene           | 95-63-6    | 5      | μg/L         | <5              | <5<br><5              | 0.00    | No Limit            |
| E31329367-002        | Anonymous              | EP074: 1.2.4-Trimethylbenzene      | 108-67-8   | 5      |              | <5<br><5        | <5<br><5              | 0.00    | No Limit            |
|                      |                        | EP074: 1.3.5-Trimethylbenzene      | 98-82-8    | 5      | μg/L         | <5<br><5        | <5<br><5              | 0.00    | No Limit            |
|                      |                        | EP074: Isopropylbenzene            | 104-51-8   | 5<br>5 | μg/L         | <5<br><5        | <5<br><5              | 0.00    | No Limit            |
|                      |                        | EP074: n-Butylbenzene              | 103-65-1   | 5      | μg/L<br>μg/L | <5<br><5        | <5                    | 0.00    | No Limit            |
|                      |                        | EP074: n-Propylbenzene             | 99-87-6    | 5      | μg/L         | <5<br><5        | <5<br><5              | 0.00    | No Limit            |
|                      |                        | EP074: p-Isopropyltoluene          | 135-98-8   | 5      | μg/L         | <5<br><5        | <5<br><5              | 0.00    | No Limit            |
|                      |                        | EP074: sec-Butylbenzene            | 100-42-5   | 5      |              | <5<br><5        | <5<br><5              | 0.00    | No Limit            |
|                      |                        | EP074: Styrene                     | 98-06-6    | 5      | μg/L<br>μg/L | <5<br><5        | <5<br><5              | 0.00    | No Limit            |
| -D074D 0             | . 1 0                  | EP074: tert-Butylbenzene           | 96-00-0    | 5      | ру/с         |                 | <b>\\</b> 5           | 0.00    | NO LITTIL           |
|                      | ed Compounds (QC Lo    |                                    |            |        | -            |                 |                       | 0.00    |                     |
| EB1526728-001        | Anonymous              | EP074: 2-Butanone (MEK)            | 78-93-3    | 50     | μg/L         | <50             | <50                   | 0.00    | No Limit            |
|                      |                        | EP074: 2-Hexanone (MBK)            | 591-78-6   | 50     | μg/L         | <50             | <50                   | 0.00    | No Limit            |
|                      |                        | EP074: 4-Methyl-2-pentanone (MIBK) | 108-10-1   | 50     | μg/L         | <50             | <50                   | 0.00    | No Limit            |
|                      |                        | EP074: Vinyl Acetate               | 108-05-4   | 50     | μg/L         | <50             | <50                   | 0.00    | No Limit            |
| ES1529387-002        | Anonymous              | EP074: 2-Butanone (MEK)            | 78-93-3    | 50     | μg/L         | <50             | <50                   | 0.00    | No Limit            |
|                      |                        | EP074: 2-Hexanone (MBK)            | 591-78-6   | 50     | μg/L         | <50             | <50                   | 0.00    | No Limit            |

Page : 7 of 20

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                      |                                                              |            | Laboratory Duplicate (DUP) Report |               |                 |                  |         |                     |  |
|----------------------|----------------------|--------------------------------------------------------------|------------|-----------------------------------|---------------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID | Client sample ID     | Method: Compound                                             | CAS Number | LOR                               | Unit          | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EP074B: Oxygenate    | ed Compounds (QC Lo  | ot: 197979) - continued                                      |            |                                   |               |                 |                  |         |                     |  |
| ES1529387-002        | Anonymous            | EP074: 4-Methyl-2-pentanone (MIBK)                           | 108-10-1   | 50                                | μg/L          | <50             | <50              | 0.00    | No Limit            |  |
|                      |                      | EP074: Vinyl Acetate                                         | 108-05-4   | 50                                | μg/L          | <50             | <50              | 0.00    | No Limit            |  |
| EP074C: Sulfonated   | Compounds (QC Lot    | t: 197979)                                                   |            |                                   |               |                 |                  |         |                     |  |
| EB1526728-001        | Anonymous            | EP074: Carbon disulfide                                      | 75-15-0    | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
| ES1529387-002        | Anonymous            | EP074: Carbon disulfide                                      | 75-15-0    | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
| EP074D: Fumigants    | (QC Lot: 197979)     |                                                              |            |                                   |               |                 |                  |         |                     |  |
| EB1526728-001        | Anonymous            | EP074: 1.2-Dibromoethane (EDB)                               | 106-93-4   | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      | ,oyouo               | EP074: 1.2-Dichloropropane                                   | 78-87-5    | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: 2.2-Dichloropropane                                   | 594-20-7   | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: cis-1.3-Dichloropropylene                             | 10061-01-5 | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: trans-1.3-Dichloropropylene                           | 10061-02-6 | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
| ES1529387-002        | Anonymous            | EP074: trans-1.3-Dictioropyopyerie                           | 106-93-4   | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
| 201020007 002        | 7 thonymous          | EP074: 1.2-Dichloropropane                                   | 78-87-5    | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: 2.2-Dichloropropane                                   | 594-20-7   | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: cis-1.3-Dichloropropylene                             | 10061-01-5 | 5                                 | µg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: trans-1.3-Dichloropropylene                           | 10061-02-6 | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
| EP074E: Halogonate   | ed Aliphatic Compoun |                                                              |            |                                   | P-3           |                 |                  |         |                     |  |
| EB1526728-001        | Anonymous            |                                                              | 630-20-6   | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
| LB1320720-001        | Anonymous            | EP074: 1.1.1.2-Tetrachloroethane                             | 71-55-6    | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: 1.1.1-Trichloroethane                                 | 79-34-5    | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: 1.1.2.2-Tetrachloroethane                             | 79-00-5    | 5                                 | μg/L          | <5              | <5<br><5         | 0.00    | No Limit            |  |
|                      |                      | EP074: 1.1.2-Trichloroethane                                 | 75-34-3    | 5                                 | μg/L          | <5              | <5<br><5         | 0.00    | No Limit            |  |
|                      |                      | EP074: 1.1-Dichloroethane                                    | 75-35-4    | 5                                 | μg/L          | <5              | <5<br><5         | 0.00    | No Limit            |  |
|                      |                      | EP074: 1.1-Dichloroethene                                    | 563-58-6   | 5                                 | μg/L          | <5              | <5<br><5         | 0.00    | No Limit            |  |
|                      |                      | EP074: 1.1-Dichloropropylene                                 | 96-18-4    | 5                                 | μg/L          | <5<br><5        | <5<br><5         | 0.00    | No Limit            |  |
|                      |                      | EP074: 1.2.3-Trichloropropane                                | 96-12-8    | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: 1.2-Dibromo-3-chloropropane EP074: 1.2-Dichloroethane | 107-06-2   | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: 1.3-Dichloropropane                                   | 142-28-9   | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | ·                                                            | 56-23-5    | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: Carbon Tetrachloride EP074: cis-1.2-Dichloroethene    | 156-59-2   | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: cis-1.2-Dichloro-2-butene                             | 1476-11-5  | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: Dibromomethane                                        | 74-95-3    | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: Distribute traile                                     | 87-68-3    | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: Indomethane                                           | 74-88-4    | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: lodometriane EP074: Pentachloroethane                 | 76-01-7    | 5                                 | μg/L          | <5              | <5<br><5         | 0.00    | No Limit            |  |
|                      |                      | EP074: Peritachioroethane                                    | 127-18-4   | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      | EP074: trans-1.2-Dichloroethene                              | 156-60-5   | 5                                 | μg/L          | <5              | <5               | 0.00    | No Limit            |  |
|                      |                      |                                                              | 110-57-6   | 5                                 | μg/L          | <5              | <5<br><5         | 0.00    | No Limit            |  |
|                      |                      | EP074: trans-1.4-Dichloro-2-butene EP074: Trichloroethene    | 79-01-6    | 5                                 | μg/L          | <5              | <5<br><5         | 0.00    | No Limit            |  |
|                      |                      | EP074: Inchloroethene EP074: Bromomethane                    | 74-83-9    | 50                                | μg/L<br>μg/L  | <50             | <50              | 0.00    | No Limit            |  |
|                      |                      | EP074. DIOIIIOIIIeuiane                                      | 14-03-9    | 50                                | μ <b>9</b> /L | \00             | <b>~30</b>       | 0.00    | INO LIIIIIL         |  |

Page : 8 of 20

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                                    |            | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |  |
|----------------------|-----------------------|------------------------------------|------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID | Client sample ID      | Method: Compound                   | CAS Number | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EP074E: Halogenate   | ed Aliphatic Compound | ds (QC Lot: 197979) - continued    |            |                                   |      |                 |                  |         |                     |  |
| EB1526728-001        | Anonymous             | EP074: Chloroethane                | 75-00-3    | 50                                | μg/L | <50             | <50              | 0.00    | No Limit            |  |
|                      |                       | EP074: Chloromethane               | 74-87-3    | 50                                | μg/L | <50             | <50              | 0.00    | No Limit            |  |
|                      |                       | EP074: Dichlorodifluoromethane     | 75-71-8    | 50                                | μg/L | <50             | <50              | 0.00    | No Limit            |  |
|                      |                       | EP074: Trichlorofluoromethane      | 75-69-4    | 50                                | μg/L | <50             | <50              | 0.00    | No Limit            |  |
|                      |                       | EP074: Vinyl chloride              | 75-01-4    | 50                                | μg/L | <50             | <50              | 0.00    | No Limit            |  |
| ES1529387-002        | Anonymous             | EP074: 1.1.1.2-Tetrachloroethane   | 630-20-6   | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: 1.1.1-Trichloroethane       | 71-55-6    | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: 1.1.2.2-Tetrachloroethane   | 79-34-5    | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: 1.1.2-Trichloroethane       | 79-00-5    | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: 1.1-Dichloroethane          | 75-34-3    | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: 1.1-Dichloroethene          | 75-35-4    | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: 1.1-Dichloropropylene       | 563-58-6   | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: 1.2.3-Trichloropropane      | 96-18-4    | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: 1.2-Dibromo-3-chloropropane | 96-12-8    | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: 1.2-Dichloroethane          | 107-06-2   | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: 1.3-Dichloropropane         | 142-28-9   | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: Carbon Tetrachloride        | 56-23-5    | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: cis-1.2-Dichloroethene      | 156-59-2   | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: cis-1.4-Dichloro-2-butene   | 1476-11-5  | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: Dibromomethane              | 74-95-3    | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: Hexachlorobutadiene         | 87-68-3    | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: Iodomethane                 | 74-88-4    | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: Pentachloroethane           | 76-01-7    | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: Tetrachloroethene           | 127-18-4   | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: trans-1.2-Dichloroethene    | 156-60-5   | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: Trichloroethene             | 79-01-6    | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: Bromomethane                | 74-83-9    | 50                                | μg/L | <50             | <50              | 0.00    | No Limit            |  |
|                      |                       | EP074: Chloroethane                | 75-00-3    | 50                                | μg/L | <50             | <50              | 0.00    | No Limit            |  |
|                      |                       | EP074: Chloromethane               | 74-87-3    | 50                                | μg/L | <50             | <50              | 0.00    | No Limit            |  |
|                      |                       | EP074: Dichlorodifluoromethane     | 75-71-8    | 50                                | μg/L | <50             | <50              | 0.00    | No Limit            |  |
|                      |                       | EP074: Trichlorofluoromethane      | 75-69-4    | 50                                | μg/L | <50             | <50              | 0.00    | No Limit            |  |
|                      |                       | EP074: Vinyl chloride              | 75-01-4    | 50                                | μg/L | <50             | <50              | 0.00    | No Limit            |  |
| EP074F: Halogenate   | ed Aromatic Compound  | ds (QC Lot: 197979)                |            |                                   |      |                 |                  |         |                     |  |
| EB1526728-001        | Anonymous             | EP074: 1.2.3-Trichlorobenzene      | 87-61-6    | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      | ,                     | EP074: 1.2.4-Trichlorobenzene      | 120-82-1   | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: 1.2-Dichlorobenzene         | 95-50-1    | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: 1.3-Dichlorobenzene         | 541-73-1   | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: 1.4-Dichlorobenzene         | 106-46-7   | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                       | EP074: 2-Chlorotoluene             | 95-49-8    | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |

Page : 9 of 20

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                                     |            |     |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|-----------------------|-------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                    | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074F: Halogenat    | ed Aromatic Compound  | ds (QC Lot: 197979) - continued     |            |     |      |                 |                        |         |                     |
| EB1526728-001        | Anonymous             | EP074: 4-Chlorotoluene              | 106-43-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromobenzene                 | 108-86-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Chlorobenzene                | 108-90-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1529387-002        | Anonymous             | EP074: 1.2.3-Trichlorobenzene       | 87-61-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2.4-Trichlorobenzene       | 120-82-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichlorobenzene          | 95-50-1    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.3-Dichlorobenzene          | 541-73-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.4-Dichlorobenzene          | 106-46-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 2-Chlorotoluene              | 95-49-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 4-Chlorotoluene              | 106-43-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromobenzene                 | 108-86-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Chlorobenzene                | 108-90-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074G: Trihalome    | thanes (QC Lot: 19797 | 9)                                  |            |     |      |                 |                        |         |                     |
| EB1526728-001        | Anonymous             | EP074: Bromodichloromethane         | 75-27-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromoform                    | 75-25-2    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Chloroform                   | 67-66-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromochloromethane         | 124-48-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1529387-002        | Anonymous             | EP074: Bromodichloromethane         | 75-27-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromoform                    | 75-25-2    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Chloroform                   | 67-66-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromochloromethane         | 124-48-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP075(SIM)A: Phen    | olic Compounds (QC I  | _ot: 196365)                        |            |     |      |                 |                        |         |                     |
| ES1529387-001        | Anonymous             | EP075(SIM): 2.4.5-Trichlorophenol   | 95-95-4    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 2.4.6-Trichlorophenol   | 88-06-2    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 2.4-Dichlorophenol      | 120-83-2   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 2.4-Dimethylphenol      | 105-67-9   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 2.6-Dichlorophenol      | 87-65-0    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 2-Chlorophenol          | 95-57-8    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 2-Methylphenol          | 95-48-7    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 2-Nitrophenol           | 88-75-5    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 4-Chloro-3-methylphenol | 59-50-7    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Phenol                  | 108-95-2   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 3- & 4-Methylphenol     | 1319-77-3  | 2   | μg/L | <2.0            | <2.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Pentachlorophenol       | 87-86-5    | 2   | μg/L | <2.0            | <2.0                   | 0.00    | No Limit            |
| ES1529387-005        | Anonymous             | EP075(SIM): 2.4.5-Trichlorophenol   | 95-95-4    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 2.4.6-Trichlorophenol   | 88-06-2    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 2.4-Dichlorophenol      | 120-83-2   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 2.4-Dimethylphenol      | 105-67-9   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 2.6-Dichlorophenol      | 87-65-0    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 2-Chlorophenol          | 95-57-8    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |

Page : 10 of 20

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                                     |                      | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |  |
|----------------------|-----------------------|-------------------------------------|----------------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID | Client sample ID      | Method: Compound                    | CAS Number           | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EP075(SIM)A: Pheno   | olic Compounds (QC L  | _ot: 196365) - continued            |                      |                                   |      |                 |                  |         |                     |  |
| ES1529387-005        | Anonymous             | EP075(SIM): 2-Methylphenol          | 95-48-7              | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): 2-Nitrophenol           | 88-75-5              | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): 4-Chloro-3-methylphenol | 59-50-7              | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Phenol                  | 108-95-2             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): 3- & 4-Methylphenol     | 1319-77-3            | 2                                 | μg/L | 28.1            | 28.2             | 0.00    | 0% - 50%            |  |
|                      |                       | EP075(SIM): Pentachlorophenol       | 87-86-5              | 2                                 | μg/L | <2.0            | <2.0             | 0.00    | No Limit            |  |
| EP075(SIM)B: Polyn   | uclear Aromatic Hydro | ocarbons (QC Lot: 196365)           |                      |                                   |      |                 |                  |         |                     |  |
| ES1529387-001        | Anonymous             | EP075(SIM): Benzo(a)pyrene          | 50-32-8              | 0.5                               | μg/L | <0.5            | <0.5             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Acenaphthene            | 83-32-9              | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Acenaphthylene          | 208-96-8             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Anthracene              | 120-12-7             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Benz(a)anthracene       | 56-55-3              | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Benzo(b+j)fluoranthene  | 205-99-2             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       |                                     | 205-82-3             |                                   |      |                 |                  |         |                     |  |
|                      |                       | EP075(SIM): Benzo(g.h.i)perylene    | 191-24-2             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Benzo(k)fluoranthene    | 207-08-9             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Chrysene                | 218-01-9             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Dibenz(a.h)anthracene   | 53-70-3              | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Fluoranthene            | 206-44-0             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Fluorene                | 86-73-7              | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Indeno(1.2.3.cd)pyrene  | 193-39-5             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Naphthalene             | 91-20-3              | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Phenanthrene            | 85-01-8              | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Pyrene                  | 129-00-0             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
| ES1529387-005        | Anonymous             | EP075(SIM): Benzo(a)pyrene          | 50-32-8              | 0.5                               | μg/L | <0.5            | <0.5             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Acenaphthene            | 83-32-9              | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Acenaphthylene          | 208-96-8             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Anthracene              | 120-12-7             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Benz(a)anthracene       | 56-55-3              | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Benzo(b+j)fluoranthene  | 205-99-2<br>205-82-3 | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Benzo(g.h.i)perylene    | 191-24-2             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Benzo(k)fluoranthene    | 207-08-9             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Chrysene                | 218-01-9             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Dibenz(a.h)anthracene   | 53-70-3              | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Fluoranthene            | 206-44-0             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Fluorene                | 86-73-7              | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Indeno(1.2.3.cd)pyrene  | 193-39-5             | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Naphthalene             | 91-20-3              | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |
|                      |                       | EP075(SIM): Phenanthrene            | 85-01-8              | 1                                 | μg/L | <1.0            | <1.0             | 0.00    | No Limit            |  |

Page : 11 of 20

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                        |                                           |            |     |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------|-------------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                          | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP075(SIM)B: Poly    | nuclear Aromatic Hydro | ocarbons (QC Lot: 196365) - continued     |            |     |      |                 |                        |         |                     |
| ES1529387-005        | Anonymous              | EP075(SIM): Pyrene                        | 129-00-0   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
| EP080/071: Total P   | etroleum Hydrocarbons  | (QC Lot: 196366)                          |            |     |      |                 |                        |         |                     |
| ES1529387-001        | Anonymous              | EP071: C15 - C28 Fraction                 |            | 100 | μg/L | <100            | <100                   | 0.00    | No Limit            |
|                      |                        | EP071: C10 - C14 Fraction                 |            | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP071: C29 - C36 Fraction                 |            | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| ES1529387-005        | Anonymous              | EP071: C15 - C28 Fraction                 |            | 100 | μg/L | <100            | <100                   | 0.00    | No Limit            |
|                      |                        | EP071: C10 - C14 Fraction                 |            | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP071: C29 - C36 Fraction                 |            | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| EP080/071: Total P   | etroleum Hydrocarbons  | (QC Lot: 197980)                          |            |     |      |                 |                        |         |                     |
| EB1526728-001        | Anonymous              | EP080: C6 - C9 Fraction                   |            | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| ES1529387-002        | Anonymous              | EP080: C6 - C9 Fraction                   |            | 20  | μg/L | 160             | 180                    | 13.1    | No Limit            |
| EP080/071: Total R   | ecoverable Hydrocarbo  | ns - NEPM 2013 Fractions (QC Lot: 196366) |            |     |      |                 |                        |         |                     |
| ES1529387-001        | Anonymous              | EP071: >C10 - C16 Fraction                | >C10_C16   | 100 | μg/L | <100            | <100                   | 0.00    | No Limit            |
|                      |                        | EP071: >C16 - C34 Fraction                |            | 100 | μg/L | <100            | <100                   | 0.00    | No Limit            |
|                      |                        | EP071: >C34 - C40 Fraction                |            | 100 | μg/L | <100            | <100                   | 0.00    | No Limit            |
| ES1529387-005        | Anonymous              | EP071: >C10 - C16 Fraction                | >C10_C16   | 100 | μg/L | <100            | <100                   | 0.00    | No Limit            |
|                      |                        | EP071: >C16 - C34 Fraction                |            | 100 | μg/L | <100            | <100                   | 0.00    | No Limit            |
|                      |                        | EP071: >C34 - C40 Fraction                |            | 100 | μg/L | <100            | <100                   | 0.00    | No Limit            |
| EP080/071: Total R   | ecoverable Hydrocarbo  | ns - NEPM 2013 Fractions (QC Lot: 197980) |            |     |      |                 |                        |         |                     |
| EB1526728-001        | Anonymous              | EP080: C6 - C10 Fraction                  | C6_C10     | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| ES1529387-002        | Anonymous              | EP080: C6 - C10 Fraction                  | C6_C10     | 20  | μg/L | 150             | 170                    | 13.0    | No Limit            |
| EP080: BTEXN (Q      | C Lot: 197980)         |                                           |            |     |      |                 |                        |         |                     |
| EB1526728-001        | Anonymous              | EP080: Benzene                            | 71-43-2    | 1   | μg/L | <1              | <1                     | 0.00    | No Limit            |
|                      |                        | EP080: Ethylbenzene                       | 100-41-4   | 2   | μg/L | <2              | <2                     | 0.00    | No Limit            |
|                      |                        | EP080: meta- & para-Xylene                | 108-38-3   | 2   | μg/L | <2              | <2                     | 0.00    | No Limit            |
|                      |                        | ·                                         | 106-42-3   |     |      |                 |                        |         |                     |
|                      |                        | EP080: ortho-Xylene                       | 95-47-6    | 2   | μg/L | <2              | <2                     | 0.00    | No Limit            |
|                      |                        | EP080: Toluene                            | 108-88-3   | 2   | μg/L | <2              | <2                     | 0.00    | No Limit            |
|                      |                        | EP080: Naphthalene                        | 91-20-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1529387-002        | Anonymous              | EP080: Benzene                            | 71-43-2    | 1   | μg/L | 66              | 73                     | 10.7    | 0% - 20%            |
|                      |                        | EP080: Ethylbenzene                       | 100-41-4   | 2   | μg/L | <2              | <2                     | 0.00    | No Limit            |
|                      |                        | EP080: meta- & para-Xylene                | 108-38-3   | 2   | μg/L | 10              | 12                     | 11.1    | No Limit            |
|                      |                        |                                           | 106-42-3   |     |      |                 |                        |         |                     |
|                      |                        | EP080: ortho-Xylene                       | 95-47-6    | 2   | μg/L | 2               | 2                      | 0.00    | No Limit            |
|                      |                        | EP080: Toluene                            | 108-88-3   | 2   | μg/L | 48              | 57                     | 17.0    | 0% - 20%            |
|                      |                        | EP080: Naphthalene                        | 91-20-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP262: Ethanolam     | ines (QC Lot: 201869)  |                                           |            |     |      |                 |                        |         |                     |
| ES1529385-001        | WKSW01                 | EP262: Diethanolamine                     | 111-42-2   | 1   | μg/L | <1              | <1                     | 0.00    | No Limit            |
|                      |                        | EP262: Ethanolamine                       | 141-43-5   | 1   | μg/L | <1              | <1                     | 0.00    | No Limit            |

Page : 12 of 20

Work Order : ES1529385 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                    |             |        |       | Method Blank (MB) |               | Laboratory Control Spike (LCS | 6) Report |            |
|------------------------------------------------------|-------------|--------|-------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                      |             |        |       | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                     | CAS Number  | LOR    | Unit  | Result            | Concentration | LCS                           | Low       | High       |
| EA010P: Conductivity by PC Titrator (QCLot: 197027)  |             |        |       |                   |               |                               |           |            |
| EA010-P: Electrical Conductivity @ 25°C              |             | 1      | μS/cm | <1                | 2000 μS/cm    | 105                           | 95        | 113        |
| EA015: Total Dissolved Solids (QCLot: 198216)        |             |        |       |                   |               |                               |           |            |
| EA015H: Total Dissolved Solids @180°C                |             | 10     | mg/L  | <10               | 2000 mg/L     | 96.8                          | 87        | 109        |
|                                                      |             |        |       | <10               | 293 mg/L      | 89.1                          | 66        | 126        |
| EA025: Suspended Solids (QCLot: 198217)              |             |        |       |                   |               |                               |           |            |
| EA025H: Suspended Solids (SS)                        |             | 5      | mg/L  | <5                | 150 mg/L      | 97.7                          | 83        | 129        |
|                                                      |             |        |       | <5                | 1000 mg/L     | 96.3                          | 84        | 110        |
| ED009: Anions (QCLot: 195954)                        |             |        |       |                   |               |                               |           |            |
| ED009-X: Chloride                                    | 16887-00-6  | 0.1    | mg/L  | <0.100            | 2 mg/L        | 103                           | 89        | 107        |
| ED037P: Alkalinity by PC Titrator (QCLot: 197025)    |             |        |       |                   |               |                               |           |            |
| ED037-P: Total Alkalinity as CaCO3                   |             |        | mg/L  |                   | 200 mg/L      | 86.3                          | 81        | 111        |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCI | ot: 197004) |        |       |                   |               |                               |           |            |
| ED041G: Sulfate as SO4 - Turbidimetric               | 14808-79-8  | 1      | mg/L  | <1                | 25 mg/L       | 98.4                          | 86        | 122        |
| ED045G: Chloride by Discrete Analyser (QCLot: 1970)  | 12)         |        |       |                   |               |                               |           | I          |
| ED045G: Chloride                                     | 16887-00-6  | 1      | mg/L  | <1                | 10 mg/L       | 110                           | 75        | 123        |
| EB043G. Officiale                                    | .000. 00 0  | •      | 9/ =  | <1                | 1000 mg/L     | 90.7                          | 77        | 119        |
| ED093F: Dissolved Major Cations (QCLot: 197679)      |             |        |       |                   |               |                               |           | 1          |
| ED093F: Calcium                                      | 7440-70-2   | 1      | mg/L  | <1                | 50 mg/L       | 105                           | 90        | 114        |
| ED093F: Magnesium                                    | 7439-95-4   | <br>1  | mg/L  | <1                | 50 mg/L       | 107                           | 90        | 110        |
| ED093F: Potassium                                    | 7440-09-7   | 1      | mg/L  | <1                | 50 mg/L       | 106                           | 87        | 117        |
| ED093F: Sodium                                       | 7440-23-5   | 1      | mg/L  | <1                | 50 mg/L       | 103                           | 82        | 118        |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 197676)   |             |        |       |                   |               |                               |           | ı          |
| EG020A-F: Aluminium                                  | 7429-90-5   | 0.01   | mg/L  | <0.01             | 0.5 mg/L      | 91.9                          | 85        | 115        |
| EG020A-F: Antimony                                   | 7440-36-0   | 0.001  | mg/L  | <0.001            | 0.01 mg/L     | 91.6                          | 85        | 115        |
| EG020A-F: Arsenic                                    | 7440-38-2   | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 97.9                          | 85        | 115        |
| EG020A-F: Barium                                     | 7440-39-3   | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 97.2                          | 85        | 115        |
| EG020A-F: Beryllium                                  | 7440-41-7   | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 94.8                          | 85        | 115        |
| EG020A-F: Boron                                      | 7440-42-8   | 0.05   | mg/L  | <0.05             | 0.1 mg/L      | 99.8                          | 85        | 115        |
| EG020A-F: Bromine                                    | 7726-95-6   | 0.1    | mg/L  | <0.1              |               |                               |           |            |
| EG020A-F: Cadmium                                    | 7440-43-9   | 0.0001 | mg/L  | <0.0001           | 0.1 mg/L      | 97.6                          | 85        | 115        |
| EG020A-F: Chromium                                   | 7440-47-3   | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 99.8                          | 85        | 115        |
| EG020A-F: Cobalt                                     | 7440-48-4   | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 100                           | 85        | 115        |
| EG020A-F: Copper                                     | 7440-50-8   | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 103                           | 85        | 115        |

Page : 13 of 20

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                           |               |        |      | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|-------------------------------------------------------------|---------------|--------|------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                             |               |        |      | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                            | CAS Number    | LOR    | Unit | Result            | Concentration | LCS                           | Low       | High       |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 197676) - conf   | tinued        |        |      |                   |               |                               |           |            |
| EG020A-F: Iron                                              | 7439-89-6     | 0.05   | mg/L | <0.05             | 0.5 mg/L      | 94.2                          | 85        | 115        |
| EG020A-F: Lead                                              | 7439-92-1     | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 96.3                          | 85        | 115        |
| EG020A-F: Manganese                                         | 7439-96-5     | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 100                           | 85        | 115        |
| EG020A-F: Molybdenum                                        | 7439-98-7     | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 91.5                          | 85        | 115        |
| EG020A-F: Nickel                                            | 7440-02-0     | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 98.3                          | 85        | 115        |
| EG020A-F: Selenium                                          | 7782-49-2     | 0.01   | mg/L | <0.01             | 0.1 mg/L      | 95.2                          | 85        | 115        |
| EG020A-F: Tin                                               | 7440-31-5     | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 92.6                          | 85        | 115        |
| EG020A-F: Vanadium                                          | 7440-62-2     | 0.01   | mg/L | <0.01             | 0.1 mg/L      | 101                           | 85        | 115        |
| EG020A-F: Zinc                                              | 7440-66-6     | 0.005  | mg/L | <0.005            | 0.1 mg/L      | 94.1                          | 85        | 115        |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 197677)          |               |        |      |                   |               |                               |           |            |
| EG020B-F: Strontium                                         | 7440-24-6     | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 94.4                          | 80        | 112        |
| EG020B-F: Uranium                                           | 7440-61-1     | 0.001  | mg/L | <0.001            |               |                               |           |            |
| EG035F: Dissolved Mercury by FIMS (QCLot: 197678)           |               |        |      |                   |               |                               |           |            |
| EG035F: Mercury                                             | 7439-97-6     | 0.0001 | mg/L | <0.0001           | 0.01 mg/L     | 93.7                          | 78        | 114        |
| EG052G: Silica by Discrete Analyser (QCLot: 197005)         |               |        |      |                   |               |                               |           |            |
| EG052G: Reactive Silica                                     |               | 0.05   | mg/L | <0.05             | 5 mg/L        | 103                           | 94        | 114        |
| EK010/011: Chlorine (QCLot: 197340)                         |               |        |      |                   |               |                               |           |            |
| EK010: Chlorine - Free                                      |               | 0.2    | mg/L | <0.2              |               |                               |           |            |
| EK010: Chlorine - Total Residual                            |               | 0.2    | mg/L | <0.2              |               |                               |           |            |
| EK040P: Fluoride by PC Titrator (QCLot: 197026)             |               |        |      |                   |               |                               |           |            |
|                                                             | 16984-48-8    | 0.1    | mg/L | <0.1              | 5 mg/L        | 99.6                          | 75        | 119        |
| EK055G: Ammonia as N by Discrete Analyser (QCLot: 19862     | 9)            |        |      |                   |               |                               |           |            |
| EK055G: Ammonia as N                                        | 7664-41-7     | 0.01   | mg/L | <0.01             | 1 mg/L        | 98.9                          | 90        | 114        |
| EK057G: Nitrite as N by Discrete Analyser (QCLot: 197006)   |               |        |      |                   |               |                               |           |            |
|                                                             | 14797-65-0    | 0.01   | mg/L | <0.01             | 0.5 mg/L      | 93.8                          | 82        | 114        |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyse | r (OCL of: 19 | 18628) |      |                   |               |                               |           |            |
| EK059G: Nitrite + Nitrate as N                              |               | 0.01   | mg/L | <0.01             | 0.5 mg/L      | 98.8                          | 91        | 113        |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLo  |               |        |      |                   |               |                               |           |            |
| EK061G: Total Kjeldahl Nitrogen as N                        | JL. 190019)   | 0.1    | mg/L | <0.1              | 10 mg/L       | 84.3                          | 69        | 101        |
| ENOUTO. Total Netdani Nittogen as N                         |               | 0.1    | mg/L | <0.1              | 1 mg/L        | 95.2                          | 70        | 118        |
|                                                             |               |        |      | <0.1              | 5 mg/L        | 106                           | 74        | 118        |
| EK067G: Total Phosphorus as P by Discrete Analyser (QCLo    | t· 198618)    |        |      |                   |               |                               |           |            |
| EK067G: Total Phosphorus as P                               |               | 0.01   | mg/L | <0.01             | 4.42 mg/L     | 87.0                          | 71        | 101        |
| Enter C. Total i Hospitoras as i                            |               |        |      | <0.01             | 0.442 mg/L    | 87.8                          | 72        | 108        |
|                                                             |               |        |      | <0.01             | 1 mg/L        | 104                           | 78        | 118        |
| EK071G: Reactive Phosphorus as P by discrete analyser (QC   | CLot: 197003  |        |      |                   |               |                               |           |            |
|                                                             | 14265-44-2    | 0.01   | mg/L | <0.01             | 0.5 mg/L      | 101                           | 85        | 117        |
|                                                             |               |        |      |                   | Ü             |                               |           |            |

Page : 14 of 20

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                   |            |     |      | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|-----------------------------------------------------|------------|-----|------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                     |            |     |      | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                    | CAS Number | LOR | Unit | Result            | Concentration | LCS                           | Low       | High       |
| EP005: Total Organic Carbon (TOC) (QCLot: 196523)   |            |     |      |                   |               |                               |           |            |
| EP005: Total Organic Carbon                         |            | 1   | mg/L | <1                | 10 mg/L       | 85.7                          | 76        | 120        |
| EP020: Oil and Grease (O&G) (QCLot: 200813)         |            |     |      |                   |               |                               |           |            |
| EP020: Oil & Grease                                 |            | 5   | mg/L | <5                | 5000 mg/L     | 91.3                          | 80        | 120        |
| EP033: C1 - C4 Hydrocarbon Gases (QCLot: 196401)    |            |     |      |                   |               |                               |           |            |
| EP033: Butane                                       | 106-97-8   | 10  | μg/L | <10               | 102.18 μg/L   | 99.3                          | 85        | 115        |
| EP033: Butene                                       | 25167-67-3 | 10  | μg/L | <10               | 99.61 μg/L    | 98.0                          | 83        | 115        |
| EP033: Ethane                                       | 74-84-0    | 10  | μg/L | <10               | 54.43 μg/L    | 104                           | 87        | 111        |
| EP033: Ethene                                       | 74-85-1    | 10  | μg/L | <10               | 50.29 μg/L    | 105                           | 87        | 111        |
| EP033: Methane                                      | 74-82-8    | 10  | μg/L | <10               | 28.48 μg/L    | 112                           | 86        | 114        |
| EP033: Propane                                      | 74-98-6    | 10  | μg/L | <10               | 78.28 μg/L    | 107                           | 84        | 112        |
| EP033: Propene                                      | 115-07-1   | 10  | μg/L | <10               | 73.97 µg/L    | 99.5                          | 85        | 113        |
| EP074A: Monocyclic Aromatic Hydrocarbons (QCLot: 19 | 7979)      |     |      |                   |               |                               |           |            |
| EP074: 1.2.4-Trimethylbenzene                       | 95-63-6    | 5   | μg/L | <5                | 10 μg/L       | 91.3                          | 71        | 121        |
| EP074: 1.3.5-Trimethylbenzene                       | 108-67-8   | 5   | μg/L | <5                | 10 μg/L       | 91.5                          | 70        | 122        |
| EP074: Isopropylbenzene                             | 98-82-8    | 5   | μg/L | <5                | 10 μg/L       | 92.4                          | 75        | 121        |
| EP074: n-Butylbenzene                               | 104-51-8   | 5   | μg/L | <5                | 10 μg/L       | 86.0                          | 62        | 126        |
| EP074: n-Propylbenzene                              | 103-65-1   | 5   | μg/L | <5                | 10 μg/L       | 88.4                          | 67        | 123        |
| EP074: p-Isopropyltoluene                           | 99-87-6    | 5   | μg/L | <5                | 10 μg/L       | 89.5                          | 67        | 123        |
| EP074: sec-Butylbenzene                             | 135-98-8   | 5   | μg/L | <5                | 10 μg/L       | 91.8                          | 69        | 123        |
| EP074: Styrene                                      | 100-42-5   | 5   | μg/L | <5                | 10 μg/L       | 95.1                          | 74        | 118        |
| EP074: tert-Butylbenzene                            | 98-06-6    | 5   | μg/L | <5                | 10 μg/L       | 90.1                          | 70        | 122        |
| EP074B: Oxygenated Compounds (QCLot: 197979)        |            |     |      |                   |               |                               |           |            |
| EP074: 2-Butanone (MEK)                             | 78-93-3    | 50  | μg/L | <50               | 100 μg/L      | 93.0                          | 74        | 130        |
| EP074: 2-Hexanone (MBK)                             | 591-78-6   | 50  | μg/L | <50               | 100 μg/L      | 109                           | 65        | 137        |
| EP074: 4-Methyl-2-pentanone (MIBK)                  | 108-10-1   | 50  | μg/L | <50               | 100 μg/L      | 111                           | 61        | 139        |
| EP074: Vinyl Acetate                                | 108-05-4   | 50  | μg/L | <50               | 100 μg/L      | 93.2                          | 61        | 134        |
| EP074C: Sulfonated Compounds (QCLot: 197979)        |            |     |      |                   |               |                               |           |            |
| EP074: Carbon disulfide                             | 75-15-0    | 5   | μg/L | <5                | 10 μg/L       | 82.2                          | 73        | 127        |
| EP074D: Fumigants (QCLot: 197979)                   |            |     |      |                   |               |                               |           |            |
| EP074: 1.2-Dibromoethane (EDB)                      | 106-93-4   | 5   | μg/L | <5                | 10 μg/L       | 88.2                          | 69        | 117        |
| EP074: 1.2-Dichloropropane                          | 78-87-5    | 5   | μg/L | <5                | 10 μg/L       | 93.3                          | 76        | 120        |
| EP074: 2.2-Dichloropropane                          | 594-20-7   | 5   | μg/L | <5                | 10 μg/L       | 88.8                          | 61        | 119        |
| EP074: cis-1.3-Dichloropropylene                    | 10061-01-5 | 5   | μg/L | <5                | 10 μg/L       | 80.4                          | 62        | 120        |
| EP074: trans-1.3-Dichloropropylene                  | 10061-02-6 | 5   | μg/L | <5                | 10 μg/L       | 97.8                          | 61        | 119        |
| EP074E: Halogenated Aliphatic Compounds (QCLot: 197 | 979)       |     |      |                   |               |                               |           |            |
| EP074: 1.1.1.2-Tetrachloroethane                    | 630-20-6   | 5   | μg/L | <5                | 10 μg/L       | 86.6                          | 66        | 114        |
| EP074: 1.1.1-Trichloroethane                        | 71-55-6    | 5   | μg/L | <5                | 10 μg/L       | 91.4                          | 61        | 119        |
| EP074: 1.1.2.2-Tetrachloroethane                    | 79-34-5    | 5   | μg/L | <5                | 10 μg/L       | 104                           | 70        | 124        |

Page : 15 of 20

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                 |                    |     |      | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|---------------------------------------------------|--------------------|-----|------|-------------------|---------------|------------------------------|-----------|------------|
|                                                   |                    |     |      | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                  | CAS Number         | LOR | Unit | Result            | Concentration | LCS                          | Low       | High       |
| EP074E: Halogenated Aliphatic Compounds (QCLot: 1 | 97979) - continued |     |      |                   |               |                              |           |            |
| EP074: 1.1.2-Trichloroethane                      | 79-00-5            | 5   | μg/L | <5                | 10 μg/L       | 100                          | 75        | 123        |
| EP074: 1.1-Dichloroethane                         | 75-34-3            | 5   | μg/L | <5                | 10 μg/L       | 89.6                         | 75        | 119        |
| EP074: 1.1-Dichloroethene                         | 75-35-4            | 5   | μg/L | <5                | 10 μg/L       | 87.1                         | 69        | 123        |
| EP074: 1.1-Dichloropropylene                      | 563-58-6           | 5   | μg/L | <5                | 10 μg/L       | 88.0                         | 73        | 119        |
| EP074: 1.2.3-Trichloropropane                     | 96-18-4            | 5   | μg/L | <5                | 10 μg/L       | 101                          | 74        | 128        |
| EP074: 1.2-Dibromo-3-chloropropane                | 96-12-8            | 5   | μg/L | <5                | 10 μg/L       | 93.3                         | 66        | 136        |
| EP074: 1.2-Dichloroethane                         | 107-06-2           | 5   | μg/L | <5                | 10 μg/L       | 96.0                         | 78        | 122        |
| EP074: 1.3-Dichloropropane                        | 142-28-9           | 5   | μg/L | <5                | 10 μg/L       | 104                          | 79        | 121        |
| EP074: Bromomethane                               | 74-83-9            | 50  | μg/L | <50               | 100 μg/L      | 93.5                         | 56        | 140        |
| EP074: Carbon Tetrachloride                       | 56-23-5            | 5   | μg/L | <5                | 10 μg/L       | 90.6                         | 63        | 121        |
| EP074: Chloroethane                               | 75-00-3            | 50  | μg/L | <50               | 100 μg/L      | 83.2                         | 63        | 135        |
| EP074: Chloromethane                              | 74-87-3            | 50  | μg/L | <50               | 100 μg/L      | 73.5                         | 67        | 130        |
| EP074: cis-1.2-Dichloroethene                     | 156-59-2           | 5   | μg/L | <5                | 10 μg/L       | 92.9                         | 77        | 117        |
| EP074: cis-1.4-Dichloro-2-butene                  | 1476-11-5          | 5   | μg/L | <5                | 10 μg/L       | 86.0                         | 71        | 128        |
| EP074: Dibromomethane                             | 74-95-3            | 5   | μg/L | <5                | 10 μg/L       | 97.4                         | 74        | 118        |
| EP074: Dichlorodifluoromethane                    | 75-71-8            | 50  | μg/L | <50               | 100 μg/L      | 72.8                         | 61        | 138        |
| EP074: Hexachlorobutadiene                        | 87-68-3            | 5   | μg/L | <5                | 10 μg/L       | 81.6                         | 58        | 132        |
| EP074: Iodomethane                                | 74-88-4            | 5   | μg/L | <5                | 10 μg/L       | 79.9                         | 70        | 128        |
| EP074: Pentachloroethane                          | 76-01-7            | 5   | μg/L | <5                | 10 μg/L       | 96.7                         | 72        | 126        |
| EP074: Tetrachloroethene                          | 127-18-4           | 5   | μg/L | <5                | 10 μg/L       | 86.8                         | 72        | 124        |
| EP074: trans-1.2-Dichloroethene                   | 156-60-5           | 5   | μg/L | <5                | 10 μg/L       | 89.2                         | 71        | 119        |
| EP074: trans-1.4-Dichloro-2-butene                | 110-57-6           | 5   | μg/L | <5                | 10 μg/L       | 89.5                         | 60        | 120        |
| EP074: Trichloroethene                            | 79-01-6            | 5   | μg/L | <5                | 10 μg/L       | 91.6                         | 74        | 120        |
| EP074: Trichlorofluoromethane                     | 75-69-4            | 50  | μg/L | <50               | 100 μg/L      | 89.3                         | 65        | 131        |
| EP074: Vinyl chloride                             | 75-01-4            | 50  | μg/L | <50               | 100 μg/L      | 89.5                         | 69        | 129        |
| EP074F: Halogenated Aromatic Compounds (QCLot: 1  | 97979)             |     |      |                   |               |                              |           |            |
| EP074: 1.2.3-Trichlorobenzene                     | 87-61-6            | 5   | μg/L | <5                | 10 μg/L       | 87.8                         | 67        | 125        |
| EP074: 1.2.4-Trichlorobenzene                     | 120-82-1           | 5   | μg/L | <5                | 10 μg/L       | 81.3                         | 60        | 126        |
| EP074: 1.2-Dichlorobenzene                        | 95-50-1            | 5   | μg/L | <5                | 10 μg/L       | 91.1                         | 77        | 117        |
| EP074: 1.3-Dichlorobenzene                        | 541-73-1           | 5   | μg/L | <5                | 10 μg/L       | 91.8                         | 74        | 120        |
| EP074: 1.4-Dichlorobenzene                        | 106-46-7           | 5   | μg/L | <5                | 10 μg/L       | 89.9                         | 72        | 120        |
| EP074: 2-Chlorotoluene                            | 95-49-8            | 5   | μg/L | <5                | 10 μg/L       | 91.2                         | 71        | 121        |
| EP074: 4-Chlorotoluene                            | 106-43-4           | 5   | μg/L | <5                | 10 μg/L       | 91.6                         | 71        | 121        |
| EP074: Bromobenzene                               | 108-86-1           | 5   | μg/L | <5                | 10 μg/L       | 92.8                         | 76        | 116        |
| EP074: Chlorobenzene                              | 108-90-7           | 5   | μg/L | <5                | 10 μg/L       | 93.2                         | 80        | 118        |
| EP074G: Trihalomethanes (QCLot: 197979)           |                    |     |      |                   |               |                              |           |            |
| EP074: Bromodichloromethane                       | 75-27-4            | 5   | μg/L | <5                | 10 μg/L       | 86.2                         | 64        | 118        |
| EP074: Bromoform                                  | 75-25-2            | 5   | μg/L | <5                | 10 μg/L       | 99.6                         | 74        | 126        |
| EP074: Chloroform                                 | 67-66-3            | 5   | μg/L | <5                | 10 μg/L       | 91.3                         | 76        | 118        |

Page : 16 of 20

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                            |        |     |      | Method Blank (MB) |               | Laboratory Control Spike (LCS | ) Report |            |
|--------------------------------------------------------------|--------|-----|------|-------------------|---------------|-------------------------------|----------|------------|
|                                                              |        |     |      | Report            | Spike         | Spike Recovery (%)            | Recovery | Limits (%) |
| Method: Compound CAS N                                       | lumber | LOR | Unit | Result            | Concentration | LCS                           | Low      | High       |
| EP074G: Trihalomethanes (QCLot: 197979) - continued          |        |     |      |                   |               |                               |          |            |
| EP074: Dibromochloromethane                                  | -48-1  | 5   | μg/L | <5                | 10 μg/L       | 96.5                          | 65       | 115        |
| EP075(SIM)A: Phenolic Compounds (QCLot: 196365)              |        |     |      |                   |               |                               |          |            |
|                                                              | -95-4  | 1   | μg/L | <1.0              | 5 μg/L        | 67.2                          | 50       | 108        |
| EP075(SIM): 2.4.6-Trichlorophenol                            | -06-2  | 1   | μg/L | <1.0              | 5 μg/L        | 61.6                          | 59       | 118        |
| EP075(SIM): 2.4-Dichlorophenol                               | -83-2  | 1   | μg/L | <1.0              | 5 μg/L        | 62.1                          | 59       | 122        |
| EP075(SIM): 2.4-Dimethylphenol                               | -67-9  | 1   | μg/L | <1.0              | 5 μg/L        | 68.5                          | 60       | 112        |
| EP075(SIM): 2.6-Dichlorophenol                               | -65-0  | 1   | μg/L | <1.0              | 5 μg/L        | 72.4                          | 64       | 118        |
| EP075(SIM): 2-Chlorophenol 95                                | -57-8  | 1   | μg/L | <1.0              | 5 μg/L        | 66.6                          | 64       | 110        |
| EP075(SIM): 2-Methylphenol 95                                | -48-7  | 1   | μg/L | <1.0              | 5 μg/L        | 70.0                          | 56       | 112        |
| EP075(SIM): 2-Nitrophenol 88                                 | -75-5  | 1   | μg/L | <1.0              | 5 μg/L        | 71.3                          | 63       | 117        |
| EP075(SIM): 3- & 4-Methylphenol                              | -77-3  | 2   | μg/L | <2.0              | 10 μg/L       | 77.2                          | 43       | 114        |
| EP075(SIM): 4-Chloro-3-methylphenol 59                       | -50-7  | 1   | μg/L | <1.0              | 5 μg/L        | 63.7                          | 63       | 119        |
| EP075(SIM): Pentachlorophenol 87                             | -86-5  | 2   | μg/L | <2.0              | 10 μg/L       | 15.2                          | 10       | 95         |
| EP075(SIM): Phenol                                           | -95-2  | 1   | μg/L | <1.0              | 5 μg/L        | 38.0                          | 25       | 62         |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 19636 | 5)     |     |      |                   |               |                               |          |            |
| EP075(SIM): Acenaphthene                                     | -32-9  | 1   | μg/L | <1.0              | 5 μg/L        | 68.2                          | 62       | 113        |
| EP075(SIM): Acenaphthylene 208                               | -96-8  | 1   | μg/L | <1.0              | 5 μg/L        | 66.5                          | 64       | 114        |
|                                                              | -12-7  | 1   | μg/L | <1.0              | 5 μg/L        | 69.4                          | 64       | 116        |
| EP075(SIM): Benz(a)anthracene 56                             | -55-3  | 1   | μg/L | <1.0              | 5 μg/L        | 72.9                          | 64       | 117        |
| EP075(SIM): Benzo(a)pyrene 50                                | -32-8  | 0.5 | μg/L | <0.5              | 5 μg/L        | 71.9                          | 63       | 117        |
| EP075(SIM): Benzo(b+j)fluoranthene 205                       | -99-2  | 1   | μg/L | <1.0              | 5 μg/L        | 80.4                          | 62       | 119        |
| 205                                                          | -82-3  |     |      |                   |               |                               |          |            |
| EP075(SIM): Benzo(g.h.i)perylene 191                         | -24-2  | 1   | μg/L | <1.0              | 5 μg/L        | 67.4                          | 59       | 118        |
| EP075(SIM): Benzo(k)fluoranthene 207                         | -08-9  | 1   | μg/L | <1.0              | 5 μg/L        | 80.4                          | 62       | 117        |
| EP075(SIM): Chrysene 218                                     | -01-9  | 1   | μg/L | <1.0              | 5 μg/L        | 72.6                          | 63       | 116        |
| EP075(SIM): Dibenz(a.h)anthracene 53                         | -70-3  | 1   | μg/L | <1.0              | 5 μg/L        | 68.1                          | 61       | 117        |
| EP075(SIM): Fluoranthene 206                                 | -44-0  | 1   | μg/L | <1.0              | 5 μg/L        | 69.7                          | 64       | 118        |
| EP075(SIM): Fluorene 86                                      | -73-7  | 1   | μg/L | <1.0              | 5 μg/L        | 69.6                          | 64       | 115        |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                           | -39-5  | 1   | μg/L | <1.0              | 5 μg/L        | 63.7                          | 60       | 118        |
| EP075(SIM): Naphthalene 91                                   | -20-3  | 1   | μg/L | <1.0              | 5 μg/L        | 72.7                          | 59       | 119        |
| EP075(SIM): Phenanthrene 85                                  | -01-8  | 1   | μg/L | <1.0              | 5 μg/L        | 75.0                          | 63       | 116        |
| EP075(SIM): Pyrene 129                                       | -00-0  | 1   | μg/L | <1.0              | 5 μg/L        | 81.4                          | 63       | 118        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 196366)      |        |     |      |                   |               |                               |          |            |
| EP071: C10 - C14 Fraction                                    |        | 50  | μg/L | <50               | 2000 μg/L     | 100                           | 59       | 129        |
| EP071: C15 - C28 Fraction                                    |        | 100 | μg/L | <100              | 3000 μg/L     | 101                           | 71       | 131        |
| EP071: C29 - C36 Fraction                                    |        | 50  | μg/L | <50               | 2000 μg/L     | 104                           | 62       | 120        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 197980)      |        |     |      |                   |               |                               |          |            |
| EP080: C6 - C9 Fraction                                      |        | 20  | μg/L | <20               | 260 μg/L      | 78.8                          | 75       | 127        |

Page : 17 of 20

Work Order : ES1529385 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Sub-Matrix: WATER                                |                        |             |      | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|--------------------------------------------------|------------------------|-------------|------|-------------------|---------------|------------------------------|-----------|------------|
|                                                  |                        |             |      | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                 | CAS Number             | LOR         | Unit | Result            | Concentration | LCS                          | Low       | High       |
| EP080/071: Total Recoverable Hydrocarbons - NEPM | 1 2013 Fractions (QCLo | ot: 196366) |      |                   |               |                              |           |            |
| EP071: >C10 - C16 Fraction                       | >C10_C16               | 100         | μg/L | <100              | 2500 μg/L     | 99.0                         | 59        | 131        |
| EP071: >C16 - C34 Fraction                       |                        | 100         | μg/L | <100              | 3500 μg/L     | 102                          | 74        | 138        |
| EP071: >C34 - C40 Fraction                       |                        | 100         | μg/L | <100              | 1500 μg/L     | 98.0                         | 67        | 127        |
| EP080/071: Total Recoverable Hydrocarbons - NEPM | 1 2013 Fractions (QCLo | ot: 197980) |      |                   |               |                              |           |            |
| EP080: C6 - C10 Fraction                         | C6_C10                 | 20          | μg/L | <20               | 310 μg/L      | 78.7                         | 75        | 127        |
| EP080: BTEXN (QCLot: 197980)                     |                        |             |      |                   |               |                              |           |            |
| EP080: Benzene                                   | 71-43-2                | 1           | μg/L | <1                | 10 μg/L       | 82.3                         | 70        | 124        |
| EP080: Ethylbenzene                              | 100-41-4               | 2           | μg/L | <2                | 10 μg/L       | 93.2                         | 70        | 120        |
| EP080: meta- & para-Xylene                       | 108-38-3               | 2           | μg/L | <2                | 10 μg/L       | 94.6                         | 69        | 121        |
|                                                  | 106-42-3               |             |      |                   |               |                              |           |            |
| EP080: Naphthalene                               | 91-20-3                | 5           | μg/L | <5                | 10 μg/L       | 93.3                         | 70        | 124        |
| EP080: ortho-Xylene                              | 95-47-6                | 2           | μg/L | <2                | 10 μg/L       | 94.3                         | 72        | 122        |
| EP080: Toluene                                   | 108-88-3               | 2           | μg/L | <2                | 10 μg/L       | 80.9                         | 65        | 129        |
| EP262: Ethanolamines (QCLot: 201869)             |                        |             |      |                   |               |                              |           |            |
| EP262: Diethanolamine                            | 111-42-2               | 1           | μg/L | <1                | 10 μg/L       | 106                          | 50        | 130        |
| EP262: Ethanolamine                              | 141-43-5               | 1           | μg/L | <1                | 10 μg/L       | 97.4                         | 50        | 130        |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                                                |                                        |            | Ma            | atrix Spike (MS) Report |            |           |
|----------------------|------------------------------------------------|----------------------------------------|------------|---------------|-------------------------|------------|-----------|
|                      |                                                |                                        |            | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                               | Method: Compound                       | CAS Number | Concentration | MS                      | Low        | High      |
| ED009: Anions (      | QCLot: 195954)                                 |                                        |            |               |                         |            |           |
| ES1529279-013        | Anonymous                                      | ED009-X: Chloride                      | 16887-00-6 | 4 mg/L        | # Not<br>Determined     | 70         | 130       |
| ED041G: Sulfate (    | Turbidimetric) as SO4 2- by DA (QCLot: 197004) |                                        |            |               |                         |            |           |
| ES1529385-001        | WKSW01                                         | ED041G: Sulfate as SO4 - Turbidimetric | 14808-79-8 | 10 mg/L       | 83.1                    | 70         | 130       |
| ED045G: Chloride     | by Discrete Analyser (QCLot: 197002)           |                                        |            |               |                         |            |           |
| ES1529385-001        | WKSW01                                         | ED045G: Chloride                       | 16887-00-6 | 250 mg/L      | 114                     | 70         | 130       |
| EG020F: Dissolve     | d Metals by ICP-MS (QCLot: 197676)             |                                        |            |               |                         |            |           |
| ES1529258-002        | Anonymous                                      | EG020A-F: Arsenic                      | 7440-38-2  | 0.2 mg/L      | 101                     | 70         | 130       |
|                      |                                                | EG020A-F: Barium                       | 7440-39-3  | 0.2 mg/L      | 72.6                    | 70         | 130       |
|                      |                                                | EG020A-F: Beryllium                    | 7440-41-7  | 0.2 mg/L      | 94.1                    | 70         | 130       |
|                      |                                                | EG020A-F: Cadmium                      | 7440-43-9  | 0.05 mg/L     | 97.2                    | 70         | 130       |
|                      |                                                | EG020A-F: Chromium                     | 7440-47-3  | 0.2 mg/L      | 94.2                    | 70         | 130       |

Page : 18 of 20

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                                                        |                                      |            | Ma            | atrix Spike (MS) Report |            |           |
|----------------------|--------------------------------------------------------|--------------------------------------|------------|---------------|-------------------------|------------|-----------|
|                      |                                                        |                                      |            | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                                       | Method: Compound                     | CAS Number | Concentration | MS                      | Low        | High      |
| EG020F: Dissolved    | Metals by ICP-MS (QCLot: 197676) - continued           |                                      |            |               |                         |            |           |
| ES1529258-002        | Anonymous                                              | EG020A-F: Cobalt                     | 7440-48-4  | 0.2 mg/L      | 95.2                    | 70         | 130       |
|                      |                                                        | EG020A-F: Copper                     | 7440-50-8  | 0.2 mg/L      | 93.8                    | 70         | 130       |
|                      |                                                        | EG020A-F: Lead                       | 7439-92-1  | 0.2 mg/L      | 90.0                    | 70         | 130       |
|                      |                                                        | EG020A-F: Manganese                  | 7439-96-5  | 0.2 mg/L      | 96.2                    | 70         | 130       |
|                      |                                                        | EG020A-F: Nickel                     | 7440-02-0  | 0.2 mg/L      | 91.9                    | 70         | 130       |
|                      |                                                        | EG020A-F: Vanadium                   | 7440-62-2  | 0.2 mg/L      | 95.8                    | 70         | 130       |
|                      |                                                        | EG020A-F: Zinc                       | 7440-66-6  | 0.2 mg/L      | 75.9                    | 70         | 130       |
| EG035F: Dissolved    | Mercury by FIMS (QCLot: 197678)                        |                                      |            |               |                         |            |           |
| ES1529258-001        | Anonymous                                              | EG035F: Mercury                      | 7439-97-6  | 0.01 mg/L     | 82.0                    | 70         | 130       |
| EG052G: Silica by    | Discrete Analyser (QCLot: 197005)                      |                                      |            |               |                         |            |           |
| ES1529385-001        | WKSW01                                                 | EG052G: Reactive Silica              |            | 5 mg/L        | 90.3                    | 70         | 130       |
| EK040P: Fluoride l   | by PC Titrator (QCLot: 197026)                         |                                      |            |               |                         |            |           |
| ES1529385-001        | WKSW01                                                 | EK040P: Fluoride                     | 16984-48-8 | 5 mg/L        | 105                     | 70         | 130       |
| FK055G: Ammonia      | as N by Discrete Analyser (QCLot: 198629)              |                                      |            |               |                         |            |           |
| ES1529385-001        | WKSW01                                                 | EK055G: Ammonia as N                 | 7664-41-7  | 1 mg/L        | 88.3                    | 70         | 130       |
| EK057G: Nitrito as   | N by Discrete Analyser (QCLot: 197006)                 | Encode: Aminonia de M                |            |               |                         |            |           |
| ES1529385-001        | WKSW01                                                 | EVOEZO, Nijeria, an Ni               | 14797-65-0 | 0.5 mg/l      | 99.6                    | 70         | 130       |
|                      |                                                        | EK057G: Nitrite as N                 | 14797-05-0 | 0.5 mg/L      | 99.0                    | 70         | 130       |
|                      | us Nitrate as N (NOx) by Discrete Analyser (QCLot: 198 | 8628)                                |            |               |                         |            |           |
| ES1529385-001        | WKSW01                                                 | EK059G: Nitrite + Nitrate as N       |            | 0.5 mg/L      | 100                     | 70         | 130       |
| EK061G: Total Kjel   | dahl Nitrogen By Discrete Analyser (QCLot: 198619)     |                                      |            |               |                         |            |           |
| ES1529385-002        | WKSW02                                                 | EK061G: Total Kjeldahl Nitrogen as N |            | 5 mg/L        | 94.6                    | 70         | 130       |
| EK067G: Total Pho    | sphorus as P by Discrete Analyser (QCLot: 198618)      |                                      |            |               |                         |            |           |
| ES1529385-002        | WKSW02                                                 | EK067G: Total Phosphorus as P        |            | 1 mg/L        | 92.0                    | 70         | 130       |
| EK071G: Reactive     | Phosphorus as P by discrete analyser (QCLot: 197003)   |                                      |            |               |                         |            |           |
| ES1529385-001        | WKSW01                                                 | EK071G: Reactive Phosphorus as P     | 14265-44-2 | 0.5 mg/L      | 86.9                    | 70         | 130       |
| FP005: Total Organ   | nic Carbon (TOC) (QCLot: 196523)                       |                                      |            |               |                         |            |           |
| ES1529258-002        | Anonymous                                              | EP005: Total Organic Carbon          |            | 100 mg/L      | 104                     | 70         | 130       |
| EP033: C1 - C4 Hv    | drocarbon Gases (QCLot: 196401)                        | El 666. Fotal elganic curson         |            |               |                         |            |           |
| ES1529385-002        | WKSW02                                                 | EP033: Butane                        | 106-97-8   | 102.18 μg/L   | 86.4                    | 70         | 130       |
|                      |                                                        | EP033: Butane                        | 25167-67-3 | 99.61 µg/L    | 86.5                    | 70         | 130       |
|                      |                                                        | EP033: Ethane                        | 74-84-0    | 54.43 μg/L    | 91.3                    | 70         | 130       |
|                      |                                                        | EP033: Ethene                        | 74-85-1    | 50.29 μg/L    | 92.2                    | 70         | 130       |
|                      |                                                        | EP033: Methane                       | 74-82-8    | 28.48 µg/L    | 105                     | 70         | 130       |
|                      |                                                        | EP033: Propane                       | 74-98-6    | 78.28 µg/L    | 93.1                    | 70         | 130       |
|                      |                                                        | EP033: Propene                       | 115-07-1   | 73.97 µg/L    | 89.9                    | 70         | 130       |

Page : 19 of 20

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER   |                                          |                                     |            | М             | atrix Spike (MS) Report |            |            |
|---------------------|------------------------------------------|-------------------------------------|------------|---------------|-------------------------|------------|------------|
|                     |                                          |                                     |            | Spike         | SpikeRecovery(%)        | Recovery L | _imits (%) |
| aboratory sample ID | Client sample ID                         | Method: Compound                    | CAS Number | Concentration | MS                      | Low        | High       |
| EP074E: Halogena    | ted Aliphatic Compounds (QCLot: 197979)  |                                     |            |               |                         |            |            |
| EB1526728-001       | Anonymous                                | EP074: 1.1-Dichloroethene           | 75-35-4    | 25 μg/L       | 75.2                    | 70         | 130        |
|                     |                                          | EP074: Trichloroethene              | 79-01-6    | 25 μg/L       | 82.1                    | 70         | 130        |
| EP074F: Halogena    | ted Aromatic Compounds (QCLot: 197979)   |                                     |            |               |                         |            |            |
| EB1526728-001       | Anonymous                                | EP074: Chlorobenzene                | 108-90-7   | 25 μg/L       | 82.7                    | 70         | 130        |
| P075(SIM)A: Phe     | nolic Compounds (QCLot: 196365)          |                                     |            |               |                         |            |            |
| ES1529387-002       | Anonymous                                | EP075(SIM): 2-Chlorophenol          | 95-57-8    | 2 μg/L        | 66.0                    | 60         | 130        |
|                     |                                          | EP075(SIM): 2-Nitrophenol           | 88-75-5    | 2 μg/L        | 61.5                    | 60         | 130        |
|                     |                                          | EP075(SIM): 4-Chloro-3-methylphenol | 59-50-7    | 2 μg/L        | 83.0                    | 70         | 130        |
|                     |                                          | EP075(SIM): Pentachlorophenol       | 87-86-5    | 2 μg/L        | 29.1                    | 20         | 130        |
|                     |                                          | EP075(SIM): Phenol                  | 108-95-2   | 2 μg/L        | 29.4                    | 20         | 130        |
| P075(SIM)B: Poly    | nuclear Aromatic Hydrocarbons (QCLot: 1  | 96365)                              |            |               |                         |            |            |
| ES1529387-002       | Anonymous                                | EP075(SIM): Acenaphthene            | 83-32-9    | 2 μg/L        | 78.1                    | 70         | 130        |
|                     |                                          | EP075(SIM): Pyrene                  | 129-00-0   | 2 μg/L        | 89.7                    | 70         | 130        |
| P080/071: Total P   | Petroleum Hydrocarbons (QCLot: 196366)   |                                     |            |               |                         |            |            |
| ES1529387-002       | Anonymous                                | EP071: C10 - C14 Fraction           |            | 2000 μg/L     | 98.0                    | 74         | 150        |
|                     |                                          | EP071: C15 - C28 Fraction           |            | 2500 μg/L     | 104                     | 77         | 153        |
|                     |                                          | EP071: C29 - C36 Fraction           |            | 2000 μg/L     | 95.7                    | 67         | 153        |
| P080/071: Total P   | Petroleum Hydrocarbons (QCLot: 197980)   |                                     |            |               |                         |            |            |
| EB1526728-002       | Anonymous                                | EP080: C6 - C9 Fraction             |            | 325 μg/L      | 85.3                    | 70         | 130        |
| P080/071: Total F   | Recoverable Hydrocarbons - NEPM 2013 Fra | actions (QCLot: 196366)             |            |               |                         |            |            |
| ES1529387-002       | Anonymous                                | EP071: >C10 - C16 Fraction          | >C10 C16   | 2500 µg/L     | 94.4                    | 74         | 150        |
|                     | ,                                        | EP071: >C16 - C34 Fraction          |            | 3500 μg/L     | 97.1                    | 77         | 153        |
|                     |                                          | EP071: >C34 - C40 Fraction          |            | 1500 μg/L     | 99.7                    | 67         | 153        |
| P080/071: Total R   | Recoverable Hydrocarbons - NEPM 2013 Fra | actions (QCLot: 197980)             |            |               |                         |            |            |
| EB1526728-002       | Anonymous                                | EP080: C6 - C10 Fraction            | C6_C10     | 375 μg/L      | 77.9                    | 70         | 130        |
| P080: BTEXN (Q      | CLot: 197980)                            |                                     |            |               |                         |            |            |
| EB1526728-002       | Anonymous                                | EP080: Benzene                      | 71-43-2    | 25 μg/L       | 79.8                    | 70         | 130        |
|                     |                                          | EP080: Ethylbenzene                 | 100-41-4   | 25 μg/L       | 85.8                    | 70         | 130        |
|                     |                                          | EP080: meta- & para-Xylene          | 108-38-3   | 25 μg/L       | 87.0                    | 70         | 130        |
|                     |                                          |                                     | 106-42-3   |               |                         |            |            |
|                     |                                          | EP080: Naphthalene                  | 91-20-3    | 25 μg/L       | 71.4                    | 70         | 130        |
|                     |                                          | EP080: ortho-Xylene                 | 95-47-6    | 25 μg/L       | 88.7                    | 70         | 130        |
|                     |                                          | EP080: Toluene                      | 108-88-3   | 25 μg/L       | 78.2                    | 70         | 130        |
| P262: Ethanolam     | ines (QCLot: 201869)                     |                                     |            |               |                         |            |            |
| ES1529385-001       | WKSW01                                   | EP262: Diethanolamine               | 111-42-2   | 10 μg/L       | 75.3                    | 50         | 130        |
|                     |                                          | EP262: Ethanolamine                 | 141-43-5   | 10 μg/L       | 127                     | 50         | 130        |

Page : 20 of 20

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L





# QA/QC Compliance Assessment for DQO Reporting

Work Order : **ES1529385** Page : 1 of 11

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 27-Aug-2015

 Site
 : --- Issue Date
 : 14-Oct-2015

Sampler : --- No. of samples received : 3
Order number : --- No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers: Analysis Holding Time Compliance**

Analysis Holding Time Outliers exist - please see following pages for full details.

## **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 11

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project · 2268523B

#### **Outliers: Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: WATER

| Compound Group Name          | Laboratory Sample ID | Client Sample ID | Analyte  | CAS Number | Data       | Limits | Comment                          |
|------------------------------|----------------------|------------------|----------|------------|------------|--------|----------------------------------|
| Matrix Spike (MS) Recoveries |                      |                  |          |            |            |        |                                  |
| ED009: Anions                | ES1529279013         | Anonymous        | Chloride | 16887-00-6 | Not        |        | MS recovery not determined,      |
|                              |                      |                  |          |            | Determined |        | background level greater than or |
|                              |                      |                  |          |            |            |        | equal to 4x spike level.         |

#### **Outliers: Analysis Holding Time Compliance**

#### Matrix: WATER

| Matrix: WATER                                       |         |                |                        |         |               |                  |         |
|-----------------------------------------------------|---------|----------------|------------------------|---------|---------------|------------------|---------|
| Method                                              |         | Ex             | traction / Preparation |         |               | Analysis         |         |
| Container / Client Sample ID(s)                     |         | Date extracted | Due for extraction     | Days    | Date analysed | Due for analysis | Days    |
|                                                     |         |                |                        | overdue |               |                  | overdue |
| EA005P: pH by PC Titrator                           |         |                |                        |         |               |                  |         |
| Clear Plastic Bottle - Natural<br>WKSW01,<br>WKSW03 | WKSW02, |                |                        |         | 28-Aug-2015   | 26-Aug-2015      | 2       |
| EK010/011: Chlorine                                 |         |                |                        |         |               |                  |         |
| Clear Plastic Bottle - Natural<br>WKSW01,<br>WKSW03 | WKSW02, |                |                        |         | 29-Aug-2015   | 26-Aug-2015      | 2       |
| EP262: Ethanolamines                                |         |                |                        |         |               |                  |         |
| Amber Glass Bottle - Unpreserved                    |         |                |                        |         |               |                  |         |
| WKSW01,                                             | WKSW02, |                |                        |         | 03-Sep-2015   | 02-Sep-2015      | 0       |
| WKSW03                                              |         |                |                        |         |               |                  |         |

#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type   | Count Rate (%) Quality |         | e (%)  | Quality Control Specification |                                                  |
|-------------------------------|------------------------|---------|--------|-------------------------------|--------------------------------------------------|
| Method                        | QC                     | Regular | Actual | Expected                      |                                                  |
| Laboratory Duplicates (DUP)   |                        |         |        |                               |                                                  |
| Suspended Solids (High Level) | 1                      | 20      | 5.00   | 9.52                          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

| Method                          | Sample Date | nple Date Extraction / Preparation |                    | Analysis   |               |                  |            |
|---------------------------------|-------------|------------------------------------|--------------------|------------|---------------|------------------|------------|
| Container / Client Sample ID(s) |             | Date extracted                     | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation |

Page : 3 of 11

Work Order : ES1529385 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                              |         |             |                |                        | Evaluation | n: × = Holding time | breach ; ✓ = Withi | n holding time |
|----------------------------------------------------------------------------|---------|-------------|----------------|------------------------|------------|---------------------|--------------------|----------------|
| Method                                                                     |         | Sample Date | Ex             | traction / Preparation |            |                     | Analysis           |                |
| Container / Client Sample ID(s)                                            |         |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation     |
| EA005P: pH by PC Titrator                                                  |         |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EA005-P) WKSW01, WKSW03                    | WKSW02, | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 26-Aug-2015        | *              |
| EA010P: Conductivity by PC Titrator                                        |         |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EA010-P) WKSW01, WKSW03                    | WKSW02, | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 23-Sep-2015        | ✓              |
| EA015: Total Dissolved Solids                                              |         |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EA015H) WKSW01, WKSW03                     | WKSW02, | 26-Aug-2015 |                |                        |            | 31-Aug-2015         | 02-Sep-2015        | ✓              |
| EA025: Suspended Solids                                                    |         |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EA025H) WKSW01, WKSW03                     | WKSW02, | 26-Aug-2015 |                |                        |            | 31-Aug-2015         | 02-Sep-2015        | ✓              |
| ED009: Anions                                                              |         |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (ED009-X) WKSW01, WKSW03                    | WKSW02, | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 23-Sep-2015        | ✓              |
| ED037P: Alkalinity by PC Titrator                                          |         |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (ED037-P) WKSW01, WKSW03                    | WKSW02, | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 09-Sep-2015        | ✓              |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA                            |         |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (ED041G) WKSW01, WKSW03                     | WKSW02, | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 23-Sep-2015        | ✓              |
| ED045G: Chloride by Discrete Analyser                                      |         |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (ED045G)<br>WKSW01,<br>WKSW03               | WKSW02, | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 23-Sep-2015        | ✓              |
| ED093F: Dissolved Major Cations                                            |         |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (ED093F)<br>WKSW01,<br>WKSW03 | WKSW02, | 26-Aug-2015 |                |                        |            | 31-Aug-2015         | 23-Sep-2015        | ✓              |
| EG020F: Dissolved Metals by ICP-MS                                         |         |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) WKSW01, WKSW03     | WKSW02, | 26-Aug-2015 |                |                        |            | 31-Aug-2015         | 22-Feb-2016        | ✓              |
|                                                                            |         |             |                |                        |            |                     |                    |                |

Page : 4 of 11

Work Order : ES1529385 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L



|         |                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   | Evaluation                                                                                                                                                                                                                                                                                                                                                                                          | n: 🗴 = Holding time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | breach ; ✓ = Withi | n holding time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|---------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | Sample Date                                                   | Ex                                                                                                                                                                                          | traction / Preparation                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|         |                                                               | Date extracted                                                                                                                                                                              | Due for extraction                                                                                                                                                                                                                                                                                                | Evaluation                                                                                                                                                                                                                                                                                                                                                                                          | Date analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Due for analysis   | Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|         |                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| WKSW02, | 26-Aug-2015                                                   |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     | 31-Aug-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22-Feb-2016        | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|         |                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| WKSW02, | 26-Aug-2015                                                   |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     | 02-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23-Sep-2015        | <b>✓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|         |                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| WKSW02, | 26-Aug-2015                                                   |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     | 28-Aug-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23-Sep-2015        | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|         |                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| WKSW02, | 26-Aug-2015                                                   |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     | 29-Aug-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26-Aug-2015        | 3c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|         |                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| WKSW02, | 26-Aug-2015                                                   |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     | 28-Aug-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23-Sep-2015        | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|         |                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| WKSW02, | 26-Aug-2015                                                   |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     | 31-Aug-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23-Sep-2015        | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|         |                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| WKSW02, | 26-Aug-2015                                                   |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     | 28-Aug-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28-Aug-2015        | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| nalyser |                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| WKSW02, | 26-Aug-2015                                                   |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     | 31-Aug-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23-Sep-2015        | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|         |                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| WKSW02, | 26-Aug-2015                                                   | 31-Aug-2015                                                                                                                                                                                 | 23-Sep-2015                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                   | 31-Aug-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23-Sep-2015        | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|         |                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| WKSW02, | 26-Aug-2015                                                   | 31-Aug-2015                                                                                                                                                                                 | 23-Sep-2015                                                                                                                                                                                                                                                                                                       | ✓                                                                                                                                                                                                                                                                                                                                                                                                   | 31-Aug-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23-Sep-2015        | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|         | WKSW02,  WKSW02,  WKSW02,  WKSW02,  WKSW02,  WKSW02,  WKSW02, | WKSW02, 26-Aug-2015  WKSW02, 26-Aug-2015 | WKSW02,       26-Aug-2015          WKSW02,       26-Aug-2015 | WKSW02,         26-Aug-2015             WKSW02,         26-Aug-2015 | Sample Date         Extraction / Preparation           Date extracted         Due for extraction         Evaluation           WKSW02,         26-Aug-2015             WKSW02,         26-Aug-2015 | Sample Date        | WKSW02,         Z6-Aug-2015           31-Aug-2015         22-Feb-2016           WKSW02,         26-Aug-2015            31-Aug-2015         22-Feb-2016           WKSW02,         26-Aug-2015             28-Aug-2015         23-Sep-2015           WKSW02,         26-Aug-2015            29-Aug-2015         26-Aug-2015           WKSW02,         26-Aug-2015           28-Aug-2015           28-Aug-2015         23-Sep-2015           WKSW02,         26-Aug-2015           31-Aug-2015         23-Sep-2015           WKSW02,         26-Aug-2015           28-Aug-2015         23-Sep-2015           WKSW02,         26-Aug-2015           31-Aug-2015         23-Sep-2015           WKSW02,         26-Aug-2015           31-Aug-2015         23-Sep-2015           WKSW02,         26-Aug-2015           31-Aug-2015         23-Sep-2015 |  |

Page : 5 of 11

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                              |         |             |                |                        | Evaluation | ı: 🗴 = Holding time | breach ; ✓ = Withi | n holding time. |  |
|----------------------------------------------------------------------------|---------|-------------|----------------|------------------------|------------|---------------------|--------------------|-----------------|--|
| Method                                                                     |         | Sample Date | Ex             | traction / Preparation |            | Analysis            |                    |                 |  |
| Container / Client Sample ID(s)                                            |         |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation      |  |
| EK071G: Reactive Phosphorus as P by discrete analyse                       | er er   |             |                |                        |            |                     |                    |                 |  |
| Clear Plastic Bottle - Natural (EK071G) WKSW01, WKSW03                     | WKSW02, | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 28-Aug-2015        | ✓               |  |
| EP005: Total Organic Carbon (TOC)                                          |         |             |                |                        |            |                     |                    |                 |  |
| Amber TOC Vial - Sulfuric Acid (EP005) WKSW01, WKSW03                      | WKSW02, | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 23-Sep-2015        | ✓               |  |
| EP020: Oil and Grease (O&G)                                                |         |             |                |                        |            |                     |                    |                 |  |
| Amber Jar - Sulfuric Acid or Sodium Bisulfate (EP020)<br>WKSW01,<br>WKSW03 | WKSW02, | 26-Aug-2015 |                |                        |            | 02-Sep-2015         | 23-Sep-2015        | ✓               |  |
| EP033: C1 - C4 Hydrocarbon Gases                                           |         |             |                |                        |            |                     |                    |                 |  |
| Amber VOC Vial - Sulfuric Acid (EP033) WKSW01, WKSW03                      | WKSW02, | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 09-Sep-2015        | ✓               |  |
| EP080/071: Total Petroleum Hydrocarbons                                    |         |             |                |                        |            |                     |                    |                 |  |
| Amber Glass Bottle - Unpreserved (EP071) WKSW01, WKSW03                    | WKSW02, | 26-Aug-2015 | 31-Aug-2015    | 02-Sep-2015            | ✓          | 01-Sep-2015         | 10-Oct-2015        | ✓               |  |
| EP074A: Monocyclic Aromatic Hydrocarbons                                   |         |             |                |                        |            |                     |                    |                 |  |
| Amber VOC Vial - Sulfuric Acid (EP074) WKSW01, WKSW03                      | WKSW02, | 26-Aug-2015 | 31-Aug-2015    | 09-Sep-2015            | ✓          | 31-Aug-2015         | 09-Sep-2015        | ✓               |  |
| EP075(SIM)T: PAH Surrogates                                                |         |             |                |                        |            |                     |                    |                 |  |
| Amber Glass Bottle - Unpreserved (EP075(SIM)) WKSW01, WKSW03               | WKSW02, | 26-Aug-2015 | 31-Aug-2015    | 02-Sep-2015            | ✓          | 01-Sep-2015         | 10-Oct-2015        | ✓               |  |
| EP080S: TPH(V)/BTEX Surrogates                                             |         |             |                |                        |            |                     |                    |                 |  |
| Amber VOC Vial - Sulfuric Acid (EP080) WKSW01, WKSW03                      | WKSW02, | 26-Aug-2015 | 31-Aug-2015    | 09-Sep-2015            | ✓          | 31-Aug-2015         | 09-Sep-2015        | ✓               |  |
| EP262: Ethanolamines                                                       |         |             |                |                        |            |                     |                    |                 |  |
| Amber Glass Bottle - Unpreserved (EP262) WKSW01, WKSW03                    | WKSW02, | 26-Aug-2015 |                |                        |            | 03-Sep-2015         | 02-Sep-2015        | ×               |  |

Page 6 of 11

Work Order ES1529385 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

the expected rate. A listing of breaches is provided in the Summary of Outliers.

| the expected | rate. 7 | t iiotiiig | 01 0 | i cuci ico io | provided | III tillo | Oullinai | Oi | Outilors |
|--------------|---------|------------|------|---------------|----------|-----------|----------|----|----------|
|              |         |            |      |               |          |           |          |    |          |

| Matrix: WATER                                          |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification ; ✓ = Quality Control frequency within specification |
|--------------------------------------------------------|------------|----|---------|-----------|-------------------|-----------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type                            |            | С  | ount    |           | Rate (%)          |                 | Quality Control Specification                                                 |
| Analytical Methods                                     | Method     | OC | Reaular | Actual    | Expected          | Evaluation      |                                                                               |
| Laboratory Duplicates (DUP)                            |            |    |         |           |                   |                 |                                                                               |
| Alkalinity by PC Titrator                              | ED037-P    | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Ammonia as N by Discrete analyser                      | EK055G     | 2  | 19      | 10.53     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| C1 - C4 Gases                                          | EP033      | 1  | 3       | 33.33     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Chloride by Discrete Analyser                          | ED045G     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Chlorine                                               | EK010      | 2  | 13      | 15.38     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Conductivity by PC Titrator                            | EA010-P    | 2  | 17      | 11.76     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Mercury by FIMS                              | EG035F     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 2  | 14      | 14.29     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 10      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Fluoride by PC Titrator                                | EK040P     | 2  | 17      | 11.76     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Major Cations - Dissolved                              | ED093F     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite as N by Discrete Analyser                      | EK057G     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| pH by PC Titrator                                      | EA005-P    | 2  | 18      | 11.11     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 2  | 20      | 10.00     | 10.00             | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 2  | 19      | 10.53     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 2  | 19      | 10.53     | 10.00             | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Suspended Solids (High Level)                          | EA025H     | 1  | 20      | 5.00      | 9.52              | 3c              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Dissolved Solids (High Level)                    | EA015H     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 2  | 20      | 10.00     | 10.00             | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Organic Carbon                                   | EP005      | 2  | 15      | 13.33     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 2  | 20      | 10.00     | 10.00             | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH - Semivolatile Fraction                            | EP071      | 2  | 20      | 10.00     | 10.00             | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX                                     | EP080      | 2  | 16      | 12.50     | 10.00             | 1               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Volatile Organic Compounds                             | EP074      | 2  | 13      | 15.38     | 10.00             | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Laboratory Control Samples (LCS)                       |            |    |         |           |                   |                 |                                                                               |
| Alkalinity by PC Titrator                              | ED037-P    | 1  | 20      | 5.00      | 5.00              | 1               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 19      | 5.26      | 5.00              |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| C1 - C4 Gases                                          | EP033      | 1  | 3       | 33.33     | 5.00              |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Chloride by Discrete Analyser                          | ED045G     | 2  | 20      | 10.00     | 10.00             |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Conductivity by PC Titrator                            | EA010-P    | 1  | 17      | 5.88      | 5.00              |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 20      | 5.00      | 5.00              |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 20      | 5.00      | 5.00              |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |

Page : 7 of 11

Work Order : ES1529385 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                          |            |    |         | Evaluation | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specification. |  |  |
|--------------------------------------------------------|------------|----|---------|------------|-------------------|-----------------|-------------------------------------------------------------------------------|--|--|
| Quality Control Sample Type                            |            | Co | ount    | Rate (%)   |                   |                 | Quality Control Specification                                                 |  |  |
| Analytical Methods                                     | Method     | QC | Regular | Actual     | Expected          | Evaluation      |                                                                               |  |  |
| Laboratory Control Samples (LCS) - Continued           |            |    |         |            |                   |                 |                                                                               |  |  |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 14      | 7.14       | 5.00              | 1               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 10      | 10.00      | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Fluoride by PC Titrator                                | EK040P     | 1  | 17      | 5.88       | 5.00              | <u>√</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Major Cations - Dissolved                              | ED093F     | 1  | 20      | 5.00       | 5.00              | 1               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 20      | 5.00       | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Oil and Grease                                         | EP020      | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 19      | 5.26       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 19      | 5.26       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Suspended Solids (High Level)                          | EA025H     | 2  | 20      | 10.00      | 9.52              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Total Dissolved Solids (High Level)                    | EA015H     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 3  | 20      | 15.00      | 15.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Total Organic Carbon                                   | EP005      | 1  | 15      | 6.67       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 3  | 20      | 15.00      | 15.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 16      | 6.25       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Volatile Organic Compounds                             | EP074      | 1  | 13      | 7.69       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Method Blanks (MB)                                     |            |    |         |            |                   |                 |                                                                               |  |  |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 19      | 5.26       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| C1 - C4 Gases                                          | EP033      | 1  | 3       | 33.33      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Chlorine                                               | EK010      | 1  | 13      | 7.69       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Conductivity by PC Titrator                            | EA010-P    | 1  | 17      | 5.88       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 14      | 7.14       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 10      | 10.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Fluoride by PC Titrator                                | EK040P     | 1  | 17      | 5.88       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Major Cations - Dissolved                              | ED093F     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Oil and Grease                                         | EP020      | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 19      | 5.26       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 19      | 5.26       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |  |  |

Page : 8 of 11

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matrix: WATER                                          |            |    |         | Evaluation | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specification. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------|----|---------|------------|-------------------|-----------------|-------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quality Control Sample Type                            |            | Co | unt     |            | Rate (%)          |                 | Quality Control Specification                                                 |
| EAD25H   1   20   5.00   4.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analytical Methods                                     | Method     | QC | Reaular | Actual     | Expected          | Evaluation      |                                                                               |
| Facility    | Method Blanks (MB) - Continued                         |            |    |         |            |                   |                 |                                                                               |
| Total Crganic Carbon   FRODE   | Suspended Solids (High Level)                          | EA025H     | 1  | 20      | 5.00       | 4.76              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Ford   Creation   Female   F   | Total Dissolved Solids (High Level)                    | EA015H     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Phosphorus as P By Discrete Analyser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| FRH - Semivolatile Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total Organic Carbon                                   | EP005      | 1  | 15      | 6.67       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| FRH Volatiles/BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Matrix Spikes (MS)   MEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TRH - Semivolatile Fraction                            | EP071      | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Matrix Spikes (MS)   Ammonia as N by Discrete analyser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRH Volatiles/BTEX                                     | EP080      | 1  | 16      | 6.25       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Ammonia as N by Discrete analyser  EK055G  1  19  5.26  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ED1 - C4 Gases  EP033  1  3  3.33  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ED1 - C4 Gases  EP035G  1  20  5.00  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ED1 - C4 Gases  EP035F  1  20  5.00  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ED1 - C4 Gases  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ED1 - C4 Gases  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ED1 - C4 Gases  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  EG1 - C4 Gases  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  EG1 - C4 Gases  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ED1 - C4 Gases  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ED1 - C4 Gases  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ED1 - C4 Gases  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ED1 - C4 Gases  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ED1 - C4 Gases  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ED1 - C4 Gases  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ED1 - C4 Gases  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ED2 - C4 Gases  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ED2 - C4 Gases  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ED2 - C4 Gases  ED2 - C4 Gases  ED2 - C5 Gase  ED2 -  | Volatile Organic Compounds                             | EP074      | 1  | 13      | 7.69       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| C1 - C4 Gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Matrix Spikes (MS)                                     |            |    |         |            |                   |                 |                                                                               |
| Chloride by Discrete Analyser  ED045G  1  20  5.00  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement Dissolved Mercury by FIMS  EG035F  1  20  5.00  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement Dissolved Metals by ICP-MS - Suite A  EG020A-F  1  20  5.00  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement Dissolved Metals by ICP-MS - Suite A  EG020A-F  1  20  5.00  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement Dissolved Metals by ICP-MS - Suite A  EG020A-F  1  10  10.00  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement District and Nitrate as N (NOx) by Discrete Analyser  EK040P  1  17  5.88  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement District and Nitrate as N (NOx) by Discrete Analyser  EK057G  1  20  5.00  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement District and Nitrate as N (NOX) by Discrete Analyser  EK057G  1  20  5.00  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement District and Nitrate as N (NOX) by Discrete Analyser  EK057G  1  20  5.00  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement District and District Analyser  EK057G  1  20  5.00  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement District Analyser  EK071G  EK071G  1  20  5.00  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement District Analyser  EK071G  EK071G  1  20  5.00  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement District Analyser  EK071G  EK071G  1  20  5.00  5.00  ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement District Analyser  EK071G    | Ammonia as N by Discrete analyser                      | EK055G     | 1  | 19      | 5.26       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Mercury by FIMS  EG035F  1  20  5.00  5.00  ✓  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  EG020A-F  1  20  5.00  5.00  ✓  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Ethanolamines by LCMSMS  EP262  1  10  10.00  5.00  ✓  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Ethanolamines by LCMSMS  EP262  1  10  10.00  5.00  ✓  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Ethanolamines by LCMSMS  EP262  1  10  10.00  5.00  ✓  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Ethanolamines by LCMSMS  EP262  1  17  5.88  5.00  ✓  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Ethanolamines by LCMSMS  EP262  1  17  5.88  5.00  ✓  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Ethanolamines by LCMSMS  EP262  1  20  5.00  5.00  ✓  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Ethanolamines by LCMSMS  EP262  1  20  5.00  5.00  ✓  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  ENDAI/Phenols (GC/MS - SIM)  EP265/ENAI/Phenols (GC/MS - SIM)  EP265/EN  | C1 - C4 Gases                                          | EP033      | 1  | 3       | 33.33      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Metals by ICP-MS - Suite A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chloride by Discrete Analyser                          | ED045G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Ethanolamines by LCMSMS  EP262  1  10  10.00  5.00  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Fluoride by PC Titrator  EK040P  Reductive Phosphorus as P-By Discrete Analyser  EK071G  ER071G  | Dissolved Mercury by FIMS                              | EG035F     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Fluoride by PC Titrator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser  EK059G  EK059G  EK059G  EK059G  EK059G  EK057G  EK059G  EK057G  EK059G  EK057G  EK061G  E | Ethanolamines by LCMSMS                                | EP262      | 1  | 10      | 10.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| EK057G 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  PAH/Phenols (GC/MS - SIM)  Reactive Phosphorus as P-By Discrete Analyser  EK071G 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  Reactive Phosphorus as P-By Discrete Analyser  EK071G 1 20 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  Reactive Phosphorus as P-By Discrete Analyser  EK071G 1 20 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  EB009-X 1 19 5.26 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  EB009-X 1 19 5.26 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  EB009-X 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  EB009-X 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  EB009-X 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  EB009-X 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  EB009-X 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  EB009-X 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  EB009-X 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  EB009-X 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  EB009-X 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  EB009-X 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  EB009-X 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement PAH/Phenols (GC/MS - SIM)  EB009-X 1 20 5.00 5.00 ✓ NEPM 2013 Schedule | Fluoride by PC Titrator                                | EK040P     | 1  | 17      | 5.88       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| PAH/Phenols (GC/MS - SIM)  EP075(SIM)  EP0713 Schedule B(3) and ALS QCS3 requirement EP075(SIM)  EP075 | Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Reactive Phosphorus as P-By Discrete Analyser  EK071G  1  20  5.00  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  EG052G  1  19  5.26  Standard Anions -by IC (Extended Method)  ED009-X  Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser  ED041G  Fotal Kjeldahl Nitrogen as N By Discrete Analyser  EK061G  EP005  1  20  5.00  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Solfate (Turbidimetric) as SO4 2- by Discrete Analyser  EK061G  1  20  5.00  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Fotal Organic Carbon  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Fotal Organic Carbon  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Fotal Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| EG052G 1 19 5.26 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement ED009-X 1 19 5.26 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement Standard Anions -by IC (Extended Method) ED009-X 1 19 5.26 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser ED041G 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement For Indian Nitrogen as N By Discrete Analyser EK061G 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement For Indian Portal Organic Carbon FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement FP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requ | PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Standard Anions -by IC (Extended Method)  ED009-X  1  19  5.26  5.00  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser  ED041G  1  20  5.00  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Total Kjeldahl Nitrogen as N By Discrete Analyser  EK061G  1  20  5.00  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Total Organic Carbon  NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser ED041G 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Fotal Kjeldahl Nitrogen as N By Discrete Analyser EK061G 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement  Fotal Organic Carbon EP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 19      | 5.26       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Kjeldahl Nitrogen as N By Discrete Analyser EK061G 1 20 5.00 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement Total Organic Carbon EP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 19      | 5.26       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Organic Carbon EP005 1 15 6.67 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Phosphorus as P By Discrete Analyser EK067G 1 20 5.00 5.00 √ NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Organic Carbon                                   | EP005      | 1  | 15      | 6.67       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| FRH - Semivolatile Fraction EP071 1 20 <b>5.00 5.00 √</b> NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRH - Semivolatile Fraction                            | EP071      | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX EP080 1 16 6.25 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRH Volatiles/BTEX                                     | EP080      | 1  | 16      | 6.25       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| /olatile Organic Compounds EP074 1 13 7.69 5.00 ✓ NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Volatile Organic Compounds                             | EP074      | 1  | 13      | 7.69       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |

Page : 9 of 11

Work Order : ES1529385 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                     | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pH by PC Titrator                                      | EA005-P  | WATER  | In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                              |
| Conductivity by PC Titrator                            | EA010-P  | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                         |
| Total Dissolved Solids (High Level)                    | EA015H   | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |
| Suspended Solids (High Level)                          | EA025H   | WATER  | In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of 'non-filterable' residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (2013) Schedule B(3)                                 |
| Standard Anions -by IC (Extended Method)               | ED009-X  | WATER  | In house: Referenced to APHA 4110. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                    |
| Alkalinity by PC Titrator                              | ED037-P  | WATER  | In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                       |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G   | WATER  | In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)                                       |
| Chloride by Discrete Analyser                          | ED045G   | WATER  | In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003                                                                                                  |
| Major Cations - Dissolved                              | ED093F   | WATER  | In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3)  Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3)  Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) |
| Dissalved Metals by ICD MS - Suite A                   | EG020A-F | WATER  | Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dissolved Metals by ICP-MS - Suite A                   | EGUZUA-F | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                        |

Page : 10 of 11

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Analytical Methods                                   | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Metals by ICP-MS - Suite B                 | EG020B-F   | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                                                                                                        |
| Dissolved Mercury by FIMS                            | EG035F     | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) |
| Silica (Reactive) by Discrete Analyser               | EG052G     | WATER  | In house: Referenced to APHA 4500-SiO2 D: Under Acdic conditions reactive silicon combines with ammonium molybdate to form a yellow molybdosilicic acid complex. This is reduced by 1-amino-2-naphthol-4-sulfonic acid to a silicomolybdenum blue complex which is measured by discrete analyser at 670 nm. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                           |
| Chlorine                                             | EK010      | WATER  | In-house (DPD colourimetry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fluoride by PC Titrator                              | EK040P     | WATER  | In house: Referenced to APHA 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                               |
| Ammonia as N by Discrete analyser                    | EK055G     | WATER  | In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ammonium as N                                        | EK055G-NH4 | WATER  | Ammonium in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH and Temperature. Ammonia is determined by direct colorimetry by Discrete Analyser according to APHA 4500-NH3 G. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                  |
| Nitrite as N by Discrete Analyser                    | EK057G     | WATER  | In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nitrate as N by Discrete Analyser                    | EK058G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                          |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser  | EK059G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                      |
| Total Kjeldahl Nitrogen as N By Discrete Analyser    | EK061G     | WATER  | In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                           |
| Total Nitrogen as N (TKN + Nox) By Discrete Analyser | EK062G     | WATER  | In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total Phosphorus as P By Discrete<br>Analyser        | EK067G     | WATER  | In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |

Page : 11 of 11

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L



| Analytical Methods                               | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reactive Phosphorus as P-By Discrete<br>Analyser | EK071G      | WATER  | In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                      |
| Ionic Balance by PCT DA and Turbi SO4 DA         | EN055 - PG  | WATER  | In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                        |
| Total Organic Carbon                             | EP005       | WATER  | In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                     |
| Oil and Grease                                   | EP020       | WATER  | In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM (2013) Schedule B(3)                                                                             |
| C1 - C4 Gases                                    | EP033       | WATER  | Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, US EPA - Region 1, EPA New England, July 2001. Automated static headspace, dual column GC/FID. A 12 mL sample is pipetted into a 20 mL headspace vial containing 3g of sodium chloride and sealed. Each sample is equilibrated with shaking at 40 degrees C for 10 minutes prior to analysis by GC/FID using a pair of PLOT columns of different polarity. |
| TRH - Semivolatile Fraction                      | EP071       | WATER  | USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                                                 |
| Volatile Organic Compounds                       | EP074       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                          |
| PAH/Phenols (GC/MS - SIM)                        | EP075(SIM)  | WATER  | USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                     |
| TRH Volatiles/BTEX                               | EP080       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                           |
| Ethanolamines by LCMSMS                          | EP262       | WATER  | In-house LC-MSMS: Benzoyl derivatives of target compounds are analysed by LC/MSMS in ESI Positive Mode.                                                                                                                                                                                                                                                                                                                                            |
| Preparation Methods                              | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TKN/TP Digestion                                 | EK061/EK067 | WATER  | APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                       |



## **QUALITY CONTROL REPORT**

**Work Order** : **ES1529387** Page : 1 of 19

Amendment : 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ---Date Samples Received: 27-Aug-2015C-O-C number: 28-Aug-2015

Sampler : DAVID WATSON, SEAN DAYKIN Issue Date : 29-Sep-2015

Site : --- No. of samples received : 5
Quote number : --- No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Page : 2 of 19

Work Order ES1529387 Amendment 2

PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC



NATA Accredited Laboratory 825

Signatories This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with

procedures specified in 21 CFR Part 11.

Accredited for compliance with ISO/IEC 17025.

| Signatories        | Position                      | Accreditation Category |  |  |  |
|--------------------|-------------------------------|------------------------|--|--|--|
| Ankit Joshi        | Inorganic Chemist             | Sydney Inorganics      |  |  |  |
| Celine Conceicao   | Senior Spectroscopist         | Sydney Inorganics      |  |  |  |
| Lana Nguyen        | Senior LCMS Chemist           | Sydney Organics        |  |  |  |
| Pabi Subba         | Senior Organic Chemist        | Sydney Organics        |  |  |  |
| Phalak Inthakesone | Laboratory Manager - Organics | Sydney Organics        |  |  |  |
| Raymond Commodore  | Instrument Chemist            | Sydney Inorganics      |  |  |  |

Page : 3 of 19

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER    |                         |                                          |             | Laboratory Duplicate (DUP) Report |         |                 |                  |         |                     |
|----------------------|-------------------------|------------------------------------------|-------------|-----------------------------------|---------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                         | CAS Number  | LOR                               | Unit    | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EA005P: pH by PC     | Fitrator (QC Lot: 1970) | 28)                                      |             |                                   |         |                 |                  |         |                     |
| ES1529385-001        | Anonymous               | EA005-P: pH Value                        |             | 0.01                              | pH Unit | 7.38            | 7.50             | 1.61    | 0% - 20%            |
| ES1529535-007        | Anonymous               | EA005-P: pH Value                        |             | 0.01                              | pH Unit | 8.22            | 8.19             | 0.366   | 0% - 20%            |
| EA010P: Conductiv    | ity by PC Titrator (QC  | Lot: 197027)                             |             |                                   |         |                 |                  |         |                     |
| ES1529385-001        | Anonymous               | EA010-P: Electrical Conductivity @ 25°C  |             | 1                                 | μS/cm   | 489             | 493              | 0.768   | 0% - 20%            |
| ES1529535-007        | Anonymous               | EA010-P: Electrical Conductivity @ 25°C  |             | 1                                 | μS/cm   | 749             | 750              | 0.00    | 0% - 20%            |
| EA015: Total Dissol  | ved Solids (QC Lot: 1   | 98216)                                   |             |                                   |         |                 |                  |         |                     |
| ES1529236-001        | Anonymous               | EA015H: Total Dissolved Solids @180°C    |             | 10                                | mg/L    | 556             | 542              | 2.37    | 0% - 20%            |
| ES1529328-001        | Anonymous               | EA015H: Total Dissolved Solids @180°C    |             | 10                                | mg/L    | 7680            | 8040             | 4.64    | 0% - 20%            |
| EA025: Suspended     | Solids (QC Lot: 19821   | 17)                                      |             |                                   |         |                 |                  |         |                     |
| ES1529236-001        | Anonymous               | EA025H: Suspended Solids (SS)            |             | 5                                 | mg/L    | 61              | 58               | 4.61    | 0% - 50%            |
| ED009: Anions (Q0    | C Lot: 195954)          |                                          |             |                                   |         |                 |                  |         |                     |
| ES1529279-013        | Anonymous               | ED009-X: Chloride                        | 16887-00-6  | 0.1                               | mg/L    | 98.1            | 97.9             | 0.284   | 0% - 20%            |
| ES1529387-004        | WK13                    | ED009-X: Chloride                        | 16887-00-6  | 0.1                               | mg/L    | 675             | 675              | 0.00    | 0% - 20%            |
| ED037P: Alkalinity b | by PC Titrator (QC Lot  |                                          |             |                                   |         |                 |                  |         |                     |
| ES1529349-001        | Anonymous               | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1                                 | mg/L    | 14              | 17               | 15.7    | 0% - 50%            |
|                      | , , , , , ,             | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1                                 | mg/L    | <1              | <1               | 0.00    | No Limit            |
|                      |                         | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1                                 | mg/L    | <1              | <1               | 0.00    | No Limit            |
|                      |                         | ED037-P: Total Alkalinity as CaCO3       |             | 1                                 | mg/L    | 14              | 17               | 15.7    | 0% - 50%            |
| ES1529385-001        | Anonymous               | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1                                 | mg/L    | 52              | 53               | 0.00    | 0% - 20%            |
|                      | -                       | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1                                 | mg/L    | <1              | <1               | 0.00    | No Limit            |
|                      |                         | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1                                 | mg/L    | <1              | <1               | 0.00    | No Limit            |
|                      |                         | ED037-P: Total Alkalinity as CaCO3       |             | 1                                 | mg/L    | 52              | 53               | 0.00    | 0% - 20%            |
| ED041G: Sulfate (Τι  | urbidimetric) as SO4 2  | - by DA (QC Lot: 197004)                 |             |                                   |         |                 |                  |         |                     |
| ES1529535-001        | Anonymous               | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1                                 | mg/L    | 18              | 17               | 0.00    | 0% - 50%            |
| ES1529385-001        | Anonymous               | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1                                 | mg/L    | 25              | 25               | 0.00    | 0% - 20%            |
| ED045G: Chloride b   | y Discrete Analyser (   | QC Lot: 197002)                          |             |                                   |         |                 |                  |         |                     |
| ES1529349-001        | Anonymous               | ED045G: Chloride                         | 16887-00-6  | 1                                 | mg/L    | 12              | 13               | 0.00    | 0% - 50%            |
| ES1529385-001        | Anonymous               | ED045G: Chloride                         | 16887-00-6  | 1                                 | mg/L    | 66              | 67               | 1.55    | 0% - 20%            |
| ED093F: Dissolved    | Major Cations (QC Lo    |                                          |             |                                   |         |                 |                  |         |                     |
| ES1529258-001        | Anonymous               | ED093F: Calcium                          | 7440-70-2   | 1                                 | mg/L    | 1040            | 1060             | 1.84    | 0% - 20%            |
|                      | -                       | ED093F: Magnesium                        | 7439-95-4   | 1                                 | mg/L    | 1090            | 1140             | 4.17    | 0% - 20%            |
|                      |                         | ED093F: Potassium                        | 7440-09-7   | 1                                 | mg/L    | 14              | 14               | 0.00    | 0% - 50%            |
|                      |                         | ED093F: Sodium                           | 7440-23-5   | 1                                 | mg/L    | 6370            | 6480             | 1.67    | 0% - 20%            |
| ES1529386-001        | Anonymous               | ED093F: Calcium                          | 7440-70-2   | 1                                 | mg/L    | 15              | 15               | 0.00    | 0% - 50%            |

Page : 4 of 19

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                          |                        |            | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |  |
|----------------------|--------------------------|------------------------|------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID | Client sample ID         | Method: Compound       | CAS Number | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| ED093F: Dissolved N  | Major Cations (QC Lot: 1 |                        |            |                                   |      |                 |                  |         |                     |  |
| ES1529386-001        | Anonymous                | ED093F: Magnesium      | 7439-95-4  | 1                                 | mg/L | 9               | 9                | 0.00    | No Limit            |  |
|                      | -                        | ED093F: Potassium      | 7440-09-7  | 1                                 | mg/L | 4               | 4                | 0.00    | No Limit            |  |
|                      |                          | ED093F: Sodium         | 7440-23-5  | 1                                 | mg/L | 41              | 41               | 0.00    | 0% - 20%            |  |
| EG020F: Dissolved N  | Metals by ICP-MS (QC Lo  | ot: 197676)            |            |                                   |      |                 |                  |         |                     |  |
| ES1529258-001        | Anonymous                | EG020A-F: Cadmium      | 7440-43-9  | 0.0001                            | mg/L | <0.0010         | <0.0010          | 0.00    | No Limit            |  |
|                      | , , , , , ,              | EG020A-F: Antimony     | 7440-36-0  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Arsenic      | 7440-38-2  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Barium       | 7440-39-3  | 0.001                             | mg/L | 0.138           | 0.148            | 6.92    | 0% - 50%            |  |
|                      |                          | EG020A-F: Beryllium    | 7440-41-7  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Chromium     | 7440-47-3  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Cobalt       | 7440-48-4  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Copper       | 7440-50-8  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Lead         | 7439-92-1  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Manganese    | 7439-96-5  | 0.001                             | mg/L | 1.36            | 1.37             | 0.836   | 0% - 20%            |  |
|                      |                          | EG020A-F: Molybdenum   | 7439-98-7  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Nickel       | 7440-02-0  | 0.001                             | mg/L | 0.046           | 0.038            | 19.1    | No Limit            |  |
|                      |                          | EG020A-F: Tin          | 7440-31-5  | 0.001                             | mg/L | <0.010          | <0.010           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Zinc         | 7440-66-6  | 0.005                             | mg/L | 0.166           | 0.176            | 5.48    | No Limit            |  |
|                      |                          | EG020A-F: Aluminium    | 7429-90-5  | 0.01                              | mg/L | <0.10           | <0.10            | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Selenium     | 7782-49-2  | 0.01                              | mg/L | <0.10           | <0.10            | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Vanadium     | 7440-62-2  | 0.01                              | mg/L | <0.10           | <0.10            | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Boron        | 7440-42-8  | 0.05                              | mg/L | 1.30            | 1.35             | 4.16    | 0% - 50%            |  |
|                      |                          | EG020A-F: Iron         | 7439-89-6  | 0.05                              | mg/L | <0.10           | <0.10            | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Bromine      | 7726-95-6  | 0.1                               | mg/L | 29.0            | 31.0             | 6.77    | 0% - 20%            |  |
| ES1529386-001        | Anonymous                | EG020A-F: Cadmium      | 7440-43-9  | 0.0001                            | mg/L | <0.0001         | <0.0001          | 0.00    | No Limit            |  |
|                      | , , , , , ,              | EG020A-F: Antimony     | 7440-36-0  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Arsenic      | 7440-38-2  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Barium       | 7440-39-3  | 0.001                             | mg/L | 0.049           | 0.051            | 2.85    | 0% - 20%            |  |
|                      |                          | EG020A-F: Beryllium    | 7440-41-7  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Chromium     | 7440-47-3  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Cobalt       | 7440-48-4  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Copper       | 7440-50-8  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Lead         | 7439-92-1  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Manganese    | 7439-96-5  | 0.001                             | mg/L | 0.040           | 0.040            | 0.00    | 0% - 20%            |  |
|                      |                          | EG020A-F: Molybdenum   | 7439-98-7  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Nickel       | 7440-02-0  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Tin          | 7440-31-5  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Zinc         | 7440-66-6  | 0.005                             | mg/L | <0.005          | <0.005           | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Aluminium    | 7429-90-5  | 0.01                              | mg/L | <0.01           | 0.01             | 0.00    | No Limit            |  |
|                      |                          | EG020A-F: Selenium     | 7782-49-2  | 0.01                              | mg/L | <0.01           | <0.01            | 0.00    | No Limit            |  |
| I                    | T                        | LOJZUA-I . OGIGIIIUIII | . 702 10 2 | 5.51                              | 9, ⊏ | 3.01            | 5.01             | 0.00    | 2                   |  |

Page : 5 of 19

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                           |                                           |            | Laboratory Duplicate (DUP) Report |              |                 |                  |         |                     |
|----------------------|---------------------------|-------------------------------------------|------------|-----------------------------------|--------------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID          | Method: Compound                          | CAS Number | LOR                               | Unit         | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EG020F: Dissolved    | Metals by ICP-MS (QC L    | ot: 197676) - continued                   |            |                                   |              |                 |                  |         |                     |
| ES1529386-001        | Anonymous                 | EG020A-F: Vanadium                        | 7440-62-2  | 0.01                              | mg/L         | <0.01           | <0.01            | 0.00    | No Limit            |
|                      |                           | EG020A-F: Boron                           | 7440-42-8  | 0.05                              | mg/L         | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                           | EG020A-F: Iron                            | 7439-89-6  | 0.05                              | mg/L         | 0.24            | 0.24             | 0.00    | No Limit            |
|                      |                           | EG020A-F: Bromine                         | 7726-95-6  | 0.1                               | mg/L         | 0.2             | 0.2              | 0.00    | No Limit            |
| EG020F: Dissolved    | Metals by ICP-MS (QC L    | ot: 197677)                               |            |                                   |              |                 |                  |         |                     |
| ES1529258-001        | Anonymous                 | EG020B-F: Strontium                       | 7440-24-6  | 0.001                             | mg/L         | 29.1            | 31.2             | 6.99    | 0% - 20%            |
|                      |                           | EG020B-F: Uranium                         | 7440-61-1  | 0.001                             | mg/L         | 0.016           | 0.011            | 32.6    | No Limit            |
| ES1529386-001        | Anonymous                 | EG020B-F: Strontium                       | 7440-24-6  | 0.001                             | mg/L         | 0.192           | 0.206            | 7.13    | 0% - 20%            |
|                      |                           | EG020B-F: Uranium                         | 7440-61-1  | 0.001                             | mg/L         | <0.001          | <0.001           | 0.00    | No Limit            |
| EG035F: Dissolved    | Mercury by FIMS (QC Lo    | ot: 197678)                               |            |                                   |              |                 |                  |         |                     |
| ES1529258-002        | Anonymous                 | EG035F: Mercury                           | 7439-97-6  | 0.0001                            | mg/L         | <0.0001         | <0.0001          | 0.00    | No Limit            |
| ES1529387-001        | AST2                      | EG035F: Mercury                           | 7439-97-6  | 0.0001                            | mg/L         | <0.0001         | <0.0001          | 0.00    | No Limit            |
| EG052G: Silica by D  | Discrete Analyser (QC Lo  |                                           |            |                                   |              |                 |                  |         |                     |
| ES1529522-001        | Anonymous                 | EG052G: Reactive Silica                   |            | 0.05                              | mg/L         | 8.46            | 8.33             | 1.46    | 0% - 20%            |
| ES1529385-001        | Anonymous                 | EG052G: Reactive Silica                   |            | 0.05                              | mg/L         | 6.11            | 6.00             | 1.76    | 0% - 20%            |
| EK010/011: Chlorine  |                           |                                           |            |                                   |              |                 |                  |         |                     |
| ES1528883-001        | Anonymous                 | EK010: Chlorine - Free                    |            | 0.2                               | mg/L         | <0.2            | <0.2             | 0.00    | No Limit            |
|                      |                           | EK010: Chlorine - Total Residual          |            | 0.2                               | mg/L         | <200            | <0.2             | 0.00    | No Limit            |
| ES1529387-002        | WK11                      | EK010: Chlorine - Free                    |            | 0.2                               | mg/L         | <0.2            | <0.2             | 0.00    | No Limit            |
|                      |                           | EK010: Chlorine - Total Residual          |            | 0.2                               | mg/L         | <0.2            | <0.2             | 0.00    | No Limit            |
| EK040P: Fluoride by  | y PC Titrator (QC Lot: 19 | 97026)                                    |            |                                   |              |                 |                  |         |                     |
| ES1529385-001        | Anonymous                 | EK040P: Fluoride                          | 16984-48-8 | 0.1                               | mg/L         | 0.1             | <0.1             | 0.00    | No Limit            |
| ES1529535-007        | Anonymous                 | EK040P: Fluoride                          | 16984-48-8 | 0.1                               | mg/L         | 0.6             | 0.7              | 0.00    | No Limit            |
| FK055G: Ammonia      | as N by Discrete Analyse  |                                           |            |                                   | 3            |                 |                  |         |                     |
| ES1529385-001        | Anonymous                 | EK055G: Ammonia as N                      | 7664-41-7  | 0.01                              | mg/L         | 0.01            | 0.02             | 0.00    | No Limit            |
| ES1529389-001        | Anonymous                 | EK055G: Ammonia as N                      | 7664-41-7  | 0.01                              | mg/L         | 0.04            | 0.02             | 0.00    | No Limit            |
|                      | N by Discrete Analyser    |                                           | 7001117    | 0.01                              | mg/L         | 0.01            | 0.00             | 0.00    | 110 Ellillic        |
| ES1529393-002        | Anonymous                 |                                           | 14797-65-0 | 0.01                              | ma/l         | <0.01           | <0.01            | 0.00    | No Limit            |
| ES1529395-002        | Anonymous                 | EK057G: Nitrite as N EK057G: Nitrite as N | 14797-65-0 | 0.01                              | mg/L<br>mg/L | <0.01           | <0.01            | 0.00    | No Limit            |
|                      | ,                         |                                           | 14797-05-0 | 0.01                              | IIIg/L       | <b>~0.01</b>    | <b>~0.01</b>     | 0.00    | NO LITTIE           |
|                      |                           | Discrete Analyser (QC Lot: 198628)        |            | 0.01                              |              | 0.04            | 0.04             | 0.00    | No. 1 tout          |
| ES1529385-001        | Anonymous                 | EK059G: Nitrite + Nitrate as N            |            | 0.01                              | mg/L         | 0.01            | 0.01             | 0.00    | No Limit            |
| ES1529389-001        | Anonymous                 | EK059G: Nitrite + Nitrate as N            |            | 0.01                              | mg/L         | 0.11            | 0.11             | 0.00    | 0% - 50%            |
|                      |                           | e Analyser (QC Lot: 198619)               |            |                                   |              |                 |                  |         |                     |
| ES1529385-001        | Anonymous                 | EK061G: Total Kjeldahl Nitrogen as N      |            | 0.1                               | mg/L         | 0.4             | 0.3              | 0.00    | No Limit            |
| ES1529389-001        | Anonymous                 | EK061G: Total Kjeldahl Nitrogen as N      |            | 0.1                               | mg/L         | 1.4             | 1.5              | 7.58    | 0% - 50%            |
| EK067G: Total Phos   | phorus as P by Discrete   | Analyser (QC Lot: 198618)                 |            |                                   |              |                 |                  |         |                     |
| ES1529385-001        | Anonymous                 | EK067G: Total Phosphorus as P             |            | 0.01                              | mg/L         | 0.02            | 0.02             | 0.00    | No Limit            |
| ES1529389-001        | Anonymous                 | EK067G: Total Phosphorus as P             |            | 0.01                              | mg/L         | 0.15            | 0.16             | 0.00    | 0% - 50%            |

Page : 6 of 19

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                        |                                    |            |      |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------|------------------------------------|------------|------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                   | CAS Number | LOR  | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| K071G: Reactive F    | Phosphorus as P by dis | crete analyser (QC Lot: 197003)    |            |      |      |                 |                        |         |                     |
| ES1529393-002        | Anonymous              | EK071G: Reactive Phosphorus as P   | 14265-44-2 | 0.01 | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| ES1529385-001        | Anonymous              | EK071G: Reactive Phosphorus as P   | 14265-44-2 | 0.01 | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| P033: C1 - C4 Hyd    | rocarbon Gases (QC L   | ot: 195980)                        |            |      |      |                 |                        |         |                     |
| ES1529387-001        | AST2                   | EP033: Butane                      | 106-97-8   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Butene                      | 25167-67-3 | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Ethane                      | 74-84-0    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Ethene                      | 74-85-1    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Methane                     | 74-82-8    | 10   | μg/L | 536             | 572                    | 6.68    | 0% - 20%            |
|                      |                        | EP033: Propane                     | 74-98-6    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Propene                     | 115-07-1   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
| ES1529445-002        | Anonymous              | EP033: Butane                      | 106-97-8   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Butene                      | 25167-67-3 | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Ethane                      | 74-84-0    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Ethene                      | 74-85-1    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Methane                     | 74-82-8    | 10   | μg/L | 1210            | 1190                   | 1.40    | 0% - 20%            |
|                      |                        | EP033: Propane                     | 74-98-6    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                        | EP033: Propene                     | 115-07-1   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
| P074A: Monocycli     | c Aromatic Hydrocarbo  | ons (QC Lot: 197979)               |            |      |      |                 |                        |         |                     |
| EB1526728-001 Ano    | Anonymous              | EP074: 1.2.4-Trimethylbenzene      | 95-63-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.3.5-Trimethylbenzene      | 108-67-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Isopropylbenzene            | 98-82-8    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: n-Butylbenzene              | 104-51-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: n-Propylbenzene             | 103-65-1   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: p-Isopropyltoluene          | 99-87-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: sec-Butylbenzene            | 135-98-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Styrene                     | 100-42-5   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: tert-Butylbenzene           | 98-06-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1529387-002        | WK11                   | EP074: 1.2.4-Trimethylbenzene      | 95-63-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.3.5-Trimethylbenzene      | 108-67-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Isopropylbenzene            | 98-82-8    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: n-Butylbenzene              | 104-51-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: n-Propylbenzene             | 103-65-1   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: p-Isopropyltoluene          | 99-87-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: sec-Butylbenzene            | 135-98-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Styrene                     | 100-42-5   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: tert-Butylbenzene           | 98-06-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
| P074B: Oxygenate     | ed Compounds (QC Lo    | t: 197979)                         |            |      |      |                 |                        |         |                     |
| EB1526728-001        | Anonymous              | EP074: 2-Butanone (MEK)            | 78-93-3    | 50   | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP074: 2-Hexanone (MBK)            | 591-78-6   | 50   | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP074: 4-Methyl-2-pentanone (MIBK) | 108-10-1   | 50   | μg/L | <50             | <50                    | 0.00    | No Limit            |

Page : 7 of 19

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                      |                                    |            |     |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|----------------------|------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID     | Method: Compound                   | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074B: Oxygenate    | ed Compounds (QC Lo  | ot: 197979) - continued            |            |     |      |                 |                        |         |                     |
| EB1526728-001        | Anonymous            | EP074: Vinyl Acetate               | 108-05-4   | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| ES1529387-002        | WK11                 | EP074: 2-Butanone (MEK)            | 78-93-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: 2-Hexanone (MBK)            | 591-78-6   | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: 4-Methyl-2-pentanone (MIBK) | 108-10-1   | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Vinyl Acetate               | 108-05-4   | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| EP074C: Sulfonated   | d Compounds (QC Lot  | : 197979)                          |            |     |      |                 |                        |         |                     |
| EB1526728-001        | Anonymous            | EP074: Carbon disulfide            | 75-15-0    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1529387-002        | WK11                 | EP074: Carbon disulfide            | 75-15-0    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074D: Fumigants    | (QC Lot: 197979)     |                                    |            |     |      |                 |                        |         |                     |
| EB1526728-001        | Anonymous            | EP074: 1.2-Dibromoethane (EDB)     | 106-93-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2-Dichloropropane         | 78-87-5    | 5   | µg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 2.2-Dichloropropane         | 594-20-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: cis-1.3-Dichloropropylene   | 10061-01-5 | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: trans-1.3-Dichloropropylene | 10061-02-6 | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1529387-002        | WK11                 | EP074: 1.2-Dibromoethane (EDB)     | 106-93-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2-Dichloropropane         | 78-87-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 2.2-Dichloropropane         | 594-20-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: cis-1.3-Dichloropropylene   | 10061-01-5 | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: trans-1.3-Dichloropropylene | 10061-02-6 | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074E: Halogenat    | ed Aliphatic Compoun |                                    |            |     | 10   |                 |                        |         |                     |
| EB1526728-001        | Anonymous            | EP074: 1.1.1.2-Tetrachloroethane   | 630-20-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| LB 1020120 001       | 7 thonymous          | EP074: 1.1.1.2-Tetracinoroethane   | 71-55-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1.2.2-Tetrachloroethane   | 79-34-5    | 5   | µg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1.2-Trichloroethane       | 79-00-5    | 5   | µg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1-Dichloroethane          | 75-34-3    | 5   | µg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1-Dichloroethene          | 75-35-4    | 5   | µg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1-Dichloropropylene       | 563-58-6   | 5   | µg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2.3-Trichloropropane      | 96-18-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2-Dibromo-3-chloropropane | 96-12-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2-Dichloroethane          | 107-06-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.3-Dichloropropane         | 142-28-9   | 5   | µg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Carbon Tetrachloride        | 56-23-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: cis-1.2-Dichloroethene      | 156-59-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: cis-1.4-Dichloro-2-butene   | 1476-11-5  | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Dibromomethane              | 74-95-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Hexachlorobutadiene         | 87-68-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Iodomethane                 | 74-88-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Pentachloroethane           | 76-01-7    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Tetrachloroethene           | 127-18-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: trans-1.2-Dichloroethene    | 156-60-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |

Page : 8 of 19

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                      |                                    |            |     |      | Laboratory      | Duplicate (DUP) Report | :       |                     |
|----------------------|----------------------|------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID     | Method: Compound                   | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074E: Halogenate   | ed Aliphatic Compoun | ds (QC Lot: 197979) - continued    |            |     |      |                 |                        |         |                     |
| EB1526728-001        | Anonymous            | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Trichloroethene             | 79-01-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Bromomethane                | 74-83-9    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Chloroethane                | 75-00-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Chloromethane               | 74-87-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Dichlorodifluoromethane     | 75-71-8    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Trichlorofluoromethane      | 75-69-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Vinyl chloride              | 75-01-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| ES1529387-002        | WK11                 | EP074: 1.1.1.2-Tetrachloroethane   | 630-20-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1.1-Trichloroethane       | 71-55-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1.2.2-Tetrachloroethane   | 79-34-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1.2-Trichloroethane       | 79-00-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1-Dichloroethane          | 75-34-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1-Dichloroethene          | 75-35-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.1-Dichloropropylene       | 563-58-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2.3-Trichloropropane      | 96-18-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2-Dibromo-3-chloropropane | 96-12-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2-Dichloroethane          | 107-06-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.3-Dichloropropane         | 142-28-9   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Carbon Tetrachloride        | 56-23-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: cis-1.2-Dichloroethene      | 156-59-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: cis-1.4-Dichloro-2-butene   | 1476-11-5  | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Dibromomethane              | 74-95-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Hexachlorobutadiene         | 87-68-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Iodomethane                 | 74-88-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Pentachloroethane           | 76-01-7    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Tetrachloroethene           | 127-18-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: trans-1.2-Dichloroethene    | 156-60-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Trichloroethene             | 79-01-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: Bromomethane                | 74-83-9    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Chloroethane                | 75-00-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Chloromethane               | 74-87-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Dichlorodifluoromethane     | 75-71-8    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Trichlorofluoromethane      | 75-69-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                      | EP074: Vinyl chloride              | 75-01-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| EP074F: Halogenate   | ed Aromatic Compoun  |                                    |            |     |      |                 |                        |         |                     |
| EB1526728-001        | Anonymous            | EP074: 1.2.3-Trichlorobenzene      | 87-61-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2.4-Trichlorobenzene      | 120-82-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                      | EP074: 1.2-Dichlorobenzene         | 95-50-1    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |

Page : 9 of 19

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                        |                                      |            |     |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------|--------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                     | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074F: Halogena     | ted Aromatic Compound  | ds (QC Lot: 197979) - continued      |            |     |      |                 |                        |         |                     |
| EB1526728-001        | Anonymous              | EP074: 1.3-Dichlorobenzene           | 541-73-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.4-Dichlorobenzene           | 106-46-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 2-Chlorotoluene               | 95-49-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 4-Chlorotoluene               | 106-43-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Bromobenzene                  | 108-86-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Chlorobenzene                 | 108-90-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1529387-002        | WK11                   | EP074: 1.2.3-Trichlorobenzene        | 87-61-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.2.4-Trichlorobenzene        | 120-82-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.2-Dichlorobenzene           | 95-50-1    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.3-Dichlorobenzene           | 541-73-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 1.4-Dichlorobenzene           | 106-46-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 2-Chlorotoluene               | 95-49-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: 4-Chlorotoluene               | 106-43-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Bromobenzene                  | 108-86-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Chlorobenzene                 | 108-90-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP074G: Trihalome    | ethanes (QC Lot: 19797 | 9)                                   |            |     |      |                 |                        |         |                     |
| EB1526728-001        | Anonymous              | EP074: Bromodichloromethane          | 75-27-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Bromoform                     | 75-25-2    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Chloroform                    | 67-66-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Dibromochloromethane          | 124-48-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1529387-002        | WK11                   | EP074: Bromodichloromethane          | 75-27-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Bromoform                     | 75-25-2    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Chloroform                    | 67-66-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                        | EP074: Dibromochloromethane          | 124-48-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| EP075(SIM)A: Pher    | nolic Compounds (QC I  |                                      |            |     | 10   |                 |                        |         |                     |
| ES1529387-001        | AST2                   | EP075(SIM): 2.4.5-Trichlorophenol    | 95-95-4    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      | 7.0.2                  | EP075(SIM): 2.4.6-Trichlorophenol    | 88-06-2    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): 2.4-Dichlorophenol       | 120-83-2   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): 2.4-Dimethylphenol       | 105-67-9   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): 2.6-Dichlorophenol       | 87-65-0    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): 2-Chlorophenol           | 95-57-8    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): 2-Methylphenol           | 95-48-7    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): 2-Nitrophenol            | 88-75-5    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): 4-Chloro-3-methylphenol  | 59-50-7    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): 4-Childro-3-methylphendi | 108-95-2   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): 3- & 4-Methylphenol      | 1319-77-3  | 2   | μg/L | <2.0            | <2.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Pentachlorophenol        | 87-86-5    | 2   | μg/L | <2.0            | <2.0                   | 0.00    | No Limit            |
| ES1529387-005        | QA12                   | EP075(SIM): 2.4.5-Trichlorophenol    | 95-95-4    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
| 201020007 000        | Ser VIZ                | EP075(SIM): 2.4.6-Trichlorophenol    | 88-06-2    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        |                                      | 120-83-2   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): 2.4-Dichlorophenol       | 120-63-2   | ı   | µg/L | <b>\1.0</b>     | ~1.0                   | 0.00    | INO LITTIL          |

Page : 10 of 19

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                                     |            |     |      | Laboratory      | Duplicate (DUP) Report | t       |                     |
|----------------------|-----------------------|-------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                    | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP075(SIM)A: Pheno   | olic Compounds (QC L  | ot: 196365) - continued             |            |     |      |                 |                        |         |                     |
| ES1529387-005        | QA12                  | EP075(SIM): 2.4-Dimethylphenol      | 105-67-9   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 2.6-Dichlorophenol      | 87-65-0    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 2-Chlorophenol          | 95-57-8    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 2-Methylphenol          | 95-48-7    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 2-Nitrophenol           | 88-75-5    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 4-Chloro-3-methylphenol | 59-50-7    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Phenol                  | 108-95-2   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): 3- & 4-Methylphenol     | 1319-77-3  | 2   | μg/L | 28.1            | 28.2                   | 0.00    | 0% - 50%            |
|                      |                       | EP075(SIM): Pentachlorophenol       | 87-86-5    | 2   | μg/L | <2.0            | <2.0                   | 0.00    | No Limit            |
| EP075(SIM)B: Polyn   | uclear Aromatic Hydro | carbons (QC Lot: 196365)            |            |     |      |                 |                        |         |                     |
| ES1529387-001        | AST2                  | EP075(SIM): Benzo(a)pyrene          | 50-32-8    | 0.5 | μg/L | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Acenaphthene            | 83-32-9    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Acenaphthylene          | 208-96-8   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Anthracene              | 120-12-7   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Benz(a)anthracene       | 56-55-3    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Benzo(b+j)fluoranthene  | 205-99-2   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       |                                     | 205-82-3   |     |      |                 |                        |         |                     |
|                      |                       | EP075(SIM): Benzo(g.h.i)perylene    | 191-24-2   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Benzo(k)fluoranthene    | 207-08-9   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Chrysene                | 218-01-9   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Dibenz(a.h)anthracene   | 53-70-3    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Fluoranthene            | 206-44-0   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Fluorene                | 86-73-7    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Indeno(1.2.3.cd)pyrene  | 193-39-5   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Naphthalene             | 91-20-3    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Phenanthrene            | 85-01-8    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Pyrene                  | 129-00-0   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
| ES1529387-005        | QA12                  | EP075(SIM): Benzo(a)pyrene          | 50-32-8    | 0.5 | μg/L | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Acenaphthene            | 83-32-9    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Acenaphthylene          | 208-96-8   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Anthracene              | 120-12-7   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Benz(a)anthracene       | 56-55-3    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Benzo(b+j)fluoranthene  | 205-99-2   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       |                                     | 205-82-3   |     |      |                 |                        |         |                     |
|                      |                       | EP075(SIM): Benzo(g.h.i)perylene    | 191-24-2   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Benzo(k)fluoranthene    | 207-08-9   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Chrysene                | 218-01-9   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Dibenz(a.h)anthracene   | 53-70-3    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Fluoranthene            | 206-44-0   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                       | EP075(SIM): Fluorene                | 86-73-7    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |

Page : 11 of 19

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                        |                                            |            |     |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------|--------------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                           | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP075(SIM)B: Polyn   | nuclear Aromatic Hydro | ocarbons (QC Lot: 196365) - continued      |            |     |      |                 |                        |         |                     |
| ES1529387-005        | QA12                   | EP075(SIM): Indeno(1.2.3.cd)pyrene         | 193-39-5   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Naphthalene                    | 91-20-3    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Phenanthrene                   | 85-01-8    | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Pyrene                         | 129-00-0   | 1   | μg/L | <1.0            | <1.0                   | 0.00    | No Limit            |
| EP080/071: Total Pe  | troleum Hydrocarbons   | (QC Lot: 196366)                           |            |     |      |                 |                        |         |                     |
| ES1529387-001        | AST2                   | EP071: C15 - C28 Fraction                  |            | 100 | μg/L | <100            | <100                   | 0.00    | No Limit            |
|                      |                        | EP071: C10 - C14 Fraction                  |            | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP071: C29 - C36 Fraction                  |            | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| ES1529387-005        | QA12                   | EP071: C15 - C28 Fraction                  |            | 100 | μg/L | <100            | <100                   | 0.00    | No Limit            |
|                      |                        | EP071: C10 - C14 Fraction                  |            | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                        | EP071: C29 - C36 Fraction                  |            | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| EP080/071: Total Pe  | troleum Hydrocarbons   | (QC Lot: 197980)                           |            |     |      |                 |                        |         |                     |
| EB1526728-001        | Anonymous              | EP080: C6 - C9 Fraction                    |            | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| ES1529387-002        | WK11                   | EP080: C6 - C9 Fraction                    |            | 20  | μg/L | 160             | 180                    | 13.1    | No Limit            |
| EP080/071: Total Re  | ecoverable Hydrocarbo  | ons - NEPM 2013 Fractions (QC Lot: 196366) |            |     |      |                 |                        |         |                     |
| ES1529387-001        | AST2                   | EP071: >C10 - C16 Fraction                 | >C10_C16   | 100 | μg/L | <100            | <100                   | 0.00    | No Limit            |
|                      |                        | EP071: >C16 - C34 Fraction                 |            | 100 | μg/L | <100            | <100                   | 0.00    | No Limit            |
|                      |                        | EP071: >C34 - C40 Fraction                 |            | 100 | μg/L | <100            | <100                   | 0.00    | No Limit            |
| ES1529387-005        | QA12                   | EP071: >C10 - C16 Fraction                 | >C10_C16   | 100 | μg/L | <100            | <100                   | 0.00    | No Limit            |
|                      |                        | EP071: >C16 - C34 Fraction                 |            | 100 | μg/L | <100            | <100                   | 0.00    | No Limit            |
|                      |                        | EP071: >C34 - C40 Fraction                 |            | 100 | μg/L | <100            | <100                   | 0.00    | No Limit            |
| EP080/071: Total Re  | ecoverable Hydrocarbo  | ns - NEPM 2013 Fractions (QC Lot: 197980)  |            |     |      |                 |                        |         |                     |
| EB1526728-001        | Anonymous              | EP080: C6 - C10 Fraction                   | C6_C10     | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| ES1529387-002        | WK11                   | EP080: C6 - C10 Fraction                   | C6_C10     | 20  | μg/L | 150             | 170                    | 13.0    | No Limit            |
| EP262: Ethanolamir   | nes (QC Lot: 201869)   |                                            |            |     |      |                 |                        |         |                     |
| ES1529385-001        | Anonymous              | EP262: Diethanolamine                      | 111-42-2   | 1   | μg/L | <1              | <1                     | 0.00    | No Limit            |
|                      |                        | EP262: Ethanolamine                        | 141-43-5   | 1   | μg/L | <1              | <1                     | 0.00    | No Limit            |

Page : 12 of 19

Work Order : ES1529387 Amendment 2

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                |                 |        |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|--------------------------------------------------|-----------------|--------|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                  |                 |        |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound                                 | CAS Number      | LOR    | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |
| EA010P: Conductivity by PC Titrator (QCLot: 197  | (027)           |        |       |                   |                                       |                    |          |            |  |
| EA010-P: Electrical Conductivity @ 25°C          |                 | 1      | μS/cm | <1                | 2000 μS/cm                            | 105                | 95       | 113        |  |
| EA015: Total Dissolved Solids (QCLot: 198216)    |                 |        |       |                   |                                       |                    |          |            |  |
| EA015H: Total Dissolved Solids @180°C            |                 | 10     | mg/L  | <10               | 2000 mg/L                             | 96.8               | 87       | 109        |  |
|                                                  |                 |        |       | <10               | 293 mg/L                              | 89.1               | 66       | 126        |  |
| EA025: Suspended Solids (QCLot: 198217)          |                 |        |       |                   |                                       |                    |          |            |  |
| EA025H: Suspended Solids (SS)                    |                 | 5      | mg/L  | <5                | 150 mg/L                              | 97.7               | 83       | 129        |  |
|                                                  |                 |        |       | <5                | 1000 mg/L                             | 96.3               | 84       | 110        |  |
| ED009: Anions (QCLot: 195954)                    |                 |        |       |                   |                                       |                    |          |            |  |
| ED009-X: Chloride                                | 16887-00-6      | 0.1    | mg/L  | <0.100            | 2 mg/L                                | 103                | 89       | 107        |  |
| ED037P: Alkalinity by PC Titrator (QCLot: 197025 | 5)              |        |       |                   |                                       |                    |          |            |  |
| ED037-P: Total Alkalinity as CaCO3               |                 |        | mg/L  |                   | 200 mg/L                              | 86.3               | 81       | 111        |  |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA  | (QCLot: 197004) |        |       |                   |                                       |                    |          |            |  |
| ED041G: Sulfate as SO4 - Turbidimetric           | 14808-79-8      | 1      | mg/L  | <1                | 25 mg/L                               | 98.4               | 86       | 122        |  |
| ED045G: Chloride by Discrete Analyser (QCLot:    | 197002)         |        |       |                   |                                       |                    |          |            |  |
| ED045G: Chloride                                 | 16887-00-6      | 1      | mg/L  | <1                | 10 mg/L                               | 110                | 75       | 123        |  |
| ED040G. Official                                 |                 |        | 9.=   | <1                | 1000 mg/L                             | 90.7               | 77       | 119        |  |
| ED093F: Dissolved Major Cations (QCLot: 19767    | 9)              |        |       |                   | _                                     |                    |          |            |  |
| ED093F: Calcium                                  | 7440-70-2       | 1      | mg/L  | <1                | 50 mg/L                               | 105                | 90       | 114        |  |
| ED093F: Magnesium                                | 7439-95-4       | 1      | mg/L  | <1                | 50 mg/L                               | 107                | 90       | 110        |  |
| ED093F: Potassium                                | 7440-09-7       | 1      | mg/L  | <1                | 50 mg/L                               | 106                | 87       | 117        |  |
| ED093F: Sodium                                   | 7440-23-5       | 1      | mg/L  | <1                | 50 mg/L                               | 103                | 82       | 118        |  |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 19    | 7676)           |        |       |                   |                                       |                    |          |            |  |
| EG020A-F: Aluminium                              | 7429-90-5       | 0.01   | mg/L  | <0.01             | 0.5 mg/L                              | 91.9               | 85       | 115        |  |
| EG020A-F: Antimony                               | 7440-36-0       | 0.001  | mg/L  | <0.001            | 0.01 mg/L                             | 91.6               | 85       | 115        |  |
| EG020A-F: Arsenic                                | 7440-38-2       | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 97.9               | 85       | 115        |  |
| EG020A-F: Barium                                 | 7440-39-3       | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 97.2               | 85       | 115        |  |
| EG020A-F: Beryllium                              | 7440-41-7       | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 94.8               | 85       | 115        |  |
| GO20A-F: Boron                                   | 7440-42-8       | 0.05   | mg/L  | <0.05             | 0.1 mg/L                              | 99.8               | 85       | 115        |  |
| EG020A-F: Bromine                                | 7726-95-6       | 0.1    | mg/L  | <0.1              |                                       |                    |          |            |  |
| EG020A-F: Cadmium                                | 7440-43-9       | 0.0001 | mg/L  | <0.0001           | 0.1 mg/L                              | 97.6               | 85       | 115        |  |
| EG020A-F: Chromium                               | 7440-47-3       | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 99.8               | 85       | 115        |  |
| EG020A-F: Cobalt                                 | 7440-48-4       | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 100                | 85       | 115        |  |
| EG020A-F: Copper                                 | 7440-50-8       | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 103                | 85       | 115        |  |

Page : 13 of 19

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                           |               |        |      | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|-------------------------------------------------------------|---------------|--------|------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                             |               |        |      | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                            | CAS Number    | LOR    | Unit | Result            | Concentration | LCS                           | Low       | High       |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 197676) - conf   | tinued        |        |      |                   |               |                               |           |            |
| EG020A-F: Iron                                              | 7439-89-6     | 0.05   | mg/L | <0.05             | 0.5 mg/L      | 94.2                          | 85        | 115        |
| EG020A-F: Lead                                              | 7439-92-1     | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 96.3                          | 85        | 115        |
| EG020A-F: Manganese                                         | 7439-96-5     | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 100                           | 85        | 115        |
| EG020A-F: Molybdenum                                        | 7439-98-7     | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 91.5                          | 85        | 115        |
| EG020A-F: Nickel                                            | 7440-02-0     | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 98.3                          | 85        | 115        |
| EG020A-F: Selenium                                          | 7782-49-2     | 0.01   | mg/L | <0.01             | 0.1 mg/L      | 95.2                          | 85        | 115        |
| EG020A-F: Tin                                               | 7440-31-5     | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 92.6                          | 85        | 115        |
| EG020A-F: Vanadium                                          | 7440-62-2     | 0.01   | mg/L | <0.01             | 0.1 mg/L      | 101                           | 85        | 115        |
| EG020A-F: Zinc                                              | 7440-66-6     | 0.005  | mg/L | <0.005            | 0.1 mg/L      | 94.1                          | 85        | 115        |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 197677)          |               |        |      |                   |               |                               |           |            |
| EG020B-F: Strontium                                         | 7440-24-6     | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 94.4                          | 80        | 112        |
| EG020B-F: Uranium                                           | 7440-61-1     | 0.001  | mg/L | <0.001            |               |                               |           |            |
| EG035F: Dissolved Mercury by FIMS (QCLot: 197678)           |               |        |      |                   |               |                               |           |            |
| EG035F: Mercury                                             | 7439-97-6     | 0.0001 | mg/L | <0.0001           | 0.01 mg/L     | 93.7                          | 78        | 114        |
| EG052G: Silica by Discrete Analyser (QCLot: 197005)         |               |        |      |                   |               |                               |           |            |
| EG052G: Reactive Silica                                     |               | 0.05   | mg/L | <0.05             | 5 mg/L        | 103                           | 94        | 114        |
| EK010/011: Chlorine (QCLot: 197340)                         |               |        |      |                   |               |                               |           |            |
| EK010: Chlorine - Free                                      |               | 0.2    | mg/L | <0.2              |               |                               |           |            |
| EK010: Chlorine - Total Residual                            |               | 0.2    | mg/L | <0.2              |               |                               |           |            |
| EK040P: Fluoride by PC Titrator (QCLot: 197026)             |               |        |      |                   |               |                               |           |            |
|                                                             | 16984-48-8    | 0.1    | mg/L | <0.1              | 5 mg/L        | 99.6                          | 75        | 119        |
| EK055G: Ammonia as N by Discrete Analyser (QCLot: 19862     | 9)            |        |      |                   |               |                               |           |            |
| EK055G: Ammonia as N                                        | 7664-41-7     | 0.01   | mg/L | <0.01             | 1 mg/L        | 98.9                          | 90        | 114        |
| EK057G: Nitrite as N by Discrete Analyser (QCLot: 197006)   |               |        |      |                   |               |                               |           |            |
|                                                             | 14797-65-0    | 0.01   | mg/L | <0.01             | 0.5 mg/L      | 93.8                          | 82        | 114        |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyse | r (OCL of: 19 | 18628) |      |                   |               |                               |           |            |
| EK059G: Nitrite + Nitrate as N                              |               | 0.01   | mg/L | <0.01             | 0.5 mg/L      | 98.8                          | 91        | 113        |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLo  |               |        |      |                   |               |                               |           |            |
| EK061G: Total Kjeldahl Nitrogen as N                        | JL. 190019)   | 0.1    | mg/L | <0.1              | 10 mg/L       | 84.3                          | 69        | 101        |
| ENOUTO. Total Netdani Nittogen as N                         |               | 0.1    | mg/L | <0.1              | 1 mg/L        | 95.2                          | 70        | 118        |
|                                                             |               |        |      | <0.1              | 5 mg/L        | 106                           | 74        | 118        |
| EK067G: Total Phosphorus as P by Discrete Analyser (QCLo    | t· 198618)    |        |      |                   |               |                               |           |            |
| EK067G: Total Phosphorus as P                               |               | 0.01   | mg/L | <0.01             | 4.42 mg/L     | 87.0                          | 71        | 101        |
| Enter C. Total i Hospitoras as i                            |               |        |      | <0.01             | 0.442 mg/L    | 87.8                          | 72        | 108        |
|                                                             |               |        |      | <0.01             | 1 mg/L        | 104                           | 78        | 118        |
| EK071G: Reactive Phosphorus as P by discrete analyser (QC   | CLot: 197003  |        |      |                   |               |                               |           |            |
|                                                             | 14265-44-2    | 0.01   | mg/L | <0.01             | 0.5 mg/L      | 101                           | 85        | 117        |
|                                                             |               |        |      |                   | Ü             |                               |           |            |

Page : 14 of 19

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                                                 |                         |     |              | Method Blank (MB) |                                       | Laboratory Control Spike (LC | S) Report |            |
|-----------------------------------------------------------------------------------|-------------------------|-----|--------------|-------------------|---------------------------------------|------------------------------|-----------|------------|
|                                                                                   |                         |     |              | Report            | Spike                                 | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                                                  | CAS Number              | LOR | Unit         | Result            | Concentration                         | LCS                          | Low       | High       |
| EP020: Oil and Grease (O&G) (QCLot: 200813)                                       |                         |     |              |                   |                                       |                              |           |            |
| P020: Oil & Grease                                                                |                         | 5   | mg/L         | <5                | 5000 mg/L                             | 91.3                         | 80        | 120        |
| EP033: C1 - C4 Hydrocarbon Gases (QCLot: 19598                                    | 30)                     |     |              |                   |                                       |                              |           |            |
| EP033: Butane                                                                     | 106-97-8                | 10  | μg/L         | <10               | 102.18 μg/L                           | 86.7                         | 85        | 115        |
| EP033: Butene                                                                     | 25167-67-3              | 10  | μg/L         | <10               | 99.61 μg/L                            | 83.6                         | 83        | 115        |
| EP033: Ethane                                                                     | 74-84-0                 | 10  | μg/L         | <10               | 54.43 μg/L                            | 89.9                         | 87        | 111        |
| EP033: Ethene                                                                     | 74-85-1                 | 10  | μg/L         | <10               | 50.29 μg/L                            | 93.5                         | 87        | 111        |
| EP033: Methane                                                                    | 74-82-8                 | 10  | μg/L         | <10               | 28.48 μg/L                            | 99.4                         | 86        | 114        |
| P033: Propane                                                                     | 74-98-6                 | 10  | μg/L         | <10               | 78.28 μg/L                            | 87.4                         | 84        | 112        |
| P033: Propene                                                                     | 115-07-1                | 10  | μg/L         | <10               | 73.97 µg/L                            | 85.9                         | 85        | 113        |
| P074A: Monocyclic Aromatic Hydrocarbons (QCI                                      | Lot: 197979)            |     |              |                   |                                       |                              |           |            |
| EP074: 1.2.4-Trimethylbenzene                                                     | 95-63-6                 | 5   | μg/L         | <5                | 10 μg/L                               | 91.3                         | 71        | 121        |
| EP074: 1.3.5-Trimethylbenzene                                                     | 108-67-8                | 5   | μg/L         | <5                | 10 μg/L                               | 91.5                         | 70        | 122        |
| EP074: Isopropylbenzene                                                           | 98-82-8                 | 5   | μg/L         | <5                | 10 μg/L                               | 92.4                         | 75        | 121        |
| EP074: n-Butylbenzene                                                             | 104-51-8                | 5   | μg/L         | <5                | 10 μg/L                               | 86.0                         | 62        | 126        |
| P074: n-Propylbenzene                                                             | 103-65-1                | 5   | μg/L         | <5                | 10 μg/L                               | 88.4                         | 67        | 123        |
| P074: p-lsopropyltoluene                                                          | 99-87-6                 | 5   | μg/L         | <5                | 10 μg/L                               | 89.5                         | 67        | 123        |
| :P074: sec-Butylbenzene                                                           | 135-98-8                | 5   | μg/L         | <5                | 10 μg/L                               | 91.8                         | 69        | 123        |
| EP074: Styrene                                                                    | 100-42-5                | 5   | μg/L         | <5                | 10 μg/L                               | 95.1                         | 74        | 118        |
| EP074: tert-Butylbenzene                                                          | 98-06-6                 | 5   | μg/L         | <5                | 10 μg/L                               | 90.1                         | 70        | 122        |
| EP074B: Oxygenated Compounds (QCLot: 197979                                       |                         |     |              |                   |                                       |                              |           |            |
| EP074: 2-Butanone (MEK)                                                           | 78-93-3                 | 50  | μg/L         | <50               | 100 μg/L                              | 93.0                         | 74        | 130        |
| EP074: 2-Hexanone (MBK)                                                           | 591-78-6                | 50  | μg/L         | <50               | 100 μg/L                              | 109                          | 65        | 137        |
| EP074: 4-Methyl-2-pentanone (MIBK)                                                | 108-10-1                | 50  | μg/L         | <50               | 100 μg/L                              | 111                          | 61        | 139        |
| EP074: Vinyl Acetate                                                              | 108-05-4                | 50  | μg/L         | <50               | 100 μg/L                              | 93.2                         | 61        | 134        |
| EP074C: Sulfonated Compounds (QCLot: 197979)                                      |                         |     |              |                   |                                       |                              |           |            |
| EP074: Carbon disulfide                                                           | 75-15-0                 | 5   | μg/L         | <5                | 10 μg/L                               | 82.2                         | 73        | 127        |
|                                                                                   |                         |     |              |                   |                                       |                              |           |            |
| EP074D: Fumigants (QCLot: 197979) EP074: 1.2-Dibromoethane (EDB)                  | 106-93-4                | 5   | μg/L         | <5                | 10 μg/L                               | 88.2                         | 69        | 117        |
| EP074: 1.2-Dichloropropane                                                        | 78-87-5                 | 5   | μg/L         | <5                | 10 μg/L                               | 93.3                         | 76        | 120        |
| EP074: 1.2-Dichloropropane                                                        | 594-20-7                | 5   | μg/L         | <5                | 10 μg/L                               | 88.8                         | 61        | 119        |
| EP074: cis-1.3-Dichloropropylene                                                  | 10061-01-5              | 5   | μg/L         | <5                | 10 μg/L                               | 80.4                         | 62        | 120        |
| EP074: trans-1.3-Dichloropropylene                                                | 10061-02-6              | 5   | μg/L         | <5                | 10 μg/L                               | 97.8                         | 61        | 119        |
|                                                                                   |                         |     | ra, −        |                   | , , , , , , , , , , , , , , , , , , , | 51.0                         | <u> </u>  | 110        |
| EP074E: Halogenated Aliphatic Compounds (QCLo<br>EP074: 1.1.1.2-Tetrachloroethane | ot: 197979)<br>630-20-6 | 5   | μg/L         | <5                | 10 μg/L                               | 86.6                         | 66        | 114        |
|                                                                                   | 71-55-6                 | 5   | μg/L         | <5<br><5          | 10 μg/L<br>10 μg/L                    | 91.4                         | 61        | 119        |
| EP074: 1.1.1-Trichloroethane                                                      | 79-34-5                 | 5   | μg/L         | <5<br><5          | 10 μg/L<br>10 μg/L                    | 104                          | 70        | 124        |
| EP074: 1.1.2.2-Tetrachloroethane                                                  | 79-34-5                 | 5   | μg/L         | <5<br><5          | 10 μg/L<br>10 μg/L                    | 104                          | 75        | 124        |
| EP074: 1.1.2-Trichloroethane                                                      | 75-34-3                 | 5   | μg/L<br>μg/L | <5<br><5          | 10 μg/L<br>10 μg/L                    | 89.6                         | 75<br>75  | 119        |

Page : 15 of 19

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                           |                           |     |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|---------------------------------------------|---------------------------|-----|------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                             |                           |     |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound                            | CAS Number                | LOR | Unit | Result            | Concentration                         | LCS                | Low      | High       |  |
| EP074E: Halogenated Aliphatic Compounds (QC | CLot: 197979) - continued |     |      |                   |                                       |                    |          |            |  |
| EP074: 1.1-Dichloroethene                   | 75-35-4                   | 5   | μg/L | <5                | 10 μg/L                               | 87.1               | 69       | 123        |  |
| EP074: 1.1-Dichloropropylene                | 563-58-6                  | 5   | μg/L | <5                | 10 μg/L                               | 88.0               | 73       | 119        |  |
| EP074: 1.2.3-Trichloropropane               | 96-18-4                   | 5   | μg/L | <5                | 10 μg/L                               | 101                | 74       | 128        |  |
| EP074: 1.2-Dibromo-3-chloropropane          | 96-12-8                   | 5   | μg/L | <5                | 10 μg/L                               | 93.3               | 66       | 136        |  |
| EP074: 1.2-Dichloroethane                   | 107-06-2                  | 5   | μg/L | <5                | 10 μg/L                               | 96.0               | 78       | 122        |  |
| EP074: 1.3-Dichloropropane                  | 142-28-9                  | 5   | μg/L | <5                | 10 μg/L                               | 104                | 79       | 121        |  |
| EP074: Bromomethane                         | 74-83-9                   | 50  | μg/L | <50               | 100 μg/L                              | 93.5               | 56       | 140        |  |
| EP074: Carbon Tetrachloride                 | 56-23-5                   | 5   | μg/L | <5                | 10 μg/L                               | 90.6               | 63       | 121        |  |
| EP074: Chloroethane                         | 75-00-3                   | 50  | μg/L | <50               | 100 μg/L                              | 83.2               | 63       | 135        |  |
| EP074: Chloromethane                        | 74-87-3                   | 50  | μg/L | <50               | 100 μg/L                              | 73.5               | 67       | 130        |  |
| EP074: cis-1.2-Dichloroethene               | 156-59-2                  | 5   | μg/L | <5                | 10 μg/L                               | 92.9               | 77       | 117        |  |
| EP074: cis-1.4-Dichloro-2-butene            | 1476-11-5                 | 5   | μg/L | <5                | 10 μg/L                               | 86.0               | 71       | 128        |  |
| EP074: Dibromomethane                       | 74-95-3                   | 5   | μg/L | <5                | 10 μg/L                               | 97.4               | 74       | 118        |  |
| EP074: Dichlorodifluoromethane              | 75-71-8                   | 50  | μg/L | <50               | 100 μg/L                              | 72.8               | 61       | 138        |  |
| EP074: Hexachlorobutadiene                  | 87-68-3                   | 5   | μg/L | <5                | 10 μg/L                               | 81.6               | 58       | 132        |  |
| EP074: lodomethane                          | 74-88-4                   | 5   | μg/L | <5                | 10 μg/L                               | 79.9               | 70       | 128        |  |
| EP074: Pentachloroethane                    | 76-01-7                   | 5   | μg/L | <5                | 10 μg/L                               | 96.7               | 72       | 126        |  |
| EP074: Tetrachloroethene                    | 127-18-4                  | 5   | μg/L | <5                | 10 μg/L                               | 86.8               | 72       | 124        |  |
| EP074: trans-1.2-Dichloroethene             | 156-60-5                  | 5   | μg/L | <5                | 10 μg/L                               | 89.2               | 71       | 119        |  |
| EP074: trans-1.4-Dichloro-2-butene          | 110-57-6                  | 5   | μg/L | <5                | 10 μg/L                               | 89.5               | 60       | 120        |  |
| EP074: Trichloroethene                      | 79-01-6                   | 5   | μg/L | <5                | 10 μg/L                               | 91.6               | 74       | 120        |  |
| EP074: Trichlorofluoromethane               | 75-69-4                   | 50  | μg/L | <50               | 100 μg/L                              | 89.3               | 65       | 131        |  |
| EP074: Vinyl chloride                       | 75-01-4                   | 50  | μg/L | <50               | 100 μg/L                              | 89.5               | 69       | 129        |  |
| EP074F: Halogenated Aromatic Compounds (QC  | CLot: 197979)             |     |      |                   |                                       |                    |          |            |  |
| EP074: 1.2.3-Trichlorobenzene               | 87-61-6                   | 5   | μg/L | <5                | 10 μg/L                               | 87.8               | 67       | 125        |  |
| EP074: 1.2.4-Trichlorobenzene               | 120-82-1                  | 5   | μg/L | <5                | 10 μg/L                               | 81.3               | 60       | 126        |  |
| EP074: 1.2-Dichlorobenzene                  | 95-50-1                   | 5   | μg/L | <5                | 10 μg/L                               | 91.1               | 77       | 117        |  |
| EP074: 1.3-Dichlorobenzene                  | 541-73-1                  | 5   | μg/L | <5                | 10 μg/L                               | 91.8               | 74       | 120        |  |
| EP074: 1.4-Dichlorobenzene                  | 106-46-7                  | 5   | μg/L | <5                | 10 μg/L                               | 89.9               | 72       | 120        |  |
| EP074: 2-Chlorotoluene                      | 95-49-8                   | 5   | μg/L | <5                | 10 μg/L                               | 91.2               | 71       | 121        |  |
| EP074: 4-Chlorotoluene                      | 106-43-4                  | 5   | μg/L | <5                | 10 μg/L                               | 91.6               | 71       | 121        |  |
| EP074: Bromobenzene                         | 108-86-1                  | 5   | μg/L | <5                | 10 μg/L                               | 92.8               | 76       | 116        |  |
| EP074: Chlorobenzene                        | 108-90-7                  | 5   | μg/L | <5                | 10 μg/L                               | 93.2               | 80       | 118        |  |
| EP074G: Trihalomethanes (QCLot: 197979)     |                           |     |      |                   |                                       |                    |          |            |  |
| EP074: Bromodichloromethane                 | 75-27-4                   | 5   | μg/L | <5                | 10 μg/L                               | 86.2               | 64       | 118        |  |
| EP074: Bromoform                            | 75-25-2                   | 5   | μg/L | <5                | 10 μg/L                               | 99.6               | 74       | 126        |  |
| EP074: Chloroform                           | 67-66-3                   | 5   | μg/L | <5                | 10 μg/L                               | 91.3               | 76       | 118        |  |
| EP074: Dibromochloromethane                 | 124-48-1                  | 5   | μg/L | <5                | 10 μg/L                               | 96.5               | 65       | 115        |  |

Page : 16 of 19

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                                   |     |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|---------------------------------------------------------------------|-----|------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                                     |     |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound CAS Number                                         | LOR | Unit | Result            | Concentration                         | LCS                | Low      | High       |  |
| EP075(SIM)A: Phenolic Compounds (QCLot: 196365)                     |     |      |                   |                                       |                    |          |            |  |
| EP075(SIM): 2.4.5-Trichlorophenol 95-95-4                           | 1   | μg/L | <1.0              | 5 μg/L                                | 67.2               | 50       | 108        |  |
| EP075(SIM): 2.4.6-Trichlorophenol 88-06-2                           | 1   | μg/L | <1.0              | 5 μg/L                                | 61.6               | 59       | 118        |  |
| EP075(SIM): 2.4-Dichlorophenol 120-83-2                             | 1   | μg/L | <1.0              | 5 μg/L                                | 62.1               | 59       | 122        |  |
| EP075(SIM): 2.4-Dimethylphenol 105-67-9                             | 1   | μg/L | <1.0              | 5 μg/L                                | 68.5               | 60       | 112        |  |
| EP075(SIM): 2.6-Dichlorophenol 87-65-0                              | 1   | μg/L | <1.0              | 5 μg/L                                | 72.4               | 64       | 118        |  |
| EP075(SIM): 2-Chlorophenol 95-57-8                                  | 1   | μg/L | <1.0              | 5 μg/L                                | 66.6               | 64       | 110        |  |
| EP075(SIM): 2-Methylphenol 95-48-7                                  | 1   | μg/L | <1.0              | 5 μg/L                                | 70.0               | 56       | 112        |  |
| EP075(SIM): 2-Nitrophenol 88-75-5                                   | 1   | μg/L | <1.0              | 5 μg/L                                | 71.3               | 63       | 117        |  |
| EP075(SIM): 3- & 4-Methylphenol 1319-77-3                           | 2   | μg/L | <2.0              | 10 μg/L                               | 77.2               | 43       | 114        |  |
| EP075(SIM): 4-Chloro-3-methylphenol 59-50-7                         | 1   | μg/L | <1.0              | 5 μg/L                                | 63.7               | 63       | 119        |  |
| EP075(SIM): Pentachlorophenol 87-86-5                               | 2   | μg/L | <2.0              | 10 μg/L                               | 15.2               | 10       | 95         |  |
| EP075(SIM): Phenol 108-95-2                                         | 1   | μg/L | <1.0              | 5 μg/L                                | 38.0               | 25       | 62         |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 196365)      |     |      |                   |                                       |                    |          |            |  |
| EP075(SIM): Acenaphthene 83-32-9                                    | 1   | μg/L | <1.0              | 5 μg/L                                | 68.2               | 62       | 113        |  |
| EP075(SIM): Acenaphthylene 208-96-8                                 | 1   | μg/L | <1.0              | 5 μg/L                                | 66.5               | 64       | 114        |  |
| EP075(SIM): Anthracene 120-12-7                                     | 1   | μg/L | <1.0              | 5 μg/L                                | 69.4               | 64       | 116        |  |
| EP075(SIM): Benz(a)anthracene 56-55-3                               | 1   | μg/L | <1.0              | 5 μg/L                                | 72.9               | 64       | 117        |  |
| EP075(SIM): Benzo(a)pyrene 50-32-8                                  | 0.5 | μg/L | <0.5              | 5 μg/L                                | 71.9               | 63       | 117        |  |
| EP075(SIM): Benzo(b+j)fluoranthene 205-99-2 205-82-3                | 1   | µg/L | <1.0              | 5 μg/L                                | 80.4               | 62       | 119        |  |
| EP075(SIM): Benzo(g.h.i)perylene 191-24-2                           | 1   | μg/L | <1.0              | 5 μg/L                                | 67.4               | 59       | 118        |  |
| EP075(SIM): Benzo(k)fluoranthene 207-08-9                           | 1   | μg/L | <1.0              | 5 μg/L                                | 80.4               | 62       | 117        |  |
| EP075(SIM): Chrysene 218-01-9                                       | 1   | μg/L | <1.0              | 5 μg/L                                | 72.6               | 63       | 116        |  |
| EP075(SIM): Dibenz(a.h)anthracene 53-70-3                           | 1   | μg/L | <1.0              | 5 μg/L                                | 68.1               | 61       | 117        |  |
| EP075(SIM): Fluoranthene 206-44-0                                   | 1   | μg/L | <1.0              | 5 μg/L                                | 69.7               | 64       | 118        |  |
| EP075(SIM): Fluorene 86-73-7                                        | 1   | μg/L | <1.0              | 5 μg/L                                | 69.6               | 64       | 115        |  |
| EP075(SIM): Indeno(1.2.3.cd)pyrene 193-39-5                         | 1   | μg/L | <1.0              | 5 μg/L                                | 63.7               | 60       | 118        |  |
| EP075(SIM): Naphthalene 91-20-3                                     | 1   | μg/L | <1.0              | 5 μg/L                                | 72.7               | 59       | 119        |  |
| EP075(SIM): Phenanthrene 85-01-8                                    | 1   | μg/L | <1.0              | 5 μg/L                                | 75.0               | 63       | 116        |  |
| EP075(SIM): Pyrene 129-00-0                                         | 1   | μg/L | <1.0              | 5 μg/L                                | 81.4               | 63       | 118        |  |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 196366)             |     |      |                   |                                       |                    |          |            |  |
| EP071: C10 - C14 Fraction                                           | 50  | μg/L | <50               | 2000 μg/L                             | 100                | 59       | 129        |  |
| EP071: C15 - C28 Fraction                                           | 100 | μg/L | <100              | 3000 μg/L                             | 101                | 71       | 131        |  |
| EP071: C29 - C36 Fraction                                           | 50  | μg/L | <50               | 2000 μg/L                             | 104                | 62       | 120        |  |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 197980)             |     |      |                   |                                       |                    |          |            |  |
| EP080: C6 - C9 Fraction                                             | 20  | μg/L | <20               | 260 μg/L                              | 78.8               | 75       | 127        |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (Q0 |     |      |                   |                                       |                    |          |            |  |
| EP071: >C10 - C16 Fraction >C10_C16                                 | 100 | μg/L | <100              | 2500 μg/L                             | 99.0               | 59       | 131        |  |

Page : 17 of 19

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Sub-Matrix: WATER                                   |                  |                    |        | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |                     |      |  |
|-----------------------------------------------------|------------------|--------------------|--------|-------------------|---------------------------------------|--------------------|---------------------|------|--|
|                                                     |                  |                    |        | Report            | Spike                                 | Spike Recovery (%) | Recovery Limits (%) |      |  |
| Method: Compound                                    | CAS Number       | LOR                | Unit   | Result            | Concentration                         | LCS                | Low                 | High |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 20 | 13 Fractions (QC | Lot: 196366) - con | tinued |                   |                                       |                    |                     |      |  |
| EP071: >C16 - C34 Fraction                          |                  | 100                | μg/L   | <100              | 3500 μg/L                             | 102                | 74                  | 138  |  |
| EP071: >C34 - C40 Fraction                          |                  | 100                | μg/L   | <100              | 1500 μg/L                             | 98.0               | 67                  | 127  |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 20 | 13 Fractions (QC | Lot: 197980)       |        |                   |                                       |                    |                     |      |  |
| EP080: C6 - C10 Fraction                            | C6_C10           | 20                 | μg/L   | <20               | 310 μg/L                              | 78.7               | 75                  | 127  |  |
| EP262: Ethanolamines (QCLot: 201869)                |                  |                    |        |                   |                                       |                    |                     |      |  |
| EP262: Diethanolamine                               | 111-42-2         | 1                  | μg/L   | <1                | 10 μg/L                               | 106                | 50                  | 130  |  |
| EP262: Ethanolamine                                 | 141-43-5         | 1                  | μg/L   | <1                | 10 μg/L                               | 97.4               | 50                  | 130  |  |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER   |                                                |                                        |            | M:            | atrix Spike (MS) Report |            |           |
|---------------------|------------------------------------------------|----------------------------------------|------------|---------------|-------------------------|------------|-----------|
|                     |                                                |                                        |            | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| aboratory sample ID | Client sample ID                               | Method: Compound                       | CAS Number | Concentration | MS                      | Low        | High      |
| ED009: Anions (     | QCLot: 195954)                                 |                                        |            |               |                         |            |           |
| ES1529279-013       | Anonymous                                      | ED009-X: Chloride                      | 16887-00-6 | 4 mg/L        | # Not<br>Determined     | 70         | 130       |
| ED041G: Sulfate (   | Turbidimetric) as SO4 2- by DA (QCLot: 197004) |                                        |            |               |                         |            |           |
| ES1529385-001       | Anonymous                                      | ED041G: Sulfate as SO4 - Turbidimetric | 14808-79-8 | 10 mg/L       | 83.1                    | 70         | 130       |
| ED045G: Chloride    | by Discrete Analyser (QCLot: 197002)           |                                        |            |               |                         |            |           |
| ES1529385-001       | Anonymous                                      | ED045G: Chloride                       | 16887-00-6 | 250 mg/L      | 114                     | 70         | 130       |
| EG020F: Dissolve    | d Metals by ICP-MS (QCLot: 197676)             |                                        |            |               |                         |            |           |
| ES1529258-002       | Anonymous                                      | EG020A-F: Arsenic                      | 7440-38-2  | 0.2 mg/L      | 101                     | 70         | 130       |
|                     |                                                | EG020A-F: Barium                       | 7440-39-3  | 0.2 mg/L      | 72.6                    | 70         | 130       |
|                     |                                                | EG020A-F: Beryllium                    | 7440-41-7  | 0.2 mg/L      | 94.1                    | 70         | 130       |
|                     |                                                | EG020A-F: Cadmium                      | 7440-43-9  | 0.05 mg/L     | 97.2                    | 70         | 130       |
|                     |                                                | EG020A-F: Chromium                     | 7440-47-3  | 0.2 mg/L      | 94.2                    | 70         | 130       |
|                     |                                                | EG020A-F: Cobalt                       | 7440-48-4  | 0.2 mg/L      | 95.2                    | 70         | 130       |
|                     |                                                | EG020A-F: Copper                       | 7440-50-8  | 0.2 mg/L      | 93.8                    | 70         | 130       |
|                     |                                                | EG020A-F: Lead                         | 7439-92-1  | 0.2 mg/L      | 90.0                    | 70         | 130       |
|                     |                                                | EG020A-F: Manganese                    | 7439-96-5  | 0.2 mg/L      | 96.2                    | 70         | 130       |
|                     |                                                | EG020A-F: Nickel                       | 7440-02-0  | 0.2 mg/L      | 91.9                    | 70         | 130       |
|                     |                                                | EG020A-F: Vanadium                     | 7440-62-2  | 0.2 mg/L      | 95.8                    | 70         | 130       |
|                     |                                                | EG020A-F: Zinc                         | 7440-66-6  | 0.2 mg/L      | 75.9                    | 70         | 130       |
| EG035F: Dissolve    | d Mercury by FIMS (QCLot: 197678)              |                                        |            |               |                         |            |           |
| ES1529258-001       | Anonymous                                      | EG035F: Mercury                        | 7439-97-6  | 0.01 mg/L     | 82.0                    | 70         | 130       |

Page : 18 of 19

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                                                       |                                       |            | М             | atrix Spike (MS) Report |            |           |
|----------------------|-------------------------------------------------------|---------------------------------------|------------|---------------|-------------------------|------------|-----------|
|                      |                                                       |                                       |            | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                                      | Method: Compound                      | CAS Number | Concentration | MS                      | Low        | High      |
| EG052G: Silica by    | Discrete Analyser (QCLot: 197005)                     |                                       |            |               |                         |            |           |
| ES1529385-001        | Anonymous                                             | EG052G: Reactive Silica               |            | 5 mg/L        | 90.3                    | 70         | 130       |
| EK040P: Fluoride I   | by PC Titrator (QCLot: 197026)                        |                                       |            |               |                         |            |           |
| ES1529385-001        | Anonymous                                             | EK040P: Fluoride                      | 16984-48-8 | 5 mg/L        | 105                     | 70         | 130       |
| EK055G: Ammonia      | as N by Discrete Analyser (QCLot: 198629)             |                                       |            |               |                         |            |           |
| ES1529385-001        | Anonymous                                             | EK055G: Ammonia as N                  | 7664-41-7  | 1 mg/L        | 88.3                    | 70         | 130       |
| EK057G: Nitrite as   | S N by Discrete Analyser (QCLot: 197006)              |                                       |            |               |                         |            |           |
| ES1529385-001        | Anonymous                                             | EK057G: Nitrite as N                  | 14797-65-0 | 0.5 mg/L      | 99.6                    | 70         | 130       |
| FK059G: Nitrite pl   | us Nitrate as N (NOx) by Discrete Analyser (QCLot: 19 |                                       |            |               |                         |            |           |
| ES1529385-001        | Anonymous                                             | EK059G: Nitrite + Nitrate as N        |            | 0.5 mg/L      | 100                     | 70         | 130       |
|                      | Idahl Nitrogen By Discrete Analyser (QCLot: 198619)   | EROSSE. Willie - Wilde do W           |            | 0.09          | 1.1                     |            |           |
| ES1529385-002        | Anonymous                                             | EK061G: Total Kieldahl Nitrogen as N  |            | 5 mg/L        | 94.6                    | 70         | 130       |
|                      |                                                       | EKOOTO. Total Kjeldatii Nitiogen as N |            | o mg/L        | 54.0                    | 70         | 100       |
| ES1529385-002        | osphorus as P by Discrete Analyser (QCLot: 198618)    | EKONTO TALIBIA DE                     |            | 1 ma/l        | 02.0                    | 70         | 120       |
|                      | Anonymous                                             | EK067G: Total Phosphorus as P         | <br>       | 1 mg/L        | 92.0                    | 70         | 130       |
|                      | Phosphorus as P by discrete analyser (QCLot: 197003   |                                       |            |               |                         |            |           |
| ES1529385-001        | Anonymous                                             | EK071G: Reactive Phosphorus as P      | 14265-44-2 | 0.5 mg/L      | 86.9                    | 70         | 130       |
| EP033: C1 - C4 Hy    | drocarbon Gases (QCLot: 195980)                       |                                       |            |               |                         |            |           |
| ES1529445-001        | Anonymous                                             | EP033: Butane                         | 106-97-8   | 102.18 μg/L   | 81.4                    | 70         | 130       |
|                      |                                                       | EP033: Butene                         | 25167-67-3 | 99.61 µg/L    | 80.6                    | 70         | 130       |
|                      |                                                       | EP033: Ethane                         | 74-84-0    | 54.43 µg/L    | 87.6                    | 70         | 130       |
|                      |                                                       | EP033: Ethene                         | 74-85-1    | 50.29 μg/L    | 87.5                    | 70         | 130       |
|                      |                                                       | EP033: Methane                        | 74-82-8    | 28.48 μg/L    | # Not                   | 70         | 130       |
|                      |                                                       |                                       |            |               | Determined              |            |           |
|                      |                                                       | EP033: Propane                        | 74-98-6    | 78.28 μg/L    | 84.3                    | 70         | 130       |
|                      |                                                       | EP033: Propene                        | 115-07-1   | 73.97 µg/L    | 82.4                    | 70         | 130       |
| EP074E: Halogena     | ted Aliphatic Compounds (QCLot: 197979)               |                                       |            |               |                         |            |           |
| EB1526728-001        | Anonymous                                             | EP074: 1.1-Dichloroethene             | 75-35-4    | 25 μg/L       | 75.2                    | 70         | 130       |
|                      |                                                       | EP074: Trichloroethene                | 79-01-6    | 25 μg/L       | 82.1                    | 70         | 130       |
| EP074F: Halogena     | ted Aromatic Compounds (QCLot: 197979)                |                                       |            |               |                         |            |           |
| EB1526728-001        | Anonymous                                             | EP074: Chlorobenzene                  | 108-90-7   | 25 μg/L       | 82.7                    | 70         | 130       |
| EP075(SIM)A: Phe     | nolic Compounds (QCLot: 196365)                       |                                       |            |               |                         |            |           |
| ES1529387-002        | WK11                                                  | EP075(SIM): 2-Chlorophenol            | 95-57-8    | 2 μg/L        | 66.0                    | 60         | 130       |
|                      |                                                       | EP075(SIM): 2-Nitrophenol             | 88-75-5    | 2 μg/L        | 61.5                    | 60         | 130       |
|                      |                                                       | EP075(SIM): 4-Chloro-3-methylphenol   | 59-50-7    | 2 μg/L        | 83.0                    | 70         | 130       |
|                      |                                                       | EP075(SIM): Pentachlorophenol         | 87-86-5    | 2 μg/L        | 29.1                    | 20         | 130       |
|                      |                                                       | EP075(SIM): Phenol                    | 108-95-2   | 2 μg/L        | 29.4                    | 20         | 130       |

Page : 19 of 19

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                                       |                            |            | M             | atrix Spike (MS) Report |            |            |
|----------------------|---------------------------------------|----------------------------|------------|---------------|-------------------------|------------|------------|
|                      |                                       |                            |            | Spike         | SpikeRecovery(%)        | Recovery I | Limits (%) |
| Laboratory sample ID | Client sample ID                      | Method: Compound           | CAS Number | Concentration | MS                      | Low        | High       |
| EP075(SIM)B: Poly    | ynuclear Aromatic Hydrocarbons (QCLot | : 196365)                  |            |               |                         |            |            |
| ES1529387-002        | WK11                                  | EP075(SIM): Acenaphthene   | 83-32-9    | 2 μg/L        | 78.1                    | 70         | 130        |
|                      |                                       | EP075(SIM): Pyrene         | 129-00-0   | 2 μg/L        | 89.7                    | 70         | 130        |
| EP080/071: Total F   | Petroleum Hydrocarbons (QCLot: 196366 |                            |            |               |                         |            |            |
| ES1529387-002        | WK11                                  | EP071: C10 - C14 Fraction  |            | 2000 μg/L     | 98.0                    | 74         | 150        |
|                      |                                       | EP071: C15 - C28 Fraction  |            | 2500 μg/L     | 104                     | 77         | 153        |
|                      |                                       | EP071: C29 - C36 Fraction  |            | 2000 μg/L     | 95.7                    | 67         | 153        |
| EP080/071: Total F   | Petroleum Hydrocarbons (QCLot: 197980 |                            |            |               |                         |            |            |
| EB1526728-002        | Anonymous                             | EP080: C6 - C9 Fraction    |            | 325 µg/L      | 85.3                    | 70         | 130        |
| EP080/071: Total F   | Recoverable Hydrocarbons - NEPM 2013  | Fractions (QCLot: 196366)  |            |               |                         |            |            |
| ES1529387-002        | WK11                                  | EP071: >C10 - C16 Fraction | >C10_C16   | 2500 μg/L     | 94.4                    | 74         | 150        |
|                      |                                       | EP071: >C16 - C34 Fraction |            | 3500 μg/L     | 97.1                    | 77         | 153        |
|                      |                                       | EP071: >C34 - C40 Fraction |            | 1500 μg/L     | 99.7                    | 67         | 153        |
| EP080/071: Total F   | Recoverable Hydrocarbons - NEPM 2013  | Fractions (QCLot: 197980)  |            |               |                         |            |            |
| EB1526728-002        | Anonymous                             | EP080: C6 - C10 Fraction   | C6_C10     | 375 μg/L      | 77.9                    | 70         | 130        |
| EP262: Ethanolam     | ines (QCLot: 201869)                  |                            |            |               |                         |            |            |
| ES1529385-001        | Anonymous                             | EP262: Diethanolamine      | 111-42-2   | 10 μg/L       | 75.3                    | 50         | 130        |
|                      |                                       | EP262: Ethanolamine        | 141-43-5   | 10 μg/L       | 127                     | 50         | 130        |



## QA/QC Compliance Assessment for DQO Reporting

Work Order : **ES1529387** Page : 1 of 12

Amendment : 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 27-Aug-2015

 Site
 :--- Issue Date
 : 29-Sep-2015

Sampler : DAVID WATSON, SEAN DAYKIN No. of samples received : 5
Order number : ---- No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

#### **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

Analysis Holding Time Outliers exist - please see following pages for full details.

#### **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 12

Work Order : ES1529387 Amendment 2

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

| Compound Group Name              | Laboratory Sample ID | Client Sample ID | Analyte  | CAS Number | Data       | Limits | Comment                          |
|----------------------------------|----------------------|------------------|----------|------------|------------|--------|----------------------------------|
| Matrix Spike (MS) Recoveries     |                      |                  |          |            |            |        |                                  |
| ED009: Anions                    | ES1529279013         | Anonymous        | Chloride | 16887-00-6 | Not        |        | MS recovery not determined,      |
|                                  |                      |                  |          |            | Determined |        | background level greater than or |
|                                  |                      |                  |          |            |            |        | equal to 4x spike level.         |
| EP033: C1 - C4 Hydrocarbon Gases | ES1529445001         | Anonymous        | Methane  | 74-82-8    | Not        |        | MS recovery not determined,      |
|                                  |                      |                  |          |            | Determined |        | background level greater than or |
|                                  |                      |                  |          |            |            |        | equal to 4x spike level.         |

#### **Outliers: Analysis Holding Time Compliance**

Matrix: WATER

| Method                           |       | E              | xtraction / Preparation |                 |               | Analysis         |                 |
|----------------------------------|-------|----------------|-------------------------|-----------------|---------------|------------------|-----------------|
| Container / Client Sample ID(s)  |       | Date extracted | Due for extraction      | Days<br>overdue | Date analysed | Due for analysis | Days<br>overdue |
| EA005P: pH by PC Titrator        |       |                |                         |                 |               |                  |                 |
| Clear Plastic Bottle - Natural   |       |                |                         |                 |               |                  |                 |
| AST2,                            | WK11, |                |                         |                 | 28-Aug-2015   | 26-Aug-2015      | 2               |
| WK12,                            | WK13, |                |                         |                 |               |                  |                 |
| QA12                             |       |                |                         |                 |               |                  |                 |
| EK010/011: Chlorine              |       |                |                         |                 |               |                  |                 |
| Clear Plastic Bottle - Natural   |       |                |                         |                 |               |                  |                 |
| AST2,                            | WK11, |                |                         |                 | 29-Aug-2015   | 26-Aug-2015      | 2               |
| WK12,                            | WK13, |                |                         |                 |               |                  |                 |
| QA12                             |       |                |                         |                 |               |                  |                 |
| EP262: Ethanolamines             |       |                |                         |                 |               |                  |                 |
| Amber Glass Bottle - Unpreserved |       |                |                         |                 |               |                  |                 |
| AST2,                            | WK11, |                |                         |                 | 03-Sep-2015   | 02-Sep-2015      | 0               |
| WK12,                            | WK13, |                |                         |                 |               |                  |                 |
| QA12                             |       |                |                         |                 |               |                  |                 |

#### **Outliers : Frequency of Quality Control Samples**

Matrix: WATER

| Quality Control Sample Type   | Cor | unt     | Rate (%) |          | Quality Control Specification                    |
|-------------------------------|-----|---------|----------|----------|--------------------------------------------------|
| Method                        | QC  | Regular | Actual   | Expected |                                                  |
| Laboratory Duplicates (DUP)   |     |         |          |          |                                                  |
| Suspended Solids (High Level) | 1   | 20      | 5.00     | 9.52     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |



Page : 3 of 12

Work Order : ES1529387 Amendment 2

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



### **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER                                                      |                |             |                |                        | Evaluation | ı: 🗴 = Holding time | breach ; ✓ = Withi | n holding tir |
|--------------------------------------------------------------------|----------------|-------------|----------------|------------------------|------------|---------------------|--------------------|---------------|
| Method                                                             |                | Sample Date | Ex             | traction / Preparation |            |                     | Analysis           |               |
| Container / Client Sample ID(s)                                    |                |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation    |
| EA005P: pH by PC Titrator                                          |                |             |                |                        |            |                     |                    |               |
| Clear Plastic Bottle - Natural (EA005-P) AST2, WK12, QA12          | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 26-Aug-2015        | *             |
| EA010P: Conductivity by PC Titrator                                |                |             |                |                        |            |                     |                    |               |
| Clear Plastic Bottle - Natural (EA010-P) WK11, WK13,               | WK12,<br>QA12  | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 23-Sep-2015        | ✓             |
| EA015: Total Dissolved Solids                                      |                |             |                |                        |            |                     |                    |               |
| Clear Plastic Bottle - Natural (EA015H) AST2, WK12, QA12           | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 31-Aug-2015         | 02-Sep-2015        | ✓             |
| EA025: Suspended Solids                                            |                |             |                |                        |            |                     |                    |               |
| Clear Plastic Bottle - Natural (EA025H) AST2, WK12, QA12           | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 31-Aug-2015         | 02-Sep-2015        | ✓             |
| ED009: Anions                                                      |                |             |                |                        |            |                     |                    |               |
| Clear Plastic Bottle - Natural (ED009-X)<br>AST2,<br>WK12,<br>QA12 | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 23-Sep-2015        | ✓             |
| ED037P: Alkalinity by PC Titrator                                  |                |             |                |                        |            |                     |                    |               |
| Clear Plastic Bottle - Natural (ED037-P) AST2, WK12, QA12          | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 09-Sep-2015        | ✓             |

Page : 4 of 12

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                            |                |             |                |                        | Evaluation | n: × = Holding time | breach ; ✓ = Withi | n holding tim |
|--------------------------------------------------------------------------|----------------|-------------|----------------|------------------------|------------|---------------------|--------------------|---------------|
| Method                                                                   |                | Sample Date | Ex             | traction / Preparation |            |                     |                    |               |
| Container / Client Sample ID(s)                                          |                |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation    |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA                          |                |             |                |                        |            |                     |                    |               |
| Clear Plastic Bottle - Natural (ED041G) AST2, WK12, QA12                 | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 23-Sep-2015        | <b>✓</b>      |
| ED045G: Chloride by Discrete Analyser                                    |                |             |                |                        |            |                     |                    |               |
| Clear Plastic Bottle - Natural (ED045G) AST2, WK12, QA12                 | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 23-Sep-2015        | ✓             |
| ED093F: Dissolved Major Cations                                          |                |             |                |                        |            |                     |                    |               |
| Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) AST2, WK12, QA12   | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 31-Aug-2015         | 23-Sep-2015        | ✓             |
| EG020F: Dissolved Metals by ICP-MS                                       |                |             |                |                        |            |                     |                    |               |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) AST2, WK12, QA12 | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 31-Aug-2015         | 22-Feb-2016        | ✓             |
| EG020F: Dissolved Metals by ICP-MS                                       |                |             |                |                        |            |                     |                    |               |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F) AST2, WK12, QA12 | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 31-Aug-2015         | 22-Feb-2016        | ✓             |
| EG035F: Dissolved Mercury by FIMS                                        |                |             |                |                        |            |                     |                    |               |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) AST2, WK12, QA12   | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 02-Sep-2015         | 23-Sep-2015        | ✓             |
| EG052G: Silica by Discrete Analyser                                      |                |             |                |                        |            |                     |                    |               |
| Clear Plastic Bottle - Natural (EG052G) AST2, WK12, QA12                 | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 23-Sep-2015        | ✓             |
| EK010/011: Chlorine                                                      |                |             |                |                        |            |                     |                    | -             |
| Clear Plastic Bottle - Natural (EK010) AST2, WK12, QA12                  | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 29-Aug-2015         | 26-Aug-2015        | ×             |

Page : 5 of 12

Work Order : ES1529387 Amendment 2

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                  |                |             |                |                        | Evaluation | : x = Holding time | breach ; ✓ = Withi | n holding time |
|----------------------------------------------------------------|----------------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|
| Method                                                         |                | Sample Date | Ex             | traction / Preparation |            | Analysis           |                    |                |
| Container / Client Sample ID(s)                                |                |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EK040P: Fluoride by PC Titrator                                |                |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (EK040P) AST2, WK12, QA12       | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 28-Aug-2015        | 23-Sep-2015        | ✓              |
| EK055G: Ammonia as N by Discrete Analyser                      |                |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK055G) AST2, WK12, QA12 | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 31-Aug-2015        | 23-Sep-2015        | ✓              |
| EK057G: Nitrite as N by Discrete Analyser                      |                |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (EK057G) AST2, WK12, QA12       | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 28-Aug-2015        | 28-Aug-2015        | ✓              |
| EK059G: Nitrite plus Nitrate as N (NOx) by Disc                | rete Analyser  |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK059G) AST2, WK12, QA12 | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 31-Aug-2015        | 23-Sep-2015        | ✓              |
| EK061G: Total Kjeldahl Nitrogen By Discrete An                 | alyser         |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK061G) AST2, WK12, QA12 | WK11,<br>WK13, | 26-Aug-2015 | 31-Aug-2015    | 23-Sep-2015            | ✓          | 31-Aug-2015        | 23-Sep-2015        | ✓              |
| EK067G: Total Phosphorus as P by Discrete Ana                  | alyser         |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK067G) AST2, WK12, QA12 | WK11,<br>WK13, | 26-Aug-2015 | 31-Aug-2015    | 23-Sep-2015            | ✓          | 31-Aug-2015        | 23-Sep-2015        | ✓              |
| EK071G: Reactive Phosphorus as P by discrete                   | analyser       |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (EK071G) AST2, WK12, QA12       | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 28-Aug-2015        | 28-Aug-2015        | ✓              |
| EP005: Total Organic Carbon (TOC)                              |                |             |                |                        |            |                    |                    |                |
| Amber TOC Vial - Sulfuric Acid (EP005) AST2, WK12, QA12        | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 28-Aug-2015        | 23-Sep-2015        | ✓              |

Page : 6 of 12

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                          |                |             |                |                        | Evaluation | n: 🗴 = Holding time | breach ; ✓ = Withi | n holding time |
|------------------------------------------------------------------------|----------------|-------------|----------------|------------------------|------------|---------------------|--------------------|----------------|
| Method                                                                 |                | Sample Date | Ex             | traction / Preparation |            |                     |                    |                |
| Container / Client Sample ID(s)                                        |                |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation     |
| EP020: Oil and Grease (O&G)                                            |                |             |                |                        |            |                     |                    |                |
| Amber Jar - Sulfuric Acid or Sodium Bisulfate (EP020) AST2, WK12, QA12 | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 02-Sep-2015         | 23-Sep-2015        | ✓              |
| EP033: C1 - C4 Hydrocarbon Gases                                       |                |             |                |                        |            |                     |                    |                |
| Amber VOC Vial - Sulfuric Acid (EP033) AST2, WK12, QA12                | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 28-Aug-2015         | 09-Sep-2015        | ✓              |
| EP080/071: Total Petroleum Hydrocarbons                                |                |             |                |                        |            |                     |                    |                |
| Amber Glass Bottle - Unpreserved (EP071) AST2, WK12, QA12              | WK11,<br>WK13, | 26-Aug-2015 | 31-Aug-2015    | 02-Sep-2015            | ✓          | 01-Sep-2015         | 10-Oct-2015        | ✓              |
| EP074A: Monocyclic Aromatic Hydrocarbons                               |                |             |                |                        |            |                     |                    | :              |
| Amber VOC Vial - Sulfuric Acid (EP074) AST2, WK12, QA12                | WK11,<br>WK13, | 26-Aug-2015 | 31-Aug-2015    | 09-Sep-2015            | ✓          | 31-Aug-2015         | 09-Sep-2015        | ✓              |
| EP075(SIM)T: PAH Surrogates                                            |                |             |                |                        |            |                     |                    |                |
| Amber Glass Bottle - Unpreserved (EP075(SIM)) AST2, WK12, QA12         | WK11,<br>WK13, | 26-Aug-2015 | 31-Aug-2015    | 02-Sep-2015            | ✓          | 01-Sep-2015         | 10-Oct-2015        | ✓              |
| EP080/071: Total Petroleum Hydrocarbons                                |                |             |                |                        |            |                     |                    |                |
| Amber VOC Vial - Sulfuric Acid (EP080) AST2, WK12, QA12                | WK11,<br>WK13, | 26-Aug-2015 | 31-Aug-2015    | 09-Sep-2015            | 1          | 31-Aug-2015         | 09-Sep-2015        | ✓              |
| EP262: Ethanolamines                                                   |                |             |                |                        |            |                     |                    |                |
| Amber Glass Bottle - Unpreserved (EP262) AST2, WK12, QA12              | WK11,<br>WK13, | 26-Aug-2015 |                |                        |            | 03-Sep-2015         | 02-Sep-2015        | ×              |

Page : 7 of 12

Work Order ES1529387 Amendment 2

PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



### **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER  Quality Control Sample Type             |                 |      | nnf             | Lvaluatio |                   |            | not within specification; $\checkmark$ = Quality Control frequency within specification |
|--------------------------------------------------------|-----------------|------|-----------------|-----------|-------------------|------------|-----------------------------------------------------------------------------------------|
| Analytical Methods                                     | Method          | OC C | ount<br>Regular | Actual    | Rate (%) Expected | Evaluation | Quality Control Specification                                                           |
|                                                        | With the second | 00   | redulai         | Actual    | LXDected          |            |                                                                                         |
| Laboratory Duplicates (DUP) Alkalinity by PC Titrator  | ED037-P         | 2    | 20              | 10.00     | 10.00             | 1          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Ammonia as N by Discrete analyser                      | EK055G          | 2    | 19              | 10.53     | 10.00             | <b>✓</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| C1 - C4 Gases                                          | EP033           | 2    | 20              | 10.00     | 10.00             | <b>✓</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Chloride by Discrete Analyser                          | ED045G          | 2    | 20              | 10.00     | 10.00             | <b>✓</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Chlorine                                               | EK010           | 2    | 13              | 15.38     | 10.00             | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Conductivity by PC Titrator                            | EA010-P         | 2    | 17              | 11.76     | 10.00             | <b>✓</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Dissolved Mercury by FIMS                              | EG035F          | 2    | 20              | 10.00     | 10.00             | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Dissolved Metals by ICP-MS - Suite A                   | EG035F          | 2    | 20              | 10.00     | 10.00             | <b>✓</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F        | 2    | 14              | 14.29     | 10.00             | <b>✓</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Ethanolamines by LCMSMS                                | EG020B-P        | 1    | 10              | 10.00     | 10.00             | <b>✓</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Fluoride by PC Titrator                                | EK040P          | 2    | 17              | 11.76     | 10.00             | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Major Cations - Dissolved                              | ED093F          | 2    | 20              | 10.00     | 10.00             | <b>✓</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G          | 2    | 20              | 10.00     | 10.00             | <b>✓</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Nitrite as N by Discrete Analyser                      |                 | 2    | 20              | 10.00     | 10.00             |            | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| PAH/Phenols (GC/MS - SIM)                              | EK057G          | 2    | 20              | 10.00     | 10.00             | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| H by PC Titrator                                       | EP075(SIM)      | 2    | 18              | 11.11     | 10.00             |            | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Reactive Phosphorus as P-By Discrete Analyser          | EA005-P         | 2    | 20              | 10.00     | 10.00             | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
|                                                        | EK071G          | 2    | 19              | 10.53     | 10.00             | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Silica (Reactive) by Discrete Analyser                 | EG052G          | 2    | 19              | 10.53     | 10.00             | <b>√</b>   |                                                                                         |
| Standard Anions -by IC (Extended Method)               | ED009-X         | 2    | -               |           |                   | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G          |      | 20              | 10.00     | 10.00             | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Suspended Solids (High Level)                          | EA025H          | 1    | 20              | 5.00      | 9.52              | <u> </u>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Fotal Dissolved Solids (High Level)                    | EA015H          | 2    | 20              | 10.00     | 10.00             | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Fotal Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G          | 2    | 20              | 10.00     | 10.00             | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Fotal Phosphorus as P By Discrete Analyser             | EK067G          | 2    | 20              | 10.00     | 10.00             | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| FRH - Semivolatile Fraction                            | EP071           | 2    | 20              | 10.00     | 10.00             | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| TRH Volatiles/BTEX                                     | EP080           | 2    | 15              | 13.33     | 10.00             | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| /olatile Organic Compounds                             | EP074           | 2    | 13              | 15.38     | 10.00             | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| _aboratory Control Samples (LCS)                       |                 |      |                 |           |                   |            |                                                                                         |
| Alkalinity by PC Titrator                              | ED037-P         | 1    | 20              | 5.00      | 5.00              | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Ammonia as N by Discrete analyser                      | EK055G          | 1    | 19              | 5.26      | 5.00              | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| C1 - C4 Gases                                          | EP033           | 1    | 20              | 5.00      | 5.00              | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Chloride by Discrete Analyser                          | ED045G          | 2    | 20              | 10.00     | 10.00             | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Conductivity by PC Titrator                            | EA010-P         | 1    | 17              | 5.88      | 5.00              | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Dissolved Mercury by FIMS                              | EG035F          | 1    | 20              | 5.00      | 5.00              | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F        | 1    | 20              | 5.00      | 5.00              | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F        | 1    | 14              | 7.14      | 5.00              | 1          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                        |

Page : 8 of 12

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                          |            |    |         | Evaluation | n: × = Quality Co | ntrol frequency i | not within specification; ✓ = Quality Control frequency within specification |
|--------------------------------------------------------|------------|----|---------|------------|-------------------|-------------------|------------------------------------------------------------------------------|
| Quality Control Sample Type                            |            | Co | ount    |            | Rate (%)          |                   | Quality Control Specification                                                |
| Analytical Methods                                     | Method     | QC | Regular | Actual     | Expected          | Evaluation        |                                                                              |
| Laboratory Control Samples (LCS) - Continued           |            |    |         |            |                   |                   |                                                                              |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 10      | 10.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Fluoride by PC Titrator                                | EK040P     | 1  | 17      | 5.88       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Major Cations - Dissolved                              | ED093F     | 1  | 20      | 5.00       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 20      | 5.00       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 20      | 5.00       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Oil and Grease                                         | EP020      | 1  | 20      | 5.00       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 20      | 5.00       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 20      | 5.00       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 19      | 5.26       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 19      | 5.26       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 20      | 5.00       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Suspended Solids (High Level)                          | EA025H     | 2  | 20      | 10.00      | 9.52              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Total Dissolved Solids (High Level)                    | EA015H     | 2  | 20      | 10.00      | 10.00             | <b>√</b>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 3  | 20      | 15.00      | 15.00             | <u>√</u>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 3  | 20      | 15.00      | 15.00             | <u> </u>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 20      | 5.00       | 5.00              |                   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 15      | 6.67       | 5.00              | <u>√</u>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Volatile Organic Compounds                             | EP074      | 1  | 13      | 7.69       | 5.00              |                   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Method Blanks (MB)                                     |            |    |         |            |                   | Ī                 |                                                                              |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 19      | 5.26       | 5.00              | 1                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| C1 - C4 Gases                                          | EP033      | 1  | 20      | 5.00       | 5.00              | 1                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 20      | 5.00       | 5.00              | <b>√</b>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Chlorine                                               | EK010      | 1  | 13      | 7.69       | 5.00              | 1                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Conductivity by PC Titrator                            | EA010-P    | 1  | 17      | 5.88       | 5.00              | <b>√</b>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 20      | 5.00       | 5.00              | <b>√</b>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 20      | 5.00       | 5.00              | <u>√</u>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 14      | 7.14       | 5.00              | <b>√</b>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 10      | 10.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Fluoride by PC Titrator                                | EK040P     | 1  | 17      | 5.88       | 5.00              | <u>√</u>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Major Cations - Dissolved                              | ED093F     | 1  | 20      | 5.00       | 5.00              | <b>√</b>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 20      | 5.00       | 5.00              | <b>√</b>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 20      | 5.00       | 5.00              |                   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Oil and Grease                                         | EP020      | 1  | 20      | 5.00       | 5.00              |                   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 20      | 5.00       | 5.00              | <u>√</u>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 20      | 5.00       | 5.00              | <b>√</b>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 19      | 5.26       | 5.00              | <u> </u>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 19      | 5.26       | 5.00              | <u> </u>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 20      | 5.00       | 5.00              |                   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Suspended Solids (High Level)                          | EA025H     | 1  | 20      | 5.00       | 4.76              | <b>√</b>          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |
| Total Dissolved Solids (High Level)                    | EA015H     | 1  | 20      | 5.00       | 5.00              |                   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                             |

Page : 9 of 12

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                          |            |    |         | Evaluatio                  | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specificatio |
|--------------------------------------------------------|------------|----|---------|----------------------------|-------------------|-----------------|-----------------------------------------------------------------------------|
| Quality Control Sample Type                            |            | С  | ount    | Rate (%)                   |                   |                 | Quality Control Specification                                               |
| Analytical Methods                                     | Method     | QC | Regular | Actual Expected Evaluation |                   | Evaluation      |                                                                             |
| Method Blanks (MB) - Continued                         |            |    |         |                            |                   |                 |                                                                             |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 15      | 6.67                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Volatile Organic Compounds                             | EP074      | 1  | 13      | 7.69                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Matrix Spikes (MS)                                     |            |    |         |                            |                   |                 |                                                                             |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 19      | 5.26                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| C1 - C4 Gases                                          | EP033      | 1  | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 10      | 10.00                      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Fluoride by PC Titrator                                | EK040P     | 1  | 17      | 5.88                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 19      | 5.26                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 19      | 5.26                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 15      | 6.67                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Volatile Organic Compounds                             | EP074      | 1  | 13      | 7.69                       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |

Page : 10 of 12

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                     | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pH by PC Titrator                                      | EA005-P  | WATER  | In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                               |
| Conductivity by PC Titrator                            | EA010-P  | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                         |
| Total Dissolved Solids (High Level)                    | EA015H   | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |
| Suspended Solids (High Level)                          | EA025H   | WATER  | In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (2013) Schedule B(3)                                 |
| Standard Anions -by IC (Extended Method)               | ED009-X  | WATER  | In house: Referenced to APHA 4110. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                    |
| Alkalinity by PC Titrator                              | ED037-P  | WATER  | In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                       |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G   | WATER  | In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)                                       |
| Chloride by Discrete Analyser                          | ED045G   | WATER  | In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003                                                                                                  |
| Major Cations - Dissolved                              | ED093F   | WATER  | In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3)  Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3)  Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) |
| Disastrud Matela tru IOD MO. Ovita A                   | 50000 5  | MATER  | Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                        |

Page : 11 of 12

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Analytical Methods                                      | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Metals by ICP-MS - Suite B                    | EG020B-F   | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                                                                                                        |
| Dissolved Mercury by FIMS                               | EG035F     | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) |
| Silica (Reactive) by Discrete Analyser                  | EG052G     | WATER  | In house: Referenced to APHA 4500-SiO2 D: Under Acdic conditions reactive silicon combines with ammonium molybdate to form a yellow molybdosilicic acid complex. This is reduced by 1-amino-2-naphthol-4-sulfonic acid to a silicomolybdenum blue complex which is measured by discrete analyser at 670 nm. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                           |
| Chlorine                                                | EK010      | WATER  | In-house (DPD colourimetry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fluoride by PC Titrator                                 | EK040P     | WATER  | In house: Referenced to APHA 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                               |
| Ammonia as N by Discrete analyser                       | EK055G     | WATER  | In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ammonium as N                                           | EK055G-NH4 | WATER  | Ammonium in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH and Temperature. Ammonia is determined by direct colorimetry by Discrete Analyser according to APHA 4500-NH3 G. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                  |
| Nitrite as N by Discrete Analyser                       | EK057G     | WATER  | In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nitrate as N by Discrete Analyser                       | EK058G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                          |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser     | EK059G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                      |
| Total Kjeldahl Nitrogen as N By Discrete Analyser       | EK061G     | WATER  | In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                           |
| Total Nitrogen as N (TKN + Nox) By<br>Discrete Analyser | EK062G     | WATER  | In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total Phosphorus as P By Discrete<br>Analyser           | EK067G     | WATER  | In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |

Page : 12 of 12

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Analytical Methods                               | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reactive Phosphorus as P-By Discrete<br>Analyser | EK071G      | WATER  | In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                      |
| Ionic Balance by PCT DA and Turbi SO4 DA         | EN055 - PG  | WATER  | In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                        |
| Total Organic Carbon                             | EP005       | WATER  | In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                     |
| Oil and Grease                                   | EP020       | WATER  | In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM (2013) Schedule B(3)                                                                             |
| C1 - C4 Gases                                    | EP033       | WATER  | Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, US EPA - Region 1, EPA New England, July 2001. Automated static headspace, dual column GC/FID. A 12 mL sample is pipetted into a 20 mL headspace vial containing 3g of sodium chloride and sealed. Each sample is equilibrated with shaking at 40 degrees C for 10 minutes prior to analysis by GC/FID using a pair of PLOT columns of different polarity. |
| TRH - Semivolatile Fraction                      | EP071       | WATER  | USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                                                 |
| Volatile Organic Compounds                       | EP074       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                          |
| PAH/Phenols (GC/MS - SIM)                        | EP075(SIM)  | WATER  | USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                     |
| TRH Volatiles/BTEX                               | EP080       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                           |
| Ethanolamines by LCMSMS                          | EP262       | WATER  | In-house LC-MSMS: Benzoyl derivatives of target compounds are analysed by LC/MSMS in ESI Positive Mode.                                                                                                                                                                                                                                                                                                                                            |
| Preparation Methods                              | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TKN/TP Digestion                                 | EK061/EK067 | WATER  | APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                       |



#### **QUALITY CONTROL REPORT**

Work Order : **ES1529589** Page : 1 of 4

Amendment : 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

 E-mail
 : SDaykin@pb.com.au
 E-mail
 : loren.schiavon@alsglobal.com

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : --- Date Samples Received : 28-Aug-2015
C-O-C number Date Analysis Commenced : 28-Aug-2015

Sampler : SEAN DAYKIN Issue Date : 02-Sep-2015

Site : --- No. of samples received : 5

Quote number : --- No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

NATA Accredited

Laboratory 825

Accredited for compliance with

ISO/IEC 17025.

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit JoshiInorganic ChemistSydney InorganicsPabi SubbaSenior Organic ChemistSydney Organics

Page : 2 of 4

Work Order : ES1529589 Amendment 2

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4

Work Order : ES1529589 Amendment 2

Laboratory Duplicate (DUP) Report

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# <u>-</u>

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

| Sub-Matrix: WATER                                    |                  |                                         |                                        | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |  |
|------------------------------------------------------|------------------|-----------------------------------------|----------------------------------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID                                 | Client sample ID | Method: Compound                        | CAS Number                             | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EA010P: Conductivity by PC Titrator (QC Lot: 197064) |                  |                                         |                                        |                                   |      |                 |                  |         |                     |  |
| ES1529589-001                                        | AST2             | EA010-P: Electrical Conductivity @ 25°C | A010-P: Electrical Conductivity @ 25°C |                                   |      |                 | 8560             | 0.845   | 0% - 20%            |  |
| EK084: Un-ionized Hydrogen Sulfide (QC Lot: 201046)  |                  |                                         |                                        |                                   |      |                 |                  |         |                     |  |
| ES1529589-001                                        | AST2             | EK084: Unionized Hydrogen Sulfide       |                                        | 0.1                               | mg/L | <0.1            | <0.1             | 0.00    | 0% - 20%            |  |
| EP080: BTEXN (QC Lot: 196769)                        |                  |                                         |                                        |                                   |      |                 |                  |         |                     |  |
| ES1529589-001                                        | AST2             | EP080: Benzene                          | 71-43-2                                | 1                                 | μg/L | 1               | 1                | 0.00    | No Limit            |  |
|                                                      |                  | EP080: Ethylbenzene                     | 100-41-4                               | 2                                 | μg/L | <2              | <2               | 0.00    | No Limit            |  |
|                                                      |                  | EP080: meta- & para-Xylene              | 108-38-3                               | 2                                 | μg/L | <2              | <2               | 0.00    | No Limit            |  |
|                                                      |                  |                                         | 106-42-3                               |                                   |      |                 |                  |         |                     |  |
|                                                      |                  | EP080: ortho-Xylene                     | 95-47-6                                | 2                                 | μg/L | <2              | <2               | 0.00    | No Limit            |  |
|                                                      |                  | EP080: Toluene                          | 108-88-3                               | 2                                 | μg/L | <2              | <2               | 0.00    | No Limit            |  |
|                                                      |                  | EP080: Naphthalene                      | 91-20-3                                | 5                                 | μg/L | <5              | <5               | 0.00    | No Limit            |  |



Page : 4 of 4

Work Order : ES1529589 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   | -Matrix: WATER |     |       |        |               | Laboratory Control Spike (LCS) Report |                     |      |  |
|-----------------------------------------------------|----------------|-----|-------|--------|---------------|---------------------------------------|---------------------|------|--|
|                                                     |                |     |       | Report | Spike         | Spike Recovery (%)                    | Recovery Limits (%) |      |  |
| Method: Compound                                    | CAS Number     | LOR | Unit  | Result | Concentration | LCS                                   | Low                 | High |  |
| EA010P: Conductivity by PC Titrator (QCLot: 197064) |                |     |       |        |               |                                       |                     |      |  |
| EA010-P: Electrical Conductivity @ 25°C             |                | 1   | μS/cm | <1     | 2000 μS/cm    | 106                                   | 95                  | 113  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 201046)  |                |     |       |        |               |                                       |                     |      |  |
| EK084: Unionized Hydrogen Sulfide                   |                | 0.1 | mg/L  | <0.1   | 0.05 mg/L     | 100                                   | 72                  | 126  |  |
| EP080: BTEXN (QCLot: 196769)                        |                |     |       |        |               |                                       |                     |      |  |
| EP080: Benzene                                      | 71-43-2        | 1   | μg/L  | <1     | 10 μg/L       | 92.1                                  | 70                  | 124  |  |
| EP080: Ethylbenzene                                 | 100-41-4       | 2   | μg/L  | <2     | 10 μg/L       | 96.6                                  | 70                  | 120  |  |
| EP080: meta- & para-Xylene                          | 108-38-3       | 2   | μg/L  | <2     | 10 μg/L       | 95.7                                  | 69                  | 121  |  |
|                                                     | 106-42-3       |     |       |        |               |                                       |                     |      |  |
| EP080: Naphthalene                                  | 91-20-3        | 5   | μg/L  | <5     | 10 μg/L       | 91.2                                  | 70                  | 124  |  |
| EP080: ortho-Xylene                                 | 95-47-6        | 2   | μg/L  | <2     | 10 μg/L       | 95.9                                  | 72                  | 122  |  |
| EP080: Toluene                                      | 108-88-3       | 2   | μg/L  | <2     | 10 μg/L       | 93.9                                  | 65                  | 129  |  |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                            | Matrix Spike (MS) Report |               |                  |            |           |  |  |
|----------------------|------------------|----------------------------|--------------------------|---------------|------------------|------------|-----------|--|--|
|                      |                  |                            |                          | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |  |  |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number               | Concentration | MS               | Low        | High      |  |  |
| EP080: BTEXN (Q      | CLot: 196769)    |                            |                          |               |                  |            |           |  |  |
| ES1529589-001        | AST2             | EP080: Benzene             | 71-43-2                  | 25 μg/L       | 79.0             | 70         | 130       |  |  |
|                      |                  | EP080: Ethylbenzene        | 100-41-4                 | 25 μg/L       | 90.8             | 70         | 130       |  |  |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3                 | 25 μg/L       | 89.3             | 70         | 130       |  |  |
|                      |                  |                            | 106-42-3                 |               |                  |            |           |  |  |
|                      |                  | EP080: Naphthalene         | 91-20-3                  | 25 μg/L       | 92.5             | 70         | 130       |  |  |
|                      |                  | EP080: ortho-Xylene        | 95-47-6                  | 25 μg/L       | 89.9             | 70         | 130       |  |  |
|                      |                  | EP080: Toluene             | 108-88-3                 | 25 μg/L       | 86.8             | 70         | 130       |  |  |



## QA/QC Compliance Assessment for DQO Reporting

Work Order : **ES1529589** Page : 1 of 4

Amendment : 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 28-Aug-2015

 Site
 : --- Issue Date
 : 02-Sep-2015

Sampler : SEAN DAYKIN No. of samples received : 5
Order number : ---- No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

#### **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4

Work Order : ES1529589 Amendment 2

Client PARSONS BRINCKERHOFF AUST P/L

Project · 2268523B



#### **Outliers: Frequency of Quality Control Samples**

Matrix: WATER

| Quality Control Sample Type      | Co | unt     | Rate (%) |          | Quality Control Specification                    |
|----------------------------------|----|---------|----------|----------|--------------------------------------------------|
| Method                           | QC | Regular | Actual   | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |         |          |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00     | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |    |         |          |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00     | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |         |          |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00     | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

#### **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER                                 |       |             |                |                        | Evaluation | : x = Holding time | breach ; ✓ = Withi | n holding tim |
|-----------------------------------------------|-------|-------------|----------------|------------------------|------------|--------------------|--------------------|---------------|
| Method                                        |       | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |               |
| Container / Client Sample ID(s)               |       |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation    |
| EA010P: Conductivity by PC Titrator           |       |             |                |                        |            |                    |                    |               |
| Clear Plastic Bottle - Natural (EA010-P) AST2 |       | 26-Aug-2015 |                |                        |            | 28-Aug-2015        | 23-Sep-2015        | ✓             |
| EP080S: TPH(V)/BTEX Surrogates                |       |             |                |                        |            |                    |                    |               |
| Amber VOC Vial - Sulfuric Acid (EP080)        |       |             |                |                        |            |                    |                    |               |
| AST2,                                         | WK11, | 26-Aug-2015 | 28-Aug-2015    | 09-Sep-2015            | ✓          | 28-Aug-2015        | 09-Sep-2015        | ✓             |
| WK12,                                         | WK13, |             |                |                        |            |                    |                    |               |
| QA12                                          |       |             |                |                        |            |                    |                    |               |

Page : 3 of 4

Work Order ES1529589 Amendment 2

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

| the expected | rate. A listing | or preaches | is provided in the | e Summary o | or Outliers |
|--------------|-----------------|-------------|--------------------|-------------|-------------|
|              |                 |             |                    |             |             |

| Matrix: WATER                    |         |       |         | Evaluation | n: 🗴 = Quality Co | entrol frequency | not within specification; ✓ = Quality Control frequency within specification. |
|----------------------------------|---------|-------|---------|------------|-------------------|------------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type      |         | Count |         |            | Rate (%)          |                  | Quality Control Specification                                                 |
| Analytical Methods               | Method  | QC    | Reaular | Actual     | Expected          | Evaluation       |                                                                               |
| Laboratory Duplicates (DUP)      |         |       |         |            |                   |                  |                                                                               |
| Conductivity by PC Titrator      | EA010-P | 1     | 1       | 100.00     | 10.00             | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX               | EP080   | 1     | 5       | 20.00      | 10.00             | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Un-ionized Hydrogen Sulfide      | EK084   | 0     | 5       | 0.00       | 10.00             | æ                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Laboratory Control Samples (LCS) |         |       |         |            |                   |                  |                                                                               |
| Conductivity by PC Titrator      | EA010-P | 1     | 1       | 100.00     | 5.00              | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX               | EP080   | 1     | 5       | 20.00      | 5.00              | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Un-ionized Hydrogen Sulfide      | EK084   | 0     | 5       | 0.00       | 5.00              | <b>.x</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Method Blanks (MB)               |         |       |         |            |                   |                  |                                                                               |
| Conductivity by PC Titrator      | EA010-P | 1     | 1       | 100.00     | 5.00              | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX               | EP080   | 1     | 5       | 20.00      | 5.00              | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Un-ionized Hydrogen Sulfide      | EK084   | 0     | 5       | 0.00       | 5.00              | )£               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Matrix Spikes (MS)               |         |       |         |            |                   |                  |                                                                               |
| TRH Volatiles/BTEX               | EP080   | 1     | 5       | 20.00      | 5.00              | ✓                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |

Page : 4 of 4

Work Order : ES1529589 Amendment 2

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

#### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                    |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                    |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3) |



#### **QUALITY CONTROL REPORT**

E-mail

· ES1530616 Work Order Page : 1 of 4

Amendment : 1

E-mail

Client Laboratory : Environmental Division Sydney PARSONS BRINCKERHOFF AUST P/L

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : GPO BOX 5394

SYDNEY NSW. AUSTRALIA 2001

: SDaykin@pb.com.au : loren.schiavon@alsglobal.com Telephone : +61 02 92725100 Telephone : +61 2 8784 8503 : +61 02 92725101 Facsimile Facsimile : +61-2-8784 8500

QC Level Project : 2268523A : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

**Date Samples Received** Order number : 09-Sep-2015 **Date Analysis Commenced** : 09-Sep-2015 C-O-C number Issue Date : 29-Sep-2015 Sampler

No. of samples received : 5 Site Quote number No. of samples analysed : 5 : ----

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

NATA Accredited

Laboratory 825

Accredited for compliance with

ISO/IEC 17025.

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics Phalak Inthakesone Laboratory Manager - Organics Sydney Organics

Page : 2 of 4

Work Order : ES1530616 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A

# ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4

Work Order : ES1530616 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A

## ALS

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER    |                        |                                         |            |     |       | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------|-----------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                        | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA010P: Conductiv    | ity by PC Titrator (QC | Lot: 208845)                            |            |     |       |                 |                        |         |                     |
| EN1512978-001        | Anonymous              | EA010-P: Electrical Conductivity @ 25°C |            | 1   | μS/cm | 4090            | 4090                   | 0.00    | 0% - 20%            |
| EW1511643-007        | Anonymous              | EA010-P: Electrical Conductivity @ 25°C |            | 1   | μS/cm | <1              | <1                     | 0.00    | No Limit            |
| EK084: Un-ionized I  | Hydrogen Sulfide (QC   | Lot: 208991)                            |            |     |       |                 |                        |         |                     |
| ES1530616-001        | AST2                   | EK084: Unionized Hydrogen Sulfide       |            | 0.1 | mg/L  | <0.1            | <0.1                   | 0.00    | 0% - 20%            |
| EP080: BTEXN (QC     | Lot: 208827)           |                                         |            |     |       |                 |                        |         |                     |
| ES1530616-001        | AST2                   | EP080: Benzene                          | 71-43-2    | 1   | μg/L  | <1              | <1                     | 0.00    | No Limit            |
|                      |                        | EP080: Ethylbenzene                     | 100-41-4   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                      |                        | EP080: meta- & para-Xylene              | 108-38-3   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                      |                        |                                         | 106-42-3   |     |       |                 |                        |         |                     |
|                      |                        | EP080: ortho-Xylene                     | 95-47-6    | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                      |                        | EP080: Toluene                          | 108-88-3   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                      |                        | EP080: Naphthalene                      | 91-20-3    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |
| ES1530686-003        | Anonymous              | EP080: Benzene                          | 71-43-2    | 1   | μg/L  | <1              | <1                     | 0.00    | No Limit            |
|                      |                        | EP080: Ethylbenzene                     | 100-41-4   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                      |                        | EP080: meta- & para-Xylene              | 108-38-3   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                      |                        |                                         | 106-42-3   |     |       |                 |                        |         |                     |
|                      |                        | EP080: ortho-Xylene                     | 95-47-6    | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                      |                        | EP080: Toluene                          | 108-88-3   | 2   | μg/L  | <2              | <2                     | 0.00    | No Limit            |
|                      |                        | EP080: Naphthalene                      | 91-20-3    | 5   | μg/L  | <5              | <5                     | 0.00    | No Limit            |

Page : 4 of 4

Work Order : ES1530616 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   | -Matrix: WATER |     |       |        |               |                    | S) Report |            |
|-----------------------------------------------------|----------------|-----|-------|--------|---------------|--------------------|-----------|------------|
|                                                     |                |     |       | Report | Spike         | Spike Recovery (%) | Recovery  | Limits (%) |
| Method: Compound                                    | CAS Number     | LOR | Unit  | Result | Concentration | LCS                | Low       | High       |
| EA010P: Conductivity by PC Titrator (QCLot: 208845) |                |     |       |        |               |                    |           |            |
| EA010-P: Electrical Conductivity @ 25°C             |                | 1   | μS/cm | <1     | 2000 μS/cm    | 102                | 95        | 113        |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 208991)  |                |     |       |        |               |                    |           |            |
| EK084: Unionized Hydrogen Sulfide                   |                | 0.1 | mg/L  | <0.1   | 0.05 mg/L     | 107                | 72        | 126        |
| EP080: BTEXN (QCLot: 208827)                        |                |     |       |        |               |                    |           |            |
| EP080: Benzene                                      | 71-43-2        | 1   | μg/L  | <1     | 10 μg/L       | 87.3               | 70        | 124        |
| EP080: Ethylbenzene                                 | 100-41-4       | 2   | μg/L  | <2     | 10 μg/L       | 92.4               | 70        | 120        |
| EP080: meta- & para-Xylene                          | 108-38-3       | 2   | μg/L  | <2     | 10 μg/L       | 91.8               | 69        | 121        |
|                                                     | 106-42-3       |     |       |        |               |                    |           |            |
| EP080: Naphthalene                                  | 91-20-3        | 5   | μg/L  | <5     | 10 μg/L       | 91.8               | 70        | 124        |
| EP080: ortho-Xylene                                 | 95-47-6        | 2   | μg/L  | <2     | 10 μg/L       | 94.5               | 72        | 122        |
| EP080: Toluene                                      | 108-88-3       | 2   | μg/L  | <2     | 10 μg/L       | 93.5               | 65        | 129        |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                            |            | Ma            | Matrix Spike (MS) Report |            |           |  |  |  |
|----------------------|------------------|----------------------------|------------|---------------|--------------------------|------------|-----------|--|--|--|
|                      |                  |                            |            | Spike         | SpikeRecovery(%)         | Recovery L | imits (%) |  |  |  |
| Laboratory sample ID | Client sample ID | Method: Compound           | CAS Number | Concentration | MS                       | Low        | High      |  |  |  |
| EP080: BTEXN (Q      | CLot: 208827)    |                            |            |               |                          |            |           |  |  |  |
| ES1530616-001        | AST2             | EP080: Benzene             | 71-43-2    | 25 μg/L       | 71.6                     | 70         | 130       |  |  |  |
|                      |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L       | 87.3                     | 70         | 130       |  |  |  |
|                      |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L       | 87.6                     | 70         | 130       |  |  |  |
|                      |                  |                            | 106-42-3   |               |                          |            |           |  |  |  |
|                      |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L       | 94.2                     | 70         | 130       |  |  |  |
|                      |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L       | 89.9                     | 70         | 130       |  |  |  |
|                      |                  | EP080: Toluene             | 108-88-3   | 25 μg/L       | 79.6                     | 70         | 130       |  |  |  |



## QA/QC Compliance Assessment for DQO Reporting

Work Order : **ES1530616** Page : 1 of 4

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523A
 Date Samples Received
 : 09-Sep-2015

 Site
 : --- Issue Date
 : 29-Sep-2015

Sampler : ---- No. of samples received : 5
Order number : ---- No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

## **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

## **Outliers: Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4

ES1530616 Amendment 1 Work Order

PARSONS BRINCKERHOFF AUST P/L Client

Project 2268523A



## **Outliers: Frequency of Quality Control Samples**

Matrix: WATER

| Quality Control Sample Type      | Count |         | Rate   | e (%)    | Quality Control Specification                    |
|----------------------------------|-------|---------|--------|----------|--------------------------------------------------|
| Method                           | QC    | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |       |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0     | 5       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS) |       |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0     | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |       |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0     | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time. |  |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------|--|
| Method                                           | Method Service Control of the Contro |  |             | Ex             | traction / Preparation |            | Analysis           |                    |                 |  |
| Container / Client Sample ID(s)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation      |  |
| EA010P: Conductivity by PC Titrator              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |             |                |                        |            |                    |                    |                 |  |
| Clear Plastic Bottle - Natural (EA010-P)<br>AST2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  | 09-Sep-2015 |                |                        |            | 09-Sep-2015        | 07-Oct-2015        | <b>✓</b>        |  |
| EP080S: TPH(V)/BTEX Surrogates                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |             |                |                        |            |                    |                    |                 |  |
| Amber VOC Vial - Sulfuric Acid (EP080)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |             |                |                        |            |                    |                    |                 |  |
| AST2,                                            | WK11,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  | 09-Sep-2015 | 09-Sep-2015    | 23-Sep-2015            | ✓          | 09-Sep-2015        | 23-Sep-2015        | ✓               |  |
| WK12,                                            | WK13,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |             |                |                        |            |                    |                    |                 |  |
| WK14                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |             |                |                        |            |                    |                    |                 |  |

Page : 3 of 4

Work Order ES1530616 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

2268523A Project



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    |         |    |         | Evaluatio | n: 🗴 = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specificatio |
|----------------------------------|---------|----|---------|-----------|-------------------|-----------------|-----------------------------------------------------------------------------|
| Quality Control Sample Type      |         | С  | ount    |           | Rate (%)          |                 | Quality Control Specification                                               |
| Analytical Methods               | Method  | OC | Reaular | Actual    | Expected          | Evaluation      |                                                                             |
| Laboratory Duplicates (DUP)      |         |    |         |           |                   |                 |                                                                             |
| Conductivity by PC Titrator      | EA010-P | 2  | 18      | 11.11     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| TRH Volatiles/BTEX               | EP080   | 2  | 11      | 18.18     | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00      | 10.00             | £               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Laboratory Control Samples (LCS) |         |    |         |           |                   |                 |                                                                             |
| Conductivity by PC Titrator      | EA010-P | 1  | 18      | 5.56      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| TRH Volatiles/BTEX               | EP080   | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00      | 5.00              | <b>s</b> c      | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Method Blanks (MB)               |         |    |         |           |                   |                 |                                                                             |
| Conductivity by PC Titrator      | EA010-P | 1  | 18      | 5.56      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| TRH Volatiles/BTEX               | EP080   | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00      | 5.00              | <b>≸¢</b>       | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |
| Matrix Spikes (MS)               |         |    |         |           |                   |                 |                                                                             |
| TRH Volatiles/BTEX               | EP080   | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                            |

Page : 4 of 4

Work Order : ES1530616 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A

# ALS

## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                             |
|-----------------------------|---------|--------|-----------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method       |
|                             |         |        | is compliant with NEPM (2013) Schedule B(3)                                                                     |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions |
|                             |         |        | by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)           |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                 |
|                             |         |        | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is    |
|                             |         |        | equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is     |
|                             |         |        | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                 |



## **QUALITY CONTROL REPORT**

**Work Order** : **ES1530625** Page : 1 of 14

Amendment : 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

 E-mail
 : SDaykin@pb.com.au
 E-mail
 : loren.schiavon@alsglobal.com

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523A QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ---Date Samples Received: 09-Sep-2015C-O-C number: ---Date Analysis Commenced: 09-Sep-2015Sampler: ---Issue Date: 15-Oct-2015

Site : --- No. of samples received : 10

Quote number : --- No. of samples analysed : 10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Page : 2 of 14

Work Order : ES1530625 Amendment 4

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC



NATA Accredited S
Laboratory 825

Accredited for compliance with

ISO/IEC 17025.

## Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| procedures openines in = 1 c |                          |                        |  |
|------------------------------|--------------------------|------------------------|--|
| Signatories                  | Position                 | Accreditation Category |  |
| Alex Rossi                   | Organic Chemist          | Sydney Organics        |  |
| Andrew Epps                  | Senior Inorganic Chemist | Brisbane Organics      |  |
| Ankit Joshi                  | Inorganic Chemist        | Sydney Inorganics      |  |
| Celine Conceicao             | Senior Spectroscopist    | Sydney Inorganics      |  |
| Matt Frost                   | Senior Organic Chemist   | Brisbane Organics      |  |
| Merrin Avery                 | Supervisor - Inorganic   | Newcastle - Inorganics |  |
| Pabi Subba                   | Senior Organic Chemist   | Sydney Organics        |  |
|                              |                          |                        |  |

Page : 3 of 14

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A

# ALS

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER    |                          |                                          |             |      |         | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|--------------------------|------------------------------------------|-------------|------|---------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID         | Method: Compound                         | CAS Number  | LOR  | Unit    | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA005: pH (QC Lot    | : 209440)                |                                          |             |      |         |                 |                        |         |                     |
| EN1512978-001        | Anonymous                | EA005: pH Value                          |             | 0.01 | pH Unit | 7.88            | 7.89                   | 0.127   | 0% - 20%            |
| EA010P: Conductiv    | ity by PC Titrator (QC I | Lot: 208845)                             |             |      |         |                 |                        |         |                     |
| EN1512978-001        | Anonymous                | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 4090            | 4090                   | 0.00    | 0% - 20%            |
| EW1511643-007        | Anonymous                | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | <1              | <1                     | 0.00    | No Limit            |
| EA015: Total Dissol  | ved Solids (QC Lot: 20   | 9646)                                    |             |      |         |                 |                        |         |                     |
| ES1530625-001        | AST2                     | EA015H: Total Dissolved Solids @180°C    |             | 10   | mg/L    | 5320            | 5110                   | 4.06    | 0% - 20%            |
| ES1530630-006        | Anonymous                | EA015H: Total Dissolved Solids @180°C    |             | 10   | mg/L    | 10300           | 10900                  | 5.33    | 0% - 20%            |
| EA025: Suspended     | Solids (QC Lot: 209647   | 7)                                       |             |      |         |                 |                        |         |                     |
| ES1530625-001        | AST2                     | EA025H: Suspended Solids (SS)            |             | 5    | mg/L    | 58              | 56                     | 3.52    | 0% - 50%            |
| ES1530630-006        | Anonymous                | EA025H: Suspended Solids (SS)            |             | 5    | mg/L    | <5              | <5                     | 0.00    | No Limit            |
| ED009: Anions (Q0    | C Lot: 208907)           |                                          |             |      |         |                 |                        |         |                     |
| EP1513642-008        | Anonymous                | ED009-X: Chloride                        | 16887-00-6  | 0.1  | mg/L    | <0.100          | <0.100                 | 0.00    | No Limit            |
| ES1530612-001        | Anonymous                | ED009-X: Chloride                        | 16887-00-6  | 0.1  | mg/L    | 142             | 134                    | 5.62    | 0% - 20%            |
| ED037P: Alkalinity I | by PC Titrator (QC Lot:  | 208847)                                  |             |      |         |                 |                        |         |                     |
| ES1530604-001        | Anonymous                | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L    | 556             | 560                    | 0.869   | 0% - 20%            |
|                      |                          | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L    | 3               | 5                      | 62.6    | No Limit            |
|                      |                          | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                          | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L    | 558             | 566                    | 1.30    | 0% - 20%            |
| EW1511643-007        | Anonymous                | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                          | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
|                      |                          | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
| I                    |                          | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit            |
| ED041G: Sulfate (Tu  | urbidimetric) as SO4 2-  | by DA (QC Lot: 208836)                   |             |      |         |                 |                        |         |                     |
| ES1530604-001        | Anonymous                | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L    | 158             | 159                    | 0.00    | 0% - 20%            |
| EW1511631-014        | Anonymous                | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L    | 24              | 24                     | 0.00    | 0% - 20%            |
| ED045G: Chloride b   | y Discrete Analyser (Q   | C Lot: 208837)                           |             |      |         |                 |                        |         |                     |
| ES1530604-001        | Anonymous                | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L    | 229             | 230                    | 0.665   | 0% - 20%            |
| EW1511631-014        | Anonymous                | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L    | 43              | 43                     | 0.00    | 0% - 20%            |
| ED093F: Dissolved    | Major Cations (QC Lot    | : 210898)                                |             |      |         |                 |                        |         |                     |
| ES1530625-005        | WK14                     | ED093F: Calcium                          | 7440-70-2   | 1    | mg/L    | 40              | 36                     | 10.6    | 0% - 20%            |
|                      |                          | ED093F: Magnesium                        | 7439-95-4   | 1    | mg/L    | 15              | 14                     | 9.01    | 0% - 50%            |
|                      |                          | ED093F: Potassium                        | 7440-09-7   | 1    | mg/L    | 23              | 20                     | 12.7    | 0% - 20%            |
|                      |                          | ED093F: Sodium                           | 7440-23-5   | 1    | mg/L    | 3990            | 3480                   | 13.7    | 0% - 20%            |
| ES1530486-001        | Anonymous                | ED093F: Calcium                          | 7440-70-2   | 1    | mg/L    | 27              | 29                     | 5.09    | 0% - 20%            |

Page : 4 of 14

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L



| ub-Matrix: WATER     |                         |                                  |            |        |      | Laboratory I    | Duplicate (DUP) Report |         |                    |
|----------------------|-------------------------|----------------------------------|------------|--------|------|-----------------|------------------------|---------|--------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                 | CAS Number | LOR    | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (% |
| ED093F: Dissolved I  | Major Cations (QC Lot:  | 210898) - continued              |            |        |      |                 |                        |         |                    |
| ES1530486-001        | Anonymous               | ED093F: Magnesium                | 7439-95-4  | 1      | mg/L | 37              | 41                     | 10.7    | 0% - 20%           |
|                      |                         | ED093F: Potassium                | 7440-09-7  | 1      | mg/L | 3               | 3                      | 0.00    | No Limit           |
|                      |                         | ED093F: Sodium                   | 7440-23-5  | 1      | mg/L | 44              | 50                     | 12.3    | 0% - 20%           |
| G020F: Dissolved     | Metals by ICP-MS (QC    | Lot: 210901)                     |            |        |      |                 |                        |         |                    |
| ES1530625-005        | WK14                    | EG020B-F: Strontium              | 7440-24-6  | 0.001  | mg/L | 8.04            | 7.63                   | 5.34    | 0% - 20%           |
|                      |                         | EG020B-F: Uranium                | 7440-61-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit           |
| ES1530486-001        | Anonymous               | EG020B-F: Strontium              | 7440-24-6  | 0.001  | mg/L | 0.434           | 0.458                  | 5.26    | 0% - 20%           |
|                      |                         | EG020B-F: Uranium                | 7440-61-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit           |
| G020F: Dissolved     | Metals by ICP-MS (QC    | Lot: 210902)                     |            |        |      |                 |                        |         |                    |
| ES1530609-007        | Anonymous               | EG020A-F: Cadmium                | 7440-43-9  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.00    | No Limit           |
|                      |                         | EG020A-F: Antimony               | 7440-36-0  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit           |
|                      |                         | EG020A-F: Arsenic                | 7440-38-2  | 0.001  | mg/L | 0.007           | 0.007                  | 0.00    | No Limit           |
|                      |                         | EG020A-F: Barium                 | 7440-39-3  | 0.001  | mg/L | 0.030           | 0.028                  | 6.77    | 0% - 20%           |
|                      |                         | EG020A-F: Beryllium              | 7440-41-7  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit           |
|                      |                         | EG020A-F: Chromium               | 7440-47-3  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit           |
|                      |                         | EG020A-F: Cobalt                 | 7440-48-4  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit           |
|                      |                         | EG020A-F: Copper                 | 7440-50-8  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit           |
|                      |                         | EG020A-F: Lead                   | 7439-92-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit           |
|                      |                         | EG020A-F: Manganese              | 7439-96-5  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit           |
|                      |                         | EG020A-F: Molybdenum             | 7439-98-7  | 0.001  | mg/L | 0.002           | 0.003                  | 0.00    | No Limit           |
|                      |                         | EG020A-F: Nickel                 | 7440-02-0  | 0.001  | mg/L | 0.001           | <0.001                 | 0.00    | No Limit           |
|                      |                         | EG020A-F: Tin                    | 7440-31-5  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit           |
|                      |                         | EG020A-F: Zinc                   | 7440-66-6  | 0.005  | mg/L | <0.005          | <0.005                 | 0.00    | No Limit           |
|                      |                         | EG020A-F: Aluminium              | 7429-90-5  | 0.01   | mg/L | <0.01           | <0.01                  | 0.00    | No Limit           |
|                      |                         | EG020A-F: Selenium               | 7782-49-2  | 0.01   | mg/L | <0.01           | <0.01                  | 0.00    | No Limit           |
|                      |                         | EG020A-F: Vanadium               | 7440-62-2  | 0.01   | mg/L | 0.01            | <0.01                  | 0.00    | No Limit           |
|                      |                         | EG020A-F: Boron                  | 7440-42-8  | 0.05   | mg/L | <0.05           | <0.05                  | 0.00    | No Limit           |
|                      |                         | EG020A-F: Iron                   | 7439-89-6  | 0.05   | mg/L | <0.05           | <0.05                  | 0.00    | No Limit           |
|                      |                         | EG020A-F: Bromine                | 7726-95-6  | 0.1    | mg/L | 1.1             | 1.2                    | 0.00    | 0% - 50%           |
| G035F: Dissolved I   | Mercury by FIMS (QC L   | ot: 210900)                      |            |        |      |                 |                        |         |                    |
| ES1530486-003        | Anonymous               | EG035F: Mercury                  | 7439-97-6  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.00    | No Limit           |
| ES1530581-025        | Anonymous               | EG035F: Mercury                  | 7439-97-6  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.00    | No Limit           |
| G052G: Silica by D   | Discrete Analyser (QC L | •                                |            |        |      |                 |                        |         |                    |
| S1530625-001         | AST2                    | EG052G: Reactive Silica          |            | 0.05   | mg/L | 18.0            | 19.6                   | 8.44    | 0% - 20%           |
| EW1511631-014        | Anonymous               | EG052G: Reactive Silica          |            | 0.05   | mg/L | 2.78            | 2.67                   | 4.11    | 0% - 20%           |
| K010/011: Chlorine   | ,                       |                                  |            |        |      |                 |                        |         | 1 11               |
| ES1530625-001        | AST2                    | EK010: Chlorine - Free           |            | 0.2    | mg/L | <0.2            | <0.2                   | 0.00    | No Limit           |
| _0.1000020-001       | 7.012                   |                                  |            | 0.2    | mg/L | <0.2            | <0.2                   | 0.00    | No Limit           |
|                      |                         | EK010: Chlorine - Total Residual |            | 0.2    | my/L | ~U.Z            | <b>~U.Z</b>            | 0.00    | INO LIIIII         |

Page : 5 of 14

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                             |                                      |            |      |      | Laboratory      | Duplicate (DUP) Report | :       |                     |
|----------------------|-----------------------------|--------------------------------------|------------|------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID            | Method: Compound                     | CAS Number | LOR  | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EK040P: Fluoride by  | PC Titrator (QC Lot: 2088   |                                      |            |      |      |                 |                        |         |                     |
| ES1530580-002        | Anonymous                   | EK040P: Fluoride                     | 16984-48-8 | 0.1  | mg/L | 0.4             | 0.4                    | 0.00    | No Limit            |
| EW1511643-007        | Anonymous                   | EK040P: Fluoride                     | 16984-48-8 | 0.1  | mg/L | <0.1            | <0.1                   | 0.00    | No Limit            |
| EK055G: Ammonia      | as N by Discrete Analyser   | (QC Lot: 209389)                     |            |      |      |                 |                        |         |                     |
| EW1511631-003        | Anonymous                   | EK055G: Ammonia as N                 | 7664-41-7  | 0.01 | mg/L | <0.01           | 0.01                   | 0.00    | No Limit            |
| ES1530625-001        | AST2                        | EK055G: Ammonia as N                 | 7664-41-7  | 0.01 | mg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
| EK057G: Nitrite as I | N by Discrete Analyser (Q   | C Lot: 208840)                       |            |      |      |                 |                        |         |                     |
| ES1530625-001        | AST2                        | EK057G: Nitrite as N                 | 14797-65-0 | 0.01 | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| EW1511631-014        | Anonymous                   | EK057G: Nitrite as N                 | 14797-65-0 | 0.01 | mg/L | 0.01            | 0.01                   | 0.00    | No Limit            |
| EK059G: Nitrite plu  | s Nitrate as N (NOx) by Di  | screte Analyser (QC Lot: 209390)     |            |      |      |                 |                        |         |                     |
| ES1530694-001        | Anonymous                   | EK059G: Nitrite + Nitrate as N       |            | 0.01 | mg/L | 0.04            | 0.04                   | 0.00    | No Limit            |
| ES1530625-001        | AST2                        | EK059G: Nitrite + Nitrate as N       |            | 0.01 | mg/L | 0.05            | 0.07                   | 23.7    | No Limit            |
| EK061G: Total Kjeld  | lahl Nitrogen By Discrete A | Analyser (QC Lot: 209376)            |            |      |      |                 |                        |         |                     |
| ES1530625-001        | AST2                        | EK061G: Total Kjeldahl Nitrogen as N |            | 0.1  | mg/L | 8.2             | 7.8                    | 4.16    | 0% - 20%            |
| EW1511631-001        | Anonymous                   | EK061G: Total Kjeldahl Nitrogen as N |            | 0.1  | mg/L | 0.7             | 0.7                    | 0.00    | No Limit            |
| EK067G: Total Phos   | phorus as P by Discrete A   | nalyser (QC Lot: 209375)             |            |      |      |                 |                        |         |                     |
| ES1530625-001        | AST2                        | EK067G: Total Phosphorus as P        |            | 0.01 | mg/L | 2.12            | 2.03                   | 4.26    | 0% - 20%            |
| EW1511631-001        | Anonymous                   | EK067G: Total Phosphorus as P        |            | 0.01 | mg/L | 0.04            | 0.04                   | 0.00    | No Limit            |
| EK071G: Reactive P   | hosphorus as P by discret   | te analyser (QC Lot: 208838)         |            |      |      |                 |                        |         |                     |
| ES1530625-001        | AST2                        | EK071G: Reactive Phosphorus as P     | 14265-44-2 | 0.01 | mg/L | 0.04            | 0.03                   | 0.00    | No Limit            |
| EW1511631-014        | Anonymous                   | EK071G: Reactive Phosphorus as P     | 14265-44-2 | 0.01 | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| EP005: Total Organi  | c Carbon (TOC) (QC Lot:     | 212045)                              |            |      |      |                 |                        |         |                     |
| ES1530361-001        | Anonymous                   | EP005: Total Organic Carbon          |            | 1    | mg/L | <1              | <1                     | 0.00    | No Limit            |
| ES1530625-001        | AST2                        | EP005: Total Organic Carbon          |            | 1    | mg/L | 66              | 50                     | 27.8    | 0% - 50%            |
| EP033: C1 - C4 Hydr  | rocarbon Gases (QC Lot: 2   | 209191)                              |            |      |      |                 |                        |         |                     |
| EM1514199-001        | Anonymous                   | EP033: Butane                        | 106-97-8   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                             | EP033: Butene                        | 25167-67-3 | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                             | EP033: Ethane                        | 74-84-0    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                             | EP033: Ethene                        | 74-85-1    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                             | EP033: Methane                       | 74-82-8    | 10   | μg/L | 124             | 125                    | 0.00    | 0% - 50%            |
|                      |                             | EP033: Propane                       | 74-98-6    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                             | EP033: Propene                       | 115-07-1   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
| ES1530693-001        | Anonymous                   | EP033: Butane                        | 106-97-8   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                             | EP033: Butene                        | 25167-67-3 | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                             | EP033: Ethane                        | 74-84-0    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                             | EP033: Ethene                        | 74-85-1    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                             | EP033: Methane                       | 74-82-8    | 10   | μg/L | 8400            | 7230                   | 14.9    | 0% - 20%            |
|                      |                             | EP033: Propane                       | 74-98-6    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                             | EP033: Propene                       | 115-07-1   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |

Page : 6 of 14

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                     |                  |                       |            | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |  |
|---------------------------------------|------------------|-----------------------|------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID                  | Client sample ID | Method: Compound      | CAS Number | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EP262: Ethanolamines (QC Lot: 208936) |                  |                       |            |                                   |      |                 |                  |         |                     |  |
| ES1530625-001                         | AST2             | EP262: Diethanolamine | 111-42-2   | 1                                 | μg/L | 15              | 12               | 17.8    | 0% - 50%            |  |
|                                       |                  | EP262: Ethanolamine   | 141-43-5   | 1                                 | μg/L | 7               | 6                | 16.2    | No Limit            |  |

Page : 7 of 14

Work Order : ES1530625 Amendment 4

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                 |                |        |       | Method Blank (MB) |               | Laboratory Control Spike (LCS | ) Report |            |  |
|---------------------------------------------------|----------------|--------|-------|-------------------|---------------|-------------------------------|----------|------------|--|
|                                                   |                |        |       | Report            | Spike         | Spike Recovery (%)            | Recovery | Limits (%) |  |
| Method: Compound                                  | CAS Number     | LOR    | Unit  | Result            | Concentration | LCS                           | Low      | High       |  |
| EA010P: Conductivity by PC Titrator (QCLot: 20884 | 5)             |        |       |                   |               |                               |          |            |  |
| EA010-P: Electrical Conductivity @ 25°C           |                | 1      | μS/cm | <1                | 2000 μS/cm    | 102                           | 95       | 113        |  |
| EA015: Total Dissolved Solids (QCLot: 209646)     |                |        |       |                   |               |                               |          |            |  |
| EA015H: Total Dissolved Solids @180°C             |                | 10     | mg/L  | <10               | 2000 mg/L     | 102                           | 87       | 109        |  |
|                                                   |                |        |       | <10               | 293 mg/L      | 104                           | 66       | 126        |  |
| EA025: Suspended Solids (QCLot: 209647)           |                |        |       |                   |               |                               |          |            |  |
| EA025H: Suspended Solids (SS)                     |                | 5      | mg/L  | <5                | 150 mg/L      | 105                           | 83       | 129        |  |
|                                                   |                |        |       | <5                | 1000 mg/L     | 92.6                          | 84       | 110        |  |
| ED009: Anions (QCLot: 208907)                     |                |        |       |                   |               |                               |          |            |  |
| ED009-X: Chloride                                 | 16887-00-6     | 0.1    | mg/L  | <0.100            | 2 mg/L        | 99.8                          | 89       | 107        |  |
| ED037P: Alkalinity by PC Titrator (QCLot: 208847) |                |        |       |                   |               |                               |          |            |  |
| ED037-P: Total Alkalinity as CaCO3                |                |        | mg/L  |                   | 200 mg/L      | 90.6                          | 81       | 111        |  |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA(Q | QCLot: 208836) |        |       |                   |               |                               |          |            |  |
| ED041G: Sulfate as SO4 - Turbidimetric            | 14808-79-8     | 1      | mg/L  | <1                | 25 mg/L       | 102                           | 86       | 122        |  |
| ED045G: Chloride by Discrete Analyser (QCLot: 208 | 8837)          |        |       |                   |               |                               |          |            |  |
| ED045G: Chloride                                  | 16887-00-6     | 1      | mg/L  | <1                | 10 mg/L       | 107                           | 75       | 123        |  |
|                                                   |                |        |       | <1                | 1000 mg/L     | 97.0                          | 77       | 119        |  |
| ED093F: Dissolved Major Cations (QCLot: 210898)   |                |        |       |                   |               |                               |          |            |  |
| ED093F: Calcium                                   | 7440-70-2      | 1      | mg/L  | <1                | 50 mg/L       | 99.3                          | 90       | 114        |  |
| ED093F: Magnesium                                 | 7439-95-4      | 1      | mg/L  | <1                | 50 mg/L       | 107                           | 90       | 110        |  |
| ED093F: Potassium                                 | 7440-09-7      | 1      | mg/L  | <1                | 50 mg/L       | 106                           | 87       | 117        |  |
| ED093F: Sodium                                    | 7440-23-5      | 1      | mg/L  | <1                | 50 mg/L       | 108                           | 82       | 118        |  |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 2109)  | 01)            |        |       |                   |               |                               |          |            |  |
| EG020B-F: Strontium                               | 7440-24-6      | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 92.8                          | 80       | 112        |  |
| EG020B-F: Uranium                                 | 7440-61-1      | 0.001  | mg/L  | <0.001            |               |                               |          |            |  |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 2109)  | 02)            |        |       |                   |               |                               |          |            |  |
| EG020A-F: Aluminium                               | 7429-90-5      | 0.01   | mg/L  | <0.01             | 0.5 mg/L      | 92.3                          | 85       | 115        |  |
| EG020A-F: Antimony                                | 7440-36-0      | 0.001  | mg/L  | <0.001            | 0.01 mg/L     | 93.3                          | 85       | 115        |  |
| EG020A-F: Arsenic                                 | 7440-38-2      | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 91.6                          | 85       | 115        |  |
| EG020A-F: Barium                                  | 7440-39-3      | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 95.5                          | 85       | 115        |  |
| EG020A-F: Beryllium                               | 7440-41-7      | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 93.0                          | 85       | 115        |  |
| EG020A-F: Boron                                   | 7440-42-8      | 0.05   | mg/L  | <0.05             | 0.1 mg/L      | 104                           | 85       | 115        |  |
| EG020A-F: Bromine                                 | 7726-95-6      | 0.1    | mg/L  | <0.1              |               |                               |          |            |  |
| EG020A-F: Cadmium                                 | 7440-43-9      | 0.0001 | mg/L  | <0.0001           | 0.1 mg/L      | 94.5                          | 85       | 115        |  |

Page : 8 of 14

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                                                 |             |          | Method Blank (MB) |              | Laboratory Control Spike (LCS | S) Report          |          |            |
|-----------------------------------------------------------------------------------|-------------|----------|-------------------|--------------|-------------------------------|--------------------|----------|------------|
|                                                                                   |             |          |                   | Report       | Spike                         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound CA                                                               | \S Number   | LOR      | Unit              | Result       | Concentration                 | LCS                | Low      | High       |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 210902) - continu                      | ued         |          |                   |              |                               |                    |          |            |
| EG020A-F: Chromium 74                                                             | 440-47-3    | 0.001    | mg/L              | <0.001       | 0.1 mg/L                      | 94.9               | 85       | 115        |
| EG020A-F: Cobalt 74                                                               | 440-48-4    | 0.001    | mg/L              | <0.001       | 0.1 mg/L                      | 95.6               | 85       | 115        |
| EG020A-F: Copper 74                                                               | 440-50-8    | 0.001    | mg/L              | <0.001       | 0.1 mg/L                      | 96.0               | 85       | 115        |
| EG020A-F: Iron 74                                                                 | 439-89-6    | 0.05     | mg/L              | <0.05        | 0.5 mg/L                      | 91.5               | 85       | 115        |
| EG020A-F: Lead 74                                                                 | 439-92-1    | 0.001    | mg/L              | <0.001       | 0.1 mg/L                      | 91.8               | 85       | 115        |
| EG020A-F: Manganese 74                                                            | 439-96-5    | 0.001    | mg/L              | <0.001       | 0.1 mg/L                      | 96.9               | 85       | 115        |
| EG020A-F: Molybdenum 74                                                           | 439-98-7    | 0.001    | mg/L              | <0.001       | 0.1 mg/L                      | 92.3               | 85       | 115        |
| EG020A-F: Nickel                                                                  | 440-02-0    | 0.001    | mg/L              | <0.001       | 0.1 mg/L                      | 92.8               | 85       | 115        |
| EG020A-F: Selenium 77                                                             | 782-49-2    | 0.01     | mg/L              | <0.01        | 0.1 mg/L                      | 103                | 85       | 115        |
| EG020A-F: Tin 74                                                                  | 440-31-5    | 0.001    | mg/L              | <0.001       | 0.1 mg/L                      | 90.9               | 85       | 115        |
| EGGEO/ (1. Validatati)                                                            | 440-62-2    | 0.01     | mg/L              | <0.01        | 0.1 mg/L                      | 96.4               | 85       | 115        |
| EG020A-F: Zinc 74                                                                 | 440-66-6    | 0.005    | mg/L              | <0.005       | 0.1 mg/L                      | 88.2               | 85       | 115        |
| EG035F: Dissolved Mercury by FIMS (QCLot: 210900)                                 |             |          |                   |              |                               |                    |          |            |
| EG035F: Mercury 74                                                                | 439-97-6    | 0.0001   | mg/L              | <0.0001      | 0.01 mg/L                     | 88.0               | 78       | 114        |
| EG052G: Silica by Discrete Analyser (QCLot: 208839)                               |             |          |                   |              |                               |                    |          |            |
| EG052G: Reactive Silica                                                           |             | 0.05     | mg/L              | <0.05        | 5 mg/L                        | 106                | 94       | 114        |
| EK010/011: Chlorine (QCLot: 208833)                                               |             |          |                   |              |                               |                    |          |            |
| EK010: Chlorine - Free                                                            |             | 0.2      | mg/L              | <0.2         |                               |                    |          |            |
| EK010: Chlorine - Total Residual                                                  |             | 0.2      | mg/L              | <0.2         |                               |                    |          |            |
| EK040P: Fluoride by PC Titrator (QCLot: 208846)                                   |             |          |                   |              |                               |                    |          |            |
|                                                                                   | 984-48-8    | 0.1      | mg/L              | <0.1         | 5 mg/L                        | 98.2               | 75       | 119        |
|                                                                                   |             | <b>U</b> | 9/2               | 0.1          | 5g/2                          | 00.2               | . •      |            |
| EK055G: Ammonia as N by Discrete Analyser (QCLot: 209389) EK055G: Ammonia as N 76 | 664-41-7    | 0.01     | mg/L              | <0.01        | 1 mg/L                        | 99.4               | 90       | 114        |
| E10000.7 William do 14                                                            | 004-41-7    | 0.01     | IIIg/L            | <b>\0.01</b> | i ilig/L                      | 39.4               | 90       | 114        |
| EK057G: Nitrite as N by Discrete Analyser (QCLot: 208840)                         | 707.05.0    | 0.04     |                   | .0.04        | 0.5                           | 400                | 00       | 444        |
| 21to For Hithough                                                                 | 797-65-0    | 0.01     | mg/L              | <0.01        | 0.5 mg/L                      | 103                | 82       | 114        |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (                    | QCLot: 209  |          |                   |              |                               |                    |          |            |
| EK059G: Nitrite + Nitrate as N                                                    |             | 0.01     | mg/L              | <0.01        | 0.5 mg/L                      | 97.8               | 91       | 113        |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot:                      | 209376)     |          |                   |              |                               |                    |          |            |
| EK061G: Total Kjeldahl Nitrogen as N                                              |             | 0.1      | mg/L              | <0.1         | 10 mg/L                       | 93.3               | 69       | 101        |
|                                                                                   |             |          |                   | <0.1         | 1 mg/L                        | 86.2               | 70       | 118        |
|                                                                                   |             |          |                   | <0.1         | 5 mg/L                        | 102                | 74       | 118        |
| EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 2                      | 209375)     |          |                   |              |                               |                    |          |            |
| EK067G: Total Phosphorus as P                                                     |             | 0.01     | mg/L              | <0.01        | 4.42 mg/L                     | 91.1               | 71       | 101        |
|                                                                                   |             |          |                   | <0.01        | 0.442 mg/L                    | 85.8               | 72       | 108        |
|                                                                                   |             |          |                   | <0.01        | 1 mg/L                        | 96.8               | 78       | 118        |
| EK071G: Reactive Phosphorus as P by discrete analyser (QCLc                       | ot: 208838) |          |                   |              |                               |                    |          |            |
| EK071G: Reactive Phosphorus as P                                                  | 265-44-2    | 0.01     | mg/L              | <0.01        | 0.5 mg/L                      | 104                | 85       | 117        |

Page : 9 of 14

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |     |      | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|------|-------------------|---------------|------------------------------|-----------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     |      | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound CAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Number | LOR | Unit | Result            | Concentration | LCS                          | Low       | High       |
| EP005: Total Organic Carbon (TOC) (QCLot: 212045)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |     |      |                   |               |                              |           |            |
| EP005: Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 1   | mg/L | <1                | 10 mg/L       | 89.7                         | 79        | 113        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     |      | <1                | 100 mg/L      | 93.1                         | 79        | 113        |
| EP020: Oil and Grease (O&G) (QCLot: 212197)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |     |      |                   |               |                              |           |            |
| EP020: Oil & Grease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 5   | mg/L | <5                | 5000 mg/L     | 95.7                         | 80        | 120        |
| EP033: C1 - C4 Hydrocarbon Gases (QCLot: 209191)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |     |      |                   |               |                              |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-97-8 | 10  | μg/L | <10               | 102.18 μg/L   | 103                          | 85        | 115        |
| EP033: Butene 2516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7-67-3 | 10  | μg/L | <10               | 99.61 μg/L    | 101                          | 83        | 115        |
| EP033: Ethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4-84-0 | 10  | μg/L | <10               | 54.43 μg/L    | 96.1                         | 87        | 111        |
| EP033: Ethene 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-85-1 | 10  | μg/L | <10               | 50.29 μg/L    | 98.5                         | 87        | 111        |
| EP033: Methane 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4-82-8 | 10  | μg/L | <10               | 28.48 μg/L    | 112                          | 86        | 114        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-98-6 | 10  | μg/L | <10               | 78.28 μg/L    | 109                          | 84        | 112        |
| EP033: Propene 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5-07-1 | 10  | μg/L | <10               | 73.97 μg/L    | 105                          | 85        | 113        |
| EP074A: Monocyclic Aromatic Hydrocarbons (QCLot: 220839)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |     |      |                   |               |                              |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-63-6 | 5   | μg/L | <5                | 10 μg/L       | 91.2                         | 84        | 118        |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8-67-8 | 5   | μg/L | <5                | 10 μg/L       | 88.6                         | 83        | 119        |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8-82-8 | 5   | μg/L | <5                | 10 μg/L       | 84.4                         | 84        | 118        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-51-8 | 5   | μg/L | <5                | 10 μg/L       | 83.1                         | 80        | 122        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-65-1 | 5   | μg/L | <5                | 10 μg/L       | 90.0                         | 80        | 120        |
| EP074: p-Isopropyltoluene 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9-87-6 | 5   | μg/L | <5                | 10 μg/L       | 85.4                         | 81        | 121        |
| EP074: sec-Butylbenzene 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5-98-8 | 5   | μg/L | <5                | 10 μg/L       | 87.6                         | 82        | 122        |
| EP074: Styrene 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-42-5 | 5   | μg/L | <5                | 10 μg/L       | 92.4                         | 76        | 119        |
| EP074: tert-Butylbenzene 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8-06-6 | 5   | μg/L | <5                | 10 μg/L       | 90.8                         | 81        | 121        |
| EP074B: Oxygenated Compounds (QCLot: 220839)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |     |      |                   |               |                              |           |            |
| EP074: 2-Butanone (MEK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8-93-3 | 50  | μg/L | <50               | 100 μg/L      | 109                          | 67        | 127        |
| EP074: 2-Hexanone (MBK) 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-78-6 | 50  | μg/L | <50               | 100 μg/L      | 104                          | 65        | 131        |
| EP074: 4-Methyl-2-pentanone (MIBK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8-10-1 | 50  | μg/L | <50               | 100 μg/L      | 110                          | 64        | 126        |
| EP074: Vinyl Acetate 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8-05-4 | 50  | μg/L | <50               | 100 μg/L      | 95.7                         | 65        | 131        |
| EP074C: Sulfonated Compounds (QCLot: 220839)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |     |      |                   |               |                              |           |            |
| · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5-15-0 | 5   | μg/L | <5                | 10 μg/L       | 72.1                         | 72        | 128        |
| EP074D: Fumigants (QCLot: 220839)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |     |      |                   |               |                              |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-93-4 | 5   | μg/L | <5                | 10 μg/L       | 94.0                         | 78        | 122        |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8-87-5 | 5   | μg/L | <5                | 10 μg/L       | 96.5                         | 83        | 117        |
| ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-20-7 | 5   | μg/L | <5                | 10 μg/L       | 71.4                         | 71        | 133        |
| ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-01-5 | 5   | μg/L | <5                | 20 μg/L       | 86.9                         | 75        | 123        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-02-6 | 5   | μg/L | <5                | 20 μg/L       | 88.6                         | 69        | 127        |
| EP074E: Halogenated Aliphatic Compounds (QCLot: 220839)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |     |      |                   |               |                              |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-20-6 | 5   | μg/L | <5                | 10 μg/L       | 87.3                         | 78        | 120        |
| E. C. II. III. I C. I C. II. C | 1-55-6 | 5   | μg/L | <5                | 10 μg/L       | 83.6                         | 79        | 121        |
| EL VIT. I.I. ITHUMOIOEMANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |     | r⊎′- |                   | MA            | 23.0                         | . •       |            |

Page : 10 of 14

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                                 |       |      | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|-------------------------------------------------------------------|-------|------|-------------------|---------------|------------------------------|-----------|------------|
|                                                                   |       |      | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound CAS Number                                       | r LOR | Unit | Result            | Concentration | LCS                          | Low       | High       |
| EP074E: Halogenated Aliphatic Compounds (QCLot: 220839) - continu | ıed   |      |                   |               |                              |           |            |
| EP074: 1.1.2.2-Tetrachloroethane 79-34-5                          | 5     | μg/L | <5                | 10 μg/L       | 104                          | 77        | 124        |
| EP074: 1.1.2-Trichloroethane 79-00-5                              | 5     | μg/L | <5                | 10 μg/L       | 96.0                         | 81        | 122        |
| EP074: 1.1-Dichloroethane 75-34-3                                 | 5     | μg/L | <5                | 10 μg/L       | 90.1                         | 76        | 123        |
| EP074: 1.1-Dichloroethene 75-35-4                                 | 5     | μg/L | <5                | 10 μg/L       | 81.2                         | 75        | 127        |
| EP074: 1.1-Dichloropropylene 563-58-6                             | 5     | μg/L | <5                | 10 μg/L       | 84.6                         | 83        | 117        |
| EP074: 1.2.3-Trichloropropane 96-18-4                             | 5     | μg/L | <5                | 10 μg/L       | 108                          | 71        | 129        |
| EP074: 1.2-Dibromo-3-chloropropane 96-12-8                        | 5     | μg/L | <5                | 10 μg/L       | 102                          | 64        | 134        |
| EP074: 1.2-Dichloroethane 107-06-2                                | 5     | μg/L | <5                | 10 μg/L       | 102                          | 82        | 120        |
| EP074: 1.3-Dichloropropane 142-28-9                               | 5     | μg/L | <5                | 10 μg/L       | 95.6                         | 82        | 121        |
| EP074: Bromomethane 74-83-9                                       | 50    | μg/L | <50               | 100 μg/L      | 83.8                         | 58        | 135        |
| EP074: Carbon Tetrachloride 56-23-5                               |       | μg/L | <5                | 10 μg/L       | 80.4                         | 77        | 125        |
| EP074: Chloroethane 75-00-3                                       |       | μg/L | <50               | 100 μg/L      | 79.5                         | 69        | 129        |
| EP074: Chloromethane 74-87-3                                      | 50    | μg/L | <50               | 100 μg/L      | 63.0                         | 57        | 135        |
| EP074: cis-1.2-Dichloroethene 156-59-2                            |       | μg/L | <5                | 10 μg/L       | 93.9                         | 83        | 119        |
| EP074: cis-1.4-Dichloro-2-butene 1476-11-5                        |       | μg/L | <5                | 10 μg/L       | 80.8                         | 58        | 135        |
| EP074: Dibromomethane 74-95-3                                     |       | μg/L | <5                | 10 μg/L       | 99.6                         | 78        | 122        |
| EP074: Dichlorodifluoromethane 75-71-8                            |       | μg/L | <50               | 100 μg/L      | 60.6                         | 42        | 140        |
| EP074: Hexachlorobutadiene 87-68-3                                |       | μg/L | <5                | 10 μg/L       | 82.2                         | 67        | 137        |
| EP074: lodomethane 74-88-4                                        |       | μg/L | <5                | 10 μg/L       | 90.9                         | 52        | 135        |
| EP074: Pentachloroethane 76-01-7                                  |       | μg/L | <5                | 10 μg/L       | 96.1                         | 67        | 127        |
| EP074: Tetrachloroethene 127-18-4                                 |       | μg/L | <5                | 10 μg/L       | 87.4                         | 83        | 119        |
| EP074: trans-1.2-Dichloroethene 156-60-5                          |       | μg/L | <5                | 10 μg/L       | 85.9                         | 77        | 123        |
| EP074: trans-1.4-Dichloro-2-butene 110-57-6                       |       | μg/L | <5                | 10 μg/L       | 107                          | 56        | 135        |
| EP074: Trichloroethene 79-01-6                                    |       | μg/L | <5                | 10 μg/L       | 87.3                         | 84        | 118        |
| EP074: Trichlorofluoromethane 75-69-4                             |       | μg/L | <50               | 100 μg/L      | 78.2                         | 70        | 132        |
| EP074: Vinyl chloride 75-01-4                                     | 50    | μg/L | <50               | 100 μg/L      | 79.0                         | 48        | 145        |
| EP074F: Halogenated Aromatic Compounds (QCLot: 220839)            |       |      |                   |               |                              |           |            |
| EP074: 1.2.3-Trichlorobenzene 87-61-6                             | 5     | μg/L | <5                | 10 μg/L       | 98.0                         | 78        | 123        |
| EP074: 1.2.4-Trichlorobenzene 120-82-1                            | 5     | μg/L | <5                | 10 μg/L       | 87.1                         | 79        | 121        |
| EP074: 1.2-Dichlorobenzene 95-50-1                                | 5     | μg/L | <5                | 10 μg/L       | 95.7                         | 85        | 115        |
| EP074: 1.3-Dichlorobenzene 541-73-1                               | 5     | μg/L | <5                | 10 μg/L       | 91.6                         | 85        | 117        |
| EP074: 1.4-Dichlorobenzene 106-46-7                               | 5     | μg/L | <5                | 10 μg/L       | 92.0                         | 85        | 117        |
| EP074: 2-Chlorotoluene 95-49-8                                    |       | μg/L | <5                | 10 μg/L       | 94.9                         | 84        | 118        |
| EP074: 4-Chlorotoluene 106-43-4                                   | 5     | μg/L | <5                | 10 μg/L       | 94.5                         | 85        | 119        |
| EP074: Bromobenzene 108-86-1                                      | 5     | μg/L | <5                | 10 μg/L       | 96.7                         | 83        | 117        |
| EP074: Chlorobenzene 108-90-7                                     | 5     | μg/L | <5                | 10 μg/L       | 87.6                         | 84        | 115        |
| EP074G: Trihalomethanes (QCLot: 220839)                           |       |      |                   |               |                              |           |            |
| EP074: Bromodichloromethane 75-27-4                               | 5     | μg/L | <5                | 10 μg/L       | 94.3                         | 79        | 121        |
| EP074: Bromoform 75-25-2                                          | 5     | μg/L | <5                | 10 μg/L       | 92.4                         | 74        | 124        |

Page : 11 of 14

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                         |           |     |      | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|-----------------------------------------------------------|-----------|-----|------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                           |           |     |      | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound Co                                       | AS Number | LOR | Unit | Result            | Concentration | LCS                           | Low       | High       |
| EP074G: Trihalomethanes (QCLot: 220839) - continued       |           |     |      |                   |               |                               |           |            |
| EP074: Chloroform                                         | 67-66-3   | 5   | μg/L | <5                | 10 μg/L       | 94.4                          | 81        | 118        |
| EP074: Dibromochloromethane                               | 124-48-1  | 5   | μg/L | <5                | 10 μg/L       | 87.4                          | 77        | 123        |
| EP074H: Naphthalene (QCLot: 220839)                       |           |     |      |                   |               |                               |           |            |
| EP074: Naphthalene                                        | 91-20-3   | 5   | μg/L | <5                | 10 μg/L       | 102                           | 75        | 116        |
| EP075(SIM)A: Phenolic Compounds (QCLot: 209215)           |           |     |      |                   |               |                               |           |            |
| EP075(SIM): 2.4.5-Trichlorophenol                         | 95-95-4   | 1   | μg/L | <1.0              | 5 μg/L        | 80.2                          | 50        | 108        |
| EP075(SIM): 2.4.6-Trichlorophenol                         | 88-06-2   | 1   | μg/L | <1.0              | 5 μg/L        | 61.4                          | 59        | 118        |
| EP075(SIM): 2.4-Dichlorophenol                            | 120-83-2  | 1   | μg/L | <1.0              | 5 μg/L        | 69.2                          | 59        | 122        |
| EP075(SIM): 2.4-Dimethylphenol                            | 105-67-9  | 1   | μg/L | <1.0              | 5 μg/L        | 73.9                          | 60        | 112        |
| EP075(SIM): 2.6-Dichlorophenol                            | 87-65-0   | 1   | μg/L | <1.0              | 5 μg/L        | 72.3                          | 64        | 118        |
| EP075(SIM): 2-Chlorophenol                                | 95-57-8   | 1   | μg/L | <1.0              | 5 μg/L        | 70.6                          | 64        | 110        |
| EP075(SIM): 2-Methylphenol                                | 95-48-7   | 1   | μg/L | <1.0              | 5 μg/L        | 69.2                          | 56        | 112        |
| EP075(SIM): 2-Nitrophenol                                 | 88-75-5   | 1   | μg/L | <1.0              | 5 μg/L        | 66.8                          | 63        | 117        |
| EP075(SIM): 3- & 4-Methylphenol                           | 1319-77-3 | 2   | μg/L | <2.0              | 10 μg/L       | 71.2                          | 43        | 114        |
| EP075(SIM): 4-Chloro-3-methylphenol                       | 59-50-7   | 1   | μg/L | <1.0              | 5 μg/L        | 68.9                          | 63        | 119        |
| EP075(SIM): Pentachlorophenol                             | 87-86-5   | 2   | μg/L | <2.0              | 10 μg/L       | 43.9                          | 10        | 95         |
| EP075(SIM): Phenol                                        | 108-95-2  | 1   | μg/L | <1.0              | 5 μg/L        | 55.0                          | 25        | 62         |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 20 | 9215)     |     |      |                   |               |                               |           |            |
| EP075(SIM): Acenaphthene                                  | 83-32-9   | 1   | μg/L | <1.0              | 5 μg/L        | 76.6                          | 62        | 113        |
| EP075(SIM): Acenaphthylene                                | 208-96-8  | 1   | μg/L | <1.0              | 5 μg/L        | 73.0                          | 64        | 114        |
| EP075(SIM): Anthracene                                    | 120-12-7  | 1   | μg/L | <1.0              | 5 μg/L        | 79.3                          | 64        | 116        |
| EP075(SIM): Benz(a)anthracene                             | 56-55-3   | 1   | μg/L | <1.0              | 5 μg/L        | 76.6                          | 64        | 117        |
| EP075(SIM): Benzo(a)pyrene                                | 50-32-8   | 0.5 | μg/L | <0.5              | 5 μg/L        | 77.8                          | 63        | 117        |
| EP075(SIM): Benzo(b+j)fluoranthene                        | 205-99-2  | 1   | μg/L | <1.0              | 5 μg/L        | 79.7                          | 62        | 119        |
|                                                           | 205-82-3  |     |      |                   |               |                               |           |            |
| EP075(SIM): Benzo(g.h.i)perylene                          | 191-24-2  | 1   | μg/L | <1.0              | 5 μg/L        | 77.4                          | 59        | 118        |
| EP075(SIM): Benzo(k)fluoranthene                          | 207-08-9  | 1   | μg/L | <1.0              | 5 μg/L        | 78.0                          | 62        | 117        |
| EP075(SIM): Chrysene                                      | 218-01-9  | 1   | μg/L | <1.0              | 5 μg/L        | 79.9                          | 63        | 116        |
| EP075(SIM): Dibenz(a.h)anthracene                         | 53-70-3   | 1   | μg/L | <1.0              | 5 μg/L        | 77.5                          | 61        | 117        |
| EP075(SIM): Fluoranthene                                  | 206-44-0  | 1   | μg/L | <1.0              | 5 μg/L        | 79.8                          | 64        | 118        |
| EP075(SIM): Fluorene                                      | 86-73-7   | 1   | μg/L | <1.0              | 5 μg/L        | 74.6                          | 64        | 115        |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                        | 193-39-5  | 1   | μg/L | <1.0              | 5 μg/L        | 77.2                          | 60        | 118        |
| EP075(SIM): Naphthalene                                   | 91-20-3   | 1   | μg/L | <1.0              | 5 μg/L        | 72.2                          | 59        | 119        |
| EP075(SIM): Phenanthrene                                  | 85-01-8   | 1   | μg/L | <1.0              | 5 μg/L        | 78.2                          | 63        | 116        |
| EP075(SIM): Pyrene                                        | 129-00-0  | 1   | μg/L | <1.0              | 5 μg/L        | 80.6                          | 63        | 118        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 209216)   |           |     |      |                   |               |                               |           |            |
| EP071: C10 - C14 Fraction                                 |           | 50  | μg/L | <50               | 2000 μg/L     | 91.9                          | 59        | 129        |
| EP071: C15 - C28 Fraction                                 |           | 100 | μg/L | <100              | 3000 μg/L     | 99.3                          | 71        | 131        |

Page : 12 of 14

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A



| Sub-Matrix: WATER                              |                          |            |      | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|------------------------------------------------|--------------------------|------------|------|-------------------|---------------|------------------------------|-----------|------------|
|                                                |                          |            |      | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                               | CAS Number               | LOR        | Unit | Result            | Concentration | LCS                          | Low       | High       |
| EP080/071: Total Petroleum Hydrocarbons (QCL   | ot: 209216) - continued  |            |      |                   |               |                              |           |            |
| EP071: C29 - C36 Fraction                      |                          | 50         | μg/L | <50               | 2000 μg/L     | 99.4                         | 62        | 120        |
| EP080/071: Total Petroleum Hydrocarbons (QCL   | ot: 244162)              |            |      |                   |               |                              |           |            |
| EP080: C6 - C9 Fraction                        |                          | 20         | μg/L | <20               | 160 μg/L      | 97.4                         | 76        | 122        |
| EP080/071: Total Recoverable Hydrocarbons - NE | EPM 2013 Fractions (QCLo | t: 209216) |      |                   |               |                              |           |            |
| EP071: >C10 - C16 Fraction                     | >C10_C16                 | 100        | μg/L | <100              | 2500 μg/L     | 91.8                         | 59        | 131        |
| EP071: >C16 - C34 Fraction                     |                          | 100        | μg/L | <100              | 3500 μg/L     | 100                          | 74        | 138        |
| EP071: >C34 - C40 Fraction                     |                          | 100        | μg/L | <100              | 1500 μg/L     | 101                          | 67        | 127        |
| EP080/071: Total Recoverable Hydrocarbons - NE | EPM 2013 Fractions (QCLo | t: 244162) |      |                   |               |                              |           |            |
| EP080: C6 - C10 Fraction                       | C6_C10                   | 20         | μg/L | <20               | 185 μg/L      | 97.2                         | 75        | 123        |
| EP080: C6 - C10 Fraction minus BTEX (F1)       | C6_C10-BTE               | 20         | μg/L | <20               |               |                              |           |            |
|                                                | Х                        |            |      |                   |               |                              |           |            |
| EP080: BTEXN (QCLot: 244162)                   |                          |            |      |                   |               |                              |           |            |
| EP080: Benzene                                 | 71-43-2                  | 1          | μg/L | <1                | 10 μg/L       | 104                          | 77        | 119        |
| EP080: Ethylbenzene                            | 100-41-4                 | 2          | μg/L | <2                | 10 μg/L       | 94.1                         | 78        | 119        |
| EP080: meta- & para-Xylene                     | 108-38-3                 | 2          | μg/L | <2                | 20 μg/L       | 95.9                         | 77        | 121        |
|                                                | 106-42-3                 |            |      |                   |               |                              |           |            |
| EP080: Naphthalene                             | 91-20-3                  | 5          | μg/L | <5                | 10 μg/L       | 106                          | 75        | 120        |
| EP080: ortho-Xylene                            | 95-47-6                  | 2          | μg/L | <2                | 10 μg/L       | 96.5                         | 76        | 121        |
| EP080: Sum of BTEX                             |                          | 1          | μg/L | <1                |               |                              |           |            |
| EP080: Toluene                                 | 108-88-3                 | 2          | μg/L | <2                | 10 μg/L       | 98.6                         | 78        | 122        |
| EP080: Total Xylenes                           | 1330-20-7                | 2          | μg/L | <2                |               |                              |           |            |
| EP262: Ethanolamines (QCLot: 208936)           |                          |            |      |                   |               |                              |           |            |
| EP262: Diethanolamine                          | 111-42-2                 | 1          | μg/L | <1                | 10 μg/L       | 88.7                         | 50        | 130        |
| EP262: Ethanolamine                            | 141-43-5                 | 1          | μg/L | <1                | 10 μg/L       | 99.9                         | 50        | 130        |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                                               | Matrix Spike (MS) Report               |                  |                     |      |     |      |
|----------------------|-----------------------------------------------|----------------------------------------|------------------|---------------------|------|-----|------|
|                      |                                               | Spike                                  | SpikeRecovery(%) | Recovery Limits (%) |      |     |      |
| Laboratory sample ID | Client sample ID                              | Method: Compound                       | CAS Number       | Concentration       | MS   | Low | High |
| ED009: Anions (C     | CLot: 208907)                                 |                                        |                  |                     |      |     |      |
| EP1513642-008        | Anonymous                                     | ED009-X: Chloride                      | 16887-00-6       | 4 mg/L              | 107  | 70  | 130  |
| ED041G: Sulfate (T   | urbidimetric) as SO4 2- by DA (QCLot: 208836) |                                        |                  |                     |      |     |      |
| ES1530625-001        | AST2                                          | ED041G: Sulfate as SO4 - Turbidimetric | 14808-79-8       | 10 mg/L             | 97.1 | 70  | 130  |
| ED045G: Chloride     | by Discrete Analyser (QCLot: 208837)          |                                        |                  |                     |      |     |      |

Page : 13 of 14

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L



| ub-Matrix: WATER    |                                                        |                                       |            | М             | atrix Spike (MS) Report |            |           |
|---------------------|--------------------------------------------------------|---------------------------------------|------------|---------------|-------------------------|------------|-----------|
|                     |                                                        |                                       |            | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| aboratory sample ID | Client sample ID                                       | Method: Compound                      | CAS Number | Concentration | MS                      | Low        | High      |
| D045G: Chloride     | by Discrete Analyser (QCLot: 208837) - continued       |                                       |            |               |                         |            |           |
| ES1530625-001       | AST2                                                   | ED045G: Chloride                      | 16887-00-6 | 250 mg/L      | 84.5                    | 70         | 130       |
| G020F: Dissolved    | Metals by ICP-MS (QCLot: 210902)                       |                                       |            |               |                         |            |           |
| ES1530609-008       | Anonymous                                              | EG020A-F: Arsenic                     | 7440-38-2  | 0.2 mg/L      | 88.6                    | 70         | 130       |
|                     |                                                        | EG020A-F: Barium                      | 7440-39-3  | 0.2 mg/L      | 73.4                    | 70         | 130       |
|                     |                                                        | EG020A-F: Beryllium                   | 7440-41-7  | 0.2 mg/L      | 79.1                    | 70         | 130       |
|                     |                                                        | EG020A-F: Cadmium                     | 7440-43-9  | 0.05 mg/L     | 79.9                    | 70         | 130       |
|                     |                                                        | EG020A-F: Chromium                    | 7440-47-3  | 0.2 mg/L      | 71.2                    | 70         | 130       |
|                     |                                                        | EG020A-F: Cobalt                      | 7440-48-4  | 0.2 mg/L      | 73.5                    | 70         | 130       |
|                     |                                                        | EG020A-F: Copper                      | 7440-50-8  | 0.2 mg/L      | 77.4                    | 70         | 130       |
|                     |                                                        | EG020A-F: Lead                        | 7439-92-1  | 0.2 mg/L      | 70.5                    | 70         | 130       |
|                     |                                                        | EG020A-F: Manganese                   | 7439-96-5  | 0.2 mg/L      | # 66.8                  | 70         | 130       |
|                     |                                                        | EG020A-F: Nickel                      | 7440-02-0  | 0.2 mg/L      | 70.6                    | 70         | 130       |
|                     |                                                        | EG020A-F: Vanadium                    | 7440-62-2  | 0.2 mg/L      | 75.6                    | 70         | 130       |
|                     |                                                        | EG020A-F: Zinc                        | 7440-66-6  | 0.2 mg/L      | 80.3                    | 70         | 130       |
| G035F: Dissolved    | Mercury by FIMS (QCLot: 210900)                        |                                       |            |               |                         |            |           |
| S1530486-001        | Anonymous                                              | EG035F: Mercury                       | 7439-97-6  | 0.01 mg/L     | 84.4                    | 70         | 130       |
| G052G: Silica by    | Discrete Analyser (QCLot: 208839)                      |                                       |            |               |                         |            |           |
| S1530625-001        | AST2                                                   | EG052G: Reactive Silica               |            | 5 mg/L        | 120                     | 70         | 130       |
| K040P: Fluoride h   | by PC Titrator (QCLot: 208846)                         |                                       |            |               |                         |            |           |
|                     | Anonymous                                              | EK040P: Fluoride                      | 16984-48-8 | 5 mg/L        | 98.8                    | 70         | 130       |
|                     | ,                                                      | EK040P. Fluoride                      | 10904-40-0 | 3 mg/L        | 30.0                    | 70         | 130       |
|                     | as N by Discrete Analyser (QCLot: 209389)              |                                       |            |               |                         |            |           |
| S1530625-001        | AST2                                                   | EK055G: Ammonia as N                  | 7664-41-7  | 1 mg/L        | 91.3                    | 70         | 130       |
| K057G: Nitrite as   | N by Discrete Analyser (QCLot: 208840)                 |                                       |            |               |                         |            |           |
| S1530625-001        | AST2                                                   | EK057G: Nitrite as N                  | 14797-65-0 | 0.5 mg/L      | 99.0                    | 70         | 130       |
| K059G: Nitrite pl   | us Nitrate as N (NOx) by Discrete Analyser (QCLot: 209 | 9390)                                 |            |               |                         |            |           |
| S1530625-001        | AST2                                                   | EK059G: Nitrite + Nitrate as N        |            | 0.5 mg/L      | 88.5                    | 70         | 130       |
| K061G: Total Kiel   | dahl Nitrogen By Discrete Analyser (QCLot: 209376)     |                                       |            |               |                         |            |           |
|                     | WK11                                                   | FK004 C. Tatal Kialdahi Nitasasa as N |            | 5 mg/L        | 114                     | 70         | 130       |
|                     |                                                        | EK061G: Total Kjeldahl Nitrogen as N  |            | J Hig/L       | 114                     | 70         | 130       |
|                     | sphorus as P by Discrete Analyser (QCLot: 209375)      |                                       |            |               |                         |            |           |
| S1530625-002        | WK11                                                   | EK067G: Total Phosphorus as P         |            | 1 mg/L        | 94.1                    | 70         | 130       |
| K071G: Reactive     | Phosphorus as P by discrete analyser (QCLot: 208838)   |                                       |            |               |                         |            |           |
| ES1530625-001       | AST2                                                   | EK071G: Reactive Phosphorus as P      | 14265-44-2 | 0.5 mg/L      | 99.7                    | 70         | 130       |
| P005: Total Organ   | nic Carbon (TOC) (QCLot: 212045)                       |                                       |            |               |                         |            |           |
|                     | Anonymous                                              | EP005: Total Organic Carbon           |            | 100 mg/L      | 96.3                    | 70         | 130       |
|                     | · ·····································                | Li 000. Total Organic Oarbori         |            |               | 33.3                    | . •        | .00       |

Page : 14 of 14

Work Order : ES1530625 Amendment 4

Client PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                                             |                       |            | Ma            | trix Spike (MS) Repor | t          |           |
|----------------------|---------------------------------------------|-----------------------|------------|---------------|-----------------------|------------|-----------|
|                      |                                             |                       |            | Spike         | SpikeRecovery(%)      | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                            | Method: Compound      | CAS Number | Concentration | MS                    | Low        | High      |
| EP033: C1 - C4 Hyd   | drocarbon Gases (QCLot: 209191) - continued |                       |            |               |                       |            |           |
| ES1530609-001        | Anonymous                                   | EP033: Butane         | 106-97-8   | 102.18 μg/L   | 86.6                  | 70         | 130       |
|                      |                                             | EP033: Butene         | 25167-67-3 | 99.61 μg/L    | 81.4                  | 70         | 130       |
|                      |                                             | EP033: Ethane         | 74-84-0    | 54.43 μg/L    | 93.6                  | 70         | 130       |
|                      |                                             | EP033: Ethene         | 74-85-1    | 50.29 μg/L    | 93.4                  | 70         | 130       |
|                      |                                             | EP033: Methane        | 74-82-8    | 28.48 μg/L    | 102                   | 70         | 130       |
|                      |                                             | EP033: Propane        | 74-98-6    | 78.28 μg/L    | 92.2                  | 70         | 130       |
|                      |                                             | EP033: Propene        | 115-07-1   | 73.97 µg/L    | 85.3                  | 70         | 130       |
| EP262: Ethanolami    | ines (QCLot: 208936)                        |                       |            |               |                       |            |           |
| ES1530625-001        | AST2                                        | EP262: Diethanolamine | 111-42-2   | 10 μg/L       | 116                   | 50         | 130       |
|                      |                                             | EP262: Ethanolamine   | 141-43-5   | 10 μg/L       | 71.4                  | 50         | 130       |



## QA/QC Compliance Assessment for DQO Reporting

Work Order : **ES1530625** Page : 1 of 12

Amendment : 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523A
 Date Samples Received
 : 09-Sep-2015

 Site
 :--- Issue Date
 : 15-Oct-2015

Sampler : --- No. of samples received : 10
Order number : --- No. of samples analysed : 10

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

## **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

## **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 12

Work Order : ES1530625 Amendment 4

Client PARSONS BRINCKERHOFF AUST P/L

Project · 2268523A

### **Outliers: Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: WATER

| Compound Group Name                | Laboratory Sample ID | Client Sample ID | Analyte   | CAS Number | Data   | Limits  | Comment                               |
|------------------------------------|----------------------|------------------|-----------|------------|--------|---------|---------------------------------------|
| Matrix Spike (MS) Recoveries       |                      |                  |           |            |        |         |                                       |
| EG020F: Dissolved Metals by ICP-MS | ES1530609008         | Anonymous        | Manganese | 7439-96-5  | 66.8 % | 70-130% | Recovery less than lower data quality |
|                                    |                      |                  |           |            |        |         | objective                             |

### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type | Co | ount    | Rate   | e (%)    | Quality Control Specification                    |
|-----------------------------|----|---------|--------|----------|--------------------------------------------------|
| Method                      | QC | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP) |    |         |        |          |                                                  |
| PAH/Phenols (GC/MS - SIM)   | 0  | 10      | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction | 0  | 13      | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH Volatiles/BTEX          | 0  | 5       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Volatile Organic Compounds  | 0  | 5       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Matrix Spikes (MS)          |    |         |        |          |                                                  |
| PAH/Phenols (GC/MS - SIM)   | 0  | 10      | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction | 0  | 13      | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH Volatiles/BTEX          | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Volatile Organic Compounds  | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

#### Matrix: WATER

Evaluation: x = Holding time breach; ✓ = Within holding time.

| Matila. Water                            |             |                |                        | Lvaluation | i. • – Holding time | breach, • - with | ir nording time |
|------------------------------------------|-------------|----------------|------------------------|------------|---------------------|------------------|-----------------|
| Method                                   | Sample Date | Ex             | traction / Preparation |            | Analysis            |                  |                 |
| Container / Client Sample ID(s)          |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis | Evaluation      |
| EA005: pH                                |             |                |                        |            |                     |                  |                 |
| Clear Plastic Bottle - Natural (EA005)   |             |                |                        |            |                     |                  |                 |
| AST2, WK11,                              | 09-Sep-2015 |                |                        |            | 09-Sep-2015         | 09-Sep-2015      | ✓               |
| WK12, WK13,                              |             |                |                        |            |                     |                  |                 |
| WK14                                     |             |                |                        |            |                     |                  |                 |
| EA010P: Conductivity by PC Titrator      |             |                |                        |            |                     |                  |                 |
| Clear Plastic Bottle - Natural (EA010-P) |             |                |                        |            |                     |                  |                 |
| WK11, WK12,                              | 09-Sep-2015 |                |                        |            | 09-Sep-2015         | 07-Oct-2015      | ✓               |
| WK13, WK14                               |             |                |                        |            |                     |                  |                 |

Page : 3 of 12

Work Order : ES1530625 Amendment 4

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                                    |                      |             |                |                         | Evaluation | i: x = Holding time | breach ; ✓ = Withi | n holding time |  |
|----------------------------------------------------------------------------------|----------------------|-------------|----------------|-------------------------|------------|---------------------|--------------------|----------------|--|
| Method                                                                           |                      | Sample Date | Ex             | ktraction / Preparation |            | Analysis            |                    |                |  |
| Container / Client Sample ID(s)                                                  |                      |             | Date extracted | Due for extraction      | Evaluation | Date analysed       | Due for analysis   | Evaluation     |  |
| EA015: Total Dissolved Solids                                                    |                      |             |                |                         |            |                     |                    |                |  |
| Clear Plastic Bottle - Natural (EA015H) AST2, WK12, WK14                         | WK11,<br>WK13,       | 09-Sep-2015 |                |                         |            | 10-Sep-2015         | 16-Sep-2015        | ✓              |  |
| EA025: Suspended Solids                                                          |                      |             |                |                         |            |                     |                    |                |  |
| Clear Plastic Bottle - Natural (EA025H) AST2, WK12, WK14                         | WK11,<br>WK13,       | 09-Sep-2015 |                |                         |            | 10-Sep-2015         | 16-Sep-2015        | ✓              |  |
| ED009: Anions                                                                    |                      |             |                |                         |            |                     |                    |                |  |
| Clear Plastic Bottle - Natural (ED009-X) AST2, WK12, WK14                        | WK11,<br>WK13,       | 09-Sep-2015 |                |                         |            | 10-Sep-2015         | 07-Oct-2015        | ✓              |  |
| ED037P: Alkalinity by PC Titrator                                                |                      |             |                |                         |            |                     |                    |                |  |
| Clear Plastic Bottle - Natural (ED037-P) AST2, WK12, WK14                        | WK11,<br>WK13,       | 09-Sep-2015 |                |                         |            | 09-Sep-2015         | 23-Sep-2015        | ✓              |  |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA                                  |                      |             |                |                         |            |                     |                    |                |  |
| Clear Plastic Bottle - Natural (ED041G) AST2, WK12, WK14                         | WK11,<br>WK13,       | 09-Sep-2015 |                |                         |            | 09-Sep-2015         | 07-Oct-2015        | <b>✓</b>       |  |
| ED045G: Chloride by Discrete Analyser                                            |                      |             |                |                         |            |                     |                    |                |  |
| Clear Plastic Bottle - Natural (ED045G) AST2, WK12, WK14                         | WK11,<br>WK13,       | 09-Sep-2015 |                |                         |            | 09-Sep-2015         | 07-Oct-2015        | ✓              |  |
| ED093F: Dissolved Major Cations                                                  |                      |             |                |                         |            |                     |                    |                |  |
| Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) AST2, WK12, WK14           | WK11,<br>WK13,       | 09-Sep-2015 |                |                         |            | 11-Sep-2015         | 07-Oct-2015        | ✓              |  |
| EG020F: Dissolved Metals by ICP-MS                                               |                      |             |                |                         |            |                     |                    |                |  |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F<br>AST2,<br>WK12,<br>WK14 | T)<br>WK11,<br>WK13, | 09-Sep-2015 |                |                         |            | 11-Sep-2015         | 07-Mar-2016        | ✓              |  |

Page : 4 of 12

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                                   |                       |             |                |                        | Evaluation | n: × = Holding time | breach ; ✓ = Withi | n holding time |
|---------------------------------------------------------------------------------|-----------------------|-------------|----------------|------------------------|------------|---------------------|--------------------|----------------|
| Method                                                                          |                       | Sample Date | Ex             | traction / Preparation |            |                     | Analysis           |                |
| Container / Client Sample ID(s)                                                 |                       |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation     |
| EG020F: Dissolved Metals by ICP-MS                                              |                       |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-AST2,<br>WK12,<br>WK14     | -F)<br>WK11,<br>WK13, | 09-Sep-2015 |                |                        |            | 11-Sep-2015         | 07-Mar-2016        | ✓              |
| EG035F: Dissolved Mercury by FIMS                                               |                       |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)<br>AST2,<br>WK12,<br>WK14 | WK11,<br>WK13,        | 09-Sep-2015 |                |                        |            | 14-Sep-2015         | 07-Oct-2015        | ✓              |
| EG052G: Silica by Discrete Analyser                                             |                       |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EG052G) AST2, WK12, WK14                        | WK11,<br>WK13,        | 09-Sep-2015 |                |                        |            | 09-Sep-2015         | 07-Oct-2015        | ✓              |
| EK010/011: Chlorine                                                             |                       |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EK010) AST2, WK12, WK14                         | WK11,<br>WK13,        | 09-Sep-2015 |                |                        |            | 09-Sep-2015         | 09-Sep-2015        | ✓              |
| EK040P: Fluoride by PC Titrator                                                 |                       |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EK040P)<br>AST2,<br>WK12,<br>WK14               | WK11,<br>WK13,        | 09-Sep-2015 |                |                        |            | 09-Sep-2015         | 07-Oct-2015        | ✓              |
| EK055G: Ammonia as N by Discrete Analyser                                       |                       |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK055G) AST2, WK12, WK14                  | WK11,<br>WK13,        | 09-Sep-2015 |                |                        |            | 10-Sep-2015         | 07-Oct-2015        | ✓              |
| EK057G: Nitrite as N by Discrete Analyser                                       |                       |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EK057G) AST2, WK12, WK14                        | WK11,<br>WK13,        | 09-Sep-2015 |                |                        |            | 09-Sep-2015         | 11-Sep-2015        | ✓              |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discre                               | ete Analyser          |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK059G) AST2, WK12, WK14                  | WK11,<br>WK13,        | 09-Sep-2015 |                |                        |            | 10-Sep-2015         | 07-Oct-2015        | ✓              |

Page : 5 of 12

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                          |                                                                                                               |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|
| Method                                                                 |                                                                                                               | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                |
| Container / Client Sample ID(s)                                        |                                                                                                               |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser                   |                                                                                                               |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK061G) AST2, WK12, WK14         | WK11,<br>WK13,                                                                                                | 09-Sep-2015 | 10-Sep-2015    | 07-Oct-2015            | ✓          | 10-Sep-2015        | 07-Oct-2015        | ✓              |
| EK067G: Total Phosphorus as P by Discrete Analyser                     |                                                                                                               |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK067G) AST2, WK12, WK14         | WK11,<br>WK13,                                                                                                | 09-Sep-2015 | 10-Sep-2015    | 07-Oct-2015            | ✓          | 10-Sep-2015        | 07-Oct-2015        | ✓              |
| EK071G: Reactive Phosphorus as P by discrete analyse                   | r de la companya de |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (EK071G) AST2, WK12, WK14               | WK11,<br>WK13,                                                                                                | 09-Sep-2015 |                |                        |            | 09-Sep-2015        | 11-Sep-2015        | ✓              |
| EP005: Total Organic Carbon (TOC)                                      |                                                                                                               |             |                |                        |            |                    |                    |                |
| Amber TOC Vial - Sulfuric Acid (EP005) AST2, WK12, WK14                | WK11,<br>WK13,                                                                                                | 09-Sep-2015 |                |                        |            | 12-Sep-2015        | 07-Oct-2015        | ✓              |
| EP020: Oil and Grease (O&G)                                            |                                                                                                               |             |                |                        |            |                    |                    |                |
| Amber Jar - Sulfuric Acid or Sodium Bisulfate (EP020) AST2, WK12, WK14 | WK11,<br>WK13,                                                                                                | 09-Sep-2015 |                |                        |            | 14-Sep-2015        | 07-Oct-2015        | ✓              |
| EP033: C1 - C4 Hydrocarbon Gases                                       |                                                                                                               |             |                |                        |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP033) AST2, WK12, WK14              | WK11,<br>WK13,                                                                                                | 09-Sep-2015 |                |                        |            | 10-Sep-2015        | 23-Sep-2015        | ✓              |
| EP080/071: Total Petroleum Hydrocarbons                                |                                                                                                               |             |                |                        |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP071) AST2, WK12, WK14              | WK11,<br>WK13,                                                                                                | 09-Sep-2015 | 14-Sep-2015    | 16-Sep-2015            | ✓          | 14-Sep-2015        | 24-Oct-2015        | ✓              |

Page : 6 of 12

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                    |                |             |                |                        | Evaluation | n: × = Holding time | breach ; ✓ = Withi | n holding tim |
|------------------------------------------------------------------|----------------|-------------|----------------|------------------------|------------|---------------------|--------------------|---------------|
| Method                                                           |                | Sample Date | Ex             | traction / Preparation |            |                     | Analysis           |               |
| Container / Client Sample ID(s)                                  |                |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation    |
| EP074A: Monocyclic Aromatic Hydrocarbons                         |                |             |                |                        |            |                     |                    |               |
| Amber VOC Vial - Sulfuric Acid (EP074) AST2, WK12, WK14          | WK11,<br>WK13, | 09-Sep-2015 | 14-Sep-2015    | 23-Sep-2015            | ✓          | 14-Sep-2015         | 23-Sep-2015        | ✓             |
| Amber VOC Vial - Sulfuric Acid (EP074) AST2, WK12, WK14          | WK11,<br>WK13, | 09-Sep-2015 | 22-Sep-2015    | 23-Sep-2015            | ✓          | 22-Sep-2015         | 23-Sep-2015        | ✓             |
| EP075(SIM)T: PAH Surrogates                                      |                |             |                |                        |            |                     |                    |               |
| Amber Glass Bottle - Unpreserved (EP075(SIM)) AST2, WK12, WK14   | WK11,<br>WK13, | 09-Sep-2015 | 14-Sep-2015    | 16-Sep-2015            | ✓          | 14-Sep-2015         | 24-Oct-2015        | ✓             |
| EP080S: TPH(V)/BTEX Surrogates                                   |                |             |                |                        |            |                     |                    |               |
| Amber VOC Vial - Sulfuric Acid (EP080) AST2, WK12, WK14          | WK11,<br>WK13, | 09-Sep-2015 | 14-Sep-2015    | 23-Sep-2015            | 1          | 14-Sep-2015         | 23-Sep-2015        | ✓             |
| Amber VOC Vial - Sulfuric Acid (EP080)<br>AST2,<br>WK12,<br>WK14 | WK11,<br>WK13, | 09-Sep-2015 | 21-Sep-2015    | 23-Sep-2015            | ✓          | 21-Sep-2015         | 23-Sep-2015        | <b>✓</b>      |
| EP262: Ethanolamines                                             |                |             |                |                        |            |                     |                    | <u> </u>      |
| Amber Glass Bottle - Unpreserved (EP262) AST2, WK12, WK14        | WK11,<br>WK13, | 09-Sep-2015 |                |                        |            | 10-Sep-2015         | 16-Sep-2015        | ✓             |

Page : 7 of 12

Work Order ES1530625 Amendment 4

Client PARSONS BRINCKERHOFF AUST P/L

2268523A Project



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                                          |            |    |         | Evaluation | n: × = Quality Co | ntrol frequency | not within specification ; ✓ = Quality Control frequency within specification |
|--------------------------------------------------------|------------|----|---------|------------|-------------------|-----------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type                            |            | Сс | ount    |            | Rate (%)          |                 | Quality Control Specification                                                 |
| Analytical Methods                                     | Method     | QC | Reaular | Actual     | Expected          | Evaluation      |                                                                               |
| Laboratory Duplicates (DUP)                            |            |    |         |            |                   |                 |                                                                               |
| Alkalinity by PC Titrator                              | ED037-P    | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Ammonia as N by Discrete analyser                      | EK055G     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| C1 - C4 Gases                                          | EP033      | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Chloride by Discrete Analyser                          | ED045G     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Chlorine                                               | EK010      | 1  | 5       | 20.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Conductivity by PC Titrator                            | EA010-P    | 2  | 18      | 11.11      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Mercury by FIMS                              | EG035F     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 9       | 11.11      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 2  | 5       | 40.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 5       | 20.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Fluoride by PC Titrator                                | EK040P     | 2  | 17      | 11.76      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Major Cations - Dissolved                              | ED093F     | 2  | 14      | 14.29      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite as N by Discrete Analyser                      | EK057G     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0  | 10      | 0.00       | 10.00             | æ               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| рН                                                     | EA005      | 1  | 8       | 12.50      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 2  | 11      | 18.18      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 2  | 7       | 28.57      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Suspended Solids (High Level)                          | EA025H     | 2  | 20      | 10.00      | 9.52              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Dissolved Solids (High Level)                    | EA015H     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Organic Carbon                                   | EP005      | 2  | 17      | 11.76      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH - Semivolatile Fraction                            | EP071      | 0  | 13      | 0.00       | 10.00             | 3¢              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX                                     | EP080      | 0  | 5       | 0.00       | 10.00             | æ               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Volatile Organic Compounds                             | EP074      | 0  | 5       | 0.00       | 10.00             | se              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Laboratory Control Samples (LCS)                       |            |    |         |            |                   |                 |                                                                               |
| Alkalinity by PC Titrator                              | ED037-P    | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 20      | 5.00       | 5.00              | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| C1 - C4 Gases                                          | EP033      | 1  | 20      | 5.00       | 5.00              | <u>√</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Chloride by Discrete Analyser                          | ED045G     | 2  | 20      | 10.00      | 10.00             | <b>√</b>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Conductivity by PC Titrator                            | EA010-P    | 1  | 18      | 5.56       | 5.00              | <u>√</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 20      | 5.00       | 5.00              | <u>√</u>        | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 9       | 11.11      | 5.00              |                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |

Page : 8 of 12

Work Order : ES1530625 Amendment 4

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                          |            |    |         |        |          |            |                                                  |  |  |  |  |  |
|--------------------------------------------------------|------------|----|---------|--------|----------|------------|--------------------------------------------------|--|--|--|--|--|
| Quality Control Sample Type                            |            | Co | ount    |        | Rate (%) |            | Quality Control Specification                    |  |  |  |  |  |
| Analytical Methods                                     | Method     | OC | Regular | Actual | Expected | Evaluation |                                                  |  |  |  |  |  |
| Laboratory Control Samples (LCS) - Continued           |            |    |         |        |          |            |                                                  |  |  |  |  |  |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Fluoride by PC Titrator                                | EK040P     | 1  | 17      | 5.88   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Major Cations - Dissolved                              | ED093F     | 1  | 14      | 7.14   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Oil and Grease                                         | EP020      | 1  | 10      | 10.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 10      | 10.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 11      | 9.09   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 7       | 14.29  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Suspended Solids (High Level)                          | EA025H     | 2  | 20      | 10.00  | 9.52     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Total Dissolved Solids (High Level)                    | EA015H     | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 3  | 20      | 15.00  | 15.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Total Organic Carbon                                   | EP005      | 2  | 17      | 11.76  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 3  | 20      | 15.00  | 15.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 13      | 7.69   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Volatile Organic Compounds                             | EP074      | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Method Blanks (MB)                                     |            |    |         |        |          |            |                                                  |  |  |  |  |  |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| C1 - C4 Gases                                          | EP033      | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Chlorine                                               | EK010      | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Conductivity by PC Titrator                            | EA010-P    | 1  | 18      | 5.56   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 9       | 11.11  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Fluoride by PC Titrator                                | EK040P     | 1  | 17      | 5.88   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Major Cations - Dissolved                              | ED093F     | 1  | 14      | 7.14   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Oil and Grease                                         | EP020      | 1  | 10      | 10.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 10      | 10.00  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 11      | 9.09   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 7       | 14.29  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |  |  |  |

Page : 9 of 12

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                          |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification ; ✓ = Quality Control frequency within specification |
|--------------------------------------------------------|------------|----|---------|-----------|-------------------|-----------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type                            |            | C  | ount    |           | Rate (%)          |                 | Quality Control Specification                                                 |
| Analytical Methods                                     | Method     | QC | Reaular | Actual    | Expected          | Evaluation      |                                                                               |
| Method Blanks (MB) - Continued                         |            |    |         |           |                   |                 |                                                                               |
| Suspended Solids (High Level)                          | EA025H     | 1  | 20      | 5.00      | 4.76              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Dissolved Solids (High Level)                    | EA015H     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Organic Carbon                                   | EP005      | 1  | 17      | 5.88      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 13      | 7.69      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 5       | 20.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Volatile Organic Compounds                             | EP074      | 1  | 5       | 20.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Matrix Spikes (MS)                                     |            |    |         |           |                   |                 |                                                                               |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 20      | 5.00      | 5.00              | 1               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| C1 - C4 Gases                                          | EP033      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 9       | 11.11     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 5       | 20.00     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Fluoride by PC Titrator                                | EK040P     | 1  | 17      | 5.88      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0  | 10      | 0.00      | 5.00              | æ               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 7       | 14.29     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Organic Carbon                                   | EP005      | 1  | 17      | 5.88      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH - Semivolatile Fraction                            | EP071      | 0  | 13      | 0.00      | 5.00              | x               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX                                     | EP080      | 0  | 5       | 0.00      | 5.00              | 3c              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Volatile Organic Compounds                             | EP074      | 0  | 5       | 0.00      | 5.00              | 3c              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |

Page : 10 of 12

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                     | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рН                                                     | EA005    | WATER  | In house: Referenced to APHA 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH meter. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                            |
| Conductivity by PC Titrator                            | EA010-P  | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                         |
| Total Dissolved Solids (High Level)                    | EA015H   | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |
| Suspended Solids (High Level)                          | EA025H   | WATER  | In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of 'non-filterable' residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (2013) Schedule B(3)                                 |
| Standard Anions -by IC (Extended Method)               | ED009-X  | WATER  | In house: Referenced to APHA 4110. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                    |
| Alkalinity by PC Titrator                              | ED037-P  | WATER  | In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                       |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G   | WATER  | In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)                                       |
| Chloride by Discrete Analyser                          | ED045G   | WATER  | In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003                                                                                                  |
| Major Cations - Dissolved                              | ED093F   | WATER  | In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3)  Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3)  Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F | WATER  | Schedule B(3)  In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                         |

Page : 11 of 12

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L



| Analytical Methods                                      | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Metals by ICP-MS - Suite B                    | EG020B-F   | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                                                                                                        |
| Dissolved Mercury by FIMS                               | EG035F     | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) |
| Silica (Reactive) by Discrete Analyser                  | EG052G     | WATER  | In house: Referenced to APHA 4500-SiO2 D: Under Acdic conditions reactive silicon combines with ammonium molybdate to form a yellow molybdosilicic acid complex. This is reduced by 1-amino-2-naphthol-4-sulfonic acid to a silicomolybdenum blue complex which is measured by discrete analyser at 670 nm. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                           |
| Chlorine                                                | EK010      | WATER  | In-house (DPD colourimetry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fluoride by PC Titrator                                 | EK040P     | WATER  | In house: Referenced to APHA 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                               |
| Ammonia as N by Discrete analyser                       | EK055G     | WATER  | In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ammonium as N                                           | EK055G-NH4 | WATER  | Ammonium in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH and Temperature. Ammonia is determined by direct colorimetry by Discrete Analyser according to APHA 4500-NH3 G. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                  |
| Nitrite as N by Discrete Analyser                       | EK057G     | WATER  | In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nitrate as N by Discrete Analyser                       | EK058G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                          |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser     | EK059G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                      |
| Total Kjeldahl Nitrogen as N By Discrete<br>Analyser    | EK061G     | WATER  | In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                           |
| Total Nitrogen as N (TKN + Nox) By<br>Discrete Analyser | EK062G     | WATER  | In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total Phosphorus as P By Discrete<br>Analyser           | EK067G     | WATER  | In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |

Page : 12 of 12

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L



| Analytical Methods                               | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reactive Phosphorus as P-By Discrete<br>Analyser | EK071G      | WATER  | In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                      |
| Ionic Balance by PCT DA and Turbi SO4<br>DA      | EN055 - PG  | WATER  | In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                        |
| Total Organic Carbon                             | EP005       | WATER  | In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                     |
| Oil and Grease                                   | EP020       | WATER  | In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM (2013) Schedule B(3)                                                                             |
| C1 - C4 Gases                                    | EP033       | WATER  | Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, US EPA - Region 1, EPA New England, July 2001. Automated static headspace, dual column GC/FID. A 12 mL sample is pipetted into a 20 mL headspace vial containing 3g of sodium chloride and sealed. Each sample is equilibrated with shaking at 40 degrees C for 10 minutes prior to analysis by GC/FID using a pair of PLOT columns of different polarity. |
| TRH - Semivolatile Fraction                      | EP071       | WATER  | USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                                                 |
| Volatile Organic Compounds                       | EP074       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                          |
| PAH/Phenols (GC/MS - SIM)                        | EP075(SIM)  | WATER  | USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                     |
| TRH Volatiles/BTEX                               | EP080       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                           |
| Ethanolamines by LCMSMS                          | EP262       | WATER  | In-house LC-MSMS: Benzoyl derivatives of target compounds are analysed by LC/MSMS in ESI Positive Mode.                                                                                                                                                                                                                                                                                                                                            |
| Preparation Methods                              | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TKN/TP Digestion                                 | EK061/EK067 | WATER  | APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                       |



## **QUALITY CONTROL REPORT**

**Work Order** : **ES1531965** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ---Date Samples Received: 23-Sep-2015C-O-C number: 23-Sep-2015Date Analysis Commenced: 23-Sep-2015

Sampler : CAROLINA SARDELLA Issue Date : 24-Sep-2015

Site : --- No. of samples received : 5
Quote number : --- No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

NATA Accredited

Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

SYDNEY NSW. AUSTRALIA 2001

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Pabi Subba Senior Organic Chemist Sydney Organics

Page : 2 of 4
Work Order : ES1531965

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

Page : 3 of 4
Work Order : ES1531965

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## ALS

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER             |                           |                                         |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |  |  |  |
|-------------------------------|---------------------------|-----------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|--|--|--|
| Laboratory sample ID          | Client sample ID          | Method: Compound                        | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |  |
| <b>EA010P: Conductivit</b>    | y by PC Titrator (QC Lot: |                                         |            |                                   |       |                 |                  |         |                     |  |  |  |
| EW1511842-003                 | Anonymous                 | EA010-P: Electrical Conductivity @ 25°C |            | 1                                 | μS/cm | 63              | 62               | 0.00    | 0% - 20%            |  |  |  |
| ES1531962-001                 | Anonymous                 | EA010-P: Electrical Conductivity @ 25°C |            | 1                                 | μS/cm | 925             | 921              | 0.439   | 0% - 20%            |  |  |  |
| EK084: Un-ionized H           | ydrogen Sulfide (QC Lot:  | 224008)                                 |            |                                   |       |                 |                  |         |                     |  |  |  |
| ES1531965-001                 | AST2                      | EK084: Unionized Hydrogen Sulfide       |            | 0.1                               | mg/L  | <0.1            | <0.1             | 0.00    | 0% - 20%            |  |  |  |
| EP080: BTEXN (QC Lot: 223097) |                           |                                         |            |                                   |       |                 |                  |         |                     |  |  |  |
| ES1531965-001                 | AST2                      | EP080: Benzene                          | 71-43-2    | 1                                 | μg/L  | <1              | <1               | 0.00    | No Limit            |  |  |  |
|                               |                           | EP080: Ethylbenzene                     | 100-41-4   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |  |
|                               |                           | EP080: meta- & para-Xylene              | 108-38-3   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |  |
|                               |                           |                                         | 106-42-3   |                                   |       |                 |                  |         |                     |  |  |  |
|                               |                           | EP080: ortho-Xylene                     | 95-47-6    | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |  |
|                               |                           | EP080: Toluene                          | 108-88-3   | 2                                 | μg/L  | <2              | <2               | 0.00    | No Limit            |  |  |  |
|                               |                           | EP080: Naphthalene                      | 91-20-3    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit            |  |  |  |

Page : 4 of 4 Work Order : ES1531965

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |            |     |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |
|-----------------------------------------------------|------------|-----|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|
|                                                     |            |     |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound                                    | CAS Number | LOR | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |  |
| EA010P: Conductivity by PC Titrator (QCLot: 223161) |            |     |       |                   |                                       |                    |          |            |  |  |
| EA010-P: Electrical Conductivity @ 25°C             |            | 1   | μS/cm | <1                | 2000 μS/cm                            | 102                | 95       | 113        |  |  |
| EK084: Un-ionized Hydrogen Sulfide (QCLot: 224008)  |            |     |       |                   |                                       |                    |          |            |  |  |
| EK084: Unionized Hydrogen Sulfide                   |            | 0.1 | mg/L  | <0.1              | 0.05 mg/L                             | 98.4               | 72       | 126        |  |  |
| EP080: BTEXN (QCLot: 223097)                        |            |     |       |                   |                                       |                    |          |            |  |  |
| EP080: Benzene                                      | 71-43-2    | 1   | μg/L  | <1                | 10 μg/L                               | 94.0               | 70       | 124        |  |  |
| EP080: Ethylbenzene                                 | 100-41-4   | 2   | μg/L  | <2                | 10 μg/L                               | 89.3               | 70       | 120        |  |  |
| EP080: meta- & para-Xylene                          | 108-38-3   | 2   | μg/L  | <2                | 10 μg/L                               | 88.2               | 69       | 121        |  |  |
|                                                     | 106-42-3   |     |       |                   |                                       |                    |          |            |  |  |
| EP080: Naphthalene                                  | 91-20-3    | 5   | μg/L  | <5                | 10 μg/L                               | 91.8               | 70       | 124        |  |  |
| EP080: ortho-Xylene                                 | 95-47-6    | 2   | μg/L  | <2                | 10 μg/L                               | 84.8               | 72       | 122        |  |  |
| EP080: Toluene                                      | 108-88-3   | 2   | μg/L  | <2                | 10 μg/L                               | 89.0               | 65       | 129        |  |  |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER            |                  |                            |            | Matrix Spike (MS) Report |                  |            |           |
|------------------------------|------------------|----------------------------|------------|--------------------------|------------------|------------|-----------|
|                              |                  |                            |            | Spike                    | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID         | Client sample ID | Method: Compound           | CAS Number | Concentration            | MS               | Low        | High      |
| EP080: BTEXN (QCLot: 223097) |                  |                            |            |                          |                  |            |           |
| ES1531965-001                | AST2             | EP080: Benzene             | 71-43-2    | 25 μg/L                  | 80.2             | 70         | 130       |
|                              |                  | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L                  | 100              | 70         | 130       |
|                              |                  | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L                  | 102              | 70         | 130       |
|                              |                  |                            | 106-42-3   |                          |                  |            |           |
|                              |                  | EP080: Naphthalene         | 91-20-3    | 25 μg/L                  | 96.0             | 70         | 130       |
|                              |                  | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L                  | 93.8             | 70         | 130       |
|                              |                  | EP080: Toluene             | 108-88-3   | 25 μg/L                  | 98.0             | 70         | 130       |



# **QA/QC Compliance Assessment for DQO Reporting**

Work Order : **ES1531965** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 23-Sep-2015

 Site
 :-- Issue Date
 : 24-Sep-2015

Sampler : CAROLINA SARDELLA No. of samples received : 5
Order number : ---- No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 Work Order ES1531965

PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type      | Co | ount    | Rate   | e (%)    | Quality Control Specification                    |
|----------------------------------|----|---------|--------|----------|--------------------------------------------------|
| Method                           | QC | Regular | Actual | Expected |                                                  |
| Laboratory Duplicates (DUP)      |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 10.00    | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| _aboratory Control Samples (LCS) |    |         |        |          |                                                  |
| Jn-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)               |    |         |        |          |                                                  |
| Un-ionized Hydrogen Sulfide      | 0  | 5       | 0.00   | 5.00     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

#### **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER | Evaluation | : × = Holding time breach ; ✓ = | <ul> <li>Within holding time</li> </ul> |
|---------------|------------|---------------------------------|-----------------------------------------|
|               |            |                                 |                                         |

| Maura. WATER                                     |       |             |                |                        | Evaluation | i. 🗸 – Holding time | : Dieacii, 🔻 – Willi | in notaling time |
|--------------------------------------------------|-------|-------------|----------------|------------------------|------------|---------------------|----------------------|------------------|
| Method                                           |       | Sample Date | E              | traction / Preparation |            |                     | Analysis             |                  |
| Container / Client Sample ID(s)                  |       |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis     | Evaluation       |
| EA010P: Conductivity by PC Titrator              |       |             |                |                        |            |                     |                      |                  |
| Clear Plastic Bottle - Natural (EA010-P)<br>AST2 |       | 23-Sep-2015 |                |                        |            | 23-Sep-2015         | 21-Oct-2015          | <b>✓</b>         |
| EP080: BTEXN                                     |       |             |                |                        |            |                     |                      |                  |
| Amber VOC Vial - Sulfuric Acid (EP080)           |       |             |                |                        |            |                     |                      |                  |
| AST2,                                            | WK11, | 23-Sep-2015 | 23-Sep-2015    | 07-Oct-2015            | 1          | 23-Sep-2015         | 07-Oct-2015          | ✓                |
| WK13,                                            | WK14, |             |                |                        |            |                     |                      |                  |
| QA13                                             |       |             |                |                        |            |                     |                      |                  |

Page : 3 of 4 Work Order ES1531965

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                    |         |    |         | Evaluation | n: 🗴 = Quality Co | ntrol frequency i | not within specification; ✓ = Quality Control frequency within specification. |
|----------------------------------|---------|----|---------|------------|-------------------|-------------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type      |         | Co | ount    |            | Rate (%)          |                   | Quality Control Specification                                                 |
| Analytical Methods               | Method  | OC | Reaular | Actual     | Expected          | Evaluation        |                                                                               |
| Laboratory Duplicates (DUP)      |         |    |         |            |                   |                   |                                                                               |
| Conductivity by PC Titrator      | EA010-P | 2  | 13      | 15.38      | 10.00             | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX               | EP080   | 1  | 10      | 10.00      | 10.00             | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00       | 10.00             | se                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Laboratory Control Samples (LCS) |         |    |         |            |                   |                   |                                                                               |
| Conductivity by PC Titrator      | EA010-P | 1  | 13      | 7.69       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX               | EP080   | 1  | 10      | 10.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00       | 5.00              | se                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Method Blanks (MB)               |         |    |         |            |                   |                   |                                                                               |
| Conductivity by PC Titrator      | EA010-P | 1  | 13      | 7.69       | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| TRH Volatiles/BTEX               | EP080   | 1  | 10      | 10.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Un-ionized Hydrogen Sulfide      | EK084   | 0  | 5       | 0.00       | 5.00              | 3£                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |
| Matrix Spikes (MS)               |         |    |         |            |                   |                   |                                                                               |
| TRH Volatiles/BTEX               | EP080   | 1  | 10      | 10.00      | 5.00              | ✓                 | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                              |

Page : 4 of 4 Work Order : ES1531965

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods          | Method  | Matrix | Method Descriptions                                                                                                                                                                                                      |
|-----------------------------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivity by PC Titrator | EA010-P | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                    |
| Un-ionized Hydrogen Sulfide | EK084   | WATER  | In house: Referenced to APHA 4500-S2- H. Sulfide in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH. This method is compliant with NEPM (2013) Schedule B(3)    |
| TRH Volatiles/BTEX          | EP080   | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and                                                                                                                          |
|                             |         |        | quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is |
|                             |         |        | compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                          |



## **QUALITY CONTROL REPORT**

E-mail

· ES1532002 Work Order Page : 1 of 18

: 2 Amendment

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : GPO BOX 5394

SYDNEY NSW, AUSTRALIA 2001 E-mail

: SDaykin@pb.com.au : loren.schiavon@alsglobal.com Telephone : +61 02 92725100 Telephone : +61 2 8784 8503 Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523A QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Date Samples Received Order number : 23-Sep-2015 **Date Analysis Commenced** : 23-Sep-2015 C-O-C number Issue Date · 09-Oct-2015 Sampler

No. of samples received : 5 Site Quote number No. of samples analysed : 5 : ----

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Page : 2 of 18

Work Order : ES1532002 Amendment 2

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

NATA Accredited

Laboratory 825

Accredited for compliance with ISO/IEC 17025.

# = Indicates failed QC



Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories        | Position                      | Accreditation Category |
|--------------------|-------------------------------|------------------------|
| Alison Graham      | Supervisor - Inorganic        | Newcastle - Inorganics |
| Ankit Joshi        | Inorganic Chemist             | Sydney Inorganics      |
| Ashesh Patel       | Inorganic Chemist             | Sydney Inorganics      |
| Celine Conceicao   | Senior Spectroscopist         | Sydney Inorganics      |
| Lana Nguyen        | Senior LCMS Chemist           | Sydney Organics        |
| Phalak Inthakesone | Laboratory Manager - Organics | Sydney Organics        |
| Shobhna Chandra    | Metals Coordinator            | Sydney Inorganics      |

Page : 3 of 18

Work Order : ES1532002 Amendment 2

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A

# ALS

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| Sub-Matrix: WATER    |                         |                                          |             | Laboratory Duplicate (DUP) Report |         |                 |                  |         |                     |  |
|----------------------|-------------------------|------------------------------------------|-------------|-----------------------------------|---------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID | Client sample ID        | Method: Compound                         | CAS Number  | LOR                               | Unit    | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EA005: pH (QC Lo     | t: 224833)              |                                          |             |                                   |         |                 |                  |         |                     |  |
| ES1532026-001        | Anonymous               | EA005: pH Value                          |             | 0.01                              | pH Unit | 7.37            | 7.34             | 0.408   | 0% - 20%            |  |
| ES1532008-003        | Anonymous               | EA005: pH Value                          |             | 0.01                              | pH Unit | 7.30            | 7.33             | 0.410   | 0% - 20%            |  |
| EA010P: Conducti     | vity by PC Titrator (QC | Lot: 225797)                             |             |                                   |         |                 |                  |         |                     |  |
| ES1531980-001        | Anonymous               | EA010-P: Electrical Conductivity @ 25°C  |             | 1                                 | μS/cm   | 2140            | 2150             | 0.478   | 0% - 20%            |  |
| ES1531935-004        | Anonymous               | EA010-P: Electrical Conductivity @ 25°C  |             | 1                                 | μS/cm   | 185             | 182              | 1.65    | 0% - 20%            |  |
| EA015: Total Disso   | olved Solids (QC Lot: 2 | 25427)                                   |             |                                   |         |                 |                  |         |                     |  |
| ES1531955-001        | Anonymous               | EA015H: Total Dissolved Solids @180°C    |             | 10                                | mg/L    | 134             | 147              | 9.27    | 0% - 50%            |  |
| ES1531956-001        | Anonymous               | EA015H: Total Dissolved Solids @180°C    |             | 10                                | mg/L    | 1430            | 1380             | 3.69    | 0% - 20%            |  |
| EA025: Suspended     | Solids (QC Lot: 22542   | (8)                                      |             |                                   |         |                 |                  |         |                     |  |
| ES1531955-001        | Anonymous               | EA025H: Suspended Solids (SS)            |             | 5                                 | mg/L    | <5              | <5               | 0.00    | No Limit            |  |
| ES1531956-001        | Anonymous               | EA025H: Suspended Solids (SS)            |             | 5                                 | mg/L    | 12              | 15               | 18.2    | No Limit            |  |
| ED009: Anions (C     | C Lot: 223259)          |                                          |             |                                   |         |                 |                  |         |                     |  |
| EP1514101-001        | Anonymous               | ED009-X: Chloride                        | 16887-00-6  | 0.1                               | mg/L    | 9.00            | 8.75             | 2.78    | No Limit            |  |
| ES1531880-001        | Anonymous               | ED009-X: Chloride                        | 16887-00-6  | 0.1                               | mg/L    | 22.4            | 22.3             | 0.345   | 0% - 20%            |  |
| ED037P: Alkalinity   | by PC Titrator (QC Lot  | : 225798)                                |             |                                   |         |                 |                  |         |                     |  |
| ES1532002-001        | AST2                    | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1                                 | mg/L    | 2850            | 2880             | 0.873   | 0% - 20%            |  |
|                      |                         | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1                                 | mg/L    | 1250            | 1200             | 4.08    | 0% - 20%            |  |
|                      |                         | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1                                 | mg/L    | <1              | <1               | 0.00    | No Limit            |  |
|                      |                         | ED037-P: Total Alkalinity as CaCO3       |             | 1                                 | mg/L    | 4100            | 4080             | 0.612   | 0% - 20%            |  |
| ES1531935-004        | Anonymous               | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1                                 | mg/L    | 64              | 63               | 0.00    | 0% - 20%            |  |
|                      |                         | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1                                 | mg/L    | <1              | <1               | 0.00    | No Limit            |  |
|                      |                         | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1                                 | mg/L    | <1              | <1               | 0.00    | No Limit            |  |
|                      |                         | ED037-P: Total Alkalinity as CaCO3       |             | 1                                 | mg/L    | 64              | 63               | 0.00    | 0% - 20%            |  |
| ED041G: Sulfate (1   | urbidimetric) as SO4 2- | by DA (QC Lot: 223166)                   |             |                                   |         |                 |                  |         |                     |  |
| ES1531935-001        | Anonymous               | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1                                 | mg/L    | 268             | 260              | 2.82    | 0% - 20%            |  |
| ES1532008-002        | Anonymous               | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1                                 | mg/L    | 6               | 6                | 0.00    | No Limit            |  |
| ED045G: Chloride     | by Discrete Analyser(   | QC Lot: 223167)                          |             |                                   |         |                 |                  |         |                     |  |
| ES1531962-001        | Anonymous               | ED045G: Chloride                         | 16887-00-6  | 1                                 | mg/L    | 76              | 76               | 0.00    | 0% - 20%            |  |
| ES1531935-001        | Anonymous               | ED045G: Chloride                         | 16887-00-6  | 1                                 | mg/L    | 182             | 182              | 0.00    | 0% - 20%            |  |
| ED093F: Dissolved    | Major Cations (QC Lo    | t: 226314)                               |             |                                   |         |                 |                  |         |                     |  |
| ES1531907-001        | Anonymous               | ED093F: Calcium                          | 7440-70-2   | 1                                 | mg/L    | 8               | 8                | 0.00    | No Limit            |  |
|                      |                         | ED093F: Magnesium                        | 7439-95-4   | 1                                 | mg/L    | 6               | 6                | 0.00    | No Limit            |  |
|                      |                         | ED093F: Potassium                        | 7440-09-7   | 1                                 | mg/L    | 2               | 2                | 0.00    | No Limit            |  |
|                      |                         | ED093F: Sodium                           | 7440-23-5   | 1                                 | mg/L    | 15              | 15               | 0.00    | 0% - 50%            |  |

Page : 4 of 18

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                      |            | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |  |
|----------------------|-----------------------|----------------------|------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID | Client sample ID      | Method: Compound     | CAS Number | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| ED093F: Dissolved I  | Major Cations (QC Lot |                      |            |                                   |      |                 |                  |         |                     |  |
| ES1531875-001        | Anonymous             | ED093F: Calcium      | 7440-70-2  | 1                                 | mg/L | 2               | 2                | 0.00    | No Limit            |  |
|                      |                       | ED093F: Magnesium    | 7439-95-4  | 1                                 | mg/L | <1              | <1               | 0.00    | No Limit            |  |
|                      |                       | ED093F: Potassium    | 7440-09-7  | 1                                 | mg/L | 3               | 3                | 0.00    | No Limit            |  |
|                      |                       | ED093F: Sodium       | 7440-23-5  | 1                                 | mg/L | 339             | 336              | 0.965   | 0% - 20%            |  |
| EG020F: Dissolved I  | Metals by ICP-MS (QC  | Lot: 226315)         |            |                                   |      |                 |                  |         |                     |  |
| ES1532002-005        | QA13                  | EG020B-F: Strontium  | 7440-24-6  | 0.001                             | mg/L | 6.95            | 6.85             | 1.45    | 0% - 20%            |  |
|                      |                       | EG020B-F: Uranium    | 7440-61-1  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
| ES1531875-001        | Anonymous             | EG020B-F: Strontium  | 7440-24-6  | 0.001                             | mg/L | 0.030           | 0.029            | 0.00    | 0% - 20%            |  |
|                      |                       | EG020B-F: Uranium    | 7440-61-1  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
| EG020F: Dissolved I  | Metals by ICP-MS (QC  |                      |            |                                   |      |                 |                  |         |                     |  |
| ES1531907-001        | Anonymous             | EG020A-F: Cadmium    | 7440-43-9  | 0.0001                            | mg/L | <0.0001         | <0.0001          | 0.00    | No Limit            |  |
| 201001007 001        | 7 thonymous           | EG020A-F: Antimony   | 7440-36-0  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Antimony   | 7440-38-2  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Barium     | 7440-39-3  | 0.001                             | mg/L | 0.067           | 0.067            | 0.00    | 0% - 20%            |  |
|                      |                       | EG020A-F: Beryllium  | 7440-41-7  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Chromium   | 7440-47-3  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Cobalt     | 7440-48-4  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Copper     | 7440-50-8  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Lead       | 7439-92-1  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Manganese  | 7439-96-5  | 0.001                             | mg/L | 0.558           | 0.552            | 1.00    | 0% - 20%            |  |
|                      |                       | EG020A-F: Molybdenum | 7439-98-7  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Nickel     | 7440-02-0  | 0.001                             | mg/L | 0.001           | 0.001            | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Tin        | 7440-31-5  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Zinc       | 7440-66-6  | 0.005                             | mg/L | <0.005          | <0.005           | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Aluminium  | 7429-90-5  | 0.01                              | mg/L | <0.01           | <0.01            | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Selenium   | 7782-49-2  | 0.01                              | mg/L | <0.01           | <0.01            | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Vanadium   | 7440-62-2  | 0.01                              | mg/L | <0.01           | <0.01            | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Boron      | 7440-42-8  | 0.05                              | mg/L | <0.05           | <0.05            | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Iron       | 7439-89-6  | 0.05                              | mg/L | 12.0            | 12.1             | 1.12    | 0% - 20%            |  |
|                      |                       | EG020A-F: Bromine    | 7726-95-6  | 0.1                               | mg/L | <0.1            | <0.1             | 0.00    | No Limit            |  |
| ES1531875-001        | Anonymous             | EG020A-F: Cadmium    | 7440-43-9  | 0.0001                            | mg/L | <0.0001         | <0.0001          | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Antimony   | 7440-36-0  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Arsenic    | 7440-38-2  | 0.001                             | mg/L | 0.003           | 0.002            | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Barium     | 7440-39-3  | 0.001                             | mg/L | 0.018           | 0.018            | 0.00    | 0% - 50%            |  |
|                      |                       | EG020A-F: Beryllium  | 7440-41-7  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Chromium   | 7440-47-3  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Cobalt     | 7440-48-4  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Copper     | 7440-50-8  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Lead       | 7439-92-1  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |
|                      |                       | EG020A-F: Manganese  | 7439-96-5  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |  |

Page : 5 of 18

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                          |                                      |            |        |              | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|--------------------------|--------------------------------------|------------|--------|--------------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID         | Method: Compound                     | CAS Number | LOR    | Unit         | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EG020F: Dissolved    | Metals by ICP-MS (QC I   | Lot: 226317) - continued             |            |        |              |                 |                        |         |                     |
| ES1531875-001        | Anonymous                | EG020A-F: Molybdenum                 | 7439-98-7  | 0.001  | mg/L         | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                          | EG020A-F: Nickel                     | 7440-02-0  | 0.001  | mg/L         | 0.004           | 0.004                  | 0.00    | No Limit            |
|                      |                          | EG020A-F: Tin                        | 7440-31-5  | 0.001  | mg/L         | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                          | EG020A-F: Zinc                       | 7440-66-6  | 0.005  | mg/L         | <0.005          | 0.005                  | 0.00    | No Limit            |
|                      |                          | EG020A-F: Aluminium                  | 7429-90-5  | 0.01   | mg/L         | 0.06            | 0.06                   | 0.00    | No Limit            |
|                      |                          | EG020A-F: Selenium                   | 7782-49-2  | 0.01   | mg/L         | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                          | EG020A-F: Vanadium                   | 7440-62-2  | 0.01   | mg/L         | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                          | EG020A-F: Boron                      | 7440-42-8  | 0.05   | mg/L         | 0.21            | 0.21                   | 0.00    | No Limit            |
|                      |                          | EG020A-F: Iron                       | 7439-89-6  | 0.05   | mg/L         | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                          | EG020A-F: Bromine                    | 7726-95-6  | 0.1    | mg/L         | 0.2             | 0.2                    | 0.00    | No Limit            |
| EG035F: Dissolved    | Mercury by FIMS (QC L    | ot: 226316)                          |            |        |              |                 |                        |         |                     |
| ES1531877-001        | Anonymous                | EG035F: Mercury                      | 7439-97-6  | 0.0001 | mg/L         | <0.0001         | <0.0001                | 0.00    | No Limit            |
| ES1532002-005        | QA13                     | EG035F: Mercury                      | 7439-97-6  | 0.0001 | mg/L         | <0.0001         | <0.0001                | 0.00    | No Limit            |
| EG052G: Silica by D  | Discrete Analyser (QC L  | ot: 223170)                          |            |        |              |                 |                        |         |                     |
| ES1532008-002        | Anonymous                | EG052G: Reactive Silica              |            | 0.05   | mg/L         | 3.66            | 3.66                   | 0.00    | 0% - 20%            |
| EK010/011: Chlorine  | e (QC Lot: 223119)       |                                      |            |        |              |                 |                        |         |                     |
| ES1532002-001        | AST2                     | EK010: Chlorine - Free               |            | 0.2    | mg/L         | <0.2            | <0.2                   | 0.00    | No Limit            |
| 201002002 001        | 7.012                    | EK010: Chlorine - Total Residual     |            | 0.2    | mg/L         | <0.2            | <0.2                   | 0.00    | No Limit            |
| EK040B: Elucrido by  | y PC Titrator (QC Lot: 2 |                                      |            | 0.2    | 9.2          | U.2             | V.=                    | 0.00    | 110 2               |
| ES1531352-001        | Anonymous                |                                      | 16984-48-8 | 0.1    | ma/l         | 0.5             | 0.5                    | 0.00    | No Limit            |
| ES1531935-001        | Anonymous                | EK040P: Fluoride                     | 16984-48-8 | 0.1    | mg/L<br>mg/L | <0.1            | <0.1                   | 0.00    | No Limit            |
|                      | ,                        | EK040P: Fluoride                     | 10904-40-0 | 0.1    | IIIg/L       | <0.1            | <0.1                   | 0.00    | NO LITTIL           |
|                      | as N by Discrete Analys  |                                      |            |        |              |                 |                        |         | 20/ 200/            |
| ES1532002-005        | QA13                     | EK055G: Ammonia as N                 | 7664-41-7  | 0.01   | mg/L         | 4.85            | 4.87                   | 0.414   | 0% - 20%            |
| ES1531880-001        | Anonymous                | EK055G: Ammonia as N                 | 7664-41-7  | 0.01   | mg/L         | 0.02            | 0.02                   | 0.00    | No Limit            |
|                      | N by Discrete Analyser   | (QC Lot: 223168)                     |            |        |              |                 |                        |         |                     |
| ES1531935-001        | Anonymous                | EK057G: Nitrite as N                 | 14797-65-0 | 0.01   | mg/L         | <0.01           | <0.01                  | 0.00    | No Limit            |
| ES1532008-002        | Anonymous                | EK057G: Nitrite as N                 | 14797-65-0 | 0.01   | mg/L         | <0.01           | <0.01                  | 0.00    | No Limit            |
| EK059G: Nitrite plu  | s Nitrate as N (NOx) by  | Discrete Analyser (QC Lot: 223309)   |            |        |              |                 |                        |         |                     |
| ES1532002-002        | WK11                     | EK059G: Nitrite + Nitrate as N       |            | 0.01   | mg/L         | 0.01            | 0.02                   | 0.00    | No Limit            |
| ES1531880-001        | Anonymous                | EK059G: Nitrite + Nitrate as N       |            | 0.01   | mg/L         | 0.05            | 0.02                   | 59.4    | No Limit            |
| EK061G: Total Kjeld  | lahl Nitrogen By Discret | te Analyser (QC Lot: 223293)         |            |        |              |                 |                        |         |                     |
| ES1531570-008        | Anonymous                | EK061G: Total Kjeldahl Nitrogen as N |            | 0.1    | mg/L         | 2.0             | 2.0                    | 0.00    | 0% - 20%            |
| ES1531921-004        | Anonymous                | EK061G: Total Kjeldahl Nitrogen as N |            | 0.1    | mg/L         | 24.8            | 24.7                   | 0.00    | 0% - 20%            |
| EK061G: Total Kield  | lahl Nitrogen By Discret | te Analyser (QC Lot: 223296)         |            |        |              | <u> </u>        |                        |         |                     |
| EW1511842-003        | Anonymous                | EK061G: Total Kjeldahl Nitrogen as N |            | 0.1    | mg/L         | <0.1            | <0.1                   | 0.00    | No Limit            |
| ES1532002-005        | QA13                     | EK061G: Total Kjeldahl Nitrogen as N |            | 0.1    | mg/L         | 5.8             | 5.8                    | 0.00    | 0% - 20%            |
|                      |                          | e Analyser (QC Lot: 223294)          |            |        |              | 3.0             |                        | 2.00    | 2.2 20,0            |
| ES1531570-008        | Anonymous                |                                      |            | 0.01   | mg/l         | 0.06            | 0.06                   | 0.00    | No Limit            |
| L31331370-000        | Anonymous                | EK067G: Total Phosphorus as P        |            | 0.01   | mg/L         | 0.06            | 0.00                   | 0.00    | INO LIITIIL         |

Page : 6 of 18

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                        |                                            |            |      |      | Laboratory      | Laboratory Duplicate (DUP) Report |         |                     |  |
|----------------------|------------------------|--------------------------------------------|------------|------|------|-----------------|-----------------------------------|---------|---------------------|--|
| Laboratory sample ID | Client sample ID       | Method: Compound                           | CAS Number | LOR  | Unit | Original Result | Duplicate Result                  | RPD (%) | Recovery Limits (%) |  |
| EK067G: Total Pho    | sphorus as P by Discr  | rete Analyser (QC Lot: 223294) - continued |            |      |      |                 |                                   |         |                     |  |
| ES1531921-004        | Anonymous              | EK067G: Total Phosphorus as P              |            | 0.01 | mg/L | 68.7            | 71.6                              | 4.18    | 0% - 20%            |  |
| EK067G: Total Pho    | sphorus as P by Discr  | rete Analyser (QC Lot: 223295)             |            |      |      |                 |                                   |         |                     |  |
| EW1511842-003        | Anonymous              | EK067G: Total Phosphorus as P              |            | 0.01 | mg/L | <0.01           | <0.01                             | 0.00    | No Limit            |  |
| ES1532002-005        | QA13                   | EK067G: Total Phosphorus as P              |            | 0.01 | mg/L | 1.39            | 1.40                              | 1.12    | 0% - 20%            |  |
| EK071G: Reactive     | Phosphorus as P by d   | iscrete analyser (QC Lot: 223165)          |            |      |      |                 |                                   |         |                     |  |
| ES1531935-001        | Anonymous              | EK071G: Reactive Phosphorus as P           | 14265-44-2 | 0.01 | mg/L | <0.01           | <0.01                             | 0.00    | No Limit            |  |
| ES1532008-002        | Anonymous              | EK071G: Reactive Phosphorus as P           | 14265-44-2 | 0.01 | mg/L | <0.01           | <0.01                             | 0.00    | No Limit            |  |
| EP033: C1 - C4 Hy    | drocarbon Gases (QC    | Lot: 225763)                               |            |      |      |                 |                                   |         |                     |  |
| EM1514747-001        | Anonymous              | EP033: Butane                              | 106-97-8   | 10   | μg/L | <10             | <10                               | 0.00    | No Limit            |  |
|                      |                        | EP033: Butene                              | 25167-67-3 | 10   | μg/L | <10             | <10                               | 0.00    | No Limit            |  |
|                      |                        | EP033: Ethane                              | 74-84-0    | 10   | μg/L | <10             | <10                               | 0.00    | No Limit            |  |
|                      |                        | EP033: Ethene                              | 74-85-1    | 10   | μg/L | <10             | <10                               | 0.00    | No Limit            |  |
|                      |                        | EP033: Methane                             | 74-82-8    | 10   | μg/L | <10             | <10                               | 0.00    | No Limit            |  |
|                      |                        | EP033: Propane                             | 74-98-6    | 10   | μg/L | <10             | <10                               | 0.00    | No Limit            |  |
|                      |                        | EP033: Propene                             | 115-07-1   | 10   | μg/L | <10             | <10                               | 0.00    | No Limit            |  |
| S1531999-004         | Anonymous              | EP033: Butane                              | 106-97-8   | 10   | μg/L | <10             | <10                               | 0.00    | No Limit            |  |
|                      |                        | EP033: Butene                              | 25167-67-3 | 10   | μg/L | <10             | <10                               | 0.00    | No Limit            |  |
|                      |                        | EP033: Ethane                              | 74-84-0    | 10   | μg/L | <10             | <10                               | 0.00    | No Limit            |  |
|                      |                        | EP033: Ethene                              | 74-85-1    | 10   | μg/L | <10             | <10                               | 0.00    | No Limit            |  |
|                      |                        | EP033: Methane                             | 74-82-8    | 10   | μg/L | <10             | <10                               | 0.00    | No Limit            |  |
|                      |                        | EP033: Propane                             | 74-98-6    | 10   | μg/L | <10             | <10                               | 0.00    | No Limit            |  |
|                      |                        | EP033: Propene                             | 115-07-1   | 10   | μg/L | <10             | <10                               | 0.00    | No Limit            |  |
| P074A: Monocyc       | lic Aromatic Hydrocark | oons (QC Lot: 226812)                      |            |      |      |                 |                                   |         |                     |  |
| S1531576-006         | Anonymous              | EP074: 1.2.4-Trimethylbenzene              | 95-63-6    | 5    | μg/L | <5              | <5                                | 0.00    | No Limit            |  |
|                      |                        | EP074: 1.3.5-Trimethylbenzene              | 108-67-8   | 5    | μg/L | <5              | <5                                | 0.00    | No Limit            |  |
|                      |                        | EP074: Isopropylbenzene                    | 98-82-8    | 5    | μg/L | <5              | <5                                | 0.00    | No Limit            |  |
|                      |                        | EP074: n-Butylbenzene                      | 104-51-8   | 5    | μg/L | <5              | <5                                | 0.00    | No Limit            |  |
|                      |                        | EP074: n-Propylbenzene                     | 103-65-1   | 5    | μg/L | <5              | <5                                | 0.00    | No Limit            |  |
|                      |                        | EP074: p-lsopropyltoluene                  | 99-87-6    | 5    | μg/L | <5              | <5                                | 0.00    | No Limit            |  |
|                      |                        | EP074: sec-Butylbenzene                    | 135-98-8   | 5    | μg/L | <5              | <5                                | 0.00    | No Limit            |  |
|                      |                        | EP074: Styrene                             | 100-42-5   | 5    | μg/L | <5              | <5                                | 0.00    | No Limit            |  |
|                      |                        | EP074: tert-Butylbenzene                   | 98-06-6    | 5    | μg/L | <5              | <5                                | 0.00    | No Limit            |  |
| S1532002-003         | WK13                   | EP074: 1.2.4-Trimethylbenzene              | 95-63-6    | 5    | μg/L | <5              | <5                                | 0.00    | No Limit            |  |
|                      |                        | EP074: 1.3.5-Trimethylbenzene              | 108-67-8   | 5    | μg/L | <5              | <5                                | 0.00    | No Limit            |  |
|                      |                        | EP074: Isopropylbenzene                    | 98-82-8    | 5    | μg/L | <5              | <5                                | 0.00    | No Limit            |  |
|                      |                        | EP074: n-Butylbenzene                      | 104-51-8   | 5    | μg/L | <5              | <5                                | 0.00    | No Limit            |  |
|                      |                        | EP074: n-Propylbenzene                     | 103-65-1   | 5    | μg/L | <5              | <5                                | 0.00    | No Limit            |  |
|                      |                        | EP074: p-Isopropyltoluene                  | 99-87-6    | 5    | μg/L | <5              | <5                                | 0.00    | No Limit            |  |
|                      |                        | EP074: sec-Butylbenzene                    | 135-98-8   | 5    | μg/L | <5              | <5                                | 0.00    | No Limit            |  |

Page : 7 of 18

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                                    |                        |        |      | Laboratory      | Duplicate (DUP) Report | •       |                      |
|----------------------|-----------------------|------------------------------------|------------------------|--------|------|-----------------|------------------------|---------|----------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                   | CAS Number             | LOR    | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%)  |
| EP074A: Monocycli    | c Aromatic Hydrocarbo | ons (QC Lot: 226812) - continued   |                        |        |      |                 |                        |         |                      |
| ES1532002-003        | WK13                  | EP074: Styrene                     | 100-42-5               | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
|                      |                       | EP074: tert-Butylbenzene           | 98-06-6                | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
| EP074B: Oxygenate    | ed Compounds (QC Lo   | t: 226812)                         |                        |        |      |                 |                        |         |                      |
| ES1531576-006        | Anonymous             | EP074: 2-Butanone (MEK)            | 78-93-3                | 50     | μg/L | <50             | <50                    | 0.00    | No Limit             |
|                      |                       | EP074: 2-Hexanone (MBK)            | 591-78-6               | 50     | μg/L | <50             | <50                    | 0.00    | No Limit             |
|                      |                       | EP074: 4-Methyl-2-pentanone (MIBK) | 108-10-1               | 50     | μg/L | <50             | <50                    | 0.00    | No Limit             |
|                      |                       | EP074: Vinyl Acetate               | 108-05-4               | 50     | μg/L | <50             | <50                    | 0.00    | No Limit             |
| ES1532002-003        | WK13                  | EP074: 2-Butanone (MEK)            | 78-93-3                | 50     | μg/L | <50             | <50                    | 0.00    | No Limit             |
|                      |                       | EP074: 2-Hexanone (MBK)            | 591-78-6               | 50     | μg/L | <50             | <50                    | 0.00    | No Limit             |
|                      |                       | EP074: 4-Methyl-2-pentanone (MIBK) | 108-10-1               | 50     | μg/L | <50             | <50                    | 0.00    | No Limit             |
|                      |                       | EP074: Vinyl Acetate               | 108-05-4               | 50     | μg/L | <50             | <50                    | 0.00    | No Limit             |
| EP074C: Sulfonated   | Compounds (QC Lot     |                                    |                        |        |      |                 |                        |         |                      |
| ES1531576-006        | Anonymous             | EP074: Carbon disulfide            | 75-15-0                | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
| ES1532002-003        | WK13                  | EP074: Carbon disulfide            | 75-15-0                | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
| EP074D: Fumigants    | -                     | El 074. Carbon distinde            | 10.00                  |        | P9   |                 |                        | 0.00    | 110 2                |
| ES1531576-006        |                       | 50074 4 0 Bill (500)               | 106-93-4               | _      | //   | <5              | <5                     | 0.00    | No Limit             |
| ES 133 1376-006      | Anonymous             | EP074: 1.2-Dibromoethane (EDB)     | 78-87-5                | 5      | μg/L | <5<br><5        | <5<br><5               | 0.00    | No Limit             |
|                      |                       | EP074: 1.2-Dichloropropane         |                        | 5<br>5 | μg/L | <5<br><5        | <5<br><5               |         | No Limit             |
|                      |                       | EP074: 2.2-Dichloropropane         | 594-20-7               |        | μg/L |                 | <5<br><5               | 0.00    |                      |
|                      |                       | EP074: cis-1.3-Dichloropropylene   | 10061-01-5             | 5      | μg/L | <5              | -                      | 0.00    | No Limit             |
| ES1532002-003        | WK13                  | EP074: trans-1.3-Dichloropropylene | 10061-02-6<br>106-93-4 | 5      | μg/L | <5<br><5        | <5<br><5               | 0.00    | No Limit<br>No Limit |
| ES 1532002-003       | VVK13                 | EP074: 1.2-Dibromoethane (EDB)     |                        |        | μg/L | <5<br><5        | <5<br><5               |         |                      |
|                      |                       | EP074: 1.2-Dichloropropane         | 78-87-5                | 5      | μg/L |                 | -                      | 0.00    | No Limit             |
|                      |                       | EP074: 2.2-Dichloropropane         | 594-20-7               | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
|                      |                       | EP074: cis-1.3-Dichloropropylene   | 10061-01-5             | 5      | μg/L | <5<br><5        | <5<br><5               | 0.00    | No Limit             |
|                      |                       | EP074: trans-1.3-Dichloropropylene | 10061-02-6             | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
|                      | ed Aliphatic Compound | ds (QC Lot: 226812)                |                        |        |      |                 |                        |         |                      |
| ES1531576-006        | Anonymous             | EP074: 1.1.1.2-Tetrachloroethane   | 630-20-6               | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
|                      |                       | EP074: 1.1.1-Trichloroethane       | 71-55-6                | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
|                      |                       | EP074: 1.1.2.2-Tetrachloroethane   | 79-34-5                | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
|                      |                       | EP074: 1.1.2-Trichloroethane       | 79-00-5                | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
|                      |                       | EP074: 1.1-Dichloroethane          | 75-34-3                | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
|                      |                       | EP074: 1.1-Dichloroethene          | 75-35-4                | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
|                      |                       | EP074: 1.1-Dichloropropylene       | 563-58-6               | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
|                      |                       | EP074: 1.2.3-Trichloropropane      | 96-18-4                | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
|                      |                       | EP074: 1.2-Dibromo-3-chloropropane | 96-12-8                | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
|                      |                       | EP074: 1.2-Dichloroethane          | 107-06-2               | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
|                      |                       | EP074: 1.3-Dichloropropane         | 142-28-9               | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
|                      |                       | EP074: Carbon Tetrachloride        | 56-23-5                | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |
|                      |                       | EP074: cis-1.2-Dichloroethene      | 156-59-2               | 5      | μg/L | <5              | <5                     | 0.00    | No Limit             |

Page : 8 of 18

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                                    |            |     |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|-----------------------|------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                   | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074E: Halogenate   | ed Aliphatic Compound | ds (QC Lot: 226812) - continued    |            |     |      |                 |                        |         |                     |
| ES1531576-006        | Anonymous             | EP074: cis-1.4-Dichloro-2-butene   | 1476-11-5  | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromomethane              | 74-95-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Hexachlorobutadiene         | 87-68-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Iodomethane                 | 74-88-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Pentachloroethane           | 76-01-7    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Tetrachloroethene           | 127-18-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.2-Dichloroethene    | 156-60-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Trichloroethene             | 79-01-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromomethane                | 74-83-9    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloroethane                | 75-00-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloromethane               | 74-87-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Dichlorodifluoromethane     | 75-71-8    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Trichlorofluoromethane      | 75-69-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Vinyl chloride              | 75-01-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| ES1532002-003        | WK13                  | EP074: 1.1.1.2-Tetrachloroethane   | 630-20-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.1-Trichloroethane       | 71-55-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.2.2-Tetrachloroethane   | 79-34-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.2-Trichloroethane       | 79-00-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloroethane          | 75-34-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloroethene          | 75-35-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloropropylene       | 563-58-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2.3-Trichloropropane      | 96-18-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dibromo-3-chloropropane | 96-12-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichloroethane          | 107-06-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.3-Dichloropropane         | 142-28-9   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Carbon Tetrachloride        | 56-23-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.2-Dichloroethene      | 156-59-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.4-Dichloro-2-butene   | 1476-11-5  | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromomethane              | 74-95-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Hexachlorobutadiene         | 87-68-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: lodomethane                 | 74-88-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Pentachloroethane           | 76-01-7    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Tetrachloroethene           | 127-18-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.2-Dichloroethene    | 156-60-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Trichloroethene             | 79-01-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromomethane                | 74-83-9    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloroethane                | 75-00-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloromethane               | 74-87-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |

Page : 9 of 18

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                                           |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                    |  |  |
|----------------------|-----------------------|-------------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|--------------------|--|--|
| Laboratory sample ID | Client sample ID      | Method: Compound                          | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (% |  |  |
| EP074E: Halogenate   | ed Aliphatic Compound | ds (QC Lot: 226812) - continued           |            |                                   |       |                 |                  |         |                    |  |  |
| ES1532002-003        | WK13                  | EP074: Dichlorodifluoromethane            | 75-71-8    | 50                                | μg/L  | <50             | <50              | 0.00    | No Limit           |  |  |
|                      |                       | EP074: Trichlorofluoromethane             | 75-69-4    | 50                                | μg/L  | <50             | <50              | 0.00    | No Limit           |  |  |
|                      |                       | EP074: Vinyl chloride                     | 75-01-4    | 50                                | μg/L  | <50             | <50              | 0.00    | No Limit           |  |  |
| EP074F: Halogenate   | d Aromatic Compound   | ds (QC Lot: 226812)                       |            |                                   |       |                 |                  |         |                    |  |  |
| ES1531576-006        | Anonymous             | EP074: 1.2.3-Trichlorobenzene             | 87-61-6    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: 1.2.4-Trichlorobenzene             | 120-82-1   | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: 1.2-Dichlorobenzene                | 95-50-1    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: 1.3-Dichlorobenzene                | 541-73-1   | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: 1.4-Dichlorobenzene                | 106-46-7   | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: 2-Chlorotoluene                    | 95-49-8    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: 4-Chlorotoluene                    | 106-43-4   | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: Bromobenzene                       | 108-86-1   | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: Chlorobenzene                      | 108-90-7   | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
| ES1532002-003        | WK13                  | EP074: 1.2.3-Trichlorobenzene             | 87-61-6    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: 1.2.4-Trichlorobenzene             | 120-82-1   | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: 1.2-Dichlorobenzene                | 95-50-1    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: 1.3-Dichlorobenzene                | 541-73-1   | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: 1.4-Dichlorobenzene                | 106-46-7   | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: 2-Chlorotoluene                    | 95-49-8    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: 4-Chlorotoluene                    | 106-43-4   | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: Bromobenzene                       | 108-86-1   | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: Chlorobenzene                      | 108-90-7   | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
| EP074G: Trihalomet   | hanes (QC Lot: 22681  | 2)                                        |            |                                   |       |                 |                  |         |                    |  |  |
| ES1531576-006        | Anonymous             | EP074: Bromodichloromethane               | 75-27-4    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      | , , , , , ,           | EP074: Bromoform                          | 75-25-2    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: Chloroform                         | 67-66-3    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: Dibromochloromethane               | 124-48-1   | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
| ES1532002-003        | WK13                  | EP074: Bromodichloromethane               | 75-27-4    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: Bromoform                          | 75-25-2    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: Chloroform                         | 67-66-3    | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
|                      |                       | EP074: Dibromochloromethane               | 124-48-1   | 5                                 | μg/L  | <5              | <5               | 0.00    | No Limit           |  |  |
| P080/071: Total Pe   | troleum Hydrocarbons  |                                           |            |                                   | 10    |                 |                  |         |                    |  |  |
| S1531576-006         | Anonymous             | EP080: C6 - C9 Fraction                   |            | 20                                | μg/L  | <20             | <20              | 0.00    | No Limit           |  |  |
| ES1532002-003        | WK13                  | EP080: C6 - C9 Fraction                   |            | 20                                | μg/L  | 180             | 180              | 0.00    | No Limit           |  |  |
|                      |                       | ns - NEPM 2013 Fractions (QC Lot: 226811) |            |                                   | M9, F | 100             | 100              | 0.00    | TWO Entite         |  |  |
|                      |                       |                                           | 06 040     | 20                                | 110/1 | -20             | <b>~</b> 200     | 0.00    | No Limit           |  |  |
| ES1531576-006        | Anonymous<br>WK13     | EP080: C6 - C10 Fraction                  | C6_C10     | 20                                | μg/L  | <20<br>180      | <20<br>180       | 0.00    | No Limit           |  |  |
| ES1532002-003        |                       | EP080: C6 - C10 Fraction                  | C6_C10     | 20                                | μg/L  | 180             | 180              | 0.00    | No Limit           |  |  |
|                      | es (QC Lot: 223283)   |                                           |            |                                   |       |                 |                  |         |                    |  |  |
| ES1532002-001        | AST2                  | EP262: Diethanolamine                     | 111-42-2   | 1                                 | μg/L  | 36              | 33               | 8.97    | 0% - 20%           |  |  |

Page : 10 of 18

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                              |                     |            |     | Laboratory Duplicate (DUP) Report |                 |                  |         |                     |  |  |  |  |
|----------------------|------------------------------|---------------------|------------|-----|-----------------------------------|-----------------|------------------|---------|---------------------|--|--|--|--|
| Laboratory sample ID | Client sample ID             | Method: Compound    | CAS Number | LOR | Unit                              | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |  |  |
| EP262: Ethanolamine  | es (QC Lot: 223283) - contir | ued                 |            |     |                                   |                 |                  |         |                     |  |  |  |  |
| ES1532002-001        | AST2                         | EP262: Ethanolamine | 141-43-5   | 1   | μg/L                              | 17              | 16               | 0.00    | 0% - 50%            |  |  |  |  |

Page : 11 of 18

Work Order : ES1532002 Amendment 2

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                  |                |        |       | Method Blank (MB) |               | Laboratory Control Spike (LCS) Report |          |            |  |
|----------------------------------------------------|----------------|--------|-------|-------------------|---------------|---------------------------------------|----------|------------|--|
|                                                    |                |        |       | Report            | Spike         | Spike Recovery (%)                    | Recovery | Limits (%) |  |
| Method: Compound                                   | CAS Number     | LOR    | Unit  | Result            | Concentration | LCS                                   | Low      | High       |  |
| EA010P: Conductivity by PC Titrator (QCLot: 22579  | 97)            |        |       |                   |               |                                       |          |            |  |
| EA010-P: Electrical Conductivity @ 25°C            |                | 1      | μS/cm | <1                | 2000 μS/cm    | 100                                   | 95       | 113        |  |
| EA015: Total Dissolved Solids (QCLot: 225427)      |                |        |       |                   |               |                                       |          |            |  |
| EA015H: Total Dissolved Solids @180°C              |                | 10     | mg/L  | <10               | 2000 mg/L     | 94.3                                  | 87       | 109        |  |
|                                                    |                |        |       | <10               | 293 mg/L      | 116                                   | 66       | 126        |  |
| EA025: Suspended Solids (QCLot: 225428)            |                |        |       |                   |               |                                       |          |            |  |
| EA025H: Suspended Solids (SS)                      |                | 5      | mg/L  | <5                | 150 mg/L      | 117                                   | 83       | 129        |  |
|                                                    |                |        |       | <5                | 1000 mg/L     | 99.8                                  | 84       | 110        |  |
| ED009: Anions (QCLot: 223259)                      |                |        |       |                   |               |                                       |          |            |  |
| ED009-X: Chloride                                  | 16887-00-6     | 0.1    | mg/L  | <0.100            | 2 mg/L        | 102                                   | 89       | 107        |  |
| ED037P: Alkalinity by PC Titrator (QCLot: 225798)  |                |        |       |                   |               |                                       |          |            |  |
| ED037-P: Total Alkalinity as CaCO3                 |                |        | mg/L  |                   | 200 mg/L      | 91.9                                  | 81       | 111        |  |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (0 | QCLot: 223166) |        |       |                   |               |                                       |          |            |  |
| ED041G: Sulfate as SO4 - Turbidimetric             | 14808-79-8     | 1      | mg/L  | <1                | 25 mg/L       | 107                                   | 86       | 122        |  |
| ED045G: Chloride by Discrete Analyser (QCLot: 22   | 3167)          |        |       |                   |               |                                       |          |            |  |
| ED045G: Chloride                                   | 16887-00-6     | 1      | mg/L  | <1                | 10 mg/L       | 112                                   | 75       | 123        |  |
|                                                    |                |        |       | <1                | 1000 mg/L     | 104                                   | 77       | 119        |  |
| ED093F: Dissolved Major Cations (QCLot: 226314)    |                |        |       |                   |               |                                       |          |            |  |
| ED093F: Calcium                                    | 7440-70-2      | 1      | mg/L  | <1                | 50 mg/L       | 94.6                                  | 90       | 114        |  |
| ED093F: Magnesium                                  | 7439-95-4      | 1      | mg/L  | <1                | 50 mg/L       | 102                                   | 90       | 110        |  |
| ED093F: Potassium                                  | 7440-09-7      | 1      | mg/L  | <1                | 50 mg/L       | 98.0                                  | 87       | 117        |  |
| ED093F: Sodium                                     | 7440-23-5      | 1      | mg/L  | <1                | 50 mg/L       | 95.8                                  | 82       | 118        |  |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 2263    | (15)           |        |       |                   |               |                                       |          |            |  |
| EG020B-F: Strontium                                | 7440-24-6      | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 88.9                                  | 80       | 112        |  |
| EG020B-F: Uranium                                  | 7440-61-1      | 0.001  | mg/L  | <0.001            |               |                                       |          |            |  |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 2263    | 317)           |        |       |                   |               |                                       |          |            |  |
| EG020A-F: Aluminium                                | 7429-90-5      | 0.01   | mg/L  | <0.01             | 0.5 mg/L      | 94.7                                  | 85       | 115        |  |
| EG020A-F: Antimony                                 | 7440-36-0      | 0.001  | mg/L  | <0.001            | 0.01 mg/L     | 90.6                                  | 85       | 115        |  |
| EG020A-F: Arsenic                                  | 7440-38-2      | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 93.7                                  | 85       | 115        |  |
| EG020A-F: Barium                                   | 7440-39-3      | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 92.4                                  | 85       | 115        |  |
| EG020A-F: Beryllium                                | 7440-41-7      | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 99.3                                  | 85       | 115        |  |
| EG020A-F: Boron                                    | 7440-42-8      | 0.05   | mg/L  | <0.05             | 0.1 mg/L      | 85.6                                  | 85       | 115        |  |
| EG020A-F: Bromine                                  | 7726-95-6      | 0.1    | mg/L  | <0.1              |               |                                       |          |            |  |
| EG020A-F: Cadmium                                  | 7440-43-9      | 0.0001 | mg/L  | <0.0001           | 0.1 mg/L      | 93.6                                  | 85       | 115        |  |

Page : 12 of 18

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                         |                  |        |       | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|-----------------------------------------------------------|------------------|--------|-------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                           |                  |        |       | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                          | CAS Number       | LOR    | Unit  | Result            | Concentration | LCS                           | Low       | High       |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 226317) - c    | ontinued         |        |       |                   |               |                               |           |            |
| EG020A-F: Chromium                                        | 7440-47-3        | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 93.1                          | 85        | 115        |
| EG020A-F: Cobalt                                          | 7440-48-4        | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 90.4                          | 85        | 115        |
| EG020A-F: Copper                                          | 7440-50-8        | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 92.6                          | 85        | 115        |
| EG020A-F: Iron                                            | 7439-89-6        | 0.05   | mg/L  | <0.05             | 0.5 mg/L      | 102                           | 85        | 115        |
| EG020A-F: Lead                                            | 7439-92-1        | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 95.4                          | 85        | 115        |
| EG020A-F: Manganese                                       | 7439-96-5        | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 94.4                          | 85        | 115        |
| EG020A-F: Molybdenum                                      | 7439-98-7        | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 93.6                          | 85        | 115        |
| EG020A-F: Nickel                                          | 7440-02-0        | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 89.3                          | 85        | 115        |
| EG020A-F: Selenium                                        | 7782-49-2        | 0.01   | mg/L  | <0.01             | 0.1 mg/L      | 90.0                          | 85        | 115        |
| EG020A-F: Tin                                             | 7440-31-5        | 0.001  | mg/L  | <0.001            | 0.1 mg/L      | 87.1                          | 85        | 115        |
| EG020A-F: Vanadium                                        | 7440-62-2        | 0.01   | mg/L  | <0.01             | 0.1 mg/L      | 94.6                          | 85        | 115        |
| EG020A-F: Zinc                                            | 7440-66-6        | 0.005  | mg/L  | <0.005            | 0.1 mg/L      | 90.8                          | 85        | 115        |
| EG035F: Dissolved Mercury by FIMS (QCLot: 226316)         |                  |        |       |                   |               |                               |           |            |
| EG035F: Mercury                                           | 7439-97-6        | 0.0001 | mg/L  | <0.0001           | 0.01 mg/L     | 91.0                          | 78        | 114        |
| EG052G: Silica by Discrete Analyser (QCLot: 223170)       |                  |        |       |                   |               |                               |           |            |
| EG052G: Reactive Silica                                   |                  | 0.05   | mg/L  | <0.05             | 5 mg/L        | 105                           | 94        | 114        |
| EK010/011: Chlorine (QCLot: 223119)                       |                  |        |       |                   |               |                               |           |            |
| EK010: Chlorine - Free                                    |                  | 0.2    | mg/L  | <0.2              |               |                               |           |            |
| EK010: Chlorine - Total Residual                          |                  | 0.2    | mg/L  | <0.2              |               |                               |           |            |
| EK040P: Fluoride by PC Titrator (QCLot: 225796)           |                  |        |       |                   |               |                               |           |            |
| EK040P: Fluoride                                          | 16984-48-8       | 0.1    | mg/L  | <0.1              | 5 mg/L        | 81.2                          | 75        | 119        |
| EK055G: Ammonia as N by Discrete Analyser (QCLot: 223     | 2310)            |        |       |                   |               |                               |           |            |
| EK055G: Ammonia as N                                      | 7664-41-7        | 0.01   | mg/L  | <0.01             | 1 mg/L        | 96.3                          | 90        | 114        |
|                                                           |                  | 0.01   | Ing/L | 10.01             | T mg/L        | 30.0                          | 30        | 114        |
| EK057G: Nitrite as N by Discrete Analyser (QCLot: 22316   | 8)<br>14797-65-0 | 0.01   | ma/l  | <0.01             | 0.5 mg/L      | 95.0                          | 82        | 114        |
| EK057G: Nitrite as N                                      |                  |        | mg/L  | <0.01             | 0.5 mg/L      | 95.0                          | 02        | 114        |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analy | ser (QCLot: 22   |        |       |                   |               |                               |           |            |
| EK059G: Nitrite + Nitrate as N                            |                  | 0.01   | mg/L  | <0.01             | 0.5 mg/L      | 94.9                          | 91        | 113        |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser(Qu   | CLot: 223293)    |        |       |                   |               |                               |           |            |
| EK061G: Total Kjeldahl Nitrogen as N                      |                  | 0.1    | mg/L  | <0.1              | 10 mg/L       | 87.4                          | 69        | 101        |
|                                                           |                  |        |       | <0.1              | 1 mg/L        | 99.9                          | 70        | 118        |
|                                                           |                  |        |       | <0.1              | 5 mg/L        | 101                           | 74        | 118        |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser(Q    | CLot: 223296)    |        |       |                   |               |                               |           |            |
| EK061G: Total Kjeldahl Nitrogen as N                      |                  | 0.1    | mg/L  | <0.1              | 10 mg/L       | 88.0                          | 69        | 101        |
|                                                           |                  |        |       | <0.1              | 1 mg/L        | 95.5                          | 70        | 118        |
|                                                           |                  |        |       | <0.1              | 5 mg/L        | 100                           | 74        | 118        |
| EK067G: Total Phosphorus as P by Discrete Analyser (QC    | CLot: 223294)    |        |       |                   |               |                               |           |            |

Page : 13 of 18

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                             |             |          |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|---------------------------------------------------------------|-------------|----------|------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                               |             |          |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound CAS                                          | Number      | LOR      | Unit | Result            | Concentration                         | LCS                | Low      | High       |  |
| EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 22 | 23294) - co | ontinued |      |                   |                                       |                    |          |            |  |
| EK067G: Total Phosphorus as P                                 |             | 0.01     | mg/L | <0.01             | 4.42 mg/L                             | 92.6               | 71       | 101        |  |
| ·                                                             |             |          |      | <0.01             | 0.442 mg/L                            | 97.5               | 72       | 108        |  |
|                                                               |             |          |      | <0.01             | 1 mg/L                                | 106                | 78       | 118        |  |
| EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 22 | 23295)      |          |      |                   |                                       |                    |          |            |  |
| EK067G: Total Phosphorus as P                                 |             | 0.01     | mg/L | <0.01             | 4.42 mg/L                             | 94.2               | 71       | 101        |  |
| ·                                                             |             |          |      | <0.01             | 0.442 mg/L                            | 93.7               | 72       | 108        |  |
|                                                               |             |          |      | <0.01             | 1 mg/L                                | 103                | 78       | 118        |  |
| EK071G: Reactive Phosphorus as P by discrete analyser (QCLot  | : 223165)   |          |      |                   |                                       |                    |          |            |  |
| EK071G: Reactive Phosphorus as P 1426                         | 65-44-2     | 0.01     | mg/L | <0.01             | 0.5 mg/L                              | 102                | 85       | 117        |  |
| EP020: Oil and Grease (O&G) (QCLot: 227406)                   |             |          |      |                   |                                       |                    |          |            |  |
| EP020: Oil & Grease                                           |             | 5        | mg/L | <5                | 5000 mg/L                             | 86.6               | 80       | 120        |  |
| EP033: C1 - C4 Hydrocarbon Gases (QCLot: 225763)              |             |          |      |                   |                                       |                    |          |            |  |
|                                                               | 06-97-8     | 10       | μg/L | <10               | 102.18 µg/L                           | 101                | 85       | 115        |  |
| EP033: Butene 2516                                            | 67-67-3     | 10       | μg/L | <10               | 99.61 μg/L                            | 100                | 83       | 115        |  |
|                                                               | 74-84-0     | 10       | μg/L | <10               | 54.43 μg/L                            | 98.8               | 87       | 111        |  |
| EP033: Ethene                                                 | 74-85-1     | 10       | μg/L | <10               | 50.29 μg/L                            | 98.4               | 87       | 111        |  |
| EP033: Methane                                                | 74-82-8     | 10       | μg/L | <10               | 28.48 μg/L                            | 103                | 86       | 114        |  |
| EP033: Propane                                                | 74-98-6     | 10       | μg/L | <10               | 78.28 μg/L                            | 97.1               | 84       | 112        |  |
| ·                                                             | 15-07-1     | 10       | μg/L | <10               | 73.97 μg/L                            | 97.6               | 85       | 113        |  |
| EP074A: Monocyclic Aromatic Hydrocarbons (QCLot: 226812)      |             |          |      |                   |                                       |                    |          |            |  |
|                                                               | 95-63-6     | 5        | μg/L | <5                | 10 μg/L                               | 91.7               | 71       | 121        |  |
| ·                                                             | 08-67-8     | 5        | μg/L | <5                | 10 μg/L                               | 89.6               | 70       | 122        |  |
| •                                                             | 98-82-8     | 5        | μg/L | <5                | 10 μg/L                               | 93.8               | 75       | 121        |  |
|                                                               | 04-51-8     | 5        | μg/L | <5                | 10 μg/L                               | 90.4               | 62       | 126        |  |
| •                                                             | 03-65-1     | 5        | μg/L | <5                | 10 μg/L                               | 79.9               | 67       | 123        |  |
| EP074: p-Isopropyltoluene                                     | 99-87-6     | 5        | μg/L | <5                | 10 μg/L                               | 89.4               | 67       | 123        |  |
| EP074: sec-Butylbenzene                                       | 35-98-8     | 5        | μg/L | <5                | 10 μg/L                               | 88.1               | 69       | 123        |  |
| EP074: Styrene                                                | 00-42-5     | 5        | μg/L | <5                | 10 μg/L                               | 91.4               | 74       | 118        |  |
| EP074: tert-Butylbenzene                                      | 98-06-6     | 5        | μg/L | <5                | 10 μg/L                               | 91.8               | 70       | 122        |  |
| EP074B: Oxygenated Compounds (QCLot: 226812)                  |             |          |      |                   |                                       |                    |          |            |  |
|                                                               | 78-93-3     | 50       | μg/L | <50               | 100 μg/L                              | 87.8               | 74       | 130        |  |
| ,                                                             | 91-78-6     | 50       | μg/L | <50               | 100 μg/L                              | 98.6               | 65       | 137        |  |
| ` ,                                                           | 08-10-1     | 50       | μg/L | <50               | 100 μg/L                              | 100                | 61       | 139        |  |
|                                                               | 08-05-4     | 50       | μg/L | <50               | 100 μg/L                              | 103                | 61       | 134        |  |
| EP074C: Sulfonated Compounds (QCLot: 226812)                  |             |          |      |                   |                                       |                    |          |            |  |
|                                                               | 75-15-0     | 5        | μg/L | <5                | 10 μg/L                               | 85.2               | 73       | 127        |  |
| EP074D: Fumigants (QCLot: 226812)                             |             |          |      |                   |                                       |                    |          |            |  |
|                                                               | 06-93-4     | 5        | μg/L | <5                | 10 μg/L                               | 95.0               | 69       | 117        |  |
| LI 077. 1.2 DIDIOINOGUIANG (LDD)                              |             |          | r3'- | <u> </u>          |                                       | 55.5               |          | 1          |  |

Page : 14 of 18

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                    |            |     |      | Method Blank (MB) |               | Laboratory Control Spike (LCS) Report |          |            |  |  |
|------------------------------------------------------|------------|-----|------|-------------------|---------------|---------------------------------------|----------|------------|--|--|
|                                                      |            |     |      | Report            | Spike         | Spike Recovery (%)                    | Recovery | Limits (%) |  |  |
| Method: Compound                                     | CAS Number | LOR | Unit | Result            | Concentration | LCS                                   | Low      | High       |  |  |
| EP074D: Fumigants (QCLot: 226812) - continued        |            |     |      |                   |               |                                       |          |            |  |  |
| EP074: 1.2-Dichloropropane                           | 78-87-5    | 5   | μg/L | <5                | 10 μg/L       | 94.6                                  | 76       | 120        |  |  |
| EP074: 2.2-Dichloropropane                           | 594-20-7   | 5   | μg/L | <5                | 10 μg/L       | 89.4                                  | 61       | 119        |  |  |
| EP074: cis-1.3-Dichloropropylene                     | 10061-01-5 | 5   | μg/L | <5                | 10 μg/L       | 83.4                                  | 62       | 120        |  |  |
| EP074: trans-1.3-Dichloropropylene                   | 10061-02-6 | 5   | μg/L | <5                | 10 μg/L       | 85.4                                  | 61       | 119        |  |  |
| EP074E: Halogenated Aliphatic Compounds (QCLot: 2268 | 12)        |     |      |                   |               |                                       |          |            |  |  |
| EP074: 1.1.1.2-Tetrachloroethane                     | 630-20-6   | 5   | μg/L | <5                | 10 μg/L       | 88.0                                  | 66       | 114        |  |  |
| EP074: 1.1.1-Trichloroethane                         | 71-55-6    | 5   | μg/L | <5                | 10 μg/L       | 81.8                                  | 61       | 119        |  |  |
| EP074: 1.1.2.2-Tetrachloroethane                     | 79-34-5    | 5   | μg/L | <5                | 10 μg/L       | 99.4                                  | 70       | 124        |  |  |
| EP074: 1.1.2-Trichloroethane                         | 79-00-5    | 5   | μg/L | <5                | 10 μg/L       | 97.5                                  | 75       | 123        |  |  |
| EP074: 1.1-Dichloroethane                            | 75-34-3    | 5   | μg/L | <5                | 10 μg/L       | 90.1                                  | 75       | 119        |  |  |
| EP074: 1.1-Dichloroethene                            | 75-35-4    | 5   | μg/L | <5                | 10 μg/L       | 96.8                                  | 69       | 123        |  |  |
| EP074: 1.1-Dichloropropylene                         | 563-58-6   | 5   | μg/L | <5                | 10 μg/L       | 92.0                                  | 73       | 119        |  |  |
| EP074: 1.2.3-Trichloropropane                        | 96-18-4    | 5   | μg/L | <5                | 10 μg/L       | 93.4                                  | 74       | 128        |  |  |
| EP074: 1.2-Dibromo-3-chloropropane                   | 96-12-8    | 5   | μg/L | <5                | 10 μg/L       | 101                                   | 66       | 136        |  |  |
| EP074: 1.2-Dichloroethane                            | 107-06-2   | 5   | μg/L | <5                | 10 μg/L       | 93.6                                  | 78       | 122        |  |  |
| EP074: 1.3-Dichloropropane                           | 142-28-9   | 5   | μg/L | <5                | 10 μg/L       | 99.1                                  | 79       | 121        |  |  |
| EP074: Bromomethane                                  | 74-83-9    | 50  | μg/L | <50               | 100 μg/L      | 76.9                                  | 56       | 140        |  |  |
| EP074: Carbon Tetrachloride                          | 56-23-5    | 5   | μg/L | <5                | 10 μg/L       | 78.6                                  | 63       | 121        |  |  |
| EP074: Chloroethane                                  | 75-00-3    | 50  | μg/L | <50               | 100 μg/L      | 82.5                                  | 63       | 135        |  |  |
| EP074: Chloromethane                                 | 74-87-3    | 50  | μg/L | <50               | 100 μg/L      | 87.6                                  | 67       | 130        |  |  |
| EP074: cis-1.2-Dichloroethene                        | 156-59-2   | 5   | μg/L | <5                | 10 μg/L       | 89.1                                  | 77       | 117        |  |  |
| EP074: cis-1.4-Dichloro-2-butene                     | 1476-11-5  | 5   | μg/L | <5                | 10 μg/L       | 89.8                                  | 71       | 128        |  |  |
| EP074: Dibromomethane                                | 74-95-3    | 5   | μg/L | <5                | 10 μg/L       | 91.0                                  | 74       | 118        |  |  |
| EP074: Dichlorodifluoromethane                       | 75-71-8    | 50  | μg/L | <50               | 100 μg/L      | 71.9                                  | 61       | 138        |  |  |
| EP074: Hexachlorobutadiene                           | 87-68-3    | 5   | μg/L | <5                | 10 μg/L       | 85.2                                  | 58       | 132        |  |  |
| EP074: Iodomethane                                   | 74-88-4    | 5   | μg/L | <5                | 10 μg/L       | # 59.3                                | 70       | 128        |  |  |
| EP074: Pentachloroethane                             | 76-01-7    | 5   | μg/L | <5                | 10 μg/L       | 86.8                                  | 72       | 126        |  |  |
| EP074: Tetrachloroethene                             | 127-18-4   | 5   | μg/L | <5                | 10 μg/L       | 88.5                                  | 72       | 124        |  |  |
| EP074: trans-1.2-Dichloroethene                      | 156-60-5   | 5   | μg/L | <5                | 10 μg/L       | 85.3                                  | 71       | 119        |  |  |
| EP074: trans-1.4-Dichloro-2-butene                   | 110-57-6   | 5   | μg/L | <5                | 10 μg/L       | 81.9                                  | 60       | 120        |  |  |
| EP074: Trichloroethene                               | 79-01-6    | 5   | μg/L | <5                | 10 μg/L       | 94.1                                  | 74       | 120        |  |  |
| EP074: Trichlorofluoromethane                        | 75-69-4    | 50  | μg/L | <50               | 100 μg/L      | 75.8                                  | 65       | 131        |  |  |
| EP074: Vinyl chloride                                | 75-01-4    | 50  | μg/L | <50               | 100 μg/L      | 109                                   | 69       | 129        |  |  |
| EP074F: Halogenated Aromatic Compounds (QCLot: 2268  | 12)        |     |      |                   |               |                                       |          |            |  |  |
| EP074: 1.2.3-Trichlorobenzene                        | 87-61-6    | 5   | μg/L | <5                | 10 μg/L       | 87.9                                  | 67       | 125        |  |  |
| EP074: 1.2.4-Trichlorobenzene                        | 120-82-1   | 5   | μg/L | <5                | 10 μg/L       | 87.7                                  | 60       | 126        |  |  |
| EP074: 1.2-Dichlorobenzene                           | 95-50-1    | 5   | μg/L | <5                | 10 μg/L       | 93.7                                  | 77       | 117        |  |  |
| EP074: 1.3-Dichlorobenzene                           | 541-73-1   | 5   | μg/L | <5                | 10 μg/L       | 92.4                                  | 74       | 120        |  |  |
| EP074: 1.4-Dichlorobenzene                           | 106-46-7   | 5   | μg/L | <5                | 10 μg/L       | 95.1                                  | 72       | 120        |  |  |

Page : 15 of 18

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                  |                    |     |      | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|----------------------------------------------------|--------------------|-----|------|-------------------|---------------|------------------------------|-----------|------------|
|                                                    |                    |     |      | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                   | CAS Number         | LOR | Unit | Result            | Concentration | LCS                          | Low       | High       |
| EP074F: Halogenated Aromatic Compounds (QCLot: 22  | 26812) - continued |     |      |                   |               |                              |           |            |
| EP074: 2-Chlorotoluene                             | 95-49-8            | 5   | μg/L | <5                | 10 μg/L       | 80.8                         | 71        | 121        |
| EP074: 4-Chlorotoluene                             | 106-43-4           | 5   | μg/L | <5                | 10 μg/L       | 88.6                         | 71        | 121        |
| EP074: Bromobenzene                                | 108-86-1           | 5   | μg/L | <5                | 10 μg/L       | 96.9                         | 76        | 116        |
| EP074: Chlorobenzene                               | 108-90-7           | 5   | μg/L | <5                | 10 μg/L       | 93.9                         | 80        | 118        |
| EP074G: Trihalomethanes (QCLot: 226812)            |                    |     |      |                   |               |                              |           |            |
| EP074: Bromodichloromethane                        | 75-27-4            | 5   | μg/L | <5                | 10 μg/L       | 83.4                         | 64        | 118        |
| EP074: Bromoform                                   | 75-25-2            | 5   | μg/L | <5                | 10 μg/L       | 102                          | 74        | 126        |
| EP074: Chloroform                                  | 67-66-3            | 5   | μg/L | <5                | 10 μg/L       | 81.4                         | 76        | 118        |
| EP074: Dibromochloromethane                        | 124-48-1           | 5   | μg/L | <5                | 10 μg/L       | 95.5                         | 65        | 115        |
| EP075(SIM)A: Phenolic Compounds (QCLot: 223698)    |                    |     |      |                   |               |                              |           |            |
| EP075(SIM): 2.4.5-Trichlorophenol                  | 95-95-4            | 1   | μg/L | <1.0              | 5 μg/L        | 65.5                         | 50        | 108        |
| EP075(SIM): 2.4.6-Trichlorophenol                  | 88-06-2            | 1   | μg/L | <1.0              | 5 μg/L        | 64.8                         | 59        | 118        |
| EP075(SIM): 2.4-Dichlorophenol                     | 120-83-2           | 1   | μg/L | <1.0              | 5 μg/L        | 77.9                         | 59        | 122        |
| EP075(SIM): 2.4-Dimethylphenol                     | 105-67-9           | 1   | μg/L | <1.0              | 5 μg/L        | 72.3                         | 60        | 112        |
| EP075(SIM): 2.6-Dichlorophenol                     | 87-65-0            | 1   | μg/L | <1.0              | 5 μg/L        | 80.3                         | 64        | 118        |
| EP075(SIM): 2-Chlorophenol                         | 95-57-8            | 1   | μg/L | <1.0              | 5 μg/L        | # 63.3                       | 64        | 110        |
| EP075(SIM): 2-Methylphenol                         | 95-48-7            | 1   | μg/L | <1.0              | 5 μg/L        | 66.0                         | 56        | 112        |
| EP075(SIM): 2-Nitrophenol                          | 88-75-5            | 1   | μg/L | <1.0              | 5 μg/L        | 67.4                         | 63        | 117        |
| EP075(SIM): 3- & 4-Methylphenol                    | 1319-77-3          | 2   | μg/L | <2.0              | 10 μg/L       | 59.6                         | 43        | 114        |
| EP075(SIM): 4-Chloro-3-methylphenol                | 59-50-7            | 1   | μg/L | <1.0              | 5 μg/L        | 72.6                         | 63        | 119        |
| EP075(SIM): Pentachlorophenol                      | 87-86-5            | 2   | μg/L | <2.0              | 10 μg/L       | 60.2                         | 10        | 95         |
| EP075(SIM): Phenol                                 | 108-95-2           | 1   | μg/L | <1.0              | 5 μg/L        | 44.8                         | 25        | 62         |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC | Lot: 223698)       |     |      |                   |               |                              |           |            |
| EP075(SIM): Acenaphthene                           | 83-32-9            | 1   | μg/L | <1.0              | 5 μg/L        | 68.5                         | 62        | 113        |
| EP075(SIM): Acenaphthylene                         | 208-96-8           | 1   | μg/L | <1.0              | 5 μg/L        | 69.1                         | 64        | 114        |
| EP075(SIM): Anthracene                             | 120-12-7           | 1   | μg/L | <1.0              | 5 μg/L        | 80.2                         | 64        | 116        |
| EP075(SIM): Benz(a)anthracene                      | 56-55-3            | 1   | μg/L | <1.0              | 5 μg/L        | 81.0                         | 64        | 117        |
| EP075(SIM): Benzo(a)pyrene                         | 50-32-8            | 0.5 | μg/L | <0.5              | 5 μg/L        | 87.4                         | 63        | 117        |
| EP075(SIM): Benzo(b+j)fluoranthene                 | 205-99-2           | 1   | μg/L | <1.0              | 5 μg/L        | 82.2                         | 62        | 119        |
|                                                    | 205-82-3           |     |      |                   |               |                              |           |            |
| EP075(SIM): Benzo(g.h.i)perylene                   | 191-24-2           | 1   | μg/L | <1.0              | 5 μg/L        | 87.0                         | 59        | 118        |
| EP075(SIM): Benzo(k)fluoranthene                   | 207-08-9           | 1   | μg/L | <1.0              | 5 μg/L        | 93.5                         | 62        | 117        |
| EP075(SIM): Chrysene                               | 218-01-9           | 1   | μg/L | <1.0              | 5 μg/L        | 82.8                         | 63        | 116        |
| EP075(SIM): Dibenz(a.h)anthracene                  | 53-70-3            | 1   | μg/L | <1.0              | 5 μg/L        | 89.4                         | 61        | 117        |
| EP075(SIM): Fluoranthene                           | 206-44-0           | 1   | μg/L | <1.0              | 5 μg/L        | 91.2                         | 64        | 118        |
| EP075(SIM): Fluorene                               | 86-73-7            | 1   | μg/L | <1.0              | 5 μg/L        | 73.3                         | 64        | 115        |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                 | 193-39-5           | 1   | μg/L | <1.0              | 5 μg/L        | 86.4                         | 60        | 118        |
| EP075(SIM): Naphthalene                            | 91-20-3            | 1   | μg/L | <1.0              | 5 μg/L        | 76.0                         | 59        | 119        |

Page : 16 of 18

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A



| Sub-Matrix: WATER                               |                         |            |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|-------------------------------------------------|-------------------------|------------|------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                 |                         |            |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound                                | CAS Number              | LOR        | Unit | Result            | Concentration                         | LCS                | Low      | High       |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons  | (QCLot: 223698) - conti | nued       |      |                   |                                       |                    |          |            |  |
| EP075(SIM): Phenanthrene                        | 85-01-8                 | 1          | μg/L | <1.0              | 5 μg/L                                | 79.3               | 63       | 116        |  |
| EP075(SIM): Pyrene                              | 129-00-0                | 1          | μg/L | <1.0              | 5 μg/L                                | 92.1               | 63       | 118        |  |
| EP080/071: Total Petroleum Hydrocarbons (QCLot  | : 223699)               |            |      |                   |                                       |                    |          |            |  |
| EP071: C10 - C14 Fraction                       |                         | 50         | μg/L | <50               | 2000 μg/L                             | 102                | 59       | 129        |  |
| EP071: C15 - C28 Fraction                       |                         | 100        | μg/L | <100              | 3000 μg/L                             | 97.9               | 71       | 131        |  |
| EP071: C29 - C36 Fraction                       |                         | 50         | μg/L | <50               | 2000 μg/L                             | 93.0               | 62       | 120        |  |
| EP080/071: Total Petroleum Hydrocarbons (QCLot  | : 226811)               |            |      |                   |                                       |                    |          |            |  |
| EP080: C6 - C9 Fraction                         |                         | 20         | μg/L | <20               | 260 μg/L                              | 94.5               | 75       | 127        |  |
| EP080/071: Total Recoverable Hydrocarbons - NEP | M 2013 Fractions (QCLo  | t: 223699) |      |                   |                                       |                    |          |            |  |
| EP071: >C10 - C16 Fraction                      | >C10_C16                | 100        | μg/L | <100              | 2500 μg/L                             | 88.4               | 59       | 131        |  |
| EP071: >C16 - C34 Fraction                      |                         | 100        | μg/L | <100              | 3500 μg/L                             | 93.4               | 74       | 138        |  |
| EP071: >C34 - C40 Fraction                      |                         | 100        | μg/L | <100              | 1500 μg/L                             | 99.2               | 67       | 127        |  |
| EP080/071: Total Recoverable Hydrocarbons - NEP | M 2013 Fractions (QCLo  | t: 226811) |      |                   |                                       |                    |          |            |  |
| EP080: C6 - C10 Fraction                        | C6_C10                  | 20         | μg/L | <20               | 310 μg/L                              | 95.7               | 75       | 127        |  |
| EP262: Ethanolamines (QCLot: 223283)            |                         |            |      |                   |                                       |                    |          |            |  |
| EP262: Diethanolamine                           | 111-42-2                | 1          | μg/L | <1                | 10 μg/L                               | 125                | 50       | 130        |  |
| EP262: Ethanolamine                             | 141-43-5                | 1          | μg/L | <1                | 10 μg/L                               | 89.7               | 50       | 130        |  |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                                                |                                        |            | Ma            | atrix Spike (MS) Report | •          |           |
|----------------------|------------------------------------------------|----------------------------------------|------------|---------------|-------------------------|------------|-----------|
|                      |                                                |                                        |            | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                               | Method: Compound                       | CAS Number | Concentration | MS                      | Low        | High      |
| ED009: Anions (0     | QCLot: 223259)                                 |                                        |            |               |                         |            |           |
| EP1514101-001        | Anonymous                                      | ED009-X: Chloride                      | 16887-00-6 | 4 mg/L        | 114                     | 70         | 130       |
| ED041G: Sulfate (    | Turbidimetric) as SO4 2- by DA (QCLot: 223166) |                                        |            |               |                         |            |           |
| ES1531935-001        | Anonymous                                      | ED041G: Sulfate as SO4 - Turbidimetric | 14808-79-8 | 10 mg/L       | # Not<br>Determined     | 70         | 130       |
| ED045G: Chloride     | by Discrete Analyser (QCLot: 223167)           |                                        |            |               |                         |            |           |
| ES1531935-001        | Anonymous                                      | ED045G: Chloride                       | 16887-00-6 | 250 mg/L      | 110                     | 70         | 130       |
| EG020F: Dissolve     | d Metals by ICP-MS (QCLot: 226317)             |                                        |            |               |                         |            |           |
| ES1531877-002        | Anonymous                                      | EG020A-F: Arsenic                      | 7440-38-2  | 0.2 mg/L      | 82.7                    | 70         | 130       |
|                      |                                                | EG020A-F: Barium                       | 7440-39-3  | 0.2 mg/L      | 80.4                    | 70         | 130       |
|                      |                                                | EG020A-F: Beryllium                    | 7440-41-7  | 0.2 mg/L      | 78.7                    | 70         | 130       |
|                      |                                                | EG020A-F: Cadmium                      | 7440-43-9  | 0.05 mg/L     | 76.6                    | 70         | 130       |

Page : 17 of 18

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                                                       |                                      |            | M             | atrix Spike (MS) Report |            |           |
|----------------------|-------------------------------------------------------|--------------------------------------|------------|---------------|-------------------------|------------|-----------|
|                      |                                                       |                                      |            | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                                      | Method: Compound                     | CAS Number | Concentration | MS                      | Low        | High      |
| EG020F: Dissolved    | Metals by ICP-MS (QCLot: 226317) - continued          |                                      |            |               |                         |            |           |
| ES1531877-002        | Anonymous                                             | EG020A-F: Chromium                   | 7440-47-3  | 0.2 mg/L      | 72.7                    | 70         | 130       |
|                      |                                                       | EG020A-F: Cobalt                     | 7440-48-4  | 0.2 mg/L      | 77.0                    | 70         | 130       |
|                      |                                                       | EG020A-F: Copper                     | 7440-50-8  | 0.2 mg/L      | 74.6                    | 70         | 130       |
|                      |                                                       | EG020A-F: Lead                       | 7439-92-1  | 0.2 mg/L      | 74.5                    | 70         | 130       |
|                      |                                                       | EG020A-F: Manganese                  | 7439-96-5  | 0.2 mg/L      | 83.3                    | 70         | 130       |
|                      |                                                       | EG020A-F: Nickel                     | 7440-02-0  | 0.2 mg/L      | 77.1                    | 70         | 130       |
|                      |                                                       | EG020A-F: Vanadium                   | 7440-62-2  | 0.2 mg/L      | 74.4                    | 70         | 130       |
|                      |                                                       | EG020A-F: Zinc                       | 7440-66-6  | 0.2 mg/L      | 87.4                    | 70         | 130       |
| EG035F: Dissolved    | Mercury by FIMS (QCLot: 226316)                       |                                      |            |               |                         |            |           |
| ES1531875-002        | Anonymous                                             | EG035F: Mercury                      | 7439-97-6  | 0.01 mg/L     | 81.0                    | 70         | 130       |
| EG052G: Silica by    | Discrete Analyser (QCLot: 223170)                     |                                      |            |               |                         |            |           |
| ES1532008-002        | Anonymous                                             | EG052G: Reactive Silica              |            | 5 mg/L        | 99.0                    | 70         | 130       |
| EK040P: Fluoride b   | by PC Titrator (QCLot: 225796)                        |                                      |            |               |                         |            |           |
| ES1531352-001        | Anonymous                                             | EK040P: Fluoride                     | 16984-48-8 | 5 mg/L        | 104                     | 70         | 130       |
|                      | as N by Discrete Analyser (QCLot: 223310)             | Erro-tol . I luoliuc                 |            | - mg/L        |                         |            |           |
| ES1531880-001        | Anonymous                                             | EKOEEO, America co N                 | 7664-41-7  | 1 mg/L        | 87.0                    | 70         | 130       |
|                      | ,                                                     | EK055G: Ammonia as N                 | 7004-41-7  | i ilig/L      | 07.0                    | 70         | 130       |
|                      | N by Discrete Analyser (QCLot: 223168)                |                                      |            |               |                         |            |           |
| ES1531935-001        | Anonymous                                             | EK057G: Nitrite as N                 | 14797-65-0 | 0.5 mg/L      | 97.7                    | 70         | 130       |
| EK059G: Nitrite pl   | us Nitrate as N (NOx) by Discrete Analyser (QCLot: 22 | 3309)                                |            |               |                         |            |           |
| ES1531880-001        | Anonymous                                             | EK059G: Nitrite + Nitrate as N       |            | 0.5 mg/L      | 93.2                    | 70         | 130       |
| EK061G: Total Kjel   | dahl Nitrogen By Discrete Analyser (QCLot: 223293)    |                                      |            |               |                         |            |           |
| ES1531570-009        | Anonymous                                             | EK061G: Total Kjeldahl Nitrogen as N |            | 5 mg/L        | 98.4                    | 70         | 130       |
| EK061G: Total Kiel   | dahl Nitrogen By Discrete Analyser (QCLot: 223296)    |                                      |            |               |                         |            |           |
| ES1532008-001        | Anonymous                                             | EK061G: Total Kjeldahl Nitrogen as N |            | 5 mg/L        | 98.8                    | 70         | 130       |
|                      |                                                       | ENOUTO. Total Njeldani Nittogen as N |            | 5g            | 00.0                    |            | 100       |
|                      | sphorus as P by Discrete Analyser (QCLot: 223294)     |                                      |            | 4             | 400                     | 70         | 400       |
| ES1531570-009        | Anonymous                                             | EK067G: Total Phosphorus as P        |            | 1 mg/L        | 102                     | 70         | 130       |
|                      | sphorus as P by Discrete Analyser (QCLot: 223295)     |                                      |            |               |                         |            |           |
| ES1532008-001        | Anonymous                                             | EK067G: Total Phosphorus as P        |            | 1 mg/L        | 105                     | 70         | 130       |
| EK071G: Reactive     | Phosphorus as P by discrete analyser(QCLot: 223165    |                                      |            |               |                         |            |           |
| ES1531935-001        | Anonymous                                             | EK071G: Reactive Phosphorus as P     | 14265-44-2 | 0.5 mg/L      | 97.2                    | 70         | 130       |
| EP033: C1 - C4 Hyd   | drocarbon Gases (QCLot: 225763)                       |                                      |            |               |                         |            |           |
| EM1514747-002        | Anonymous                                             | EP033: Butane                        | 106-97-8   | 102.18 μg/L   | 80.5                    | 70         | 130       |
|                      |                                                       | EP033: Butene                        | 25167-67-3 | 99.61 µg/L    | 78.2                    | 70         | 130       |
|                      |                                                       | EP033: Ethane                        | 74-84-0    | 54.43 μg/L    | 77.9                    | 70         | 130       |
|                      |                                                       | EP033: Ethene                        | 74-85-1    | 50.29 μg/L    | 76.9                    | 70         | 130       |

Page : 18 of 18

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                                                  |                           |            | M             | atrix Spike (MS) Report |          |            |
|----------------------|--------------------------------------------------|---------------------------|------------|---------------|-------------------------|----------|------------|
|                      |                                                  |                           |            | Spike         | SpikeRecovery(%)        | Recovery | Limits (%) |
| Laboratory sample ID | Client sample ID                                 | Method: Compound          | CAS Number | Concentration | MS                      | Low      | High       |
| EP033: C1 - C4 Hy    | drocarbon Gases (QCLot: 225763) - continued      |                           |            |               |                         |          |            |
| EM1514747-002        | Anonymous                                        | EP033: Methane            | 74-82-8    | 28.48 μg/L    | 84.4                    | 70       | 130        |
|                      |                                                  | EP033: Propane            | 74-98-6    | 78.28 µg/L    | 79.7                    | 70       | 130        |
|                      |                                                  | EP033: Propene            | 115-07-1   | 73.97 µg/L    | 76.7                    | 70       | 130        |
| EP074E: Halogena     | nted Aliphatic Compounds (QCLot: 226812)         |                           |            |               |                         |          |            |
| ES1531576-006        | Anonymous                                        | EP074: 1.1-Dichloroethene | 75-35-4    | 25 μg/L       | 81.7                    | 70       | 130        |
|                      |                                                  | EP074: Trichloroethene    | 79-01-6    | 25 μg/L       | 94.5                    | 70       | 130        |
| EP074F: Halogena     | ted Aromatic Compounds (QCLot: 226812)           |                           |            |               |                         |          |            |
| ES1531576-006        | Anonymous                                        | EP074: Chlorobenzene      | 108-90-7   | 25 μg/L       | 101                     | 70       | 130        |
| EP080/071: Total F   | Petroleum Hydrocarbons (QCLot: 226811)           |                           |            |               |                         |          |            |
| ES1531576-005        | Anonymous                                        | EP080: C6 - C9 Fraction   |            | 325 µg/L      | 113                     | 70       | 130        |
| EP080/071: Total F   | Recoverable Hydrocarbons - NEPM 2013 Fractions(C | CLot: 226811)             |            |               |                         |          |            |
| ES1531576-005        | Anonymous                                        | EP080: C6 - C10 Fraction  | C6_C10     | 375 μg/L      | 113                     | 70       | 130        |
| EP262: Ethanolam     | ines (QCLot: 223283)                             |                           |            |               |                         |          |            |
| ES1532002-001        | AST2                                             | EP262: Diethanolamine     | 111-42-2   | 10 μg/L       | 121                     | 50       | 130        |
|                      |                                                  | EP262: Ethanolamine       | 141-43-5   | 10 μg/L       | 84.5                    | 50       | 130        |



# QA/QC Compliance Assessment for DQO Reporting

Work Order : **ES1532002** Page : 1 of 12

Amendment : 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523A
 Date Samples Received
 : 23-Sep-2015

 Site
 : --- Issue Date
 : 09-Oct-2015

Sampler : ---- No. of samples received : 5
Order number : ---- No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- Laboratory Control outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 12

ES1532002 Amendment 2 Work Order

PARSONS BRINCKERHOFF AUST P/L Client

2268523A **Project** 

#### **Outliers: Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: WATER

| Compound Group Name                             | Laboratory Sample ID | Client Sample ID | Analyte          | CAS Number | Data       | Limits  | Comment                                |
|-------------------------------------------------|----------------------|------------------|------------------|------------|------------|---------|----------------------------------------|
| Laboratory Control Spike (LCS) Recoveries       |                      |                  |                  |            |            |         |                                        |
| EP074E: Halogenated Aliphatic Compounds         | QC-226812-002        |                  | lodomethane      | 74-88-4    | 59.3 %     | 70-128% | Recovery less than lower control limit |
| EP075(SIM)A: Phenolic Compounds                 | QC-223698-002        |                  | 2-Chlorophenol   | 95-57-8    | 63.3 %     | 64-110% | Recovery less than lower control limit |
| Matrix Spike (MS) Recoveries                    |                      |                  |                  |            |            |         |                                        |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA | ES1531935001         | Anonymous        | Sulfate as SO4 - | 14808-79-8 | Not        |         | MS recovery not determined,            |
|                                                 |                      |                  | Turbidimetric    |            | Determined |         | background level greater than or       |
|                                                 |                      |                  |                  |            |            |         | equal to 4x spike level.               |

#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type | Count Rate (%) Quality |         | € (%)  | Quality Control Specification |                                                  |
|-----------------------------|------------------------|---------|--------|-------------------------------|--------------------------------------------------|
| Method                      | QC                     | Regular | Actual | Expected                      |                                                  |
| Laboratory Duplicates (DUP) |                        |         |        |                               |                                                  |
| PAH/Phenols (GC/MS - SIM)   | 0                      | 18      | 0.00   | 10.00                         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction | 0                      | 20      | 0.00   | 10.00                         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Matrix Spikes (MS)          |                        |         |        |                               |                                                  |
| PAH/Phenols (GC/MS - SIM)   | 0                      | 18      | 0.00   | 5.00                          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction | 0                      | 20      | 0.00   | 5.00                          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

#### Motrice WATED

| Evaluation: | <b>x</b> = | Holding t | ime brea | ach ; 🗸 : | = Within | holding time. |
|-------------|------------|-----------|----------|-----------|----------|---------------|
|-------------|------------|-----------|----------|-----------|----------|---------------|

| Matrix: WATER                            |       |             |                          |                    | Evaluation | i: 🗴 = Holding time | e breach ; ✓ = With | in holding time |
|------------------------------------------|-------|-------------|--------------------------|--------------------|------------|---------------------|---------------------|-----------------|
| Method Method                            |       | Sample Date | Extraction / Preparation |                    |            | Analysis            |                     |                 |
| Container / Client Sample ID(s)          |       |             | Date extracted           | Due for extraction | Evaluation | Date analysed       | Due for analysis    | Evaluation      |
| EA005: pH                                |       |             |                          |                    |            |                     |                     |                 |
| Clear Plastic Bottle - Natural (EA005)   |       |             |                          |                    |            |                     |                     |                 |
| AST2,                                    | WK11, | 23-Sep-2015 |                          |                    |            | 23-Sep-2015         | 23-Sep-2015         | ✓               |
| WK13,                                    | WK14, |             |                          |                    |            |                     |                     |                 |
| QA13                                     |       |             |                          |                    |            |                     |                     |                 |
| EA010P: Conductivity by PC Titrator      |       |             |                          |                    |            |                     |                     |                 |
| Clear Plastic Bottle - Natural (EA010-P) |       |             |                          |                    |            |                     |                     |                 |
| WK11,                                    | WK13, | 23-Sep-2015 |                          |                    |            | 25-Sep-2015         | 21-Oct-2015         | ✓               |
| WK14,                                    | QA13  |             |                          |                    |            |                     |                     |                 |

Page : 3 of 12

Work Order : ES1532002 Amendment 2

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                                  |                               |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
|--------------------------------------------------------------------------------|-------------------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|
| Method                                                                         |                               | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                |
| Container / Client Sample ID(s)                                                |                               |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EA015: Total Dissolved Solids                                                  |                               |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (EA015H) AST2, WK13, QA13                       | WK11,<br>WK14,                | 23-Sep-2015 |                |                        |            | 25-Sep-2015        | 30-Sep-2015        | ✓              |
| EA025: Suspended Solids                                                        |                               |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (EA025H) AST2, WK13, QA13                       | WK11,<br>WK14,                | 23-Sep-2015 |                |                        |            | 25-Sep-2015        | 30-Sep-2015        | ✓              |
| ED009: Anions                                                                  |                               |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (ED009-X) AST2, WK13, QA13                      | WK11,<br>WK14,                | 23-Sep-2015 |                |                        |            | 24-Sep-2015        | 21-Oct-2015        | ✓              |
| ED037P: Alkalinity by PC Titrator                                              |                               |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (ED037-P) AST2, WK13, QA13                      | WK11,<br>WK14,                | 23-Sep-2015 |                |                        |            | 25-Sep-2015        | 07-Oct-2015        | ✓              |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA                                | Α                             |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (ED041G) AST2, WK13, QA13                       | WK11,<br>WK14,                | 23-Sep-2015 |                |                        |            | 23-Sep-2015        | 21-Oct-2015        | ✓              |
| ED045G: Chloride by Discrete Analyser                                          |                               |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Natural (ED045G) AST2, WK13, QA13                       | WK11,<br>WK14,                | 23-Sep-2015 |                |                        |            | 23-Sep-2015        | 21-Oct-2015        | ✓              |
| ED093F: Dissolved Major Cations                                                |                               |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (ED093l<br>AST2,<br>WK13,<br>QA13 | F)<br>WK11,<br>WK14,          | 23-Sep-2015 |                |                        |            | 28-Sep-2015        | 21-Oct-2015        | ✓              |
| EG020F: Dissolved Metals by ICP-MS                                             |                               |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020,<br>AST2,<br>WK13,<br>QA13 | <b>A-F)</b><br>WK11,<br>WK14, | 23-Sep-2015 |                |                        |            | 28-Sep-2015        | 21-Mar-2016        | ✓              |

Page : 4 of 12

Work Order : ES1532002 Amendment 2

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                                  |                        |             |                |                        | Evaluation | n: 🗴 = Holding time | breach ; ✓ = Withi | in holding time |
|--------------------------------------------------------------------------------|------------------------|-------------|----------------|------------------------|------------|---------------------|--------------------|-----------------|
| Method                                                                         |                        | Sample Date | Ex             | traction / Preparation |            |                     | Analysis           |                 |
| Container / Client Sample ID(s)                                                |                        |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation      |
| EG020F: Dissolved Metals by ICP-MS                                             |                        |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020E<br>AST2,<br>WK13,<br>QA13 | B-F)<br>WK11,<br>WK14, | 23-Sep-2015 |                |                        |            | 28-Sep-2015         | 21-Mar-2016        | <b>✓</b>        |
| EG035F: Dissolved Mercury by FIMS                                              |                        |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG035F<br>AST2,<br>WK13,<br>QA13 | F)<br>WK11,<br>WK14,   | 23-Sep-2015 |                |                        |            | 28-Sep-2015         | 21-Oct-2015        | ✓               |
| EG052G: Silica by Discrete Analyser                                            |                        |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Natural (EG052G) AST2, WK13, QA13                       | WK11,<br>WK14,         | 23-Sep-2015 |                |                        |            | 23-Sep-2015         | 21-Oct-2015        | ✓               |
| EK010/011: Chlorine                                                            |                        |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Natural (EK010) AST2, WK13, QA13                        | WK11,<br>WK14,         | 23-Sep-2015 |                |                        |            | 23-Sep-2015         | 23-Sep-2015        | ✓               |
| EK040P: Fluoride by PC Titrator                                                |                        |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Natural (EK040P) AST2, WK13, QA13                       | WK11,<br>WK14,         | 23-Sep-2015 |                |                        |            | 25-Sep-2015         | 21-Oct-2015        | ✓               |
| EK055G: Ammonia as N by Discrete Analyser                                      |                        |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Sulfuric Acid (EK055G) AST2, WK13, QA13                 | WK11,<br>WK14,         | 23-Sep-2015 |                |                        |            | 24-Sep-2015         | 21-Oct-2015        | ✓               |
| EK057G: Nitrite as N by Discrete Analyser                                      |                        |             |                |                        |            |                     |                    | !               |
| Clear Plastic Bottle - Natural (EK057G) AST2, WK13, QA13                       | WK11,<br>WK14,         | 23-Sep-2015 |                |                        |            | 23-Sep-2015         | 25-Sep-2015        | ✓               |
| EK059G: Nitrite plus Nitrate as N (NOx) by Disc                                | crete Analyser         |             |                |                        |            |                     |                    |                 |
| Clear Plastic Bottle - Sulfuric Acid (EK059G) AST2, WK13, QA13                 | WK11,<br>WK14,         | 23-Sep-2015 |                |                        |            | 24-Sep-2015         | 21-Oct-2015        | ✓               |

Page : 5 of 12

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                           |                                   |             |                |                        | Evaluation | ı: × = Holding time | breach ; ✓ = Withi | n holding time |
|-------------------------------------------------------------------------|-----------------------------------|-------------|----------------|------------------------|------------|---------------------|--------------------|----------------|
| Method                                                                  |                                   | Sample Date | Ex             | traction / Preparation |            |                     | Analysis           |                |
| Container / Client Sample ID(s)                                         |                                   |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation     |
| EK061G: Total Kjeldahl Nitrogen By Discrete                             | Analyser                          |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK061G) AST2, WK13, QA13          | WK11,<br>WK14,                    | 23-Sep-2015 | 24-Sep-2015    | 21-Oct-2015            | ✓          | 24-Sep-2015         | 21-Oct-2015        | ✓              |
| EK067G: Total Phosphorus as P by Discrete A                             | Analyser                          |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK067G)<br>AST2,<br>WK13,<br>QA13 | WK11,<br>WK14,                    | 23-Sep-2015 | 24-Sep-2015    | 21-Oct-2015            | ✓          | 24-Sep-2015         | 21-Oct-2015        | ✓              |
| EK071G: Reactive Phosphorus as P by discre                              | te analyser                       |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EK071G) AST2, WK13, QA13                | WK11,<br>WK14,                    | 23-Sep-2015 |                |                        |            | 23-Sep-2015         | 25-Sep-2015        | ✓              |
| EP005: Total Organic Carbon (TOC)                                       |                                   |             |                |                        |            |                     |                    |                |
| Amber TOC Vial - Sulfuric Acid (EP005) AST2, WK13, QA13                 | WK11,<br>WK14,                    | 23-Sep-2015 |                |                        |            | 28-Sep-2015         | 21-Oct-2015        | ✓              |
| EP020: Oil and Grease (O&G)                                             |                                   |             |                |                        |            |                     |                    |                |
| Amber Jar - Sulfuric Acid or Sodium Bisulfate AST2, WK13, QA13          | ( <b>EP020)</b><br>WK11,<br>WK14, | 23-Sep-2015 |                |                        |            | 29-Sep-2015         | 21-Oct-2015        | ✓              |
| EP033: C1 - C4 Hydrocarbon Gases                                        |                                   |             |                |                        |            |                     |                    |                |
| Amber VOC Vial - Sulfuric Acid (EP033) AST2, WK13, QA13                 | WK11,<br>WK14,                    | 23-Sep-2015 |                |                        |            | 25-Sep-2015         | 07-Oct-2015        | ✓              |
| EP080/071: Total Petroleum Hydrocarbons                                 |                                   |             |                |                        |            |                     |                    |                |
| Amber Glass Bottle - Unpreserved (EP071) AST2, WK13, QA13               | WK11,<br>WK14,                    | 23-Sep-2015 | 28-Sep-2015    | 30-Sep-2015            | ✓          | 29-Sep-2015         | 07-Nov-2015        | ✓              |
| EP074A: Monocyclic Aromatic Hydrocarbons                                |                                   |             |                |                        |            |                     |                    |                |
| Amber VOC Vial - Sulfuric Acid (EP074) AST2, WK13, QA13                 | WK11,<br>WK14,                    | 23-Sep-2015 | 29-Sep-2015    | 07-Oct-2015            | ✓          | 29-Sep-2015         | 07-Oct-2015        | ✓              |

Page : 6 of 12

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                     |                          |             |                |                        | Evaluation | ı: 🗴 = Holding time | breach ; ✓ = Withi | n holding time. |
|-------------------------------------------------------------------|--------------------------|-------------|----------------|------------------------|------------|---------------------|--------------------|-----------------|
| Method                                                            |                          | Sample Date | Ex             | traction / Preparation |            |                     | Analysis           |                 |
| Container / Client Sample ID(s)                                   |                          |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation      |
| EP075(SIM)T: PAH Surrogates                                       |                          |             |                |                        |            |                     |                    |                 |
| Amber Glass Bottle - Unpreserved (EP075<br>AST2,<br>WK13,<br>QA13 | (SIM))<br>WK11,<br>WK14, | 23-Sep-2015 | 28-Sep-2015    | 30-Sep-2015            | ✓          | 29-Sep-2015         | 07-Nov-2015        | ✓               |
| EP080/071: Total Petroleum Hydrocarbon                            | is                       |             |                |                        |            |                     |                    |                 |
| Amber VOC Vial - Sulfuric Acid (EP080) AST2, WK13, QA13           | WK11,<br>WK14,           | 23-Sep-2015 | 29-Sep-2015    | 07-Oct-2015            | ✓          | 29-Sep-2015         | 07-Oct-2015        | ✓               |
| EP262: Ethanolamines                                              |                          |             |                |                        |            |                     |                    |                 |
| Amber Glass Bottle - Unpreserved (EP262<br>AST2,<br>WK13,<br>QA13 | )<br>WK11,<br>WK14,      | 23-Sep-2015 |                |                        |            | 24-Sep-2015         | 30-Sep-2015        | ✓               |

Page : 7 of 12

Work Order ES1532002 Amendment 2

Client PARSONS BRINCKERHOFF AUST P/L

2268523A Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                                          |            |    |         | Evaluatio |          |               | not within specification; ✓ = Quality Control frequency within specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------|------------|----|---------|-----------|----------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality Control Sample Type                            | Method     |    | ount    |           | Rate (%) | Evaluation    | Quality Control Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Analytical Methods                                     | Metriod    | OC | Regular | Actual    | Expected | Lvaluation    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Laboratory Duplicates (DUP)                            |            | •  |         | 40.00     | 40.00    |               | AUEDIA DA LA LA RIO LA LA DOCCIO LA LA LA LA DOCCIO LA LA LA LA DOCCIO LA |
| Alkalinity by PC Titrator                              | ED037-P    | 2  | 20      | 10.00     | 10.00    | <b>√</b>      | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ammonia as N by Discrete analyser                      | EK055G     | 2  | 18      | 11.11     | 10.00    | ✓             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C1 - C4 Gases                                          | EP033      | 2  | 20      | 10.00     | 10.00    | ✓             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chloride by Discrete Analyser                          | ED045G     | 2  | 20      | 10.00     | 10.00    | ✓             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chlorine                                               | EK010      | 1  | 8       | 12.50     | 10.00    | ✓             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Conductivity by PC Titrator                            | EA010-P    | 2  | 14      | 14.29     | 10.00    | ✓             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dissolved Mercury by FIMS                              | EG035F     | 2  | 15      | 13.33     | 10.00    | ✓             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 2  | 20      | 10.00     | 10.00    | ✓             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 2  | 16      | 12.50     | 10.00    | ✓             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 8       | 12.50     | 10.00    | ✓             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Fluoride by PC Titrator                                | EK040P     | 2  | 20      | 10.00     | 10.00    | ✓             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Major Cations - Dissolved                              | ED093F     | 2  | 20      | 10.00     | 10.00    | ✓             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 2  | 15      | 13.33     | 10.00    | ✓             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nitrite as N by Discrete Analyser                      | EK057G     | 2  | 20      | 10.00     | 10.00    | ✓             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0  | 18      | 0.00      | 10.00    | <u> *</u>     | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| pH                                                     | EA005      | 2  | 20      | 10.00     | 10.00    | ✓             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 2  | 20      | 10.00     | 10.00    | 1             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 8       | 12.50     | 10.00    | <b>√</b>      | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 2  | 7       | 28.57     | 10.00    | <b>√</b>      | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 2  | 20      | 10.00     | 10.00    | 1             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Suspended Solids (High Level)                          | EA025H     | 2  | 20      | 10.00     | 9.52     | 1             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Total Dissolved Solids (High Level)                    | EA015H     | 2  | 20      | 10.00     | 10.00    | <b>√</b>      | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 2  | 20      | 10.00     | 10.00    | 1             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 2  | 19      | 10.53     | 10.00    | 1             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TRH - Semivolatile Fraction                            | EP071      | 0  | 20      | 0.00      | 10.00    | Je .          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TRH Volatiles/BTEX                                     | EP080      | 2  | 20      | 10.00     | 10.00    | <u>~</u><br>✓ | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Volatile Organic Compounds                             | EP074      | 2  | 19      | 10.53     | 10.00    | 1             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Laboratory Control Samples (LCS)                       | 2. 0. 1    |    |         |           |          | · ·           | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Alkalinity by PC Titrator                              | ED037-P    | 1  | 20      | 5.00      | 5.00     | 1             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 18      | 5.56      | 5.00     | <b>√</b>      | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C1 - C4 Gases                                          | EP033      | 1  | 20      | 5.00      | 5.00     | <b>✓</b>      | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chloride by Discrete Analyser                          | ED045G     | 2  | 20      | 10.00     | 10.00    | <b>√</b>      | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Conductivity by PC Titrator                            |            | 1  | 14      | 7.14      | 5.00     |               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                        | EA010-P    | •  | 15      |           |          | <b>√</b>      | ` ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dissolved Mercury by FIMS                              | EG035F     | 1  |         | 6.67      | 5.00     | <b>√</b>      | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 20      | 5.00      | 5.00     | ✓             | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 16      | 6.25      | 5.00     | $\checkmark$  | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Page : 8 of 12

Work Order : ES1532002 Amendment 2

Client PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                          |            | Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specif |         |        |          |            |                                                  |  |  |
|--------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------|---------|--------|----------|------------|--------------------------------------------------|--|--|
| Quality Control Sample Type                            |            | Co                                                                                                              | ount    |        | Rate (%) |            | Quality Control Specification                    |  |  |
| Analytical Methods                                     | Method     | QC                                                                                                              | Reaular | Actual | Expected | Evaluation |                                                  |  |  |
| Laboratory Control Samples (LCS) - Continued           |            |                                                                                                                 |         |        |          |            |                                                  |  |  |
| Ethanolamines by LCMSMS                                | EP262      | 1                                                                                                               | 8       | 12.50  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Fluoride by PC Titrator                                | EK040P     | 1                                                                                                               | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Major Cations - Dissolved                              | ED093F     | 1                                                                                                               | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1                                                                                                               | 15      | 6.67   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1                                                                                                               | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Oil and Grease                                         | EP020      | 1                                                                                                               | 8       | 12.50  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1                                                                                                               | 18      | 5.56   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1                                                                                                               | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1                                                                                                               | 8       | 12.50  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1                                                                                                               | 7       | 14.29  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1                                                                                                               | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Suspended Solids (High Level)                          | EA025H     | 2                                                                                                               | 20      | 10.00  | 9.52     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Total Dissolved Solids (High Level)                    | EA015H     | 2                                                                                                               | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 3                                                                                                               | 20      | 15.00  | 15.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 3                                                                                                               | 19      | 15.79  | 15.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| TRH - Semivolatile Fraction                            | EP071      | 1                                                                                                               | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| TRH Volatiles/BTEX                                     | EP080      | 1                                                                                                               | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Volatile Organic Compounds                             | EP074      | 1                                                                                                               | 19      | 5.26   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Method Blanks (MB)                                     |            |                                                                                                                 |         |        |          |            |                                                  |  |  |
| Ammonia as N by Discrete analyser                      | EK055G     | 1                                                                                                               | 18      | 5.56   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| C1 - C4 Gases                                          | EP033      | 1                                                                                                               | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Chloride by Discrete Analyser                          | ED045G     | 1                                                                                                               | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Chlorine                                               | EK010      | 1                                                                                                               | 8       | 12.50  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Conductivity by PC Titrator                            | EA010-P    | 1                                                                                                               | 14      | 7.14   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Dissolved Mercury by FIMS                              | EG035F     | 1                                                                                                               | 15      | 6.67   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1                                                                                                               | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1                                                                                                               | 16      | 6.25   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Ethanolamines by LCMSMS                                | EP262      | 1                                                                                                               | 8       | 12.50  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Fluoride by PC Titrator                                | EK040P     | 1                                                                                                               | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Major Cations - Dissolved                              | ED093F     | 1                                                                                                               | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1                                                                                                               | 15      | 6.67   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1                                                                                                               | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Oil and Grease                                         | EP020      | 1                                                                                                               | 8       | 12.50  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1                                                                                                               | 18      | 5.56   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1                                                                                                               | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1                                                                                                               | 8       | 12.50  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1                                                                                                               | 7       | 14.29  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1                                                                                                               | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Suspended Solids (High Level)                          | EA025H     | 1                                                                                                               | 20      | 5.00   | 4.76     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |
| Total Dissolved Solids (High Level)                    | EA015H     | 1                                                                                                               | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |  |  |

Page : 9 of 12

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                         |            |    |         | Evaluation | n: 🗴 = Quality Co | ntrol frequency | not within specification ; $\checkmark$ = Quality Control frequency within specific |
|-------------------------------------------------------|------------|----|---------|------------|-------------------|-----------------|-------------------------------------------------------------------------------------|
| Quality Control Sample Type                           |            | Co | ount    |            | Rate (%)          |                 | Quality Control Specification                                                       |
| Analytical Methods                                    | Method     | OC | Regular | Actual     | Expected          | Evaluation      |                                                                                     |
| Method Blanks (MB) - Continued                        |            |    |         |            |                   |                 |                                                                                     |
| Total Kjeldahl Nitrogen as N By Discrete Analyser     | EK061G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| otal Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 19      | 5.26       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| RH - Semivolatile Fraction                            | EP071      | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| RH Volatiles/BTEX                                     | EP080      | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| olatile Organic Compounds                             | EP074      | 1  | 19      | 5.26       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| latrix Spikes (MS)                                    |            |    |         |            |                   |                 |                                                                                     |
| mmonia as N by Discrete analyser                      | EK055G     | 1  | 18      | 5.56       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| 1 - C4 Gases                                          | EP033      | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| hloride by Discrete Analyser                          | ED045G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| issolved Mercury by FIMS                              | EG035F     | 1  | 15      | 6.67       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| issolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| thanolamines by LCMSMS                                | EP262      | 1  | 8       | 12.50      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| luoride by PC Titrator                                | EK040P     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| itrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 15      | 6.67       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| itrite as N by Discrete Analyser                      | EK057G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| AH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0  | 18      | 0.00       | 5.00              | x               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| leactive Phosphorus as P-By Discrete Analyser         | EK071G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| ilica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 8       | 12.50      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| tandard Anions -by IC (Extended Method)               | ED009-X    | 1  | 7       | 14.29      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| ulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| otal Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| otal Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 19      | 5.26       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| RH - Semivolatile Fraction                            | EP071      | 0  | 20      | 0.00       | 5.00              | 3c              | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| RH Volatiles/BTEX                                     | EP080      | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |
| olatile Organic Compounds                             | EP074      | 1  | 19      | 5.26       | 5.00              | 1               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                                    |

Page : 10 of 12

Work Order : ES1532002 Amendment 2

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                        | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------|----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рН                                                        | EA005    | WATER  | In house: Referenced to APHA 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH meter. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                          |
| Conductivity by PC Titrator                               | EA010-P  | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                       |
| Total Dissolved Solids (High Level)                       | EA015H   | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                          |
| Suspended Solids (High Level)                             | EA025H   | WATER  | In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of 'non-filterable' residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (2013) Schedule B(3)                                               |
| Standard Anions -by IC (Extended Method)                  | ED009-X  | WATER  | In house: Referenced to APHA 4110. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                  |
| Alkalinity by PC Titrator                                 | ED037-P  | WATER  | In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                     |
| Sulfate (Turbidimetric) as SO4 2- by<br>Discrete Analyser | ED041G   | WATER  | In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)                                                     |
| Chloride by Discrete Analyser                             | ED045G   | WATER  | In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003                                                                                                                |
| Major Cations - Dissolved                                 | ED093F   | WATER  | In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3)  Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3)  Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) Schedule B(3) |
| Dissolved Metals by ICP-MS - Suite A                      | EG020A-F | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                      |

Page : 11 of 12

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Analytical Methods                                   | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Metals by ICP-MS - Suite B                 | EG020B-F   | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                                                                                                        |
| Dissolved Mercury by FIMS                            | EG035F     | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) |
| Silica (Reactive) by Discrete Analyser               | EG052G     | WATER  | In house: Referenced to APHA 4500-SiO2 D: Under Acdic conditions reactive silicon combines with ammonium molybdate to form a yellow molybdosilicic acid complex. This is reduced by 1-amino-2-naphthol-4-sulfonic acid to a silicomolybdenum blue complex which is measured by discrete analyser at 670 nm. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                           |
| Chlorine                                             | EK010      | WATER  | In-house (DPD colourimetry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fluoride by PC Titrator                              | EK040P     | WATER  | In house: Referenced to APHA 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                               |
| Ammonia as N by Discrete analyser                    | EK055G     | WATER  | In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ammonium as N                                        | EK055G-NH4 | WATER  | Ammonium in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH and Temperature. Ammonia is determined by direct colorimetry by Discrete Analyser according to APHA 4500-NH3 G. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                  |
| Nitrite as N by Discrete Analyser                    | EK057G     | WATER  | In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nitrate as N by Discrete Analyser                    | EK058G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                          |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser  | EK059G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                      |
| Total Kjeldahl Nitrogen as N By Discrete Analyser    | EK061G     | WATER  | In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                           |
| Total Nitrogen as N (TKN + Nox) By Discrete Analyser | EK062G     | WATER  | In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total Phosphorus as P By Discrete<br>Analyser        | EK067G     | WATER  | In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |

Page : 12 of 12

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L



| Analytical Methods                               | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reactive Phosphorus as P-By Discrete<br>Analyser | EK071G      | WATER  | In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                      |
| Ionic Balance by PCT DA and Turbi SO4 DA         | EN055 - PG  | WATER  | In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                        |
| Total Organic Carbon                             | EP005       | WATER  | In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                     |
| Oil and Grease                                   | EP020       | WATER  | In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM (2013) Schedule B(3)                                                                             |
| C1 - C4 Gases                                    | EP033       | WATER  | Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, US EPA - Region 1, EPA New England, July 2001. Automated static headspace, dual column GC/FID. A 12 mL sample is pipetted into a 20 mL headspace vial containing 3g of sodium chloride and sealed. Each sample is equilibrated with shaking at 40 degrees C for 10 minutes prior to analysis by GC/FID using a pair of PLOT columns of different polarity. |
| TRH - Semivolatile Fraction                      | EP071       | WATER  | USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                                                 |
| Volatile Organic Compounds                       | EP074       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                          |
| PAH/Phenols (GC/MS - SIM)                        | EP075(SIM)  | WATER  | USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                     |
| TRH Volatiles/BTEX                               | EP080       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                           |
| Ethanolamines by LCMSMS                          | EP262       | WATER  | In-house LC-MSMS: Benzoyl derivatives of target compounds are analysed by LC/MSMS in ESI Positive Mode.                                                                                                                                                                                                                                                                                                                                            |
| Preparation Methods                              | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TKN/TP Digestion                                 | EK061/EK067 | WATER  | APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                       |



## **QUALITY CONTROL REPORT**

E-mail

: ES1532008 Work Order Page : 1 of 20

: 3 Amendment

E-mail

Client Laboratory : Environmental Division Sydney : PARSONS BRINCKERHOFF AUST P/L

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : GPO BOX 5394

SYDNEY NSW, AUSTRALIA 2001

: SDaykin@pb.com.au : loren.schiavon@alsglobal.com Telephone : +61 2 8784 8503 : +61 02 92725100 Telephone Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Date Samples Received Order number : 23-Sep-2015 **Date Analysis Commenced** : 23-Sep-2015 C-O-C number

Issue Date · 28-Oct-2015 Sampler : ANDREW FARINA, SEAN DAYKIN

No. of samples received : 3 Site Quote number No. of samples analysed : ----: 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Page : 2 of 20

ES1532008 Amendment 3 Work Order

PARSONS BRINCKERHOFF AUST P/L Client

Project 2268523B



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories        | Position                      | Accreditation Category |  |
|--------------------|-------------------------------|------------------------|--|
| Alison Graham      | Supervisor - Inorganic        | Newcastle - Inorganics |  |
| Ankit Joshi        | Inorganic Chemist             | Sydney Inorganics      |  |
| Ashesh Patel       | Inorganic Chemist             | Sydney Inorganics      |  |
| Celine Conceicao   | Senior Spectroscopist         | Sydney Inorganics      |  |
| Phalak Inthakesone | Laboratory Manager - Organics | Sydney Organics        |  |
| Shobhna Chandra    | Metals Coordinator            | Sydney Inorganics      |  |

Page : 3 of 20

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

| ub-Matrix: WATER    |                         |                                          |             |      |         | Laboratory I    | Duplicate (DUP) Report |         |                    |
|---------------------|-------------------------|------------------------------------------|-------------|------|---------|-----------------|------------------------|---------|--------------------|
| aboratory sample ID | Client sample ID        | Method: Compound                         | CAS Number  | LOR  | Unit    | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (% |
| A005: pH (QC Lot    | : 224833)               |                                          |             |      |         |                 |                        |         |                    |
| ES1532026-001       | Anonymous               | EA005: pH Value                          |             | 0.01 | pH Unit | 7.37            | 7.34                   | 0.408   | 0% - 20%           |
| S1532008-003        | WKSW03                  | EA005: pH Value                          |             | 0.01 | pH Unit | 7.30            | 7.33                   | 0.410   | 0% - 20%           |
| A010P: Conductiv    | ity by PC Titrator (QC  | Lot: 225797)                             |             |      |         |                 |                        |         |                    |
| S1531980-001        | Anonymous               | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 2140            | 2150                   | 0.478   | 0% - 20%           |
| S1531935-004        | Anonymous               | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 185             | 182                    | 1.65    | 0% - 20%           |
| A015: Total Dissol  | ved Solids (QC Lot: 2   | 25427)                                   |             |      |         |                 |                        |         |                    |
| S1531955-001        | Anonymous               | EA015H: Total Dissolved Solids @180°C    |             | 10   | mg/L    | 134             | 147                    | 9.27    | 0% - 50%           |
| S1531956-001        | Anonymous               | EA015H: Total Dissolved Solids @180°C    |             | 10   | mg/L    | 1430            | 1380                   | 3.69    | 0% - 20%           |
| A025: Suspended     | Solids (QC Lot: 22542   | 28)                                      |             |      |         |                 |                        |         |                    |
| S1531955-001        | Anonymous               | EA025H: Suspended Solids (SS)            |             | 5    | mg/L    | <5              | <5                     | 0.00    | No Limit           |
| S1531956-001        | Anonymous               | EA025H: Suspended Solids (SS)            |             | 5    | mg/L    | 12              | 15                     | 18.2    | No Limit           |
| D009: Anions (Q0    | C Lot: 223259)          |                                          |             |      |         |                 |                        |         |                    |
| P1514101-001        | Anonymous               | ED009-X: Chloride                        | 16887-00-6  | 0.1  | mg/L    | 9.00            | 8.75                   | 2.78    | No Limit           |
| S1531880-001        | Anonymous               | ED009-X: Chloride                        | 16887-00-6  | 0.1  | mg/L    | 22.4            | 22.3                   | 0.345   | 0% - 20%           |
| D009: Anions (Q0    | C Lot: 223260)          |                                          |             |      |         |                 |                        |         |                    |
| S1532008-003        | WKSW03                  | ED009-X: Chloride                        | 16887-00-6  | 0.1  | mg/L    | 145             | 146                    | 0.678   | 0% - 20%           |
| D037P: Alkalinity b | by PC Titrator (QC Lot  | t: 225798)                               |             |      |         |                 |                        |         |                    |
| S1532002-001        | Anonymous               | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L    | 2850            | 2880                   | 0.873   | 0% - 20%           |
|                     |                         | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L    | 1250            | 1200                   | 4.08    | 0% - 20%           |
|                     |                         | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit           |
|                     |                         | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L    | 4100            | 4080                   | 0.612   | 0% - 20%           |
| S1531935-004        | Anonymous               | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L    | 64              | 63                     | 0.00    | 0% - 20%           |
|                     |                         | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit           |
|                     |                         | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L    | <1              | <1                     | 0.00    | No Limit           |
|                     |                         | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L    | 64              | 63                     | 0.00    | 0% - 20%           |
| D041G: Sulfate (Τι  | urbidimetric) as SO4 2- | - by DA (QC Lot: 223166)                 |             |      |         |                 |                        |         |                    |
| S1531935-001        | Anonymous               | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L    | 268             | 260                    | 2.82    | 0% - 20%           |
| S1532008-002        | WKSW02                  | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L    | 6               | 6                      | 0.00    | No Limit           |
| D045G: Chloride b   | y Discrete Analyser(    | QC Lot: 223167)                          |             |      |         |                 |                        |         |                    |
| S1531962-001        | Anonymous               | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L    | 76              | 76                     | 0.00    | 0% - 20%           |
| S1531935-001        | Anonymous               | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L    | 182             | 182                    | 0.00    | 0% - 20%           |
| D045G: Chloride b   | y Discrete Analyser (0  | QC Lot: 223171)                          |             |      |         |                 |                        |         |                    |
| S1532008-002        | WKSW02                  | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L    | 144             | 146                    | 1.04    | 0% - 20%           |
| D093F: Dissolved    | Major Cations (QC Lo    | t: 226314)                               |             |      |         |                 |                        |         |                    |

Page : 4 of 20

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                      |                         |            |        |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|----------------------|-------------------------|------------|--------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID     | Method: Compound        | CAS Number | LOR    | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| ED093F: Dissolved    | Major Cations (QC Lo | ot: 226314) - continued |            |        |      |                 |                        |         |                     |
| ES1531907-001        | Anonymous            | ED093F: Calcium         | 7440-70-2  | 1      | mg/L | 8               | 8                      | 0.00    | No Limit            |
|                      |                      | ED093F: Magnesium       | 7439-95-4  | 1      | mg/L | 6               | 6                      | 0.00    | No Limit            |
|                      |                      | ED093F: Potassium       | 7440-09-7  | 1      | mg/L | 2               | 2                      | 0.00    | No Limit            |
|                      |                      | ED093F: Sodium          | 7440-23-5  | 1      | mg/L | 15              | 15                     | 0.00    | 0% - 50%            |
| ES1531875-001        | Anonymous            | ED093F: Calcium         | 7440-70-2  | 1      | mg/L | 2               | 2                      | 0.00    | No Limit            |
|                      |                      | ED093F: Magnesium       | 7439-95-4  | 1      | mg/L | <1              | <1                     | 0.00    | No Limit            |
|                      |                      | ED093F: Potassium       | 7440-09-7  | 1      | mg/L | 3               | 3                      | 0.00    | No Limit            |
|                      |                      | ED093F: Sodium          | 7440-23-5  | 1      | mg/L | 339             | 336                    | 0.965   | 0% - 20%            |
| ED093F: Dissolved    | Major Cations (QC Lo | ot: 226319)             |            |        |      |                 |                        |         |                     |
| ES1532008-002        | WKSW02               | ED093F: Calcium         | 7440-70-2  | 1      | mg/L | 33              | 33                     | 0.00    | 0% - 20%            |
|                      |                      | ED093F: Magnesium       | 7439-95-4  | 1      | mg/L | 18              | 19                     | 0.00    | 0% - 50%            |
|                      |                      | ED093F: Potassium       | 7440-09-7  | 1      | mg/L | 4               | 4                      | 0.00    | No Limit            |
|                      |                      | ED093F: Sodium          | 7440-23-5  | 1      | mg/L | 69              | 69                     | 0.00    | 0% - 20%            |
| EW1511841-003        | Anonymous            | ED093F: Calcium         | 7440-70-2  | 1      | mg/L | 34              | 35                     | 0.00    | 0% - 20%            |
|                      |                      | ED093F: Magnesium       | 7439-95-4  | 1      | mg/L | 16              | 16                     | 0.00    | 0% - 50%            |
|                      |                      | ED093F: Potassium       | 7440-09-7  | 1      | mg/L | 25              | 25                     | 0.00    | 0% - 20%            |
|                      |                      | ED093F: Sodium          | 7440-23-5  | 1      | mg/L | 519             | 526                    | 1.33    | 0% - 20%            |
| EG020F: Dissolved    | Metals by ICP-MS (QC | C Lot: 226315)          |            |        |      |                 |                        |         |                     |
| ES1532002-005        | Anonymous            | EG020B-F: Strontium     | 7440-24-6  | 0.001  | mg/L | 6.95            | 6.85                   | 1.45    | 0% - 20%            |
|                      |                      | EG020B-F: Uranium       | 7440-61-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
| ES1531875-001        | Anonymous            | EG020B-F: Strontium     | 7440-24-6  | 0.001  | mg/L | 0.030           | 0.029                  | 0.00    | 0% - 20%            |
|                      |                      | EG020B-F: Uranium       | 7440-61-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
| EG020F: Dissolved    | Metals by ICP-MS (QC |                         |            |        |      |                 |                        |         |                     |
| ES1531907-001        | Anonymous            | EG020A-F: Cadmium       | 7440-43-9  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.00    | No Limit            |
| 20.00.00.            | 7                    | EG020A-F: Antimony      | 7440-36-0  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                      | EG020A-F: Arsenic       | 7440-38-2  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                      | EG020A-F: Barium        | 7440-39-3  | 0.001  | mg/L | 0.067           | 0.067                  | 0.00    | 0% - 20%            |
|                      |                      | EG020A-F: Beryllium     | 7440-41-7  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                      | EG020A-F: Chromium      | 7440-47-3  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                      | EG020A-F: Cobalt        | 7440-48-4  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                      | EG020A-F: Copper        | 7440-50-8  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                      | EG020A-F: Lead          | 7439-92-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                      | EG020A-F: Manganese     | 7439-96-5  | 0.001  | mg/L | 0.558           | 0.552                  | 1.00    | 0% - 20%            |
|                      |                      | EG020A-F: Molybdenum    | 7439-98-7  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                      | EG020A-F: Nickel        | 7440-02-0  | 0.001  | mg/L | 0.001           | 0.001                  | 0.00    | No Limit            |
|                      |                      | EG020A-F: Tin           | 7440-31-5  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                      | EG020A-F: Zinc          | 7440-66-6  | 0.005  | mg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                      | EG020A-F: Aluminium     | 7429-90-5  | 0.01   | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                      | EG020A-F: Selenium      | 7782-49-2  | 0.01   | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                      | EG020A-F: Vanadium      | 7440-62-2  | 0.01   | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |

Page : 5 of 20

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                      |                            |            | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |
|----------------------|----------------------|----------------------------|------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID     | Method: Compound           | CAS Number | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EG020F: Dissolved    | Metals by ICP-MS (QC | C Lot: 226317) - continued |            |                                   |      |                 |                  |         |                     |
| ES1531907-001        | Anonymous            | EG020A-F: Boron            | 7440-42-8  | 0.05                              | mg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                      | EG020A-F: Iron             | 7439-89-6  | 0.05                              | mg/L | 12.0            | 12.1             | 1.12    | 0% - 20%            |
|                      |                      | EG020A-F: Bromine          | 7726-95-6  | 0.1                               | mg/L | <0.1            | <0.1             | 0.00    | No Limit            |
| ES1531875-001        | Anonymous            | EG020A-F: Cadmium          | 7440-43-9  | 0.0001                            | mg/L | <0.0001         | <0.0001          | 0.00    | No Limit            |
|                      |                      | EG020A-F: Antimony         | 7440-36-0  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Arsenic          | 7440-38-2  | 0.001                             | mg/L | 0.003           | 0.002            | 0.00    | No Limit            |
|                      |                      | EG020A-F: Barium           | 7440-39-3  | 0.001                             | mg/L | 0.018           | 0.018            | 0.00    | 0% - 50%            |
|                      |                      | EG020A-F: Beryllium        | 7440-41-7  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Chromium         | 7440-47-3  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Cobalt           | 7440-48-4  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Copper           | 7440-50-8  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Lead             | 7439-92-1  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Manganese        | 7439-96-5  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Molybdenum       | 7439-98-7  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Nickel           | 7440-02-0  | 0.001                             | mg/L | 0.004           | 0.004            | 0.00    | No Limit            |
|                      |                      | EG020A-F: Tin              | 7440-31-5  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Zinc             | 7440-66-6  | 0.005                             | mg/L | <0.005          | 0.005            | 0.00    | No Limit            |
|                      |                      | EG020A-F: Aluminium        | 7429-90-5  | 0.01                              | mg/L | 0.06            | 0.06             | 0.00    | No Limit            |
|                      |                      | EG020A-F: Selenium         | 7782-49-2  | 0.01                              | mg/L | <0.01           | <0.01            | 0.00    | No Limit            |
|                      |                      | EG020A-F: Vanadium         | 7440-62-2  | 0.01                              | mg/L | <0.01           | <0.01            | 0.00    | No Limit            |
|                      |                      | EG020A-F: Boron            | 7440-42-8  | 0.05                              | mg/L | 0.21            | 0.21             | 0.00    | No Limit            |
|                      |                      | EG020A-F: Iron             | 7439-89-6  | 0.05                              | mg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                      | EG020A-F: Bromine          | 7726-95-6  | 0.1                               | mg/L | 0.2             | 0.2              | 0.00    | No Limit            |
| EG020F: Dissolved    | Metals by ICP-MS (QC | C Lot: 226318)             |            |                                   |      |                 |                  |         |                     |
| ES1532008-002        | WKSW02               | EG020A-F: Cadmium          | 7440-43-9  | 0.0001                            | mg/L | <0.0001         | <0.0001          | 0.00    | No Limit            |
|                      |                      | EG020A-F: Antimony         | 7440-36-0  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Arsenic          | 7440-38-2  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Barium           | 7440-39-3  | 0.001                             | mg/L | 0.055           | 0.055            | 0.00    | 0% - 20%            |
|                      |                      | EG020A-F: Beryllium        | 7440-41-7  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Chromium         | 7440-47-3  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Cobalt           | 7440-48-4  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Copper           | 7440-50-8  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Lead             | 7439-92-1  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Manganese        | 7439-96-5  | 0.001                             | mg/L | 0.305           | 0.315            | 3.16    | 0% - 20%            |
|                      |                      | EG020A-F: Molybdenum       | 7439-98-7  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Nickel           | 7440-02-0  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Tin              | 7440-31-5  | 0.001                             | mg/L | <0.001          | <0.001           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Zinc             | 7440-66-6  | 0.005                             | mg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                      | EG020A-F: Aluminium        | 7429-90-5  | 0.01                              | mg/L | <0.01           | <0.01            | 0.00    | No Limit            |
|                      |                      | EG020A-F: Selenium         | 7782-49-2  | 0.01                              | mg/L | <0.01           | <0.01            | 0.00    | No Limit            |

Page : 6 of 20

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                          |                                  |            |        |          | Laboratory      | Duplicate (DUP) Report |         |                    |
|----------------------|--------------------------|----------------------------------|------------|--------|----------|-----------------|------------------------|---------|--------------------|
| Laboratory sample ID | Client sample ID         | Method: Compound                 | CAS Number | LOR    | Unit     | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (9 |
| EG020F: Dissolved    | Metals by ICP-MS (QC I   | Lot: 226318) - continued         |            |        |          |                 |                        |         |                    |
| ES1532008-002        | WKSW02                   | EG020A-F: Vanadium               | 7440-62-2  | 0.01   | mg/L     | <0.01           | <0.01                  | 0.00    | No Limit           |
|                      |                          | EG020A-F: Boron                  | 7440-42-8  | 0.05   | mg/L     | 0.05            | <0.05                  | 0.00    | No Limit           |
|                      |                          | EG020A-F: Iron                   | 7439-89-6  | 0.05   | mg/L     | 0.10            | 0.10                   | 0.00    | No Limit           |
|                      |                          | EG020A-F: Bromine                | 7726-95-6  | 0.1    | mg/L     | 0.2             | 0.2                    | 0.00    | No Limit           |
| EW1511841-003        | Anonymous                | EG020A-F: Cadmium                | 7440-43-9  | 0.0001 | mg/L     | 0.0001          | 0.0001                 | 0.00    | No Limit           |
|                      |                          | EG020A-F: Antimony               | 7440-36-0  | 0.001  | mg/L     | 0.011           | 0.010                  | 0.00    | 0% - 50%           |
|                      |                          | EG020A-F: Arsenic                | 7440-38-2  | 0.001  | mg/L     | 0.058           | 0.058                  | 0.00    | 0% - 20%           |
|                      |                          | EG020A-F: Barium                 | 7440-39-3  | 0.001  | mg/L     | 5.31            | 5.31                   | 0.00    | 0% - 20%           |
|                      |                          | EG020A-F: Beryllium              | 7440-41-7  | 0.001  | mg/L     | <0.001          | <0.001                 | 0.00    | No Limit           |
|                      |                          | EG020A-F: Chromium               | 7440-47-3  | 0.001  | mg/L     | <0.001          | <0.001                 | 0.00    | No Limit           |
|                      |                          | EG020A-F: Cobalt                 | 7440-48-4  | 0.001  | mg/L     | 0.011           | 0.012                  | 0.00    | 0% - 50%           |
|                      |                          | EG020A-F: Copper                 | 7440-50-8  | 0.001  | mg/L     | 0.005           | 0.005                  | 0.00    | No Limit           |
|                      |                          | EG020A-F: Lead                   | 7439-92-1  | 0.001  | mg/L     | 0.008           | 0.008                  | 0.00    | No Limit           |
|                      |                          | EG020A-F: Manganese              | 7439-96-5  | 0.001  | mg/L     | 0.070           | 0.073                  | 3.48    | 0% - 20%           |
|                      |                          | EG020A-F: Molybdenum             | 7439-98-7  | 0.001  | mg/L     | 0.022           | 0.021                  | 0.00    | 0% - 20%           |
|                      |                          | EG020A-F: Nickel                 | 7440-02-0  | 0.001  | mg/L     | 0.064           | 0.065                  | 1.89    | 0% - 20%           |
|                      |                          | EG020A-F: Tin                    | 7440-31-5  | 0.001  | mg/L     | <0.001          | <0.001                 | 0.00    | No Limit           |
|                      |                          | EG020A-F: Zinc                   | 7440-66-6  | 0.005  | mg/L     | 0.085           | 0.085                  | 0.00    | 0% - 50%           |
|                      |                          | EG020A-F: Aluminium              | 7429-90-5  | 0.01   | mg/L     | 0.02            | 0.03                   | 0.00    | No Limit           |
|                      |                          | EG020A-F: Selenium               | 7782-49-2  | 0.01   | mg/L     | <0.01           | <0.01                  | 0.00    | No Limit           |
|                      |                          | EG020A-F: Vanadium               | 7440-62-2  | 0.01   | mg/L     | <0.01           | <0.01                  | 0.00    | No Limit           |
|                      |                          | EG020A-F: Boron                  | 7440-42-8  | 0.05   | mg/L     | 0.06            | 0.06                   | 0.00    | No Limit           |
|                      |                          | EG020A-F: Iron                   | 7439-89-6  | 0.05   | mg/L     | 0.14            | 0.14                   | 0.00    | No Limit           |
|                      |                          | EG020A-F: Bromine                | 7726-95-6  | 0.1    | mg/L     | 0.1             | 0.1                    | 0.00    | No Limit           |
| G035F: Dissolved     | Mercury by FIMS (QC L    | ot: 226316)                      |            |        |          |                 |                        |         |                    |
| ES1531877-001        | Anonymous                | EG035F: Mercury                  | 7439-97-6  | 0.0001 | mg/L     | <0.0001         | <0.0001                | 0.00    | No Limit           |
| ES1532002-005        | Anonymous                | EG035F: Mercury                  | 7439-97-6  | 0.0001 | mg/L     | <0.0001         | <0.0001                | 0.00    | No Limit           |
| G052G: Silica by D   | Discrete Analyser (QC L  |                                  |            |        | <u> </u> |                 |                        |         |                    |
| ES1532008-002        | WKSW02                   | EG052G: Reactive Silica          |            | 0.05   | mg/L     | 3.66            | 3.66                   | 0.00    | 0% - 20%           |
| EK010/011: Chlorine  |                          | EG002G. Reactive Silica          |            | 0.00   | mg/L     | 0.00            | 0.00                   | 0.00    | 070 2070           |
| ES1532002-001        |                          | EKO40. Oblasia a Fara            |            | 0.2    | ma/l     | <b>40.2</b>     | <b>-0.</b> 2           | 0.00    | No Limit           |
| ES1532002-001        | Anonymous                | EK010: Chlorine - Free           |            | 0.2    | mg/L     | <0.2<br><0.2    | <0.2<br><0.2           | 0.00    |                    |
|                      |                          | EK010: Chlorine - Total Residual |            | 0.2    | mg/L     | <0.2            | <0.2                   | 0.00    | No Limit           |
|                      | y PC Titrator (QC Lot: 2 |                                  |            |        |          |                 |                        |         |                    |
| ES1531352-001        | Anonymous                | EK040P: Fluoride                 | 16984-48-8 | 0.1    | mg/L     | 0.5             | 0.5                    | 0.00    | No Limit           |
| ES1531935-004        | Anonymous                | EK040P: Fluoride                 | 16984-48-8 | 0.1    | mg/L     | <0.1            | <0.1                   | 0.00    | No Limit           |
| EK055G: Ammonia a    | as N by Discrete Analys  | er (QC Lot: 223310)              |            |        |          |                 |                        |         |                    |
| ES1532002-005        | Anonymous                | EK055G: Ammonia as N             | 7664-41-7  | 0.01   | mg/L     | 4.85            | 4.87                   | 0.414   | 0% - 20%           |
| ES1531880-001        | Anonymous                | EK055G: Ammonia as N             | 7664-41-7  | 0.01   | mg/L     | 0.02            | 0.02                   | 0.00    | No Limit           |

Page : 7 of 20

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |      | Laboratory      | Duplicate (DUP) Report | :       |                     |
|----------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAS Number | LOR  | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EK057G: Nitrite as   | N by Discrete Analyse   | er (QC Lot: 223168) - continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |      |                 |                        |         |                     |
| ES1531935-001        | Anonymous               | EK057G: Nitrite as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14797-65-0 | 0.01 | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| ES1532008-002        | WKSW02                  | EK057G: Nitrite as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14797-65-0 | 0.01 | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| EK059G: Nitrite plu  | us Nitrate as N (NOx) l | by Discrete Analyser (QC Lot: 223309)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |      |      |                 |                        |         |                     |
| ES1532002-002        | Anonymous               | EK059G: Nitrite + Nitrate as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 0.01 | mg/L | 0.01            | 0.02                   | 0.00    | No Limit            |
| ES1531880-001        | Anonymous               | EK059G: Nitrite + Nitrate as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 0.01 | mg/L | 0.05            | 0.02                   | 59.4    | No Limit            |
| EK061G: Total Kjel   | dahl Nitrogen By Discr  | rete Analyser (QC Lot: 223296)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |      |      |                 |                        |         |                     |
| EW1511842-003        | Anonymous               | EK061G: Total Kjeldahl Nitrogen as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.1  | mg/L | <0.1            | <0.1                   | 0.00    | No Limit            |
| ES1532002-005        | Anonymous               | EK061G: Total Kjeldahl Nitrogen as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.1  | mg/L | 5.8             | 5.8                    | 0.00    | 0% - 20%            |
| EK067G: Total Pho    | sphorus as P by Discr   | ete Analyser (QC Lot: 223295)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |      |      |                 |                        |         |                     |
| EW1511842-003        | Anonymous               | EK067G: Total Phosphorus as P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 0.01 | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| ES1532002-005        | Anonymous               | EK067G: Total Phosphorus as P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 0.01 | mg/L | 1.39            | 1.40                   | 1.12    | 0% - 20%            |
| EK071G: Reactive     | Phosphorus as P by di   | screte analyser (QC Lot: 223165)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |      |      |                 |                        |         |                     |
| ES1531935-001        | Anonymous               | EK071G: Reactive Phosphorus as P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14265-44-2 | 0.01 | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| ES1532008-002        | WKSW02                  | EK071G: Reactive Phosphorus as P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14265-44-2 | 0.01 | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| EP005: Total Organ   | ic Carbon (TOC) (QC     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |      |                 |                        |         |                     |
| ES1531900-001        | Anonymous               | EP005: Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 1    | mg/L | 2               | 2                      | 0.00    | No Limit            |
| ES1531955-009        | Anonymous               | EP005: Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 1    | mg/L | 10              | 10                     | 0.00    | 0% - 50%            |
| EP005: Total Organ   | ic Carbon (TOC) (QC     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |      |                 |                        |         |                     |
| ES1532008-003        | WKSW03                  | EP005: Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 1    | mg/L | 7               | 7                      | 0.00    | No Limit            |
| EW1511841-001        | Anonymous               | EP005: Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 1    | mg/L | <1              | <1                     | 0.00    | No Limit            |
| EP033: C1 - C4 Hvc   | Irocarbon Gases (QC     | , and the second |            |      |      |                 |                        |         |                     |
| EM1514747-001        | Anonymous               | EP033: Butane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106-97-8   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                         | EP033: Butene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25167-67-3 | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                         | EP033: Ethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74-84-0    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                         | EP033: Ethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74-85-1    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                         | EP033: Methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74-82-8    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                         | EP033: Propane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74-98-6    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                         | EP033: Propene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 115-07-1   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
| ES1531999-004        | Anonymous               | EP033: Butane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106-97-8   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                         | EP033: Butene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25167-67-3 | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                         | EP033: Ethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74-84-0    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                         | EP033: Ethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74-85-1    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                         | EP033: Methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74-82-8    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                         | EP033: Propane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74-98-6    | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
|                      |                         | EP033: Propene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 115-07-1   | 10   | μg/L | <10             | <10                    | 0.00    | No Limit            |
| EP074A: Monocycl     | ic Aromatic Hydrocarb   | ons (QC Lot: 226812)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |      |      |                 |                        |         |                     |
| ES1531576-006        | Anonymous               | EP074: 1.2.4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95-63-6    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                         | EP074: 1.3.5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108-67-8   | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                         | EP074: Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98-82-8    | 5    | μg/L | <5              | <5                     | 0.00    | No Limit            |

Page : 8 of 20

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| ub-Matrix: WATER     |                       |                                    |            |        |      |                 | Duplicate (DUP) Report |         |                   |
|----------------------|-----------------------|------------------------------------|------------|--------|------|-----------------|------------------------|---------|-------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                   | CAS Number | LOR    | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits ( |
| P074A: Monocyclic    | c Aromatic Hydrocarbo | ns (QC Lot: 226812) - continued    |            |        |      |                 |                        |         |                   |
| ES1531576-006        | Anonymous             | EP074: n-Butylbenzene              | 104-51-8   | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
|                      |                       | EP074: n-Propylbenzene             | 103-65-1   | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
|                      |                       | EP074: p-lsopropyltoluene          | 99-87-6    | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
|                      |                       | EP074: sec-Butylbenzene            | 135-98-8   | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
|                      |                       | EP074: Styrene                     | 100-42-5   | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
|                      |                       | EP074: tert-Butylbenzene           | 98-06-6    | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
| ES1532002-003        | Anonymous             | EP074: 1.2.4-Trimethylbenzene      | 95-63-6    | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
|                      |                       | EP074: 1.3.5-Trimethylbenzene      | 108-67-8   | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
|                      |                       | EP074: Isopropylbenzene            | 98-82-8    | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
|                      |                       | EP074: n-Butylbenzene              | 104-51-8   | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
|                      |                       | EP074: n-Propylbenzene             | 103-65-1   | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
|                      |                       | EP074: p-lsopropyltoluene          | 99-87-6    | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
|                      |                       | EP074: sec-Butylbenzene            | 135-98-8   | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
|                      |                       | EP074: Styrene                     | 100-42-5   | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
|                      |                       | EP074: tert-Butylbenzene           | 98-06-6    | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
| P074B: Oxygenate     | d Compounds (QC Lot   | t: 226812)                         |            |        |      |                 |                        |         |                   |
| S1531576-006         | Anonymous             | EP074: 2-Butanone (MEK)            | 78-93-3    | 50     | μg/L | <50             | <50                    | 0.00    | No Limit          |
|                      |                       | EP074: 2-Hexanone (MBK)            | 591-78-6   | 50     | μg/L | <50             | <50                    | 0.00    | No Limit          |
|                      |                       | EP074: 4-Methyl-2-pentanone (MIBK) | 108-10-1   | 50     | μg/L | <50             | <50                    | 0.00    | No Limit          |
|                      |                       | EP074: Vinyl Acetate               | 108-05-4   | 50     | μg/L | <50             | <50                    | 0.00    | No Limit          |
|                      | Anonymous             | EP074: 2-Butanone (MEK)            | 78-93-3    | 50     | μg/L | <50             | <50                    | 0.00    | No Limit          |
|                      |                       | EP074: 2-Hexanone (MBK)            | 591-78-6   | 50     | μg/L | <50             | <50                    | 0.00    | No Limit          |
|                      |                       | EP074: 4-Methyl-2-pentanone (MIBK) | 108-10-1   | 50     | μg/L | <50             | <50                    | 0.00    | No Limit          |
|                      |                       | EP074: Vinyl Acetate               | 108-05-4   | 50     | μg/L | <50             | <50                    | 0.00    | No Limit          |
| P074C: Sulfonated    | Compounds (QC Lot:    | •                                  |            |        |      |                 |                        |         |                   |
| S1531576-006         | Anonymous             | EP074: Carbon disulfide            | 75-15-0    | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
| ES1532002-003        | Anonymous             | EP074: Carbon disulfide            | 75-15-0    | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
| P074D: Fumigants     | -                     | El 0/4. Odiboli disdilide          |            |        | P-3  |                 |                        |         |                   |
| S1531576-006         |                       | EDOZALA O Dibarra salbara (EDD)    | 106-93-4   | 5      | ug/l | <5              | <5                     | 0.00    | No Limit          |
| 1331370-000          | Anonymous             | EP074: 1.2-Dibromoethane (EDB)     | 78-87-5    | 5      | μg/L | <5<br><5        | <5<br><5               | 0.00    | No Limit          |
|                      |                       | EP074: 1.2-Dichloropropane         | 594-20-7   | 5      | μg/L | <5<br><5        | <5<br><5               | 0.00    | No Limit          |
|                      |                       | EP074: 2.2-Dichloropropane         | 10061-01-5 | 5      | μg/L | <5<br><5        | <5<br><5               | 0.00    | No Limit          |
|                      |                       | EP074: cis-1.3-Dichloropropylene   | 10061-01-5 | 5      | μg/L | <5<br><5        | <5<br><5               | 0.00    | No Limit          |
| S1532002-003         | Ananymaya             | EP074: trans-1.3-Dichloropropylene | 10061-02-8 | 5      | μg/L | <5<br><5        | <5<br><5               | 0.00    | No Limit          |
| .01002002-000        | Anonymous             | EP074: 1.2-Dibromoethane (EDB)     | 78-87-5    | 5<br>5 | μg/L | <5<br><5        | <5<br><5               | 0.00    |                   |
|                      |                       | EP074: 1.2-Dichloropropane         |            |        | μg/L |                 | -                      |         | No Limit          |
|                      |                       | EP074: 2.2-Dichloropropane         | 594-20-7   | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
|                      |                       | EP074: cis-1.3-Dichloropropylene   | 10061-01-5 | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |
|                      |                       | EP074: trans-1.3-Dichloropropylene | 10061-02-6 | 5      | μg/L | <5              | <5                     | 0.00    | No Limit          |

Page : 9 of 20

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                                    |            |     |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|-----------------------|------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                   | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074E: Halogenat    | ed Aliphatic Compound | ds (QC Lot: 226812) - continued    |            |     |      |                 |                        |         |                     |
| ES1531576-006        | Anonymous             | EP074: 1.1.1.2-Tetrachloroethane   | 630-20-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.1-Trichloroethane       | 71-55-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.2.2-Tetrachloroethane   | 79-34-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.2-Trichloroethane       | 79-00-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloroethane          | 75-34-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloroethene          | 75-35-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloropropylene       | 563-58-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2.3-Trichloropropane      | 96-18-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dibromo-3-chloropropane | 96-12-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichloroethane          | 107-06-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.3-Dichloropropane         | 142-28-9   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Carbon Tetrachloride        | 56-23-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.2-Dichloroethene      | 156-59-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.4-Dichloro-2-butene   | 1476-11-5  | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromomethane              | 74-95-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Hexachlorobutadiene         | 87-68-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Iodomethane                 | 74-88-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Pentachloroethane           | 76-01-7    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Tetrachloroethene           | 127-18-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.2-Dichloroethene    | 156-60-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Trichloroethene             | 79-01-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromomethane                | 74-83-9    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloroethane                | 75-00-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloromethane               | 74-87-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Dichlorodifluoromethane     | 75-71-8    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Trichlorofluoromethane      | 75-69-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Vinyl chloride              | 75-01-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| ES1532002-003        | Anonymous             | EP074: 1.1.1.2-Tetrachloroethane   | 630-20-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.1-Trichloroethane       | 71-55-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.2.2-Tetrachloroethane   | 79-34-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1.2-Trichloroethane       | 79-00-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloroethane          | 75-34-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloroethene          | 75-35-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.1-Dichloropropylene       | 563-58-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2.3-Trichloropropane      | 96-18-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dibromo-3-chloropropane | 96-12-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichloroethane          | 107-06-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.3-Dichloropropane         | 142-28-9   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Carbon Tetrachloride        | 56-23-5    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |

Page : 10 of 20

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| ub-Matrix: WATER     |                       |                                    |            |     |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|-----------------------|------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                   | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074E: Halogenate   | ed Aliphatic Compound | s (QC Lot: 226812) - continued     |            |     |      |                 |                        |         |                     |
| ES1532002-003        | Anonymous             | EP074: cis-1.2-Dichloroethene      | 156-59-2   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: cis-1.4-Dichloro-2-butene   | 1476-11-5  | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromomethane              | 74-95-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Hexachlorobutadiene         | 87-68-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Iodomethane                 | 74-88-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Pentachloroethane           | 76-01-7    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Tetrachloroethene           | 127-18-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.2-Dichloroethene    | 156-60-5   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Trichloroethene             | 79-01-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromomethane                | 74-83-9    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloroethane                | 75-00-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Chloromethane               | 74-87-3    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Dichlorodifluoromethane     | 75-71-8    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Trichlorofluoromethane      | 75-69-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
|                      |                       | EP074: Vinyl chloride              | 75-01-4    | 50  | μg/L | <50             | <50                    | 0.00    | No Limit            |
| P074F: Halogenate    | d Aromatic Compound   | •                                  |            |     |      |                 |                        |         |                     |
| S1531576-006         | Anonymous             | EP074: 1.2.3-Trichlorobenzene      | 87-61-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2.4-Trichlorobenzene      | 120-82-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichlorobenzene         | 95-50-1    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.3-Dichlorobenzene         | 541-73-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.4-Dichlorobenzene         | 106-46-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 2-Chlorotoluene             | 95-49-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 4-Chlorotoluene             | 106-43-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromobenzene                | 108-86-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Chlorobenzene               | 108-90-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1532002-003        | Anonymous             | EP074: 1.2.3-Trichlorobenzene      | 87-61-6    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2.4-Trichlorobenzene      | 120-82-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.2-Dichlorobenzene         | 95-50-1    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.3-Dichlorobenzene         | 541-73-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 1.4-Dichlorobenzene         | 106-46-7   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 2-Chlorotoluene             | 95-49-8    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: 4-Chlorotoluene             | 106-43-4   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromobenzene                | 108-86-1   | 5   | µg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Chlorobenzene               | 108-90-7   | 5   | µg/L | <5              | <5                     | 0.00    | No Limit            |
| P074G: Trihalomet    | hanes (QC Lot: 22681  |                                    |            |     |      |                 |                        |         |                     |
| ES1531576-006        | Anonymous             | EP074: Bromodichloromethane        | 75-27-4    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      | ,                     | EP074: Bromoform                   | 75-25-2    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Chloroform                  | 67-66-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromochloromethane        | 124-48-1   | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |

Page : 11 of 20

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                       |                                           |            |     |                                         | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|-----------------------|-------------------------------------------|------------|-----|-----------------------------------------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                          | CAS Number | LOR | Unit                                    | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074G: Trihalome    | thanes (QC Lot: 22681 | 2) - continued                            |            |     |                                         |                 |                        |         |                     |
| ES1532002-003        | Anonymous             | EP074: Bromodichloromethane               | 75-27-4    | 5   | μg/L                                    | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Bromoform                          | 75-25-2    | 5   | μg/L                                    | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Chloroform                         | 67-66-3    | 5   | μg/L                                    | <5              | <5                     | 0.00    | No Limit            |
|                      |                       | EP074: Dibromochloromethane               | 124-48-1   | 5   | μg/L                                    | <5              | <5                     | 0.00    | No Limit            |
| EP080/071: Total Pe  | troleum Hydrocarbons  | (QC Lot: 226811)                          |            |     |                                         |                 |                        |         |                     |
| ES1531576-006        | Anonymous             | EP080: C6 - C9 Fraction                   |            | 20  | μg/L                                    | <20             | <20                    | 0.00    | No Limit            |
| ES1532002-003        | Anonymous             | EP080: C6 - C9 Fraction                   |            | 20  | μg/L                                    | 180             | 180                    | 0.00    | No Limit            |
| EP080/071: Total Re  | coverable Hydrocarbo  | ns - NEPM 2013 Fractions (QC Lot: 226811) |            |     |                                         |                 |                        |         |                     |
| ES1531576-006        | Anonymous             | EP080: C6 - C10 Fraction                  | C6_C10     | 20  | μg/L                                    | <20             | <20                    | 0.00    | No Limit            |
| ES1532002-003        | Anonymous             | EP080: C6 - C10 Fraction                  | C6_C10     | 20  | μg/L                                    | 180             | 180                    | 0.00    | No Limit            |
| EP080: BTEXN (QC     | Lot: 226811)          |                                           |            |     |                                         |                 |                        |         |                     |
| ES1531576-006        | Anonymous             | EP080: Benzene                            | 71-43-2    | 1   | μg/L                                    | <1              | <1                     | 0.00    | No Limit            |
|                      |                       | EP080: Ethylbenzene                       | 100-41-4   | 2   | μg/L                                    | <2              | <2                     | 0.00    | No Limit            |
|                      |                       | EP080: meta- & para-Xylene                | 108-38-3   | 2   | μg/L                                    | <2              | <2                     | 0.00    | No Limit            |
|                      |                       |                                           | 106-42-3   |     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                 |                        |         |                     |
|                      |                       | EP080: ortho-Xylene                       | 95-47-6    | 2   | μg/L                                    | <2              | <2                     | 0.00    | No Limit            |
|                      |                       | EP080: Toluene                            | 108-88-3   | 2   | μg/L                                    | <2              | <2                     | 0.00    | No Limit            |
|                      |                       | EP080: Naphthalene                        | 91-20-3    | 5   | μg/L                                    | <5              | <5                     | 0.00    | No Limit            |
| ES1532002-003        | Anonymous             | EP080: Benzene                            | 71-43-2    | 1   | μg/L                                    | 52              | 52                     | 0.00    | 0% - 20%            |
|                      |                       | EP080: Ethylbenzene                       | 100-41-4   | 2   | μg/L                                    | <2              | <2                     | 0.00    | No Limit            |
|                      |                       | EP080: meta- & para-Xylene                | 108-38-3   | 2   | μg/L                                    | 10              | 9                      | 0.00    | No Limit            |
|                      |                       |                                           | 106-42-3   |     |                                         |                 |                        | 0.00    | A1 1 1 1            |
|                      |                       | EP080: ortho-Xylene                       | 95-47-6    | 2   | μg/L                                    | <2              | <2                     | 0.00    | No Limit            |
|                      |                       | EP080: Toluene                            | 108-88-3   | 2   | μg/L                                    | 50              | 50                     | 0.00    | 0% - 20%            |
|                      |                       | EP080: Naphthalene                        | 91-20-3    | 5   | μg/L                                    | <5              | <5                     | 0.00    | No Limit            |
| EP262: Ethanolamir   | nes (QC Lot: 223283)  |                                           |            |     |                                         |                 |                        |         |                     |
| ES1532002-001        | Anonymous             | EP262: Diethanolamine                     | 111-42-2   | 1   | μg/L                                    | 36              | 33                     | 8.97    | 0% - 20%            |
|                      |                       | EP262: Ethanolamine                       | 141-43-5   | 1   | μg/L                                    | 17              | 16                     | 0.00    | 0% - 50%            |

Page : 12 of 20

Work Order : ES1532008 Amendment 3

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                         |            |       |       | Method Blank (MB) Report |               | Laboratory Control Spike (LCS | S) Report |            |
|-----------------------------------------------------------|------------|-------|-------|--------------------------|---------------|-------------------------------|-----------|------------|
|                                                           |            |       |       | Report                   | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                          | CAS Number | LOR   | Unit  | Result                   | Concentration | LCS                           | Low       | High       |
| EA010P: Conductivity by PC Titrator (QCLot: 225797)       |            |       |       |                          |               |                               |           |            |
| EA010-P: Electrical Conductivity @ 25°C                   |            | 1     | μS/cm | <1                       | 2000 μS/cm    | 100                           | 95        | 113        |
| EA015: Total Dissolved Solids (QCLot: 225427)             |            |       |       |                          |               |                               |           |            |
| EA015H: Total Dissolved Solids @180°C                     |            | 10    | mg/L  | <10                      | 2000 mg/L     | 94.3                          | 87        | 109        |
|                                                           |            |       |       | <10                      | 293 mg/L      | 116                           | 66        | 126        |
| EA025: Suspended Solids (QCLot: 225428)                   |            |       |       |                          |               |                               |           |            |
| EA025H: Suspended Solids (SS)                             |            | 5     | mg/L  | <5                       | 150 mg/L      | 117                           | 83        | 129        |
|                                                           |            |       |       | <5                       | 1000 mg/L     | 99.8                          | 84        | 110        |
| ED009: Anions (QCLot: 223259)                             |            |       |       |                          |               |                               |           |            |
| ED009-X: Chloride                                         | 16887-00-6 | 0.1   | mg/L  | <0.100                   | 2 mg/L        | 102                           | 89        | 107        |
| ED009: Anions (QCLot: 223260)                             |            |       |       |                          |               |                               |           |            |
| ED009-X: Chloride                                         | 16887-00-6 | 0.1   | mg/L  | <0.100                   | 2 mg/L        | 102                           | 89        | 107        |
| ED037P: Alkalinity by PC Titrator (QCLot: 225798)         |            |       |       |                          |               |                               |           |            |
| ED037-P: Total Alkalinity as CaCO3                        |            |       | mg/L  |                          | 200 mg/L      | 91.9                          | 81        | 111        |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 2 | 23166)     |       |       |                          |               |                               |           |            |
| ED041G: Sulfate as SO4 - Turbidimetric                    | 14808-79-8 | 1     | mg/L  | <1                       | 25 mg/L       | 107                           | 86        | 122        |
| ED045G: Chloride by Discrete Analyser (QCLot: 223167)     |            |       |       |                          |               |                               |           |            |
| ED045G: Chloride                                          | 16887-00-6 | 1     | mg/L  | <1                       | 10 mg/L       | 112                           | 75        | 123        |
|                                                           |            |       | _     | <1                       | 1000 mg/L     | 104                           | 77        | 119        |
| ED045G: Chloride by Discrete Analyser (QCLot: 223171)     |            |       |       |                          |               |                               |           |            |
| ED045G: Chloride                                          | 16887-00-6 | 1     | mg/L  | <1                       | 10 mg/L       | 107                           | 75        | 123        |
|                                                           |            |       |       | <1                       | 1000 mg/L     | 101                           | 77        | 119        |
| ED093F: Dissolved Major Cations (QCLot: 226314)           |            |       |       |                          |               |                               |           |            |
| ED093F: Calcium                                           | 7440-70-2  | 1     | mg/L  | <1                       | 50 mg/L       | 94.6                          | 90        | 114        |
| :D093F: Magnesium                                         | 7439-95-4  | 1     | mg/L  | <1                       | 50 mg/L       | 102                           | 90        | 110        |
| ED093F: Potassium                                         | 7440-09-7  | 1     | mg/L  | <1                       | 50 mg/L       | 98.0                          | 87        | 117        |
| ED093F: Sodium                                            | 7440-23-5  | 1     | mg/L  | <1                       | 50 mg/L       | 95.8                          | 82        | 118        |
| ED093F: Dissolved Major Cations (QCLot: 226319)           |            |       |       |                          |               |                               |           |            |
| ED093F: Calcium                                           | 7440-70-2  | 1     | mg/L  | <1                       | 50 mg/L       | 96.8                          | 90        | 114        |
| ED093F: Magnesium                                         | 7439-95-4  | 1     | mg/L  | <1                       | 50 mg/L       | 105                           | 90        | 110        |
| ED093F: Potassium                                         | 7440-09-7  | 1     | mg/L  | <1                       | 50 mg/L       | 101                           | 87        | 117        |
| ED093F: Sodium                                            | 7440-23-5  | 1     | mg/L  | <1                       | 50 mg/L       | 97.5                          | 82        | 118        |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 226315)        |            |       |       |                          |               |                               |           |            |
| EG020B-F: Strontium                                       | 7440-24-6  | 0.001 | mg/L  | <0.001                   | 0.1 mg/L      | 88.9                          | 80        | 112        |

Page : 13 of 20

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                              |            |         | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|----------------------------------------------------------------|------------|---------|-------------------|---------------|------------------------------|-----------|------------|
|                                                                |            |         | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound CAS N                                         | mber LOF   | ? Unit  | Result            | Concentration | LCS                          | Low       | High       |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 226315) - continued |            |         |                   |               |                              |           |            |
| EG020B-F: Uranium 7440-                                        | 61-1 0.00  | 1 mg/L  | <0.001            |               |                              |           |            |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 226317)             |            |         |                   |               |                              |           |            |
| EG020A-F: Aluminium 7429                                       | 90-5 0.0°  | l mg/L  | <0.01             | 0.5 mg/L      | 94.7                         | 85        | 115        |
| EG020A-F: Antimony 7440-                                       | 36-0 0.00  | 1 mg/L  | <0.001            | 0.01 mg/L     | 90.6                         | 85        | 115        |
| EG020A-F: Arsenic 7440                                         | 38-2 0.00  | 1 mg/L  | <0.001            | 0.1 mg/L      | 93.7                         | 85        | 115        |
| EG020A-F: Barium 7440-                                         | 39-3 0.00  | 1 mg/L  | <0.001            | 0.1 mg/L      | 92.4                         | 85        | 115        |
| EG020A-F: Beryllium 7440-                                      | 11-7 0.00  | 1 mg/L  | <0.001            | 0.1 mg/L      | 99.3                         | 85        | 115        |
| EG020A-F: Boron 7440-                                          | 12-8 0.0   | 5 mg/L  | <0.05             | 0.1 mg/L      | 85.6                         | 85        | 115        |
| EG020A-F: Bromine 7726-                                        | 95-6 0.1   | mg/L    | <0.1              |               |                              |           |            |
| EG020A-F: Cadmium 7440-                                        | 13-9 0.000 | )1 mg/L | <0.0001           | 0.1 mg/L      | 93.6                         | 85        | 115        |
| EG020A-F: Chromium 7440-                                       | 17-3 0.00  | 1 mg/L  | <0.001            | 0.1 mg/L      | 93.1                         | 85        | 115        |
| EG020A-F: Cobalt 7440-                                         | 18-4 0.00  | 1 mg/L  | <0.001            | 0.1 mg/L      | 90.4                         | 85        | 115        |
| EG020A-F: Copper 7440-                                         | 0.00       | 1 mg/L  | <0.001            | 0.1 mg/L      | 92.6                         | 85        | 115        |
| EG020A-F: Iron 7439-                                           | 39-6 0.0   | 5 mg/L  | <0.05             | 0.5 mg/L      | 102                          | 85        | 115        |
| EG020A-F: Lead 7439-                                           | 92-1 0.00  | 1 mg/L  | <0.001            | 0.1 mg/L      | 95.4                         | 85        | 115        |
| EG020A-F: Manganese 7439-                                      | 96-5 0.00  | 1 mg/L  | <0.001            | 0.1 mg/L      | 94.4                         | 85        | 115        |
| EG020A-F: Molybdenum 7439-                                     | 98-7 0.00  | 1 mg/L  | <0.001            | 0.1 mg/L      | 93.6                         | 85        | 115        |
| EG020A-F: Nickel 7440-                                         | 0.00       | 1 mg/L  | <0.001            | 0.1 mg/L      | 89.3                         | 85        | 115        |
| EG020A-F: Selenium 7782                                        | 19-2 0.0°  | l mg/L  | <0.01             | 0.1 mg/L      | 90.0                         | 85        | 115        |
| EG020A-F: Tin 7440-                                            | 31-5 0.00  | 1 mg/L  | <0.001            | 0.1 mg/L      | 87.1                         | 85        | 115        |
| EG020A-F: Vanadium 7440-                                       | 62-2 0.0°  | l mg/L  | <0.01             | 0.1 mg/L      | 94.6                         | 85        | 115        |
| EG020A-F: Zinc 7440-                                           | 66-6 0.00  | 5 mg/L  | <0.005            | 0.1 mg/L      | 90.8                         | 85        | 115        |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 226318)             |            |         |                   |               |                              |           |            |
| EG020A-F: Aluminium 7429-                                      | 90-5 0.0°  | l mg/L  | <0.01             | 0.5 mg/L      | 98.7                         | 85        | 115        |
| EG020A-F: Antimony 7440                                        | 36-0 0.00  | 1 mg/L  | <0.001            | 0.01 mg/L     | 89.2                         | 85        | 115        |
| EG020A-F: Arsenic 7440-                                        | 38-2 0.00  | 1 mg/L  | <0.001            | 0.1 mg/L      | 98.1                         | 85        | 115        |
| EG020A-F: Barium 7440-                                         | 39-3 0.00  | 1 mg/L  | <0.001            | 0.1 mg/L      | 93.9                         | 85        | 115        |
| EG020A-F: Beryllium 7440                                       | 11-7 0.00  | 1 mg/L  | <0.001            | 0.1 mg/L      | 97.8                         | 85        | 115        |
| EG020A-F: Boron 7440-                                          | 12-8 0.0   | 5 mg/L  | <0.05             | 0.1 mg/L      | 113                          | 85        | 115        |
| EG020A-F: Bromine 7726                                         | 95-6 0.1   | mg/L    | <0.1              |               |                              |           |            |
| EG020A-F: Cadmium 7440-                                        | 13-9 0.000 | )1 mg/L | <0.0001           | 0.1 mg/L      | 92.8                         | 85        | 115        |
| EG020A-F: Chromium 7440-                                       | 17-3 0.00  | 1 mg/L  | <0.001            | 0.1 mg/L      | 91.4                         | 85        | 115        |
| EG020A-F: Cobalt 7440-                                         | 18-4 0.00  | 1 mg/L  | <0.001            | 0.1 mg/L      | 97.3                         | 85        | 115        |
| EG020A-F: Copper 7440-                                         | 50-8 0.00  | 1 mg/L  | <0.001            | 0.1 mg/L      | 93.9                         | 85        | 115        |
| EG020A-F: Iron 7439                                            |            | 3       | <0.05             | 0.5 mg/L      | 102                          | 85        | 115        |
| EG020A-F: Lead 7439                                            |            | 3       | <0.001            | 0.1 mg/L      | 97.8                         | 85        | 115        |
| EG020A-F: Manganese 7439                                       |            | 1 mg/L  | <0.001            | 0.1 mg/L      | 94.6                         | 85        | 115        |
| EG020A-F: Molybdenum 7439                                      |            |         | <0.001            | 0.1 mg/L      | 94.2                         | 85        | 115        |
| EG020A-F: Nickel 7440-                                         | 0.00       | 1 mg/L  | <0.001            | 0.1 mg/L      | 98.3                         | 85        | 115        |

Page : 14 of 20

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                       |                    |        |      | Method Blank (MB) |               | Laboratory Control Spike (LCS | LCS) Report |            |
|---------------------------------------------------------|--------------------|--------|------|-------------------|---------------|-------------------------------|-------------|------------|
|                                                         |                    |        |      | Report            | Spike         | Spike Recovery (%)            | Recovery    | Limits (%) |
| Method: Compound                                        | CAS Number         | LOR    | Unit | Result            | Concentration | LCS                           | Low         | High       |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 226318) -    | continued          |        |      |                   |               |                               |             |            |
| EG020A-F: Selenium                                      | 7782-49-2          | 0.01   | mg/L | <0.01             | 0.1 mg/L      | 96.5                          | 85          | 115        |
| EG020A-F: Tin                                           | 7440-31-5          | 0.001  | mg/L | <0.001            | 0.1 mg/L      | 91.8                          | 85          | 115        |
| EG020A-F: Vanadium                                      | 7440-62-2          | 0.01   | mg/L | <0.01             | 0.1 mg/L      | 94.7                          | 85          | 115        |
| EG020A-F: Zinc                                          | 7440-66-6          | 0.005  | mg/L | <0.005            | 0.1 mg/L      | 95.0                          | 85          | 115        |
| EG035F: Dissolved Mercury by FIMS (QCLot: 226316)       |                    |        |      |                   |               |                               |             |            |
| EG035F: Mercury                                         | 7439-97-6          | 0.0001 | mg/L | <0.0001           | 0.01 mg/L     | 91.0                          | 78          | 114        |
| EG052G: Silica by Discrete Analyser (QCLot: 223170)     |                    |        |      |                   |               |                               |             |            |
| EG052G: Reactive Silica                                 |                    | 0.05   | mg/L | <0.05             | 5 mg/L        | 105                           | 94          | 114        |
| EK010/011: Chlorine (QCLot: 223119)                     |                    |        |      |                   |               |                               |             |            |
| EK010: Chlorine - Free                                  |                    | 0.2    | mg/L | <0.2              |               |                               |             |            |
| EK010: Chlorine - Total Residual                        |                    | 0.2    | mg/L | <0.2              |               |                               |             |            |
| EK040P: Fluoride by PC Titrator (QCLot: 225796)         |                    |        |      |                   |               |                               |             |            |
| EK040P: Fluoride                                        | 16984-48-8         | 0.1    | mg/L | <0.1              | 5 mg/L        | 81.2                          | 75          | 119        |
| EK055G: Ammonia as N by Discrete Analyser (QCLot: 22    | 23310)             |        |      |                   |               |                               |             |            |
| EK055G: Ammonia as N                                    | 7664-41-7          | 0.01   | mg/L | <0.01             | 1 mg/L        | 96.3                          | 90          | 114        |
| EK057G: Nitrite as N by Discrete Analyser (QCLot: 2231  | 68)                |        |      |                   |               |                               |             |            |
| EK057G: Nitrite as N                                    | 14797-65-0         | 0.01   | mg/L | <0.01             | 0.5 mg/L      | 95.0                          | 82          | 114        |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana | lyser (QCI of: 223 | 309)   |      |                   |               |                               |             |            |
| EK059G: Nitrite + Nitrate as N                          |                    | 0.01   | mg/L | <0.01             | 0.5 mg/L      | 94.9                          | 91          | 113        |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser(C  | CL of: 223296)     |        |      |                   |               |                               |             |            |
| EK061G: Total Kjeldahl Nitrogen as N                    |                    | 0.1    | mg/L | <0.1              | 10 mg/L       | 88.0                          | 69          | 101        |
| Endo Fo. Fotal Hydradin Hillington at 14                |                    |        | 3    | <0.1              | 1 mg/L        | 95.5                          | 70          | 118        |
|                                                         |                    |        |      | <0.1              | 5 mg/L        | 100                           | 74          | 118        |
| EK067G: Total Phosphorus as P by Discrete Analyser(C    | CLot: 223295)      |        |      |                   |               |                               |             |            |
| EK067G: Total Phosphorus as P                           |                    | 0.01   | mg/L | <0.01             | 4.42 mg/L     | 94.2                          | 71          | 101        |
| '                                                       |                    |        |      | <0.01             | 0.442 mg/L    | 93.7                          | 72          | 108        |
|                                                         |                    |        |      | <0.01             | 1 mg/L        | 103                           | 78          | 118        |
| EK071G: Reactive Phosphorus as P by discrete analyser   | (QCLot: 223165)    |        |      |                   |               |                               |             |            |
| EK071G: Reactive Phosphorus as P                        | 14265-44-2         | 0.01   | mg/L | <0.01             | 0.5 mg/L      | 102                           | 85          | 117        |
| EP005: Total Organic Carbon (TOC) (QCLot: 226830)       |                    |        |      |                   |               |                               |             |            |
| EP005: Total Organic Carbon                             |                    | 1      | mg/L | <1                | 10 mg/L       | 85.8                          | 76          | 120        |
| EP005: Total Organic Carbon (TOC) (QCLot: 226831)       |                    |        |      |                   |               |                               |             |            |
| EP005: Total Organic Carbon                             |                    | 1      | mg/L | <1                | 10 mg/L       | 83.9                          | 76          | 120        |
| EP033: C1 - C4 Hydrocarbon Gases (QCLot: 225763)        |                    |        |      |                   |               |                               |             |            |
| EP033: Butane                                           | 106-97-8           | 10     | μg/L | <10               | 102.18 µg/L   | 101                           | 85          | 115        |
| EP033: Butene                                           | 25167-67-3         | 10     | μg/L | <10               | 99.61 µg/L    | 100                           | 83          | 115        |
| EP033: Ethane                                           | 74-84-0            | 10     | μg/L | <10               | 54.43 μg/L    | 98.8                          | 87          | 111        |

Page : 15 of 20

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                            |       |      | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|--------------------------------------------------------------|-------|------|-------------------|---------------|------------------------------|-----------|------------|
|                                                              |       |      | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound CAS Number                                  | r LOR | Unit | Result            | Concentration | LCS                          | Low       | High       |
| EP033: C1 - C4 Hydrocarbon Gases (QCLot: 225763) - continued |       |      |                   |               |                              |           |            |
| EP033: Ethene 74-85-1                                        | 10    | μg/L | <10               | 50.29 μg/L    | 98.4                         | 87        | 111        |
| EP033: Methane 74-82-8                                       | 10    | μg/L | <10               | 28.48 μg/L    | 103                          | 86        | 114        |
| EP033: Propane 74-98-6                                       | 10    | μg/L | <10               | 78.28 μg/L    | 97.1                         | 84        | 112        |
| EP033: Propene 115-07-1                                      | 10    | μg/L | <10               | 73.97 µg/L    | 97.6                         | 85        | 113        |
| EP074A: Monocyclic Aromatic Hydrocarbons (QCLot: 226812)     |       |      |                   |               |                              |           |            |
| EP074: 1.2.4-Trimethylbenzene 95-63-6                        | 5     | μg/L | <5                | 10 μg/L       | 91.7                         | 71        | 121        |
| EP074: 1.3.5-Trimethylbenzene 108-67-8                       | 5     | μg/L | <5                | 10 μg/L       | 89.6                         | 70        | 122        |
| EP074: Isopropylbenzene 98-82-8                              | 5     | μg/L | <5                | 10 μg/L       | 93.8                         | 75        | 121        |
| EP074: n-Butylbenzene 104-51-8                               | 5     | μg/L | <5                | 10 μg/L       | 90.4                         | 62        | 126        |
| EP074: n-Propylbenzene 103-65-1                              | 5     | μg/L | <5                | 10 μg/L       | 79.9                         | 67        | 123        |
| EP074: p-Isopropyltoluene 99-87-6                            | 5     | μg/L | <5                | 10 μg/L       | 89.4                         | 67        | 123        |
| EP074: sec-Butylbenzene 135-98-8                             | 5     | μg/L | <5                | 10 μg/L       | 88.1                         | 69        | 123        |
| EP074: Styrene 100-42-5                                      | 5     | μg/L | <5                | 10 μg/L       | 91.4                         | 74        | 118        |
| EP074: tert-Butylbenzene 98-06-6                             | 5     | μg/L | <5                | 10 μg/L       | 91.8                         | 70        | 122        |
| EP074B: Oxygenated Compounds (QCLot: 226812)                 |       |      |                   |               |                              |           |            |
| EP074: 2-Butanone (MEK) 78-93-3                              | 50    | μg/L | <50               | 100 μg/L      | 87.8                         | 74        | 130        |
| EP074: 2-Hexanone (MBK) 591-78-6                             | 50    | μg/L | <50               | 100 μg/L      | 98.6                         | 65        | 137        |
| EP074: 4-Methyl-2-pentanone (MIBK)                           | 50    | μg/L | <50               | 100 μg/L      | 100                          | 61        | 139        |
| EP074: Vinyl Acetate 108-05-4                                | 50    | μg/L | <50               | 100 μg/L      | 103                          | 61        | 134        |
| EP074C: Sulfonated Compounds (QCLot: 226812)                 |       |      |                   |               |                              |           |            |
| EP074: Carbon disulfide 75-15-0                              | 5     | μg/L | <5                | 10 μg/L       | 85.2                         | 73        | 127        |
| EP074D: Fumigants (QCLot: 226812)                            |       |      |                   |               |                              |           |            |
| EP074: 1.2-Dibromoethane (EDB) 106-93-4                      | 5     | μg/L | <5                | 10 μg/L       | 95.0                         | 69        | 117        |
| EP074: 1.2-Dichloropropane 78-87-5                           | 5     | μg/L | <5                | 10 μg/L       | 94.6                         | 76        | 120        |
| EP074: 2.2-Dichloropropane 594-20-7                          | 5     | μg/L | <5                | 10 μg/L       | 89.4                         | 61        | 119        |
| EP074: cis-1.3-Dichloropropylene 10061-01-5                  | 5     | μg/L | <5                | 10 μg/L       | 83.4                         | 62        | 120        |
| EP074: trans-1.3-Dichloropropylene 10061-02-6                | 5     | μg/L | <5                | 10 μg/L       | 85.4                         | 61        | 119        |
| EP074E: Halogenated Aliphatic Compounds (QCLot: 226812)      |       |      |                   |               |                              |           |            |
| EP074: 1.1.1.2-Tetrachloroethane 630-20-6                    | 5     | μg/L | <5                | 10 μg/L       | 88.0                         | 66        | 114        |
| EP074: 1.1.1-Trichloroethane 71-55-6                         | 5     | μg/L | <5                | 10 μg/L       | 81.8                         | 61        | 119        |
| EP074: 1.1.2.2-Tetrachloroethane 79-34-5                     | 5     | μg/L | <5                | 10 μg/L       | 99.4                         | 70        | 124        |
| EP074: 1.1.2-Trichloroethane 79-00-5                         | 5     | μg/L | <5                | 10 μg/L       | 97.5                         | 75        | 123        |
| EP074: 1.1-Dichloroethane 75-34-3                            | 5     | μg/L | <5                | 10 μg/L       | 90.1                         | 75        | 119        |
| EP074: 1.1-Dichloroethene 75-35-4                            | 5     | μg/L | <5                | 10 μg/L       | 96.8                         | 69        | 123        |
| EP074: 1.1-Dichloropropylene 563-58-6                        |       | μg/L | <5                | 10 μg/L       | 92.0                         | 73        | 119        |
| EP074: 1.2.3-Trichloropropane 96-18-4                        |       | μg/L | <5                | 10 μg/L       | 93.4                         | 74        | 128        |
| EP074: 1.2-Dibromo-3-chloropropane 96-12-8                   |       | μg/L | <5                | 10 μg/L       | 101                          | 66        | 136        |
| EP074: 1.2-Dichloroethane 107-06-2                           | 5     | μg/L | <5                | 10 μg/L       | 93.6                         | 78        | 122        |

Page : 16 of 20

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                  |                    |     |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |
|----------------------------------------------------|--------------------|-----|------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|
|                                                    |                    |     |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound                                   | CAS Number         | LOR | Unit | Result            | Concentration                         | LCS                | Low      | High       |  |  |
| EP074E: Halogenated Aliphatic Compounds (QCLot: 22 | 26812) - continued |     |      |                   |                                       |                    |          |            |  |  |
| EP074: 1.3-Dichloropropane                         | 142-28-9           | 5   | μg/L | <5                | 10 μg/L                               | 99.1               | 79       | 121        |  |  |
| EP074: Bromomethane                                | 74-83-9            | 50  | μg/L | <50               | 100 μg/L                              | 76.9               | 56       | 140        |  |  |
| EP074: Carbon Tetrachloride                        | 56-23-5            | 5   | μg/L | <5                | 10 μg/L                               | 78.6               | 63       | 121        |  |  |
| EP074: Chloroethane                                | 75-00-3            | 50  | μg/L | <50               | 100 μg/L                              | 82.5               | 63       | 135        |  |  |
| EP074: Chloromethane                               | 74-87-3            | 50  | μg/L | <50               | 100 μg/L                              | 87.6               | 67       | 130        |  |  |
| EP074: cis-1.2-Dichloroethene                      | 156-59-2           | 5   | μg/L | <5                | 10 μg/L                               | 89.1               | 77       | 117        |  |  |
| EP074: cis-1.4-Dichloro-2-butene                   | 1476-11-5          | 5   | μg/L | <5                | 10 μg/L                               | 89.8               | 71       | 128        |  |  |
| EP074: Dibromomethane                              | 74-95-3            | 5   | μg/L | <5                | 10 μg/L                               | 91.0               | 74       | 118        |  |  |
| EP074: Dichlorodifluoromethane                     | 75-71-8            | 50  | μg/L | <50               | 100 μg/L                              | 71.9               | 61       | 138        |  |  |
| EP074: Hexachlorobutadiene                         | 87-68-3            | 5   | μg/L | <5                | 10 μg/L                               | 85.2               | 58       | 132        |  |  |
| EP074: lodomethane                                 | 74-88-4            | 5   | μg/L | <5                | 10 μg/L                               | # 59.3             | 70       | 128        |  |  |
| EP074: Pentachloroethane                           | 76-01-7            | 5   | μg/L | <5                | 10 μg/L                               | 86.8               | 72       | 126        |  |  |
| EP074: Tetrachloroethene                           | 127-18-4           | 5   | μg/L | <5                | 10 μg/L                               | 88.5               | 72       | 124        |  |  |
| EP074: trans-1.2-Dichloroethene                    | 156-60-5           | 5   | μg/L | <5                | 10 μg/L                               | 85.3               | 71       | 119        |  |  |
| EP074: trans-1.4-Dichloro-2-butene                 | 110-57-6           | 5   | μg/L | <5                | 10 μg/L                               | 81.9               | 60       | 120        |  |  |
| EP074: Trichloroethene                             | 79-01-6            | 5   | μg/L | <5                | 10 μg/L                               | 94.1               | 74       | 120        |  |  |
| EP074: Trichlorofluoromethane                      | 75-69-4            | 50  | μg/L | <50               | 100 μg/L                              | 75.8               | 65       | 131        |  |  |
| EP074: Vinyl chloride                              | 75-01-4            | 50  | μg/L | <50               | 100 μg/L                              | 109                | 69       | 129        |  |  |
| EP074F: Halogenated Aromatic Compounds (QCLot: 22  | 26812)             |     |      |                   |                                       |                    |          |            |  |  |
| EP074: 1.2.3-Trichlorobenzene                      | 87-61-6            | 5   | μg/L | <5                | 10 μg/L                               | 87.9               | 67       | 125        |  |  |
| EP074: 1.2.4-Trichlorobenzene                      | 120-82-1           | 5   | μg/L | <5                | 10 μg/L                               | 87.7               | 60       | 126        |  |  |
| EP074: 1.2-Dichlorobenzene                         | 95-50-1            | 5   | μg/L | <5                | 10 μg/L                               | 93.7               | 77       | 117        |  |  |
| EP074: 1.3-Dichlorobenzene                         | 541-73-1           | 5   | μg/L | <5                | 10 μg/L                               | 92.4               | 74       | 120        |  |  |
| EP074: 1.4-Dichlorobenzene                         | 106-46-7           | 5   | μg/L | <5                | 10 μg/L                               | 95.1               | 72       | 120        |  |  |
| EP074: 2-Chlorotoluene                             | 95-49-8            | 5   | μg/L | <5                | 10 μg/L                               | 80.8               | 71       | 121        |  |  |
| EP074: 4-Chlorotoluene                             | 106-43-4           | 5   | μg/L | <5                | 10 μg/L                               | 88.6               | 71       | 121        |  |  |
| EP074: Bromobenzene                                | 108-86-1           | 5   | μg/L | <5                | 10 μg/L                               | 96.9               | 76       | 116        |  |  |
| EP074: Chlorobenzene                               | 108-90-7           | 5   | μg/L | <5                | 10 μg/L                               | 93.9               | 80       | 118        |  |  |
| EP074G: Trihalomethanes (QCLot: 226812)            |                    |     |      |                   |                                       |                    |          |            |  |  |
| EP074: Bromodichloromethane                        | 75-27-4            | 5   | μg/L | <5                | 10 μg/L                               | 83.4               | 64       | 118        |  |  |
| EP074: Bromoform                                   | 75-25-2            | 5   | μg/L | <5                | 10 μg/L                               | 102                | 74       | 126        |  |  |
| EP074: Chloroform                                  | 67-66-3            | 5   | μg/L | <5                | 10 μg/L                               | 81.4               | 76       | 118        |  |  |
| EP074: Dibromochloromethane                        | 124-48-1           | 5   | μg/L | <5                | 10 μg/L                               | 95.5               | 65       | 115        |  |  |
| EP075(SIM)A: Phenolic Compounds (QCLot: 223698)    |                    |     |      |                   |                                       |                    |          |            |  |  |
| EP075(SIM): 2.4.5-Trichlorophenol                  | 95-95-4            | 1   | μg/L | <1.0              | 5 μg/L                                | 65.5               | 50       | 108        |  |  |
| EP075(SIM): 2.4.6-Trichlorophenol                  | 88-06-2            | 1   | μg/L | <1.0              | 5 μg/L                                | 64.8               | 59       | 118        |  |  |
| EP075(SIM): 2.4-Dichlorophenol                     | 120-83-2           | 1   | μg/L | <1.0              | 5 μg/L                                | 77.9               | 59       | 122        |  |  |
| EP075(SIM): 2.4-Dimethylphenol                     | 105-67-9           | 1   | μg/L | <1.0              | 5 μg/L                                | 72.3               | 60       | 112        |  |  |

Page : 17 of 20

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER                                |                        |                     |      | Method Blank (MB) |               | Laboratory Control Spike (LCS) Report |          |            |  |
|--------------------------------------------------|------------------------|---------------------|------|-------------------|---------------|---------------------------------------|----------|------------|--|
|                                                  |                        |                     |      | Report            | Spike         | Spike Recovery (%)                    | Recovery | Limits (%) |  |
| Method: Compound                                 | CAS Number             | LOR                 | Unit | Result            | Concentration | LCS                                   | Low      | High       |  |
| EP075(SIM)A: Phenolic Compounds (QCLot: 223698   | 3) - continued         |                     |      |                   |               |                                       |          |            |  |
| EP075(SIM): 2.6-Dichlorophenol                   | 87-65-0                | 1                   | μg/L | <1.0              | 5 μg/L        | 80.3                                  | 64       | 118        |  |
| EP075(SIM): 2-Chlorophenol                       | 95-57-8                | 1                   | μg/L | <1.0              | 5 μg/L        | # 63.3                                | 64       | 110        |  |
| EP075(SIM): 2-Methylphenol                       | 95-48-7                | 1                   | μg/L | <1.0              | 5 μg/L        | 66.0                                  | 56       | 112        |  |
| EP075(SIM): 2-Nitrophenol                        | 88-75-5                | 1                   | μg/L | <1.0              | 5 μg/L        | 67.4                                  | 63       | 117        |  |
| EP075(SIM): 3- & 4-Methylphenol                  | 1319-77-3              | 2                   | μg/L | <2.0              | 10 μg/L       | 59.6                                  | 43       | 114        |  |
| EP075(SIM): 4-Chloro-3-methylphenol              | 59-50-7                | 1                   | μg/L | <1.0              | 5 μg/L        | 72.6                                  | 63       | 119        |  |
| EP075(SIM): Pentachlorophenol                    | 87-86-5                | 2                   | μg/L | <2.0              | 10 μg/L       | 60.2                                  | 10       | 95         |  |
| EP075(SIM): Phenol                               | 108-95-2               | 1                   | μg/L | <1.0              | 5 μg/L        | 44.8                                  | 25       | 62         |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons   | (QCLot: 223698)        |                     |      |                   |               |                                       |          |            |  |
| EP075(SIM): Acenaphthene                         | 83-32-9                | 1                   | μg/L | <1.0              | 5 μg/L        | 68.5                                  | 62       | 113        |  |
| EP075(SIM): Acenaphthylene                       | 208-96-8               | 1                   | μg/L | <1.0              | 5 μg/L        | 69.1                                  | 64       | 114        |  |
| EP075(SIM): Anthracene                           | 120-12-7               | 1                   | μg/L | <1.0              | 5 μg/L        | 80.2                                  | 64       | 116        |  |
| EP075(SIM): Benz(a)anthracene                    | 56-55-3                | 1                   | μg/L | <1.0              | 5 μg/L        | 81.0                                  | 64       | 117        |  |
| EP075(SIM): Benzo(a)pyrene                       | 50-32-8                | 0.5                 | μg/L | <0.5              | 5 μg/L        | 87.4                                  | 63       | 117        |  |
| EP075(SIM): Benzo(b+j)fluoranthene               | 205-99-2<br>205-82-3   | 1                   | μg/L | <1.0              | 5 μg/L        | 82.2                                  | 62       | 119        |  |
| EP075(SIM): Benzo(g.h.i)perylene                 | 191-24-2               | 1                   | μg/L | <1.0              | 5 μg/L        | 87.0                                  | 59       | 118        |  |
| EP075(SIM): Benzo(k)fluoranthene                 | 207-08-9               | 1                   | μg/L | <1.0              | 5 μg/L        | 93.5                                  | 62       | 117        |  |
| EP075(SIM): Chrysene                             | 218-01-9               | 1                   | μg/L | <1.0              | 5 μg/L        | 82.8                                  | 63       | 116        |  |
| EP075(SIM): Dibenz(a.h)anthracene                | 53-70-3                | 1                   | μg/L | <1.0              | 5 μg/L        | 89.4                                  | 61       | 117        |  |
| EP075(SIM): Fluoranthene                         | 206-44-0               | 1                   | μg/L | <1.0              | 5 μg/L        | 91.2                                  | 64       | 118        |  |
| EP075(SIM): Fluorene                             | 86-73-7                | 1                   | μg/L | <1.0              | 5 μg/L        | 73.3                                  | 64       | 115        |  |
| EP075(SIM): Indeno(1.2.3.cd)pyrene               | 193-39-5               | 1                   | μg/L | <1.0              | 5 μg/L        | 86.4                                  | 60       | 118        |  |
| EP075(SIM): Naphthalene                          | 91-20-3                | 1                   | μg/L | <1.0              | 5 μg/L        | 76.0                                  | 59       | 119        |  |
| EP075(SIM): Phenanthrene                         | 85-01-8                | 1                   | μg/L | <1.0              | 5 μg/L        | 79.3                                  | 63       | 116        |  |
| EP075(SIM): Pyrene                               | 129-00-0               | 1                   | μg/L | <1.0              | 5 μg/L        | 92.1                                  | 63       | 118        |  |
| EP080/071: Total Petroleum Hydrocarbons (QCLot:  | 223699)                |                     |      |                   |               |                                       |          |            |  |
| EP071: C10 - C14 Fraction                        |                        | 50                  | μg/L | <50               | 2000 μg/L     | 102                                   | 59       | 129        |  |
| EP071: C15 - C28 Fraction                        |                        | 100                 | μg/L | <100              | 3000 μg/L     | 97.9                                  | 71       | 131        |  |
| EP071: C29 - C36 Fraction                        |                        | 50                  | μg/L | <50               | 2000 μg/L     | 93.0                                  | 62       | 120        |  |
| EP080/071: Total Petroleum Hydrocarbons (QCLot:  | 226811)                |                     |      |                   |               |                                       |          |            |  |
| EP080: C6 - C9 Fraction                          |                        | 20                  | μg/L | <20               | 260 μg/L      | 94.5                                  | 75       | 127        |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM | 1 2013 Fractions (QCLo | ot: 223699)         |      |                   |               |                                       |          |            |  |
| EP071: >C10 - C16 Fraction                       | >C10_C16               | 100                 | μg/L | <100              | 2500 μg/L     | 88.4                                  | 59       | 131        |  |
| EP071: >C16 - C34 Fraction                       |                        | 100                 | μg/L | <100              | 3500 μg/L     | 93.4                                  | 74       | 138        |  |
| EP071: >C34 - C40 Fraction                       |                        | 100                 | μg/L | <100              | 1500 μg/L     | 99.2                                  | 67       | 127        |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM | 1 2013 Fractions (QCLo | ot: 2268 <u>11)</u> |      |                   |               |                                       |          |            |  |
| EP080: C6 - C10 Fraction                         | C6_C10                 | 20                  | μg/L | <20               | 310 μg/L      | 95.7                                  | 75       | 127        |  |

Page : 18 of 20

Work Order : ES1532008 Amendment 3

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Sub-Matrix: WATER                    |            |     |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |
|--------------------------------------|------------|-----|------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|
|                                      |            |     |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound                     | CAS Number | LOR | Unit | Result            | Concentration                         | LCS                | Low      | High       |  |  |
| EP080: BTEXN (QCLot: 226811)         |            |     |      |                   |                                       |                    |          |            |  |  |
| EP080: Benzene                       | 71-43-2    | 1   | μg/L | <1                | 10 μg/L                               | 83.2               | 70       | 124        |  |  |
| EP080: Ethylbenzene                  | 100-41-4   | 2   | μg/L | <2                | 10 μg/L                               | 91.9               | 70       | 120        |  |  |
| EP080: meta- & para-Xylene           | 108-38-3   | 2   | μg/L | <2                | 10 μg/L                               | 95.7               | 69       | 121        |  |  |
|                                      | 106-42-3   |     |      |                   |                                       |                    |          |            |  |  |
| EP080: Naphthalene                   | 91-20-3    | 5   | μg/L | <5                | 10 μg/L                               | 95.4               | 70       | 124        |  |  |
| EP080: ortho-Xylene                  | 95-47-6    | 2   | μg/L | <2                | 10 μg/L                               | 94.5               | 72       | 122        |  |  |
| EP080: Toluene                       | 108-88-3   | 2   | μg/L | <2                | 10 μg/L                               | 85.8               | 65       | 129        |  |  |
| EP262: Ethanolamines (QCLot: 223283) |            |     |      |                   |                                       |                    |          |            |  |  |
| EP262: Diethanolamine                | 111-42-2   | 1   | μg/L | <1                | 10 μg/L                               | 125                | 50       | 130        |  |  |
| EP262: Ethanolamine                  | 141-43-5   | 1   | μg/L | <1                | 10 μg/L                               | 89.7               | 50       | 130        |  |  |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                                                |                                         |            | Ма            | trix Spike (MS) Report |             |          |
|----------------------|------------------------------------------------|-----------------------------------------|------------|---------------|------------------------|-------------|----------|
|                      |                                                |                                         |            | Spike         | SpikeRecovery(%)       | Recovery Li | mits (%) |
| Laboratory sample ID | Client sample ID                               | Method: Compound                        | CAS Number | Concentration | MS                     | Low         | High     |
| ED009: Anions (0     | QCLot: 223259)                                 |                                         |            |               |                        |             |          |
| EP1514101-001        | Anonymous                                      | ED009-X: Chloride                       | 16887-00-6 | 4 mg/L        | 114                    | 70          | 130      |
| ED009: Anions (C     | QCLot: 223260)                                 |                                         |            |               |                        |             |          |
| ES1532008-003        | WKSW03                                         | ED009-X: Chloride                       | 16887-00-6 | 4 mg/L        | # Not<br>Determined    | 70          | 130      |
| ED041G: Sulfate (    | Furbidimetric) as SO4 2- by DA (QCLot: 223166) |                                         |            |               |                        |             |          |
| ES1531935-001        | Anonymous                                      | ED041G: Sulfate as SO4 - Turbidimetric  | 14808-79-8 | 10 mg/L       | # Not<br>Determined    | 70          | 130      |
| ED045G: Chloride     | by Discrete Analyser (QCLot: 223167)           |                                         |            |               |                        |             |          |
| ES1531935-001        | Anonymous                                      | ED045G: Chloride                        | 16887-00-6 | 250 mg/L      | 110                    | 70          | 130      |
| ED045G: Chloride     | by Discrete Analyser (QCLot: 223171)           |                                         |            |               |                        |             |          |
| ES1532008-002        | WKSW02                                         | ED045G: Chloride                        | 16887-00-6 | 250 mg/L      | 112                    | 70          | 130      |
| EG020F: Dissolve     | d Metals by ICP-MS (QCLot: 226317)             |                                         |            |               |                        |             |          |
| ES1531877-002        | Anonymous                                      | EG020A-F: Arsenic                       | 7440-38-2  | 0.2 mg/L      | 82.7                   | 70          | 130      |
|                      |                                                | EG020A-F: Barium                        | 7440-39-3  | 0.2 mg/L      | 80.4                   | 70          | 130      |
|                      |                                                | EG020A-F: Beryllium                     | 7440-41-7  | 0.2 mg/L      | 78.7                   | 70          | 130      |
|                      |                                                | EG020A-F: Cadmium                       | 7440-43-9  | 0.05 mg/L     | 76.6                   | 70          | 130      |
|                      |                                                | 200207777000000000000000000000000000000 | 7440-47-3  | 0.2 mg/L      | 72.7                   | 70          | 130      |
|                      |                                                | EG020A-F: Cobalt                        | 7440-48-4  | 0.2 mg/L      | 77.0                   | 70          | 130      |

Page : 19 of 20

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| ub-Matrix: WATER    |                                                       |                                      |            | Ma            | atrix Spike (MS) Report |            |           |
|---------------------|-------------------------------------------------------|--------------------------------------|------------|---------------|-------------------------|------------|-----------|
|                     |                                                       |                                      |            | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| aboratory sample ID | Client sample ID                                      | Method: Compound                     | CAS Number | Concentration | MS                      | Low        | High      |
| G020F: Dissolved    | Metals by ICP-MS (QCLot: 226317) - continued          |                                      |            |               |                         |            |           |
| ES1531877-002       | Anonymous                                             | EG020A-F: Copper                     | 7440-50-8  | 0.2 mg/L      | 74.6                    | 70         | 130       |
|                     |                                                       | EG020A-F: Lead                       | 7439-92-1  | 0.2 mg/L      | 74.5                    | 70         | 130       |
|                     |                                                       | EG020A-F: Manganese                  | 7439-96-5  | 0.2 mg/L      | 83.3                    | 70         | 130       |
|                     |                                                       | EG020A-F: Nickel                     | 7440-02-0  | 0.2 mg/L      | 77.1                    | 70         | 130       |
|                     |                                                       | EG020A-F: Vanadium                   | 7440-62-2  | 0.2 mg/L      | 74.4                    | 70         | 130       |
|                     |                                                       | EG020A-F: Zinc                       | 7440-66-6  | 0.2 mg/L      | 87.4                    | 70         | 130       |
| G020F: Dissolved    | Metals by ICP-MS (QCLot: 226318)                      |                                      |            |               |                         |            |           |
| ES1532008-003       | WKSW03                                                | EG020A-F: Arsenic                    | 7440-38-2  | 0.2 mg/L      | 114                     | 70         | 130       |
|                     |                                                       | EG020A-F: Barium                     | 7440-39-3  | 0.2 mg/L      | 112                     | 70         | 130       |
|                     |                                                       | EG020A-F: Beryllium                  | 7440-41-7  | 0.2 mg/L      | 116                     | 70         | 130       |
|                     |                                                       | EG020A-F: Cadmium                    | 7440-43-9  | 0.05 mg/L     | 114                     | 70         | 130       |
|                     |                                                       | EG020A-F: Chromium                   | 7440-47-3  | 0.2 mg/L      | 112                     | 70         | 130       |
|                     |                                                       | EG020A-F: Cobalt                     | 7440-48-4  | 0.2 mg/L      | 115                     | 70         | 130       |
|                     |                                                       | EG020A-F: Copper                     | 7440-50-8  | 0.2 mg/L      | 111                     | 70         | 130       |
|                     |                                                       | EG020A-F: Lead                       | 7439-92-1  | 0.2 mg/L      | 111                     | 70         | 130       |
|                     |                                                       | EG020A-F: Manganese                  | 7439-96-5  | 0.2 mg/L      | 103                     | 70         | 130       |
|                     |                                                       | EG020A-F: Nickel                     | 7440-02-0  | 0.2 mg/L      | 110                     | 70         | 130       |
|                     |                                                       | EG020A-F: Vanadium                   | 7440-62-2  | 0.2 mg/L      | 116                     | 70         | 130       |
|                     |                                                       | EG020A-F: Zinc                       | 7440-66-6  | 0.2 mg/L      | 108                     | 70         | 130       |
| G035F: Dissolved    | Mercury by FIMS (QCLot: 226316)                       |                                      |            |               |                         |            |           |
| ES1531875-002       | Anonymous                                             | EG035F: Mercury                      | 7439-97-6  | 0.01 mg/L     | 81.0                    | 70         | 130       |
| G052G: Silica by    | Discrete Analyser (QCLot: 223170)                     |                                      |            |               |                         |            |           |
| ES1532008-002       | WKSW02                                                | EG052G: Reactive Silica              |            | 5 mg/L        | 99.0                    | 70         | 130       |
| K040P: Fluoride I   | by PC Titrator (QCLot: 225796)                        |                                      |            |               |                         |            |           |
| ES1531352-001       | Anonymous                                             | EK040P: Fluoride                     | 16984-48-8 | 5 mg/L        | 104                     | 70         | 130       |
|                     | as N by Discrete Analyser (QCLot: 223310)             | LK040F. Huonde                       | 10001 10 0 | o mg/L        | 101                     | 7.0        | 100       |
|                     |                                                       |                                      | 7004 44 7  | 4 //          | 87.0                    | 70         | 400       |
| ES1531880-001       | Anonymous                                             | EK055G: Ammonia as N                 | 7664-41-7  | 1 mg/L        | 87.0                    | 70         | 130       |
|                     | N by Discrete Analyser (QCLot: 223168)                |                                      |            |               |                         |            |           |
| ES1531935-001       | Anonymous                                             | EK057G: Nitrite as N                 | 14797-65-0 | 0.5 mg/L      | 97.7                    | 70         | 130       |
| K059G: Nitrite pl   | us Nitrate as N (NOx) by Discrete Analyser (QCLot: 22 | 3309)                                |            |               |                         |            |           |
| ES1531880-001       | Anonymous                                             | EK059G: Nitrite + Nitrate as N       |            | 0.5 mg/L      | 93.2                    | 70         | 130       |
| K061G: Total Kje    | dahl Nitrogen By Discrete Analyser (QCLot: 223296)    |                                      |            |               |                         |            |           |
| ES1532008-001       | WKSW01                                                | EK061G: Total Kjeldahl Nitrogen as N |            | 5 mg/L        | 98.8                    | 70         | 130       |
|                     | esphorus as P by Discrete Analyser (QCLot: 223295)    |                                      |            |               |                         | •          |           |
|                     |                                                       | FIGURE T. L. P.                      |            | 1 ma/l        | 105                     | 70         | 120       |
| ES1532008-001       | WKSW01                                                | EK067G: Total Phosphorus as P        |            | 1 mg/L        | 105                     | 70         | 130       |
| K071G: Reactive     | Phosphorus as P by discrete analyser (QCLot: 223165)  |                                      |            |               |                         |            |           |

Page : 20 of 20

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Sub-Matrix: WATER    |                                                     |                                  |            | M             | atrix Spike (MS) Report |          |            |
|----------------------|-----------------------------------------------------|----------------------------------|------------|---------------|-------------------------|----------|------------|
|                      |                                                     |                                  |            | Spike         | SpikeRecovery(%)        | Recovery | Limits (%) |
| Laboratory sample ID | Client sample ID                                    | Method: Compound                 | CAS Number | Concentration | MS                      | Low      | High       |
| EK071G: Reactive     | Phosphorus as P by discrete analyser (QCLot: 223165 | s) - continued                   |            |               |                         |          |            |
| ES1531935-001        | Anonymous                                           | EK071G: Reactive Phosphorus as P | 14265-44-2 | 0.5 mg/L      | 97.2                    | 70       | 130        |
| EP005: Total Orga    | inic Carbon (TOC) (QCLot: 226830)                   |                                  |            |               |                         |          |            |
| ES1531940-001        | Anonymous                                           | EP005: Total Organic Carbon      |            | 100 mg/L      | 94.6                    | 70       | 130        |
| EP005: Total Orga    | inic Carbon (TOC) (QCLot: 226831)                   |                                  |            |               |                         |          |            |
| ES1532088-018        | Anonymous                                           | EP005: Total Organic Carbon      |            | 100 mg/L      | 122                     | 70       | 130        |
| EP033: C1 - C4 Hv    | drocarbon Gases (QCLot: 225763)                     |                                  |            |               |                         |          |            |
| EM1514747-002        | Anonymous                                           | EP033: Butane                    | 106-97-8   | 102.18 μg/L   | 80.5                    | 70       | 130        |
|                      |                                                     | EP033: Butene                    | 25167-67-3 | 99.61 µg/L    | 78.2                    | 70       | 130        |
|                      |                                                     | EP033: Ethane                    | 74-84-0    | 54.43 μg/L    | 77.9                    | 70       | 130        |
|                      |                                                     | EP033: Ethene                    | 74-85-1    | 50.29 μg/L    | 76.9                    | 70       | 130        |
|                      |                                                     | EP033: Methane                   | 74-82-8    | 28.48 μg/L    | 84.4                    | 70       | 130        |
|                      |                                                     | EP033: Propane                   | 74-98-6    | 78.28 µg/L    | 79.7                    | 70       | 130        |
|                      |                                                     | EP033: Propene                   | 115-07-1   | 73.97 µg/L    | 76.7                    | 70       | 130        |
| EP074E: Halogena     | ated Aliphatic Compounds (QCLot: 226812)            |                                  |            |               |                         |          |            |
| ES1531576-006        | Anonymous                                           | EP074: 1.1-Dichloroethene        | 75-35-4    | 25 μg/L       | 81.7                    | 70       | 130        |
|                      |                                                     | EP074: Trichloroethene           | 79-01-6    | 25 μg/L       | 94.5                    | 70       | 130        |
| EP074F: Halogena     | ated Aromatic Compounds (QCLot: 226812)             |                                  |            |               |                         |          |            |
| ES1531576-006        | Anonymous                                           | EP074: Chlorobenzene             | 108-90-7   | 25 μg/L       | 101                     | 70       | 130        |
| EP080/071: Total F   | Petroleum Hydrocarbons (QCLot: 226811)              |                                  |            |               |                         |          |            |
| ES1531576-005        | Anonymous                                           | EP080: C6 - C9 Fraction          |            | 325 µg/L      | 113                     | 70       | 130        |
| EP080/071: Total I   | Recoverable Hydrocarbons - NEPM 2013 Fractions (QC  | Lot: 226811)                     |            |               |                         |          |            |
| ES1531576-005        | Anonymous                                           | EP080: C6 - C10 Fraction         | C6_C10     | 375 μg/L      | 113                     | 70       | 130        |
| EP080: BTEXN (C      | CLot: 226811)                                       |                                  |            |               |                         |          |            |
| ES1531576-005        | Anonymous                                           | EP080: Benzene                   | 71-43-2    | 25 μg/L       | 80.9                    | 70       | 130        |
|                      | ·                                                   | EP080: Ethylbenzene              | 100-41-4   | 25 μg/L       | 92.4                    | 70       | 130        |
|                      |                                                     | EP080: meta- & para-Xylene       | 108-38-3   | 25 μg/L       | 98.7                    | 70       | 130        |
|                      |                                                     |                                  | 106-42-3   |               |                         |          |            |
|                      |                                                     | EP080: Naphthalene               | 91-20-3    | 25 μg/L       | 98.5                    | 70       | 130        |
|                      |                                                     | EP080: ortho-Xylene              | 95-47-6    | 25 μg/L       | 95.4                    | 70       | 130        |
|                      |                                                     | EP080: Toluene                   | 108-88-3   | 25 μg/L       | 94.9                    | 70       | 130        |
| EP262: Ethanolan     | nines (QCLot: 223283)                               |                                  |            |               |                         |          |            |
| ES1532002-001        | Anonymous                                           | EP262: Diethanolamine            | 111-42-2   | 10 μg/L       | 121                     | 50       | 130        |
|                      |                                                     | EP262: Ethanolamine              | 141-43-5   | 10 μg/L       | 84.5                    | 50       | 130        |



## QA/QC Compliance Assessment for DQO Reporting

Work Order : **ES1532008** Page : 1 of 12

Amendment : 3

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

 Contact
 : SEAN DAYKIN
 Telephone
 : +61 2 8784 8503

 Project
 : 2268523B
 Date Samples Received
 : 23-Sep-2015

 Site
 : --- Issue Date
 : 28-Oct-2015

Sampler : ANDREW FARINA, SEAN DAYKIN No. of samples received : 3
Order number : ---- No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

## **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- Laboratory Control outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers: Analysis Holding Time Compliance**

Analysis Holding Time Outliers exist - please see following pages for full details.

## **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 12

Work Order : ES1532008 Amendment 3

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

### Matrix: WATER

| Compound Group Name                             | Laboratory Sample ID | Client Sample ID | Analyte          | CAS Number | Data       | Limits  | Comment                                |
|-------------------------------------------------|----------------------|------------------|------------------|------------|------------|---------|----------------------------------------|
| Laboratory Control Spike (LCS) Recoveries       |                      |                  |                  |            |            |         |                                        |
| EP074E: Halogenated Aliphatic Compounds         | QC-226812-002        |                  | lodomethane      | 74-88-4    | 59.3 %     | 70-128% | Recovery less than lower control limit |
| EP075(SIM)A: Phenolic Compounds                 | QC-223698-002        |                  | 2-Chlorophenol   | 95-57-8    | 63.3 %     | 64-110% | Recovery less than lower control limit |
| Matrix Spike (MS) Recoveries                    |                      |                  |                  |            |            |         |                                        |
| ED009: Anions                                   | ES1532008003         | WKSW03           | Chloride         | 16887-00-6 | Not        |         | MS recovery not determined,            |
|                                                 |                      |                  |                  |            | Determined |         | background level greater than or       |
|                                                 |                      |                  |                  |            |            |         | equal to 4x spike level.               |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA | ES1531935001         | Anonymous        | Sulfate as SO4 - | 14808-79-8 | Not        |         | MS recovery not determined,            |
|                                                 |                      |                  | Turbidimetric    |            | Determined |         | background level greater than or       |
|                                                 |                      |                  |                  |            |            |         | equal to 4x spike level.               |

## **Outliers : Analysis Holding Time Compliance**

#### Matrix: WATER

| Method                          |        | Ex             | traction / Preparation |         |               | Analysis         |         |
|---------------------------------|--------|----------------|------------------------|---------|---------------|------------------|---------|
| Container / Client Sample ID(s) |        | Date extracted | Due for extraction     | Days    | Date analysed | Due for analysis | Days    |
|                                 |        |                |                        | overdue |               |                  | overdue |
| EA005: pH                       |        |                |                        |         |               |                  |         |
| Clear Plastic Bottle - Natural  |        |                |                        |         |               |                  |         |
| WKSW02,                         | WKSW03 |                |                        |         | 23-Sep-2015   | 22-Sep-2015      | 1       |
| EK010/011: Chlorine             |        |                |                        |         |               |                  |         |
| Clear Plastic Bottle - Natural  |        |                |                        |         |               |                  |         |
| WKSW02,                         | WKSW03 |                |                        |         | 23-Sep-2015   | 22-Sep-2015      | 1       |

## **Outliers : Frequency of Quality Control Samples**

#### Matrix: WATER

| Matrix: WATER               |                          |         |        |                               |                                                  |
|-----------------------------|--------------------------|---------|--------|-------------------------------|--------------------------------------------------|
| Quality Control Sample Type | Count Rate (%) Quality ( |         | e (%)  | Quality Control Specification |                                                  |
| Method                      | QC                       | Regular | Actual | Expected                      |                                                  |
| Laboratory Duplicates (DUP) |                          |         |        |                               |                                                  |
| PAH/Phenols (GC/MS - SIM)   | 0                        | 18      | 0.00   | 10.00                         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction | 0                        | 20      | 0.00   | 10.00                         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Matrix Spikes (MS)          |                          |         |        |                               |                                                  |
| PAH/Phenols (GC/MS - SIM)   | 0                        | 18      | 0.00   | 5.00                          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction | 0                        | 20      | 0.00   | 5.00                          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |



Page : 3 of 12

Work Order : ES1532008 Amendment 3

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER                                       |        |             |                |                         | Evaluation | n: × = Holding time | breach; ✓ = Withi | n holding tim |
|-----------------------------------------------------|--------|-------------|----------------|-------------------------|------------|---------------------|-------------------|---------------|
| Method                                              |        | Sample Date |                | ktraction / Preparation |            |                     | Analysis          |               |
| Container / Client Sample ID(s)                     |        |             | Date extracted | Due for extraction      | Evaluation | Date analysed       | Due for analysis  | Evaluation    |
| EA005: pH                                           |        |             |                |                         |            |                     |                   |               |
| Clear Plastic Bottle - Natural (EA005)<br>WKSW02,   | WKSW03 | 22-Sep-2015 |                |                         |            | 23-Sep-2015         | 22-Sep-2015       | ×             |
| Clear Plastic Bottle - Natural (EA005)<br>WKSW01    |        | 23-Sep-2015 |                |                         |            | 23-Sep-2015         | 23-Sep-2015       | ✓             |
| EA010P: Conductivity by PC Titrator                 |        |             |                |                         |            |                     |                   |               |
| Clear Plastic Bottle - Natural (EA010-P) WKSW02,    | WKSW03 | 22-Sep-2015 |                |                         |            | 25-Sep-2015         | 20-Oct-2015       | <b>√</b>      |
| Clear Plastic Bottle - Natural (EA010-P) WKSW01     |        | 23-Sep-2015 |                |                         |            | 25-Sep-2015         | 21-Oct-2015       | ✓             |
| EA015: Total Dissolved Solids                       |        |             |                |                         |            |                     |                   |               |
| Clear Plastic Bottle - Natural (EA015H)<br>WKSW02,  | WKSW03 | 22-Sep-2015 |                |                         |            | 25-Sep-2015         | 29-Sep-2015       | <b>✓</b>      |
| Clear Plastic Bottle - Natural (EA015H) WKSW01      |        | 23-Sep-2015 |                |                         |            | 25-Sep-2015         | 30-Sep-2015       | <b>✓</b>      |
| EA025: Suspended Solids                             |        |             |                |                         |            |                     |                   |               |
| Clear Plastic Bottle - Natural (EA025H)<br>WKSW02,  | WKSW03 | 22-Sep-2015 |                |                         |            | 25-Sep-2015         | 29-Sep-2015       | 1             |
| Clear Plastic Bottle - Natural (EA025H) WKSW01      |        | 23-Sep-2015 |                |                         |            | 25-Sep-2015         | 30-Sep-2015       | <b>✓</b>      |
| ED009: Anions                                       |        |             |                |                         |            |                     |                   |               |
| Clear Plastic Bottle - Natural (ED009-X)<br>WKSW02, | WKSW03 | 22-Sep-2015 |                |                         |            | 24-Sep-2015         | 20-Oct-2015       | <b>✓</b>      |
| Clear Plastic Bottle - Natural (ED009-X) WKSW01     |        | 23-Sep-2015 |                |                         |            | 24-Sep-2015         | 21-Oct-2015       | ✓             |
| ED037P: Alkalinity by PC Titrator                   |        |             |                |                         |            |                     |                   |               |
| Clear Plastic Bottle - Natural (ED037-P)<br>WKSW02, | WKSW03 | 22-Sep-2015 |                |                         |            | 25-Sep-2015         | 06-Oct-2015       | <b>✓</b>      |
| Clear Plastic Bottle - Natural (ED037-P) WKSW01     |        | 23-Sep-2015 |                |                         |            | 25-Sep-2015         | 07-Oct-2015       | 1             |

Page : 4 of 12

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                                                              |        |             |                |                         | Evaluation | n: × = Holding time | breach ; ✓ = Withi | n holding time |
|--------------------------------------------------------------------------------------------|--------|-------------|----------------|-------------------------|------------|---------------------|--------------------|----------------|
| Method                                                                                     |        | Sample Date | E              | xtraction / Preparation |            |                     |                    |                |
| Container / Client Sample ID(s)                                                            |        |             | Date extracted | Due for extraction      | Evaluation | Date analysed       | Due for analysis   | Evaluation     |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA                                            |        |             |                |                         |            |                     |                    |                |
| Clear Plastic Bottle - Natural (ED041G)                                                    |        |             |                |                         |            |                     |                    |                |
| WKSW02,                                                                                    | WKSW03 | 22-Sep-2015 |                |                         |            | 23-Sep-2015         | 20-Oct-2015        | ✓              |
| Clear Plastic Bottle - Natural (ED041G) WKSW01                                             |        | 23-Sep-2015 |                |                         |            | 23-Sep-2015         | 21-Oct-2015        | <b>✓</b>       |
|                                                                                            |        | 23-3ep-2013 |                |                         |            | 25-5ep-2015         | 21-001-2013        | <b>V</b>       |
| ED045G: Chloride by Discrete Analyser                                                      |        |             | <u> </u>       | <u> </u>                |            | I                   |                    |                |
| Clear Plastic Bottle - Natural (ED045G) WKSW02.                                            | WKSW03 | 22-Sep-2015 |                |                         |            | 23-Sep-2015         | 20-Oct-2015        | 1              |
| Clear Plastic Bottle - Natural (ED045G)                                                    |        |             |                |                         |            |                     |                    | •              |
| WKSW01                                                                                     |        | 23-Sep-2015 |                |                         |            | 23-Sep-2015         | 21-Oct-2015        | ✓              |
| ED093F: Dissolved Major Cations                                                            |        |             |                |                         |            |                     |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (ED093F)                                      |        |             |                |                         |            |                     |                    |                |
| WKSW02,                                                                                    | WKSW03 | 22-Sep-2015 |                |                         |            | 28-Sep-2015         | 20-Oct-2015        | ✓              |
| Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) WKSW01                               |        | 23-Sep-2015 |                |                         |            | 28-Sep-2015         | 21-Oct-2015        | <b>✓</b>       |
|                                                                                            |        | 25-5ep-2015 |                |                         |            | 20-3ep-2013         | 21-001-2013        | ▼              |
| EG020F: Dissolved Metals by ICP-MS Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) |        |             | <u> </u>       | <u> </u>                |            | I                   | l                  |                |
| WKSW02.                                                                                    | WKSW03 | 22-Sep-2015 |                |                         |            | 28-Sep-2015         | 20-Mar-2016        | 1              |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)                                    |        |             |                |                         |            |                     |                    | V              |
| WKSW01                                                                                     |        | 23-Sep-2015 |                |                         |            | 28-Sep-2015         | 21-Mar-2016        | ✓              |
| EG020F: Dissolved Metals by ICP-MS                                                         |        |             |                |                         |            |                     |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F)                                    |        |             |                |                         |            |                     |                    |                |
| WKSW02,                                                                                    | WKSW03 | 22-Sep-2015 |                |                         |            | 28-Sep-2015         | 20-Mar-2016        | ✓              |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F) WKSW01                             |        | 23-Sep-2015 |                |                         |            | 28-Sep-2015         | 21-Mar-2016        | <b>√</b>       |
|                                                                                            |        | 20-0cp-2010 |                |                         |            | 20-0cp-2010         | 21 Mai 2010        | ٧              |
| EG035F: Dissolved Mercury by FIMS Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)    |        |             | <br>           |                         |            | 1                   | l                  |                |
| WKSW02,                                                                                    | WKSW03 | 22-Sep-2015 |                |                         |            | 28-Sep-2015         | 20-Oct-2015        | ✓              |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)                                      |        | -           |                |                         |            |                     |                    | •              |
| WKSW01                                                                                     |        | 23-Sep-2015 |                |                         |            | 28-Sep-2015         | 21-Oct-2015        | ✓              |
| EG052G: Silica by Discrete Analyser                                                        |        |             |                |                         |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EG052G)                                                    |        |             |                |                         |            |                     |                    |                |
| WKSW02,                                                                                    | WKSW03 | 22-Sep-2015 |                |                         |            | 23-Sep-2015         | 20-Oct-2015        | ✓              |
| Clear Plastic Bottle - Natural (EG052G)                                                    |        | 22 Can 201E |                |                         |            | 22 Can 201E         | 21-Oct-2015        | ,              |
| WKSW01                                                                                     |        | 23-Sep-2015 |                |                         |            | 23-Sep-2015         | 21-001-2010        | ✓              |
| EK010/011: Chlorine                                                                        |        |             |                |                         |            | I                   |                    |                |
| Clear Plastic Bottle - Natural (EK010) WKSW02.                                             | WKSW03 | 22-Sep-2015 |                |                         |            | 23-Sep-2015         | 22-Sep-2015        | *              |
| Clear Plastic Bottle - Natural (EK010)                                                     | mono   |             |                |                         |            | _5 CCP _C 10        |                    | *              |
| WKSW01                                                                                     |        | 23-Sep-2015 |                |                         |            | 23-Sep-2015         | 23-Sep-2015        | ✓              |
|                                                                                            |        |             |                |                         |            |                     |                    |                |

Page : 5 of 12

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



|             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : × = Holding time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | breach; ▼ = withi                                                                                        | n holding time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Date | Ex                                                                                                                                                                      | traction / Preparation                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analysis                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | Date extracted                                                                                                                                                          | Due for extraction                                                                                                                                                                                                                                                                                                                                                                                                              | Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Due for analysis                                                                                         | Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22 San 2015 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25 San 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 Oct 2015                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22-3ep-2015 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25-3ep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20-001-2015                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23-Sep-2015 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21-Oct-2015                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 00.0 0045   |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04.0 0045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 Oct 2015                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22-Sep-2015 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20-001-2015                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23-Sep-2015 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21-Oct-2015                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 00 0 0045   |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00.0 0045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24 Can 2045                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22-Sep-2015 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24-Sep-2015                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23-Sep-2015 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25-Sep-2015                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 00 0 0045   |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04.0 0045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 0-4 2045                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22-Sep-2015 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20-001-2015                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23-Sep-2015 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21-Oct-2015                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 00.0 0045   | 04.0 0045                                                                                                                                                               | 20 Oct 2015                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04.0 0045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 Oct 2015                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22-Sep-2015 | 24-Sep-2015                                                                                                                                                             | 20-001-2015                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>√</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20-001-2015                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23-Sep-2015 | 24-Sep-2015                                                                                                                                                             | 21-Oct-2015                                                                                                                                                                                                                                                                                                                                                                                                                     | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21-Oct-2015                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                         | 00.0.1.0015                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00.0.1.0045                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22-Sep-2015 | 24-Sep-2015                                                                                                                                                             | 20-Oct-2015                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>√</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20-Oct-2015                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23-Sep-2015 | 24-Sep-2015                                                                                                                                                             | 21-Oct-2015                                                                                                                                                                                                                                                                                                                                                                                                                     | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21-Oct-2015                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22-Sep-2015 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24-Sep-2015                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23-Sep-2015 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25-Sep-2015                                                                                              | <b>✓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1           |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22-Sep-2015 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20-Oct-2015                                                                                              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23-Sep-2015 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21-Oct-2015                                                                                              | <b>√</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 22-Sep-2015 23-Sep-2015 | Date extracted           22-Sep-2015            23-Sep-2015            23-Sep-2015            22-Sep-2015            23-Sep-2015            22-Sep-2015            23-Sep-2015            22-Sep-2015         24-Sep-2015           23-Sep-2015         24-Sep-2015           23-Sep-2015         24-Sep-2015           23-Sep-2015            22-Sep-2015            23-Sep-2015            22-Sep-2015            22-Sep-2015 | Date extracted         Due for extraction           22-Sep-2015            23-Sep-2015            22-Sep-2015            23-Sep-2015            22-Sep-2015            23-Sep-2015            22-Sep-2015            23-Sep-2015         24-Sep-2015         20-Oct-2015           23-Sep-2015         24-Sep-2015         21-Oct-2015           23-Sep-2015         24-Sep-2015         20-Oct-2015           23-Sep-2015         24-Sep-2015         21-Oct-2015           23-Sep-2015             23-Sep-2015             22-Sep-2015             22-Sep-2015             23-Sep-2015             22-Sep-2015             22-Sep-2015 | Date extracted         Due for extraction         Evaluation           22-Sep-2015             23-Sep-2015             23-Sep-2015             22-Sep-2015             23-Sep-2015             23-Sep-2015             23-Sep-2015             22-Sep-2015         24-Sep-2015         20-Oct-2015           23-Sep-2015         24-Sep-2015         21-Oct-2015           23-Sep-2015         24-Sep-2015         21-Oct-2015           23-Sep-2015         24-Sep-2015         21-Oct-2015           23-Sep-2015             23-Sep-2015             23-Sep-2015             22-Sep-2015             23-Sep-2015 | Date extracted         Due for extraction         Evaluation         Date analysed           22-Sep-2015 | Date extracted         Due for extraction         Evaluation         Date analysed         Due for analysis           22-Sep-2015           25-Sep-2015         20-Oct-2015           23-Sep-2015           24-Sep-2015         21-Oct-2015           23-Sep-2015           24-Sep-2015         21-Oct-2015           22-Sep-2015           23-Sep-2015         24-Sep-2015           23-Sep-2015           23-Sep-2015         20-Oct-2015           22-Sep-2015           24-Sep-2015         20-Oct-2015           23-Sep-2015           24-Sep-2015         20-Oct-2015           22-Sep-2015           24-Sep-2015         20-Oct-2015           23-Sep-2015         24-Sep-2015         21-Oct-2015          24-Sep-2015         21-Oct-2015           22-Sep-2015         24-Sep-2015         20-Oct-2015          24-Sep-2015         21-Oct-2015           23-Sep-2015         24-Sep-2015         21-Oct-2015          24-Sep-2015         21-Oct-2015           23-Sep-2015           23-Sep-20 |

Page : 6 of 12

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                         |        |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
|-------------------------------------------------------|--------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|
| Method                                                |        | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                |
| Container / Client Sample ID(s)                       |        |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EP033: C1 - C4 Hydrocarbon Gases                      |        |             |                |                        |            |                    |                    |                |
| Amber VOC Vial - Sulfuric Acid (EP033) WKSW02,        | WKSW03 | 22-Sep-2015 |                |                        |            | 25-Sep-2015        | 06-Oct-2015        | <b>✓</b>       |
| Amber VOC Vial - Sulfuric Acid (EP033)<br>WKSW01      |        | 23-Sep-2015 |                |                        |            | 25-Sep-2015        | 07-Oct-2015        | <b>✓</b>       |
| EP080/071: Total Petroleum Hydrocarbons               |        |             |                |                        |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP071)<br>WKSW02,   | WKSW03 | 22-Sep-2015 | 28-Sep-2015    | 29-Sep-2015            | ✓          | 29-Sep-2015        | 07-Nov-2015        | ✓              |
| Amber Glass Bottle - Unpreserved (EP071)<br>WKSW01    |        | 23-Sep-2015 | 28-Sep-2015    | 30-Sep-2015            | ✓          | 29-Sep-2015        | 07-Nov-2015        | ✓              |
| EP074A: Monocyclic Aromatic Hydrocarbons              |        |             |                |                        |            |                    |                    |                |
| Amber VOC Vial - Sulfuric Acid (EP074)<br>WKSW02,     | WKSW03 | 22-Sep-2015 | 29-Sep-2015    | 06-Oct-2015            | 1          | 29-Sep-2015        | 06-Oct-2015        | <b>✓</b>       |
| Amber VOC Vial - Sulfuric Acid (EP074) WKSW01         |        | 23-Sep-2015 | 29-Sep-2015    | 07-Oct-2015            | 1          | 29-Sep-2015        | 07-Oct-2015        | <b>√</b>       |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons        |        |             |                |                        |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP075(SIM)) WKSW02, | WKSW03 | 22-Sep-2015 | 28-Sep-2015    | 29-Sep-2015            | 1          | 29-Sep-2015        | 07-Nov-2015        | <b>√</b>       |
| Amber Glass Bottle - Unpreserved (EP075(SIM)) WKSW01  |        | 23-Sep-2015 | 28-Sep-2015    | 30-Sep-2015            | 1          | 29-Sep-2015        | 07-Nov-2015        | <b>√</b>       |
| EP080/071: Total Petroleum Hydrocarbons               |        |             |                |                        |            |                    |                    |                |
| Amber VOC Vial - Sulfuric Acid (EP080)<br>WKSW02,     | WKSW03 | 22-Sep-2015 | 29-Sep-2015    | 06-Oct-2015            | 1          | 29-Sep-2015        | 06-Oct-2015        | <b>√</b>       |
| Amber VOC Vial - Sulfuric Acid (EP080)<br>WKSW01      |        | 23-Sep-2015 | 29-Sep-2015    | 07-Oct-2015            | ✓          | 29-Sep-2015        | 07-Oct-2015        | <b>√</b>       |
| EP262: Ethanolamines                                  |        |             |                |                        |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP262)<br>WKSW02,   | WKSW03 | 22-Sep-2015 |                |                        |            | 24-Sep-2015        | 29-Sep-2015        | <b>√</b>       |
| Amber Glass Bottle - Unpreserved (EP262)<br>WKSW01    |        | 23-Sep-2015 |                |                        |            | 24-Sep-2015        | 30-Sep-2015        | <b>√</b>       |

Page : 7 of 12

Work Order ES1532008 Amendment 3

Client PARSONS BRINCKERHOFF AUST P/L

2268523B Project



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: <b>WATER</b> Evaluation: <b>×</b> = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification |            |    |         |        |          |            |                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|---------|--------|----------|------------|--------------------------------------------------|
| Quality Control Sample Type                                                                                                                        |            | Сс | ount    |        | Rate (%) |            | Quality Control Specification                    |
| Analytical Methods                                                                                                                                 | Method     | QC | Reaular | Actual | Expected | Evaluation |                                                  |
| Laboratory Duplicates (DUP)                                                                                                                        |            |    |         |        |          |            |                                                  |
| Alkalinity by PC Titrator                                                                                                                          | ED037-P    | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Ammonia as N by Discrete analyser                                                                                                                  | EK055G     | 2  | 18      | 11.11  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| C1 - C4 Gases                                                                                                                                      | EP033      | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Chloride by Discrete Analyser                                                                                                                      | ED045G     | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Chlorine                                                                                                                                           | EK010      | 1  | 8       | 12.50  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Conductivity by PC Titrator                                                                                                                        | EA010-P    | 2  | 14      | 14.29  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Mercury by FIMS                                                                                                                          | EG035F     | 2  | 15      | 13.33  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Metals by ICP-MS - Suite A                                                                                                               | EG020A-F   | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Metals by ICP-MS - Suite B                                                                                                               | EG020B-F   | 2  | 16      | 12.50  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Ethanolamines by LCMSMS                                                                                                                            | EP262      | 1  | 8       | 12.50  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Fluoride by PC Titrator                                                                                                                            | EK040P     | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Major Cations - Dissolved                                                                                                                          | ED093F     | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser                                                                                                | EK059G     | 2  | 15      | 13.33  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Nitrite as N by Discrete Analyser                                                                                                                  | EK057G     | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| PAH/Phenols (GC/MS - SIM)                                                                                                                          | EP075(SIM) | 0  | 18      | 0.00   | 10.00    | se         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| рН                                                                                                                                                 | EA005      | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Reactive Phosphorus as P-By Discrete Analyser                                                                                                      | EK071G     | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Silica (Reactive) by Discrete Analyser                                                                                                             | EG052G     | 1  | 8       | 12.50  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Standard Anions -by IC (Extended Method)                                                                                                           | ED009-X    | 2  | 7       | 28.57  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser                                                                                             | ED041G     | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Suspended Solids (High Level)                                                                                                                      | EA025H     | 2  | 20      | 10.00  | 9.52     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Total Dissolved Solids (High Level)                                                                                                                | EA015H     | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Total Kjeldahl Nitrogen as N By Discrete Analyser                                                                                                  | EK061G     | 2  | 9       | 22.22  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Total Organic Carbon                                                                                                                               | EP005      | 2  | 15      | 13.33  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Total Phosphorus as P By Discrete Analyser                                                                                                         | EK067G     | 2  | 14      | 14.29  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction                                                                                                                        | EP071      | 0  | 20      | 0.00   | 10.00    | se         | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH Volatiles/BTEX                                                                                                                                 | EP080      | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Volatile Organic Compounds                                                                                                                         | EP074      | 2  | 19      | 10.53  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Laboratory Control Samples (LCS)                                                                                                                   |            |    |         |        |          |            |                                                  |
| Alkalinity by PC Titrator                                                                                                                          | ED037-P    | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Ammonia as N by Discrete analyser                                                                                                                  | EK055G     | 1  | 18      | 5.56   | 5.00     | <u>√</u>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| C1 - C4 Gases                                                                                                                                      | EP033      | 1  | 20      | 5.00   | 5.00     | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Chloride by Discrete Analyser                                                                                                                      | ED045G     | 2  | 20      | 10.00  | 10.00    | <b>√</b>   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Conductivity by PC Titrator                                                                                                                        | EA010-P    | 1  | 14      | 7.14   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Mercury by FIMS                                                                                                                          | EG035F     | 1  | 15      | 6.67   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Metals by ICP-MS - Suite A                                                                                                               | EG020A-F   | 1  | 20      | 5.00   | 5.00     |            | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

Page : 8 of 12

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                          |            | Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within s |         |        |          |            |                                                  |
|--------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------|---------|--------|----------|------------|--------------------------------------------------|
| Quality Control Sample Type                            |            | Co                                                                                                         | ount    |        | Rate (%) |            | Quality Control Specification                    |
| Analytical Methods                                     | Method     | QC                                                                                                         | Regular | Actual | Expected | Evaluation |                                                  |
| Laboratory Control Samples (LCS) - Continued           |            |                                                                                                            |         |        |          |            |                                                  |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1                                                                                                          | 16      | 6.25   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Ethanolamines by LCMSMS                                | EP262      | 1                                                                                                          | 8       | 12.50  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Fluoride by PC Titrator                                | EK040P     | 1                                                                                                          | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Major Cations - Dissolved                              | ED093F     | 1                                                                                                          | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1                                                                                                          | 15      | 6.67   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1                                                                                                          | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1                                                                                                          | 18      | 5.56   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1                                                                                                          | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1                                                                                                          | 8       | 12.50  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1                                                                                                          | 7       | 14.29  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1                                                                                                          | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Suspended Solids (High Level)                          | EA025H     | 2                                                                                                          | 20      | 10.00  | 9.52     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Total Dissolved Solids (High Level)                    | EA015H     | 2                                                                                                          | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 3                                                                                                          | 9       | 33.33  | 15.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Total Organic Carbon                                   | EP005      | 1                                                                                                          | 15      | 6.67   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 3                                                                                                          | 14      | 21.43  | 15.00    | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH - Semivolatile Fraction                            | EP071      | 1                                                                                                          | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| TRH Volatiles/BTEX                                     | EP080      | 1                                                                                                          | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Volatile Organic Compounds                             | EP074      | 1                                                                                                          | 19      | 5.26   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Method Blanks (MB)                                     |            |                                                                                                            |         |        |          |            |                                                  |
| Ammonia as N by Discrete analyser                      | EK055G     | 1                                                                                                          | 18      | 5.56   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| C1 - C4 Gases                                          | EP033      | 1                                                                                                          | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Chloride by Discrete Analyser                          | ED045G     | 1                                                                                                          | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Chlorine                                               | EK010      | 1                                                                                                          | 8       | 12.50  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Conductivity by PC Titrator                            | EA010-P    | 1                                                                                                          | 14      | 7.14   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Mercury by FIMS                              | EG035F     | 1                                                                                                          | 15      | 6.67   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1                                                                                                          | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1                                                                                                          | 16      | 6.25   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Ethanolamines by LCMSMS                                | EP262      | 1                                                                                                          | 8       | 12.50  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Fluoride by PC Titrator                                | EK040P     | 1                                                                                                          | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Major Cations - Dissolved                              | ED093F     | 1                                                                                                          | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1                                                                                                          | 15      | 6.67   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1                                                                                                          | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1                                                                                                          | 18      | 5.56   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1                                                                                                          | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1                                                                                                          | 8       | 12.50  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1                                                                                                          | 7       | 14.29  | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1                                                                                                          | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Suspended Solids (High Level)                          | EA025H     | 1                                                                                                          | 20      | 5.00   | 4.76     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |
| Total Dissolved Solids (High Level)                    | EA015H     | 1                                                                                                          | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 Schedule B(3) and ALS QCS3 requirement |

Page : 9 of 12

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Matrix: WATER                                          |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification ; ✓ = Quality Control frequency within specification. |
|--------------------------------------------------------|------------|----|---------|-----------|-------------------|-----------------|--------------------------------------------------------------------------------|
| Quality Control Sample Type                            |            | Co | ount    |           | Rate (%)          |                 | Quality Control Specification                                                  |
| Analytical Methods                                     | Method     | OC | Regular | Actual    | Expected          | Evaluation      |                                                                                |
| Method Blanks (MB) - Continued                         |            |    |         |           |                   |                 |                                                                                |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 9       | 11.11     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Total Organic Carbon                                   | EP005      | 1  | 15      | 6.67      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 14      | 7.14      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Volatile Organic Compounds                             | EP074      | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Matrix Spikes (MS)                                     |            |    |         |           |                   |                 |                                                                                |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 18      | 5.56      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| C1 - C4 Gases                                          | EP033      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 15      | 6.67      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Ethanolamines by LCMSMS                                | EP262      | 1  | 8       | 12.50     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Fluoride by PC Titrator                                | EK040P     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 15      | 6.67      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0  | 18      | 0.00      | 5.00              | æ               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Silica (Reactive) by Discrete Analyser                 | EG052G     | 1  | 8       | 12.50     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Standard Anions -by IC (Extended Method)               | ED009-X    | 1  | 7       | 14.29     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 1  | 9       | 11.11     | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Total Organic Carbon                                   | EP005      | 1  | 15      | 6.67      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 1  | 14      | 7.14      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| TRH - Semivolatile Fraction                            | EP071      | 0  | 20      | 0.00      | 5.00              | <b>sc</b>       | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |
| Volatile Organic Compounds                             | EP074      | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 Schedule B(3) and ALS QCS3 requirement                               |

Page : 10 of 12

Work Order : ES1532008 Amendment 3

Client PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                     | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pH                                                     | EA005    | WATER  | In house: Referenced to APHA 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH meter. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                            |
| Conductivity by PC Titrator                            | EA010-P  | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                         |
| Total Dissolved Solids (High Level)                    | EA015H   | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |
| Suspended Solids (High Level)                          | EA025H   | WATER  | In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (2013) Schedule B(3)                                 |
| Standard Anions -by IC (Extended Method)               | ED009-X  | WATER  | In house: Referenced to APHA 4110. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                    |
| Alkalinity by PC Titrator                              | ED037-P  | WATER  | In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                       |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G   | WATER  | In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)                                       |
| Chloride by Discrete Analyser                          | ED045G   | WATER  | In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003                                                                                                  |
| Major Cations - Dissolved                              | ED093F   | WATER  | In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3)  Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3)  Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) |
| B: L IAM ( L I IOR MO O ''                             |          | WATER  | Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                        |

Page : 11 of 12

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Analytical Methods                                      | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Metals by ICP-MS - Suite B                    | EG020B-F   | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                                                                                                        |
| Dissolved Mercury by FIMS                               | EG035F     | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) |
| Silica (Reactive) by Discrete Analyser                  | EG052G     | WATER  | In house: Referenced to APHA 4500-SiO2 D: Under Acdic conditions reactive silicon combines with ammonium molybdate to form a yellow molybdosilicic acid complex. This is reduced by 1-amino-2-naphthol-4-sulfonic acid to a silicomolybdenum blue complex which is measured by discrete analyser at 670 nm. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                           |
| Chlorine                                                | EK010      | WATER  | In-house (DPD colourimetry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fluoride by PC Titrator                                 | EK040P     | WATER  | In house: Referenced to APHA 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                               |
| Ammonia as N by Discrete analyser                       | EK055G     | WATER  | In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ammonium as N                                           | EK055G-NH4 | WATER  | Ammonium in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH and Temperature. Ammonia is determined by direct colorimetry by Discrete Analyser according to APHA 4500-NH3 G. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                  |
| Nitrite as N by Discrete Analyser                       | EK057G     | WATER  | In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser.  This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nitrate as N by Discrete Analyser                       | EK058G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                          |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser     | EK059G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                      |
| Total Kjeldahl Nitrogen as N By Discrete Analyser       | EK061G     | WATER  | In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                           |
| Total Nitrogen as N (TKN + Nox) By<br>Discrete Analyser | EK062G     | WATER  | In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total Phosphorus as P By Discrete<br>Analyser           | EK067G     | WATER  | In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                            |

Page : 12 of 12

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L



| Analytical Methods                               | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reactive Phosphorus as P-By Discrete<br>Analyser | EK071G      | WATER  | In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                      |
| Ionic Balance by PCT DA and Turbi SO4<br>DA      | EN055 - PG  | WATER  | In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                        |
| Total Organic Carbon                             | EP005       | WATER  | In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                     |
| C1 - C4 Gases                                    | EP033       | WATER  | Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, US EPA - Region 1, EPA New England, July 2001. Automated static headspace, dual column GC/FID. A 12 mL sample is pipetted into a 20 mL headspace vial containing 3g of sodium chloride and sealed. Each sample is equilibrated with shaking at 40 degrees C for 10 minutes prior to analysis by GC/FID using a pair of PLOT columns of different polarity. |
| TRH - Semivolatile Fraction                      | EP071       | WATER  | USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                                                 |
| Volatile Organic Compounds                       | EP074       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                          |
| PAH/Phenois (GC/MS - SIM)                        | EP075(SIM)  | WATER  | USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                     |
| TRH Volatiles/BTEX                               | EP080       | WATER  | USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                           |
| Ethanolamines by LCMSMS                          | EP262       | WATER  | In-house LC-MSMS: Benzoyl derivatives of target compounds are analysed by LC/MSMS in ESI Positive Mode.                                                                                                                                                                                                                                                                                                                                            |
| Preparation Methods                              | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TKN/TP Digestion                                 | EK061/EK067 | WATER  | APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                       |



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au

www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 130805

Client:

Parsons Brinckerhoff Aust. Pty Ltd

GPO Box 5394 Sydney NSW 2001

Attention: Sean Daykin, Carolina Sardello

Sample log in details:

Your Reference: 2268523A

No. of samples: 6 waters

Date samples received / completed instructions received 08/07/15 / 08/07/15

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 15/07/15 / 14/07/15

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with \*.

**Results Approved By:** 

Jacinta/Hurst Laboratory Manager



| Miscellaneous Inorganics |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | 130805-1   | 130805-2   | 130805-3   | 130805-4   | 130805-5   |
| Your Reference           |       | AST2       | WK11       | WK12       | WK13       | WK14       |
| Date Sampled             |       | 08/07/2015 | 08/07/2015 | 08/07/2015 | 08/07/2015 | 08/07/2015 |
| Type of sample           |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared            | -     | 10/07/2015 | 10/07/2015 | 10/07/2015 | 10/07/2015 | 10/07/2015 |
| Date analysed            | -     | 10/07/2015 | 10/07/2015 | 10/07/2015 | 10/07/2015 | 10/07/2015 |
| THPS in Water by uHPLC*  | μg/L  | <50        | <50        | <50        | <50        | <50        |
| Sulphate, SO4            | mg/L  | 1          | 4          | <1         | 2          | <1         |

| Miscellaneous Inorganics     |                |                          |
|------------------------------|----------------|--------------------------|
| Our Reference:               | UNITS          | 130805-6                 |
| Your Reference               |                | QA4                      |
| Date Sampled                 |                | 08/07/2015               |
| Type of sample               |                | Water                    |
|                              |                |                          |
| Date prepared                | -              | 10/07/2015               |
| Date prepared  Date analysed | -              | 10/07/2015<br>10/07/2015 |
| ' '                          | -<br>-<br>μg/L |                          |

| Metals in Waters - Acid extractable |       |            |            |            |            |            |
|-------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                      | UNITS | 130805-1   | 130805-2   | 130805-3   | 130805-4   | 130805-5   |
| Your Reference                      |       | AST2       | WK11       | WK12       | WK13       | WK14       |
| Date Sampled                        |       | 08/07/2015 | 08/07/2015 | 08/07/2015 | 08/07/2015 | 08/07/2015 |
| Type of sample                      |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                       | -     | 10/07/2015 | 10/07/2015 | 10/07/2015 | 10/07/2015 | 10/07/2015 |
| Date analysed                       | -     | 10/07/2015 | 10/07/2015 | 10/07/2015 | 10/07/2015 | 10/07/2015 |
| Phosphorus - Total                  | mg/L  | 2.9        | 3.6        | 1.8        | 3.6        | 2.4        |

| Metals in Waters - Acid extractable |       |            |
|-------------------------------------|-------|------------|
| Our Reference:                      | UNITS | 130805-6   |
| Your Reference                      |       | QA4        |
| Date Sampled                        |       | 08/07/2015 |
| Type of sample                      |       | Water      |
| Date prepared                       | -     | 10/07/2015 |
| Date analysed                       | -     | 10/07/2015 |
| Phosphorus - Total                  | mg/L  | 2.4        |

| Method ID              | Methodology Summary                                                                                                                                                                                                   |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AT-021                 | Determination of Bis[Tetrakis(Hydroxymethyl)Phosphonium Sulfate (THPS) in waters by conversion to formaldehyde, derivatisation and analysis using ultra high performance liquid chromatography-diode array detection. |
| Inorg-081              | Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B.                                                                                                      |
| Metals-020 ICP-<br>AES | Determination of various metals by ICP-AES.                                                                                                                                                                           |

Envirolab Reference: 130805 Page 4 of 7

Revision No: R 00

| Client Reference. 2200525A                  |                 |         |   |                 |                       |                        |                            |                 |                         |                  |                    |       |  |
|---------------------------------------------|-----------------|---------|---|-----------------|-----------------------|------------------------|----------------------------|-----------------|-------------------------|------------------|--------------------|-------|--|
| QUALITYCONTROL                              | UN              | UNITS   |   | L               | METHOD                | Blank                  | Duplicate                  | Dup             | olicate results         | Spike Sm#        | Spike %            |       |  |
| Miscellaneous Inorganics                    |                 |         |   |                 |                       |                        | Sm#                        | Bas             | se II Duplicate II %RPD | Recovery         |                    | ery   |  |
| Date prepared                               |                 | -       |   |                 |                       | 10/07/2<br>015         | 130805-1                   | 10              | //07/2015  10/07/2015   | 130805-3         | 10/07              | /2015 |  |
| Date analysed                               |                 | -       |   |                 |                       | 10/07/2<br>015         | 130805-1                   | 10              | //07/2015  10/07/2015   | 130805-3         | 30805-3 10/07/2015 |       |  |
| THPS in Water by μ<br>uHPLC*                |                 | μg/L 50 |   | 50              | AT-021                | <50                    | 130805-1                   |                 | <50  <50                | 130805-3         | 90%                |       |  |
| Sulphate, SO4                               |                 | mg/L    |   | 1               | Inorg-081             | <1                     | 130805-1                   |                 | 1  1  RPD:0             | [NR]             | IR] [NR]           |       |  |
| QUALITY CONTROL UN                          |                 | UNITS   |   | L               | METHOD                |                        |                            | olicate results | Spike Sm#               | Spike %          |                    |       |  |
| Metals in Waters - Acid extractable         |                 |         |   |                 |                       |                        | Sm#                        | Bas             | se II Duplicate II %RPD |                  | Recove             | ery   |  |
| Date prepared                               | Date prepared - |         |   |                 |                       | 10/07/2<br>015         | [NT]                       |                 | [NT]                    | LCS-W2           | -W2 10/07/2015     |       |  |
| Date analysed                               | Date analysed - |         | - |                 |                       | 10/07/2<br>015         | [NT]                       |                 | [NT]                    | LCS-W2           | 10/07/2015         |       |  |
| Phosphorus - Total                          |                 | mg/L    |   | 0.05            | Metals-020<br>ICP-AES | <0.05                  | [NT]                       |                 | [NT]                    | LCS-W2           | 104%               |       |  |
| QUALITY CONTROL<br>Miscellaneous Inorganics |                 | UNITS   |   | Г               |                       |                        | Duplicate Duplicate + %RPD |                 | Spike Sm#               | Spike % Recovery |                    |       |  |
| Date prepared                               |                 | -       |   |                 | [NT]                  |                        | [NT]                       |                 | LCS-1                   | 10/07/2015       |                    |       |  |
| Date analysed                               |                 | -       |   | [NT]            |                       | [NT]                   |                            |                 | LCS-1                   | 10/07/2015       |                    |       |  |
| THPS in Water by uHPLC*                     |                 | μg/L    |   |                 | [NT]                  | [NT]                   |                            |                 | LCS-1                   | 88%              |                    |       |  |
| Sulphate, SO4                               |                 | mg/L    |   | [NT]            | [NT]                  |                        |                            | LCS-1           | 101%                    |                  |                    |       |  |
| QUALITYCONTROL                              |                 | UNITS   |   |                 | Dup. Sm#              | Duplicate              |                            |                 | ,                       |                  |                    |       |  |
| Metals in Waters - Acid extractable         |                 |         |   |                 |                       | Base+[                 | Ouplicate+%RPD             |                 |                         |                  |                    |       |  |
| Date prepared                               |                 | - 1     |   | 130805-3        | 10/07/2               | 10/07/2015  10/07/2015 |                            |                 |                         |                  |                    |       |  |
| Date analysed                               |                 | - 1     |   | 30805-3 10/07/2 |                       | 015  10/07/2015        |                            |                 |                         |                  |                    |       |  |
| Phosphorus - Total                          |                 | mg/L    |   | 1               | 130805-3              | 1.8  1.8  RPD:0        |                            |                 |                         |                  |                    |       |  |
|                                             |                 |         |   |                 |                       |                        |                            |                 |                         |                  |                    |       |  |

## **Report Comments:**

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 130805 Page 6 of 7 Revision No: R 00

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 130805 Page 7 of 7



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 131168

Client:

Parsons Brinckerhoff Aust. Pty Ltd GPO Box 5394

Sydney NSW 2001

Attention: Sean Daykin

Sample log in details:

Your Reference: 2268523B

No. of samples: 5 WaterS

Date samples received / completed instructions received 15/07/15 / 15/07/15

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 22/07/15 / 22/07/15

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with \*.

## **Results Approved By:**

Jacinta/Hurst Laboratory Manager



| Miscellaneous Inorganics |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | 131168-1   | 131168-2   | 131168-3   | 131168-4   | 131168-5   |
| Your Reference           |       | AST2 7.15  | WK11 9.30  | WK13 8.35  | WK14 9.0   | QA7        |
| Date Sampled             |       | 15/07/2015 | 15/07/2015 | 15/07/2015 | 15/07/2015 | 15/07/2015 |
| Time Sampled             |       | 07:15      | 09:30      | 08:35      | 09:00      | 09:00      |
| Type of sample           |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared            | -     | 16/07/2015 | 16/07/2015 | 16/07/2015 | 16/07/2015 | 16/07/2015 |
| Date analysed            | -     | 16/07/2015 | 16/07/2015 | 16/07/2015 | 16/07/2015 | 16/07/2015 |
| THPS in Water by uHPLC*  | μg/L  | <50        | 58         | <50        | <50        | 52         |
| Sulphate, SO4            |       | I          | 2          | 2          | <1         | 2          |

| Metals in Waters - Acid extractable |       |            |            |            |            |            |
|-------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                      | UNITS | 131168-1   | 131168-2   | 131168-3   | 131168-4   | 131168-5   |
| Your Reference                      |       | AST2 7.15  | WK11 9.30  | WK13 8.35  | WK14 9.0   | QA7        |
| Date Sampled                        |       | 15/07/2015 | 15/07/2015 | 15/07/2015 | 15/07/2015 | 15/07/2015 |
| Time Sampled                        |       | 07:15      | 09:30      | 08:35      | 09:00      | 09:00      |
| Type of sample                      |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                       | -     | 17/07/2015 | 17/07/2015 | 17/07/2015 | 17/07/2015 | 17/07/2015 |
| Date analysed                       | -     | 17/07/2015 | 17/07/2015 | 17/07/2015 | 17/07/2015 | 17/07/2015 |
| Phosphorus - Total                  | mg/L  | 2.8        | 3.4        | 2.9        | 2.2        | 3.0        |

| Method ID              | Methodology Summary                                                                                                                                                                                                   |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AT-021                 | Determination of Bis[Tetrakis(Hydroxymethyl)Phosphonium Sulfate (THPS) in waters by conversion to formaldehyde, derivatisation and analysis using ultra high performance liquid chromatography-diode array detection. |
| Inorg-081              | Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B.                                                                                                      |
| Metals-020 ICP-<br>AES | Determination of various metals by ICP-AES.                                                                                                                                                                           |

Envirolab Reference: 131168 Page 4 of 7

2268523B **Client Reference:** PQL UNITS METHOD QUALITYCONTROL Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Miscellaneous Inorganics Base II Duplicate II % RPD Date prepared 16/07/2 131168-1 16/07/2015 || 16/07/2015 131168-2 16/07/2015 015 Date analysed 16/07/2 131168-1 16/07/2015 || 16/07/2015 131168-2 16/07/2015 015 <50||<50 THPS in Water by AT-021 <50 131168-1 131168-2 91% μg/L 50 uHPLC\* Sulphate, SO4 Inorg-081 131168-1 [NR] [NR] mg/L 1 <1 <1 || [N/T] QUALITYCONTROL UNITS PQL METHOD Blank Spike % Duplicate Duplicate results Spike Sm# Sm# Recovery Metals in Waters - Acid Base II Duplicate II % RPD extractable 17/07/2 LCS-W2 17/07/2015 Date prepared [NT] [NT] 015 Date analysed 17/07/2 [NT] [NT] LCS-W2 17/07/2015 015 Phosphorus - Total 0.05 Metals-020 <0.05 [NT] [NT] LCS-W2 100% mg/L ICP-AES

| QUALITYCONTROL           | UNITS | Dup. Sm# | Duplicate               | Spike Sm# | Spike % Recovery |
|--------------------------|-------|----------|-------------------------|-----------|------------------|
| Miscellaneous Inorganics |       |          | Base + Duplicate + %RPD |           |                  |
| Date prepared            | -     | [NT]     | [NT]                    | LCS-1     | 16/07/2015       |
| Date analysed            | -     | [NT]     | [NT]                    | LCS-1     | 16/07/2015       |
| THPS in Water by uHPLC*  | μg/L  | [NT]     | [NT]                    | LCS-1     | 99%              |
| Sulphate, SO4            | mg/L  | [NT]     | [NT]                    | LCS-1     | 101%             |

## **Report Comments:**

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 131168 Page 6 of 7 Revision No: R 00

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 131168 Page 7 of 7



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 131627

Client:

Parsons Brinckerhoff Aust. Pty Ltd

GPO Box 5394 Sydney NSW 2001

Attention: Sean Daykin

Sample log in details:

Your Reference: 2268523B

No. of samples: 2 Waters

Date samples received / completed instructions received 23/07/15 / 23/07/15

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 30/07/15 / 28/07/15

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with \*.

**Results Approved By:** 

Jacinta/Hurst Laboratory Manager



| Miscellaneous Inorganics |       |            |            |
|--------------------------|-------|------------|------------|
| Our Reference:           | UNITS | 131627-1   | 131627-2   |
| Your Reference           |       | AST27.10   | WK14 8.05  |
| Date Sampled             |       | 22/07/2015 | 22/07/2015 |
| Time Sampled             |       | 07:10      | 08:05      |
| Type of sample           |       | Water      | Water      |
| Date prepared            | -     | 23/07/2015 | 23/07/2015 |
| Date analysed            | -     | 23/07/2015 | 23/07/2015 |
| THPS in Water by uHPLC*  | μg/L  | <50        | <50        |
| Sulphate, SO4            | mg/L  | 1          | <1         |

| Metals in Waters - Acid extractable |       |            |            |
|-------------------------------------|-------|------------|------------|
| Our Reference:                      | UNITS | 131627-1   | 131627-2   |
| Your Reference                      |       | AST27.10   | WK14 8.05  |
| Date Sampled                        |       | 22/07/2015 | 22/07/2015 |
| Time Sampled                        |       | 07:10      | 08:05      |
| Type of sample                      |       | Water      | Water      |
| Date prepared                       | -     | 24/07/2015 | 24/07/2015 |
|                                     | 1     |            |            |
| Date analysed                       | -     | 24/07/2015 | 24/07/2015 |

Envirolab Reference: 131627

| Method ID              | Methodology Summary                                                                                                                                                                                                   |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AT-021                 | Determination of Bis[Tetrakis(Hydroxymethyl)Phosphonium Sulfate (THPS) in waters by conversion to formaldehyde, derivatisation and analysis using ultra high performance liquid chromatography-diode array detection. |
| Inorg-081              | Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B.                                                                                                      |
| Metals-020 ICP-<br>AES | Determination of various metals by ICP-AES.                                                                                                                                                                           |

Envirolab Reference: 131627 Page 4 of 7 Revision No: R 00

2268523B **Client Reference:** PQL UNITS METHOD QUALITYCONTROL Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery Miscellaneous Inorganics Base II Duplicate II % RPD Date prepared 23/07/2 131627-1 23/07/2015 || 23/07/2015 LCS-1 23/07/2015 015 Date analysed 23/07/2 131627-1 23/07/2015 || 23/07/2015 LCS-1 23/07/2015 015 THPS in Water by AT-021 <50 131627-1 <50||<50 LCS-1 96% μg/L 50 uHPLC\* Sulphate, SO4 Inorg-081 131627-1 LCS-1 97% mg/L 1 <1 1 || [N/T] QUALITYCONTROL UNITS PQL METHOD Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery Metals in Waters - Acid Base II Duplicate II % RPD extractable 24/07/2 LCS-W1 Date prepared [NT] [NT] 24/07/2015 015 24/07/2 Date analysed [NT] [NT] LCS-W1 24/07/2015 015 Phosphorus - Total 0.05 Metals-020 <0.05 [NT] LCS-W1 104% mg/L [NT] **ICP-AES** 

|                          |       |     | 101 / 120 |          |               |   |           |              |      |  |
|--------------------------|-------|-----|-----------|----------|---------------|---|-----------|--------------|------|--|
| QUALITYCONTROL           | UNITS | Dup | Dup. Sm#  |          | Duplicate     |   | Spike Sm# | Spike % Reco | very |  |
| Miscellaneous Inorganics |       |     |           | Base + D | Ouplicate+%RP | D |           |              |      |  |
| Date prepared            | -     | []  | NT]       |          | [NT]          |   | 131627-2  | 23/07/201    | 5    |  |
| Date analysed            | -     | []  | NT]       |          | [NT]          |   | 131627-2  | 23/07/201    | 5    |  |
| THPS in Water by uHPLC*  | μg/L  | []  | VT]       |          | [NT]          |   | 131627-2  | 88%          |      |  |
| Sulphate, SO4            | mg/L  | []  | VT]       |          | [NT]          |   | [NR]      | [NR]         |      |  |

## **Report Comments:**

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 131627 Page 6 of 7 Revision No: R 00

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 131627 Page 7 of 7



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 131883

Client:

Parsons Brinckerhoff Aust. Pty Ltd

GPO Box 5394 Sydney NSW 2001

Attention: Sean Daykin

Sample log in details:

Your Reference: 2268523B

No. of samples: 3 Waters

Date samples received / completed instructions received 29/07/15 / 29/07/15

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 5/08/15 / 31/07/15

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with \*.

**Results Approved By:** 

Jacinta/Hurst Laboratory Manager



|   | Miscellaneous Inorganics |       |            |            |            |   |
|---|--------------------------|-------|------------|------------|------------|---|
|   | Our Reference:           | UNITS | 131883-1   | 131883-2   | 131883-3   |   |
|   | Your Reference           |       | AST2       | WK13       | WK12       |   |
|   | Date Sampled             |       | 29/07/2015 | 29/07/2015 | 29/07/2015 |   |
|   | Time Sampled             |       | 07:15      | 07:45      | 08:30      |   |
| _ | Type of sample           |       | Water      | Water      | Water      |   |
| - | Date prepared            | -     | 30/07/2015 | 30/07/2015 | 30/07/2015 |   |
|   | Date analysed            | -     | 30/07/2015 | 30/07/2015 | 30/07/2015 |   |
|   | THPS in Water by uHPLC*  | μg/L  | <50        | <50        | <50        |   |
| İ | Sulphate, SO4            | mg/L  | 4          | 2          | <1         | ı |

| Metals in Waters - Acid extractable |       |            |            |            |
|-------------------------------------|-------|------------|------------|------------|
| Our Reference:                      | UNITS | 131883-1   | 131883-2   | 131883-3   |
| Your Reference                      |       | AST2       | WK13       | WK12       |
| Date Sampled                        |       | 29/07/2015 | 29/07/2015 | 29/07/2015 |
| Time Sampled                        |       | 07:15      | 07:45      | 08:30      |
| Type of sample                      |       | Water      | Water      | Water      |
| Date prepared                       | -     | 30/07/2015 | 30/07/2015 | 30/07/2015 |
| Date analysed                       | -     | 30/07/2015 | 30/07/2015 | 30/07/2015 |
| Phosphorus - Total                  | mg/L  | 3.1        | 3.1        | 1.8        |

| MethodID               | Methodology Summary                                                                                                                                                                                                   |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AT-021                 | Determination of Bis[Tetrakis(Hydroxymethyl)Phosphonium Sulfate (THPS) in waters by conversion to formaldehyde, derivatisation and analysis using ultra high performance liquid chromatography-diode array detection. |
| Inorg-081              | Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B.                                                                                                      |
| Metals-020 ICP-<br>AES | Determination of various metals by ICP-AES.                                                                                                                                                                           |

Envirolab Reference: 131883 Page 4 of 7 Revision No: R 00

**Client Reference:** 2268523B PQL UNITS QUALITYCONTROL METHOD Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery Miscellaneous Inorganics Base II Duplicate II % RPD Date prepared 30/07/2 131883-1 30/07/2015 || 30/07/2015 LCS-W1 30/07/2015 015 Date analysed 30/07/2 131883-1 30/07/2015 || 30/07/2015 LCS-W1 30/07/2015 015 THPS in Water by AT-021 <50 131883-1 <50||<50 LCS-W1 98% μg/L 50 uHPLC\* Sulphate, SO4 Inorg-081 131883-1 LCS-W1 101% mg/L 1 <1 1 || [N/T] QUALITYCONTROL UNITS PQL METHOD Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery Metals in Waters - Acid Base II Duplicate II % RPD extractable 30/07/2 LCS-W1 30/07/2015 Date prepared [NT] [NT] 015 30/07/2 Date analysed [NT] [NT] LCS-W1 30/07/2015 015 Phosphorus - Total 0.05 Metals-020 <0.05 [NT] LCS-W1 114% mg/L [NT] **ICP-AES** 

| QUALITYCONTROL           | UNITS                                               | Dup.Sm#                                                                                | Duplicate                                                                                               | Spike Sm#                                                                                                                                                                                                                                                 | Spike % Recovery                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Miscellaneous Inorganics |                                                     |                                                                                        | Base + Duplicate + %RPD                                                                                 |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                |
| Date prepared            | -                                                   | [NT]                                                                                   | [NT]                                                                                                    | 131883-2                                                                                                                                                                                                                                                  | 30/07/2015                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                              |
| Date analysed            | -                                                   | [NT]                                                                                   | [NT]                                                                                                    | 131883-2                                                                                                                                                                                                                                                  | 30/07/2015                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                |
| THPS in Water by uHPLC*  | μg/L                                                | [NT]                                                                                   | [NT]                                                                                                    | 131883-2                                                                                                                                                                                                                                                  | 83%                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                |
| Sulphate, SO4            | mg/L                                                | [NT]                                                                                   | [NT]                                                                                                    | [NR]                                                                                                                                                                                                                                                      | [NR]                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                |
|                          | Date prepared Date analysed THPS in Water by uHPLC* | Miscellaneous Inorganics  Date prepared - Date analysed - THPS in Water by uHPLC* μg/L | Miscellaneous Inorganics  Date prepared - [NT]  Date analysed - [NT]  THPS in Water by uHPLC* μg/L [NT] | Miscellaneous Inorganics         Base + Duplicate + %RPD           Date prepared         -         [NT]         [NT]           Date analysed         -         [NT]         [NT]           THPS in Water by uHPLC*         μg/L         [NT]         [NT] | Miscellaneous Inorganics         Base + Duplicate + %RPD           Date prepared         -         [NT]         [NT]         131883-2           Date analysed         -         [NT]         [NT]         131883-2           THPS in Water by uHPLC*         μg/L         [NT]         [NT]         131883-2 | Miscellaneous Inorganics         Base + Duplicate + %RPD           Date prepared         -         [NT]         [NT]         131883-2         30/07/2015           Date analysed         -         [NT]         [NT]         131883-2         30/07/2015           THPS in Water by uHPLC*         μg/L         [NT]         [NT]         131883-2         83% |

## **Report Comments:**

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 131883
Revision No: R 00

Page 6 of 7

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 131883 Page 7 of 7



ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 132658

Client:

Parsons Brinckerhoff Aust. Pty Ltd GPO Box 5394

Sydney NSW 2001

Attention: Sean Daykin

Sample log in details:

Your Reference: 2268523B

No. of samples: 3 waters

Date samples received / completed instructions received 13/08/15 / 13/08/15

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 20/08/15 / 19/08/15

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with \*.

### **Results Approved By:**

Jacinta/Hurst Laboratory Manager



| Miscellaneous Inorganics |       |            |            |            |
|--------------------------|-------|------------|------------|------------|
| Our Reference:           | UNITS | 132658-1   | 132658-2   | 132658-3   |
| Your Reference           |       | AST2       | WK12       | WK13       |
| Date Sampled             |       | 12/08/2015 | 12/08/2015 | 12/08/2015 |
| Type of sample           |       | Water      | Water      | Water      |
| Date prepared            | -     | 13/08/2015 | 13/08/2015 | 13/08/2015 |
| Date analysed            | -     | 13/08/2015 | 13/08/2015 | 13/08/2015 |
| THPS in Water by uHPLC*  | μg/L  | <50        | <50        | <50        |
| ,                        |       |            |            |            |

| Metals in Waters - Acid extractable |       |            |            |            |
|-------------------------------------|-------|------------|------------|------------|
| Our Reference:                      | UNITS | 132658-1   | 132658-2   | 132658-3   |
| Your Reference                      |       | AST2       | WK12       | WK13       |
| Date Sampled                        |       | 12/08/2015 | 12/08/2015 | 12/08/2015 |
| Type of sample                      |       | Water      | Water      | Water      |
| Date prepared                       | -     | 17/08/2015 | 17/08/2015 | 17/08/2015 |
| Date analysed                       | -     | 17/08/2015 | 17/08/2015 | 17/08/2015 |
| Phosphorus - Total                  | mg/L  | 3.1        | 1.7        | 2.8        |

| Method ID              | Methodology Summary                                                                                                                                                                                                   |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AT-021                 | Determination of Bis[Tetrakis(Hydroxymethyl)Phosphonium Sulfate (THPS) in waters by conversion to formaldehyde, derivatisation and analysis using ultra high performance liquid chromatography-diode array detection. |
| Inorg-081              | Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B.                                                                                                      |
| Metals-020 ICP-<br>AES | Determination of various metals by ICP-AES.                                                                                                                                                                           |

Envirolab Reference: 132658 Page 4 of 7

**Client Reference:** 2268523B UNITS PQL QUALITYCONTROL METHOD Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery Miscellaneous Inorganics Base II Duplicate II % RPD Date prepared 13/08/2 132658-1 13/08/2015 || 13/08/2015 132658-3 13/08/2015 015 Date analysed 13/08/2 132658-1 13/08/2015 || 13/08/2015 132658-3 13/08/2015 015 <50||<50 THPS in Water by AT-021 <50 132658-1 132658-3 99% μg/L 50 uHPLC\* Sulphate, SO4 Inorg-081 132658-1 [NR] [NR] mg/L 1 <1 <1||<1 QUALITYCONTROL UNITS PQL METHOD Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery Metals in Waters - Acid Base II Duplicate II % RPD extractable 17/08/2 LCS-W1 17/08/2015 Date prepared [NT] [NT] 015 Date analysed 17/08/2 [NT] [NT] LCS-W1 17/08/2015 015 Phosphorus - Total 0.05 Metals-020 <0.05 [NT] [NT] LCS-W1 106% mg/L ICP-AES

| QUALITYCONTROL           | UNITS | Dup. Sm# | Duplicate               | Spike Sm# | Spike % Recovery |  |
|--------------------------|-------|----------|-------------------------|-----------|------------------|--|
| Miscellaneous Inorganics |       |          | Base + Duplicate + %RPD |           |                  |  |
| Date prepared            | -     | [NT]     | [NT]                    | LCS-1     | 13/08/2015       |  |
| Date analysed            | -     | [NT]     | [NT]                    | LCS-1     | 13/08/2015       |  |
| THPS in Water by uHPLC*  | μg/L  | [NT]     | [NT]                    | LCS-1     | 104%             |  |
| Sulphate, SO4            | mg/L  | [NT]     | [NT]                    | LCS-1     | 100%             |  |

## **Report Comments:**

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 132658 Page 6 of 7

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 132658 Page 7 of 7



**Envirolab Services Pty Ltd** ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067

ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

133320

**CERTIFICATE OF ANALYSIS** 

Client:

Parsons Brinckerhoff Aust. Pty Ltd **GPO Box 5394** 

Sydney NSW 2001

Attention: Sean Daykin

Sample log in details:

Your Reference: 2268523B No. of samples: 3 Waters

Date samples received / completed instructions received 27/08/2015 27/08/2015

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 3/09/15 1/09/15

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with \*.

### **Results Approved By:**

Jacinta Hurst Laboratory Manager

Envirolab Reference: 133320 Revision No: R 00



| Miscellaneous Inorganics |       |            |            |            |
|--------------------------|-------|------------|------------|------------|
| Our Reference:           | UNITS | 133320-1   | 133320-2   | 133320-3   |
| Your Reference           |       | WKSW01     | WKSW02     | WKSW03     |
| Date Sampled             |       | 26/08/2015 | 26/08/2015 | 26/08/2015 |
| Type of sample           |       | Water      | Water      | Water      |
| Date prepared            | -     | 27/08/2015 | 27/08/2015 | 27/08/2015 |
| Date analysed            | -     | 27/08/2015 | 27/08/2015 | 27/08/2015 |
| THPS in Water by uHPLC*  | μg/L  | <50        | <50        | <50        |
|                          |       |            |            |            |

| Metals in Waters - Acid extractable |       |            |            |            |
|-------------------------------------|-------|------------|------------|------------|
| Our Reference:                      | UNITS | 133320-1   | 133320-2   | 133320-3   |
| Your Reference                      |       | WKSW01     | WKSW02     | WKSW03     |
| Date Sampled                        |       | 26/08/2015 | 26/08/2015 | 26/08/2015 |
| Type of sample                      |       | Water      | Water      | Water      |
| Date prepared                       | -     | 31/08/2015 | 31/08/2015 | 31/08/2015 |
| Date analysed                       | -     | 31/08/2015 | 31/08/2015 | 31/08/2015 |
| Phosphorus - Total                  | mg/L  | <0.05      | 0.1        | <0.05      |

| Method ID              | Methodology Summary                                                                                                                                                                                                   |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AT-021                 | Determination of Bis[Tetrakis(Hydroxymethyl)Phosphonium Sulfate (THPS) in waters by conversion to formaldehyde, derivatisation and analysis using ultra high performance liquid chromatography-diode array detection. |
| Inorg-081              | Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B.                                                                                                      |
| Metals-020 ICP-<br>AES | Determination of various metals by ICP-AES.                                                                                                                                                                           |

Envirolab Reference: 133320 Page 4 of 7

2268523B **Client Reference:** PQL UNITS QUALITYCONTROL METHOD Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery Miscellaneous Inorganics Base II Duplicate II % RPD Date prepared 27/08/2 133320-1 27/08/2015 || 27/08/2015 LCS-1 27/08/2015 015 27/08/2 Date analysed 133320-1 27/08/2015 || 27/08/2015 LCS-1 27/08/2015 015 THPS in Water by AT-021 <50 133320-1 <50||<50 LCS-1 105% μg/L 50 uHPLC\* Sulphate, SO4 Inorg-081 133320-1 LCS-1 104% mg/L 1 <1 21 || [N/T] QUALITYCONTROL UNITS PQL METHOD Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery Metals in Waters - Acid Base II Duplicate II % RPD extractable 31/08/2 LCS-W1 31/08/2015 Date prepared [NT] [NT] 015 Date analysed 31/08/2 [NT] [NT] LCS-W1 31/08/2015 015 Phosphorus - Total 0.05 Metals-020 <0.05 [NT] [NT] LCS-W1 98% mg/L ICP-AES

| QUALITYCONTROL           | UNITS | Dup.Sm# | Duplicate               | Spike Sm# | Spike % Recovery |
|--------------------------|-------|---------|-------------------------|-----------|------------------|
| Miscellaneous Inorganics |       |         | Base + Duplicate + %RPD |           |                  |
| Date prepared            | -     | [NT]    | [NT]                    | 133320-2  | 27/08/2015       |
| Date analysed            | -     | [NT]    | [NT]                    | 133320-2  | 27/08/2015       |
| THPS in Water by uHPLC*  | μg/L  | [NT]    | [NT]                    | 133320-2  | 121%             |
| Sulphate, SO4            | mg/L  | [NT]    | [NT]                    | [NR]      | [NR]             |

## **Report Comments:**

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 133320 Page 6 of 7

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 133320 Page 7 of 7



**Envirolab Services Pty Ltd** ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201

enquiries@envirolabservices.com.au www.envirolabservices.com.au

**CERTIFICATE OF ANALYSIS** 134039

Client:

Parsons Brinckerhoff Aust. Pty Ltd **GPO Box 5394** 

Sydney NSW 2001

Attention: Sean Daykin

Sample log in details:

Your Reference: 2268523A No. of samples: 5 Waters

Date samples received / completed instructions received 09/09/15 09/09/15

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 16/09/15 17/09/15

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with \*.

**Results Approved By:** 

Jacinta Hurst Laboratory Manager

Envirolab Reference: 134039 Revision No: R 00



| Miscellaneous Inorganics |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | 134039-1   | 134039-2   | 134039-3   | 134039-4   | 134039-5   |
| Your Reference           |       | AST2       | WK13       | WK14       | WK12       | WK11       |
| Date Sampled             |       | 09/09/2015 | 09/09/2015 | 09/09/2015 | 09/09/2015 | 09/09/2015 |
| Type of sample           |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared            | -     | 10/09/2015 | 10/09/2015 | 10/09/2015 | 10/09/2015 | 10/09/2015 |
| Date analysed            | -     | 11/09/2015 | 11/09/2015 | 11/09/2015 | 11/09/2015 | 11/09/2015 |
| THPS in Water by uHPLC*  | μg/L  | 51         | 150        | 86         | 93         | 120        |
| Sulphate, SO4            | mg/L  | <1         | <1         | 8          | <1         | 1 .        |

Envirolab Reference: 134039 Revision No: R 00

| Metals in Waters - Acid extractable |       |            |            |            |            |            |
|-------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                      | UNITS | 134039-1   | 134039-2   | 134039-3   | 134039-4   | 134039-5   |
| Your Reference                      |       | AST2       | WK13       | WK14       | WK12       | WK11       |
| Date Sampled                        |       | 09/09/2015 | 09/09/2015 | 09/09/2015 | 09/09/2015 | 09/09/2015 |
| Type of sample                      |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                       | -     | 10/09/2015 | 10/09/2015 | 10/09/2015 | 10/09/2015 | 10/09/2015 |
| Date analysed                       | -     | 10/09/2015 | 10/09/2015 | 10/09/2015 | 10/09/2015 | 10/09/2015 |
| Phosphorus - Total                  | mg/L  | 2.4        | 2.2        | 1.8        | 1.5        | 3.1        |

Envirolab Reference: 134039
Revision No: R 00

Page 3 of 7

| MethodID               | Methodology Summary                                                                                                                                                                                                   |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AT-021                 | Determination of Bis[Tetrakis(Hydroxymethyl)Phosphonium Sulfate (THPS) in waters by conversion to formaldehyde, derivatisation and analysis using ultra high performance liquid chromatography-diode array detection. |
| Inorg-081              | Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B.                                                                                                      |
| Metals-020 ICP-<br>AES | Determination of various metals by ICP-AES.                                                                                                                                                                           |

Envirolab Reference: 134039 Page 4 of 7

Revision No: R 00

|                                     |       |     | Cile | nt Referenc           | e: 22          | 268523A          |                           |              |                   |       |
|-------------------------------------|-------|-----|------|-----------------------|----------------|------------------|---------------------------|--------------|-------------------|-------|
| QUALITYCONTROL                      | UNITS | PQL | -    | METHOD                | Blank          | Duplicate<br>Sm# | Duplicate results         | Spike Sm#    | Spike %<br>Recove |       |
| Miscellaneous Inorganics            |       |     |      |                       |                |                  | Base II Duplicate II %RPD |              |                   |       |
| Date prepared                       | -     |     |      |                       | 10/09/2<br>015 | 134039-1         | 10/09/2015  11/09/2015    | LCS-W1       | 10/09/            | /2015 |
| Date analysed                       | -     |     |      |                       | 10/09/2<br>015 | 134039-1         | 11/09/2015  11/09/2015    | LCS-W1       | 10/09/            | 2015  |
| THPS in Water by uHPLC*             | μg/L  |     | 50   | AT-021                | <50            | 134039-1         | 51    58    RPD: 13       | LCS-W1       | 106               | 6%    |
| Sulphate, SO4                       | mg/L  |     | 1    | Inorg-081             | <1             | 134039-1         | <1    [N/T]               | LCS-W1       | 99                | %     |
| QUALITYCONTROL                      | UNITS | PQL | -    | METHOD                | Blank          | Duplicate<br>Sm# | Duplicate results         | Spike Sm#    | Spike %<br>Recove |       |
| Metals in Waters - Acid extractable |       |     |      |                       |                |                  | Base II Duplicate II %RPD |              |                   |       |
| Date prepared                       | -     |     |      |                       | 10/09/2<br>015 | [NT]             | [NT]                      | LCS-W2       | 10/09/            | 2015  |
| Date analysed                       | -     |     |      |                       | 10/09/2<br>015 | [NT]             | [NT]                      | LCS-W2       | 10/09/            | 2015  |
| Phosphorus - Total                  | mg/L  | 0   | .05  | Metals-020<br>ICP-AES | <0.05          | [NT]             | [NT]                      | LCS-W2       | 100               | )%    |
| QUALITYCONTROL                      | UNITS | 3   |      | Dup. Sm#              |                | Duplicate        | Spike Sm#                 | Spike % Reco | very              |       |
| Miscellaneous Inorganics            |       |     |      |                       | Base + D       | Duplicate + %RP  | D                         |              |                   |       |
| Date prepared                       | -     |     |      | [NT]                  |                | [NT]             | 134039-2                  | 11/9/2015    | i                 |       |
| Date analysed                       | -     |     |      | [NT]                  |                | [NT]             | 134039-2                  | 11/9/2015    | ;                 |       |
| THPS in Water by uHPLC*             | μg/L  |     |      | [NT]                  |                | [NT]             | 134039-2                  | 88%          |                   |       |
| Sulphate, SO4                       | mg/L  | -   |      | [NT]                  |                | [NT]             | [NR]                      | [NR]         |                   |       |

Envirolab Reference: 134039 Revision No: R 00

### **Report Comments:**

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 134039 Page 6 of 7

Revision No: R 00

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 134039 Page 7 of 7

Revision No: R 00

# Appendix D

Summary results of water quality

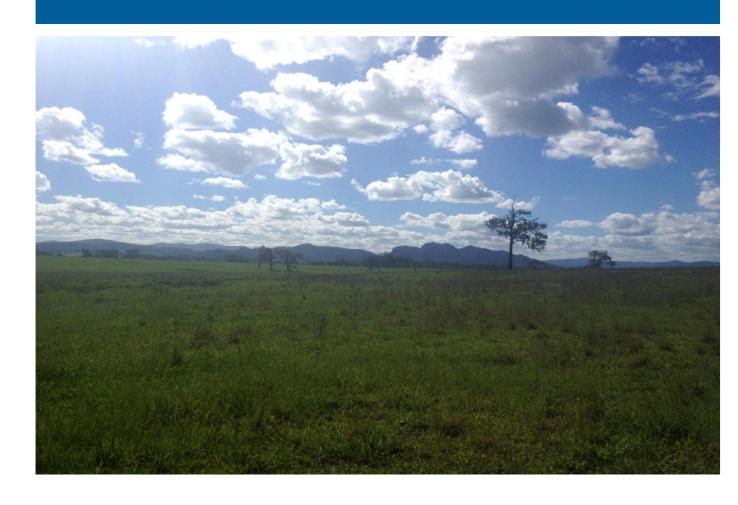



Table D.1 Waukivory surface water quality results

| Sample date                    | Analyte <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOR                                                                                                                                                                                                          | WKSW01<br>26/08/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WKSW01<br>23/09/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WKSW02<br>26/08/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WKSW02<br>22/09/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WKSW03<br>26/08/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WKSW03<br>22/09/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Field parameters               | Temperature Electrical conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | °C<br>uS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                              | 15.49<br>479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.34<br>696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.94<br>536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.36<br>682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.12<br>498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.06<br>693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pH units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                              | 7.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                | TDS<br>DO %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                              | 312<br>109.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 452<br>59.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 348<br>80.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 443<br>44.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 324<br>160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 450<br>57.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                | DO mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                              | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.56<br>-92.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.29<br>107.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                | Redox<br>Chlorine Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mV<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                              | -93.6<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.8<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125.3<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -88.7<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Key analytes                   | Chlorine Total Ethanolamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                            | 0.13<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.08<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.15<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.04<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.07<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.11<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| itoy analytoo                  | Diethanolamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | THPS <sup>b</sup><br>Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50<br>0.05                                                                                                                                                                                                   | <50<br><0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br><0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <50<br><0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <50<br><0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                | Chloride (Method analysis ED009)<br>Chloride (Method analysis ED045)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                          | 98.2<br>66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 152<br>150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109<br>74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 145<br>144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108<br>72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 145<br>143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                | Chlorine - Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2                                                                                                                                                                                                          | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                | Chlorine - Total Residual<br>Nitrogen (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2                                                                                                                                                                                                          | <0.2<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.2<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.2<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.2<br>0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.2<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.2<br>5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                | Sulfate as SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                            | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | Sulphate as SO4 <sup>b</sup> Total Phosphorus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                         | 21<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                | Total Phosphorus <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Lab physical<br>parameters     | Electrical conductivity pH (Lab) <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | μS/cm<br>pH units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                         | 489<br>7.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 671<br>7.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 557<br>7.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 647<br>7.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 522<br>7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 628<br>7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                | TDS<br>TSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10<br>5                                                                                                                                                                                                      | 266<br><5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 413<br><5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 287<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 375<br><5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 246<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 386<br><5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Major/minor ions               | Bicarbonate Alkalinity-mg CaCO3/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                            | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | Carbonate Alkalinity-mg CaCO3/L<br>Alkalinity (Hydroxide) as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                            | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | Alkalinity (total) as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                            | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | Calcium<br>Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                            | 15<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | Potassium<br>Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                            | 3<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4<br>69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                | Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1                                                                                                                                                                                                          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                | Reactive Silica<br>Bromine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05<br>0.1                                                                                                                                                                                                  | 6.11<br>0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.08<br>0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.28<br>0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.66<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.13<br>0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.65<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ni stela-t-                    | Ionic Balance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                         | 9.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Nutrients                      | Ammonia as N<br>Ammonium as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01<br>0.01                                                                                                                                                                                                 | 0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.06<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.95<br>3.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | Nitrate (as N)<br>Nitrite (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01<br>0.01                                                                                                                                                                                                 | 0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.03<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.06<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.04<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                | Nitrite + Nitrate as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                | Kjeldahl Nitrogen Total Reactive Phosphorus as P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1<br>0.01                                                                                                                                                                                                  | 0.4<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.3<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.7<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Disaskind and                  | Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dissolved gas Dissolved metals | Methane<br>Aluminium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01<br>0.01                                                                                                                                                                                                 | 0.011<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.03<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.046<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.247<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.012<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.177<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                | Antimony<br>Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001<br>0.001                                                                                                                                                                                               | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                | Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                        | 0.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                | Berryllium<br>Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                        | <0.001<br><0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.001<br><0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.001<br><0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.001<br><0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.001<br><0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.001<br><0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                | Chromium<br>Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                        | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                | Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                | Iron<br>Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05<br>0.001                                                                                                                                                                                                | 0.1<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.11<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.33<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.18<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.18<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                | Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01                                                                                                                                                                                                         | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                | Zinc<br>Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005<br>0.001                                                                                                                                                                                               | <0.005<br>0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.005<br>0.371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.006<br>0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.005<br>0.305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.006<br>0.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.005<br>0.288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                | Mercury<br>Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0001<br>0.001                                                                                                                                                                                              | <0.0001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                | Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                | Selenium<br>Strontium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                         | <0.01<br>0.217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.01<br>0.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.01<br>0.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.01<br>0.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.01<br>0.223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.01<br>0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                | Tin<br>Uranium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                        | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Oil and Grease                 | Oil and Grease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                            | <0.001<br><5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Phenolic<br>compounds          | 2,4,5-trichlorophenol<br>2.4.6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                            | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Jonipoundo                     | 2,4-dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | 2,4-dimethylphenol<br>2,6-dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                            | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | 2-chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                            | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | 2-methylphenol<br>2-nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                            | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | 2 9 4 months de bonol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | 3-&4-methylphenol<br>4-chloro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                            | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | 4-chloro-3-methylphenol Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 2                                                                                                                                                                                                          | <2<br><1<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <2<br><1<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <2<br><1<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <2<br><1<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1<br><2<br><1<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <2<br><1<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PAH                            | 4-chloro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                            | <2<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <2<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <2<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <2<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1<br><2<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <2<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| РАН                            | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>2<br>1<br>1                                                                                                                                                                                             | <2<br><1<br><2<br><1<br><1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <2<br><1<br><2<br><1<br><1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <2<br><1<br><2<br><1<br><1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <2<br><1<br><2<br><1<br><1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <1<br><2<br><1<br><2<br><1<br><1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <2<br><1<br><2<br><1<br><1<br><1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PAH                            | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>2<br>1<br>1<br>1<br>1                                                                                                                                                                                   | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PAH                            | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>2<br>1<br>1<br>1                                                                                                                                                                                        | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PAH                            | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(b&)ifluoranthene Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>2<br>1<br>1<br>1<br>1<br>1<br>0.5<br>1                                                                                                                                                                  | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <2 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PAH                            | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benz(a) anthracene Benzo(a) pyrene Benzo(b&j)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>2<br>1<br>1<br>1<br>1<br>1<br>0.5                                                                                                                                                                       | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <0.5 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PAH                            | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b)jfluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>2<br>1<br>1<br>1<br>1<br>0.5<br>1<br>1<br>0.5<br>1<br>1<br>0.5                                                                                                                                          | <2 <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>&lt;2   &lt;1   &lt;2   &lt;1   &lt;1   &lt;1   &lt;1   &lt;1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1 <2 <1 <2 <1 <1 <1 <1 <0.5 <1 <1 <0.5 <1 <1 <0.5 <1 <1 <1 <0.5 <1 <1 <1 <0.5 <1 <1 <1 <0.5 <1 <1 <1 <0.5 <1 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>&lt;2   &lt;1   &lt;2   &lt;1   &lt;1   &lt;1   &lt;1   &lt;1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PAH                            | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,n)anthracene Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>2<br>1<br>1<br>1<br>1<br>1<br>0.5<br>1<br>1<br>1<br>0.5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                  | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <2 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1 <2 <1 <2 <1 <1 <1 <1 <1 <0.5 <1 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <p< td=""><td>&lt;2 &lt;1 /td></p<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PAH                            | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(b&j)fluoranthene Benzo(b,hi)perylene Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>2<br>1<br>1<br>1<br>1<br>0.5<br>1<br>1<br>0.5<br>1<br>1<br>0.5<br>1                                                                                                                                     | <2 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PAH                            | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benzo(a) pyrene Benzo(b&i)fluoranthene Benzo(g,h,i)perylene Benzo(g,hi)perylene Benzo(k)ffuoranthene Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,n)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>2<br>1<br>1<br>1<br>1<br>0.5<br>1<br>1<br>0.5<br>1<br>1<br>1<br>0.5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                      | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>&lt;2     &lt;1     &lt;2     &lt;1     &lt;1</pre> | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< |
| PAH                            | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(b&j)fluoranthene Benzo(b,fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>2<br>1<br>1<br>1<br>1<br>0.5<br>1<br>1<br>0.5<br>1<br>1<br>1<br>0.5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                      | <2 <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <0.5 <1 <1 <1 <0.5 <1 <1 <1 <0.5 <1 <1 <1 <0.5 <1 <1 <1 <0.5 <1 <1 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2 <1 <2 <1 <1 <1 <1 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(b&j)fluoranthene Benzo(b,fluoranthene Benzo(hjluoranthene Benzo(hjluoranthene Benzo(hjluoranthene Benzo(hjluoranthene Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448                                                                                                                                                                                                                                                                                                                                                                                                                  | µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>2<br>1<br>1<br>1<br>1<br>0.5<br>1<br>1<br>0.5<br>1<br>1<br>1<br>1<br>0.5<br>1<br>1<br>1<br>1<br>1<br>0.5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | <pre>&lt;2   &lt;1   &lt;2   &lt;1   &lt;1   &lt;1   &lt;1   &lt;1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre>&lt;2     &lt;1     &lt;2     &lt;1     &lt;1</pre> | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< |
|                                | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthene Anthracene Benzo(a) pyrene Benzo(b&j)fluoranthene Benzo(g,h,i)perylene Benzo(g,hi)perylene Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction minus BTEX (F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                      | <2 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2 <1 <2 <1 <1 <1 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <20 <20 <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(b&j)fluoranthene Benzo(g,h.i)perylene Benzo(g,hi)perylene Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                                         | µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>2<br>1<br>1<br>1<br>1<br>0.5<br>1<br>1<br>1<br>0.5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1             | <2 <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>&lt;2     &lt;1     &lt;2     &lt;1     &lt;2     &lt;1     &lt;1</pre> | <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <20 <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>&lt;2   &lt;1   &lt;2   &lt;1   &lt;1   &lt;1   &lt;1   &lt;1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benzo(a) pyrene Benzo(b&j)fluoranthene Benzo(b,fluoranthene Benzo(b,fluoranthene Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction C16 - C34 Fraction C34 - C40 Fraction                                                                                                                                                                                                                                                                                                                                                                                                               | µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>2<br>1<br>1<br>1<br>1<br>1<br>0.5<br>1<br>1<br>1<br>0.5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                  | <pre>&lt;2   &lt;1   &lt;2   &lt;1   &lt;1   &lt;1   &lt;1   &lt;1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>&lt;2     &lt;1     &lt;2     &lt;1     &lt;2     &lt;1     &lt;1</pre> | <pre>&lt;2     &lt;1     &lt;2     &lt;1     &lt;2     &lt;1     &lt;1</pre> | <pre>&lt;1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< |
|                                | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(b&j)fluoranthene Benzo(b,fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,n)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction minus BTEX (F1) C10 - C16 Fraction C16 - C34 Fraction                                                                                                                                                                                                                                                                                                              | нд/L                                                                                                                                                                                                 | 1<br>2<br>1<br>1<br>1<br>1<br>1<br>0.5<br>1<br>1<br>1<br>0.5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                  | <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <1 <21 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <1 | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>&lt;2 &lt;1 &lt;1 &lt;2 &lt;1 /pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>&lt;2 &lt;1 &lt;1 &lt;2 &lt;1 /pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <20 <20 <20 <100 <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< |
| TRH                            | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(b&i)fluoranthene Benzo(s),hi)perylene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,n)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction minus BTEX (F1) C10 - C16 Fraction C34 - C40 Fraction C34 - C40 Fraction C10 - C40 Fraction (Sum) TRH > C10-C16 Iess Naphthalene (F2) C6 - C9 Fraction                                                                                                                                                                                                                          | нд/L                                                                   | 1<br>2<br>1<br>1<br>1<br>1<br>1<br>0.5<br>1<br>1<br>1<br>1<br>0.5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                             | <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <41 <41 <41 <41 <41 <41 <41 <41 <41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>&lt;2     &lt;1     &lt;2     &lt;1     &lt;2     &lt;1     &lt;1</pre> | <pre>&lt;2     &lt;1     &lt;2     &lt;1     &lt;2     &lt;1     &lt;1</pre> | <pre>&lt;1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< |
| TRH                            | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(b&j)fluoranthene Benzo(b,fluoranthene Benzo(a)hi)perylene Benzo(k)fluoranthene Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction C10 - C16 Fraction C10 - C40 Fraction C34 - C40 Fraction C10 - C40 Fraction (Sum) TRH > C10-C16 Iess Naphthalene (F2) C6 - C9 Fraction C10 - C14 Fraction C10 - C14 Fraction C15 - C28 Fraction                                                                                                                                                                                                               | #9/L #9/L #9/L #9/L #9/L #9/L #9/L #9/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                      | <2 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>&lt;2     &lt;1     &lt;2     &lt;1     &lt;2     &lt;1     &lt;1</pre> | <pre>&lt;2     &lt;1     &lt;2     &lt;1     &lt;2     &lt;1     &lt;1</pre> | <pre>&lt;1     &lt;2     &lt;1     &lt;2     &lt;1     &lt;2     &lt;1     &lt;1</pre> | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< |
| TRH                            | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benzo(a) pyrene Benzo(b&j)fluoranthene Benzo(b,fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction C10 - C16 Fraction C34 - C40 Fraction C34 - C40 Fraction C10 - C40 Fraction C10 - C40 Fraction C10 - C14 Fraction C15 - C28 Fraction C29-C36 Fraction C29-C36 Fraction                                                                                                                                                        | нд/L                   | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                      | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>&lt;2 &lt;1 &lt;1 &lt;2 &lt;1 /pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>&lt;2 &lt;1 /pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <pre>&lt;1     &lt;2     &lt;1     &lt;2     &lt;1     &lt;2     &lt;1     &lt;1</pre> | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< |
| TRH                            | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benza(a)anthracene Benzo(a) pyrene Benzo(b&i)fluoranthene Benzo(b,hi)perylene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,n)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction minus BTEX (F1) C10 - C16 Fraction C16 - C34 Fraction C34 - C40 Fraction C10 - C40 Fraction (Sum) TRH > C10-C16 Iess Naphthalene (F2) C6 - C9 Fraction C10 - C14 Fraction C10 - C14 Fraction C10 - C15 Fraction C10 - C15 Fraction C10 - C16 Fraction C10 - C16 Fraction C10 - C36 Fraction C10 - C36 Fraction C10 - C36 Fraction C10 - C36 (Sum of total) Benzene | нд/L   1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                      | <2 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>&lt;2 &lt;1 &lt;1 &lt;2 &lt;1 /pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>&lt;2     &lt;1     &lt;2     &lt;1     &lt;2     &lt;1     &lt;1</pre> | <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< |
| TRH  TPH                       | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benzo(a) pyrene Benzo(bă)jfluoranthene Benzo(g,h.i)perylene Benzo(g,h.i)perylene Benzo(s)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction C10 - C16 Fraction C10 - C34 Fraction C10 - C40 Fraction C10 - C40 Fraction C10 - C40 Fraction C10 - C40 Fraction C10 - C41 Fraction C10 - C44 Fraction C10 - C45 Fraction C10 - C46 Fraction C10 - C47 Fraction C10 - C48 Fraction C10 - C49 Fraction C10 - C49 Fraction C10 - C49 Fraction C10 - C49 Fraction C10 - C48 Fraction C10 - C49 Fraction C10 - C49 Fraction C10 - C49 Fraction C10 - C49 Fraction C10 - C40 Fraction      | нд/L                   | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                      | <2 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< |
| TRH                            | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benzo(a) pyrene Benzo(b&j)fluoranthene Benzo(b,fluoranthene Benzo(b,fluoranthene Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction C10 - C16 Fraction C10 - C40 Fraction C10 - C36 Fraction C10 - C36 (Sum of total) Benzene Toluene Ethylbenzene Xylene (m & p)                                                                                                                                                               | #9/L #9/L #9/L #9/L #9/L #9/L #9/L #9/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                      | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>&lt;2 &lt;1 &lt;1 &lt;2 &lt;1 /pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>&lt;1     &lt;2     &lt;1     &lt;2     &lt;1     &lt;2     &lt;1     &lt;1</pre> | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< |
| TRH                            | 4-chloro-3-methylphenol Pentachlorophenol Phenol Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a) pyrene Benzo(b&j)fluoranthene Benzo(b,fluoranthene Benzo(a)hilperylene Benzo(k)fluoranthene Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction C10 - C16 Fraction C10 - C40 Fraction C10 - C38 Fraction C10 - C38 Fraction C29-C36 Fraction C29-C36 Fraction +C10 - C36 (Sum of total) Benzene Toluene Ethylbenzene                         | #9/L #9/L #9/L #9/L #9/L #9/L #9/L #9/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                      | <pre>&lt;2   &lt;1   &lt;2   &lt;1   &lt;1   &lt;1   &lt;1   &lt;1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>&lt;2     &lt;1     &lt;2     &lt;1     &lt;2     &lt;1     &lt;1</pre> | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>&lt;1      &lt;2      &lt;1      &lt;2      &lt;1      &lt;2      &lt;1      &lt;2      &lt;1      &lt;</pre>                                                                                                           | <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2< |

Notes:
- not analysed
a - All data is from ALS results unless otherwise stated.
b - Analysed by Envirolab.
c - Laboratory readings of pH (lab) is outside of the holding time, therefore field measurements of pH should be relied upon for accuracy.

BRINCKERHOFF

Table D.2 AST2 and Pilot wells.

| Separate Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | Analyte <sup>a</sup>                   | Units | LOR         | AST2               | AST2 | AST2               | AST2              | AST2               | AST2 | AST2              | AST2              | AST2               | AST2               | AST2                | AST2               | AST2    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------|-------|-------------|--------------------|------|--------------------|-------------------|--------------------|------|-------------------|-------------------|--------------------|--------------------|---------------------|--------------------|---------|
| Monte   Mont  |                  | Temperature                            | °C    | <del></del> | 1/07/2015<br>12.74 |      | 3/07/2015<br>10.29 | 4/07/2015<br>7.76 | 6/07/2015<br>15.77 |      | 8/07/2015<br>9.14 | 9/07/2015<br>8.54 | 10/07/2015<br>9.03 | 11/07/2015<br>8.98 | 13/07/2015<br>15.35 | 14/07/2015<br>8.05 |         |
| Profession   Pro  |                  | Electrical conductivity                | uS/cm |             | 6873               | 7154 | 7150               | 7140              | 7265               | 7116 | 7339              | 5143              | 7557               | 8890               | 7613                | 7411               | 7504    |
| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | TDS                                    | mg/L  |             | 4467               | 4650 | 4647               | 4641              | 4739               | 4625 | 4625              | 3343              | 4912               | 5240               | 4949                | 4814               | 4878    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                        |       |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| Mile     |                  |                                        | mV    |             |                    |      |                    | -105.2            |                    |      |                   |                   |                    |                    |                     |                    |         |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kov on -1: 4     | Chlorine Total                         | mg/L  |             |                    | 0.12 | 0                  | 0                 | 0.05               | 0.09 | 0.09              | 0.03              | 0                  | 0.02               | 0.13                | 0                  | 0.03    |
| Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Key analytes     |                                        |       | 1           | -                  |      |                    |                   |                    |      | <1                |                   |                    |                    |                     |                    | 2       |
| Second   |                  |                                        |       |             | -                  | -    | -                  | -                 | -                  |      |                   |                   | -                  | -                  |                     |                    |         |
| Mathematical   Math  |                  | Chloride (Method analysis ED009)       | mg/L  | 0.1         |                    |      |                    |                   |                    |      | 619               |                   |                    |                    |                     |                    | 611     |
| Manufact   |                  | Chlorine - Free                        | mg/L  | 0.2         |                    |      |                    |                   |                    |      | <0.2              |                   |                    |                    |                     |                    | <0.2    |
| Amount of the part of the pa  |                  |                                        |       |             | -                  | -    | -                  | -                 | -                  |      |                   | -                 | -                  | -                  | -                   | -                  |         |
| Martine   Mart  |                  |                                        |       |             |                    |      |                    |                   |                    |      | <1<br>1           |                   |                    |                    |                     |                    |         |
| March   Marc  |                  | Total Phosphorus                       | mg/L  |             |                    |      |                    |                   |                    |      |                   |                   | -                  | -                  |                     |                    | 2.62    |
| Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lab physical     |                                        |       |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | parameters       |                                        |       |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| Section 14th Proof (2014)   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5     |                  | TSS                                    | mg/L  | 5           | -                  | -    | -                  | -                 | -                  | -    | 68                |                   |                    | -                  | -                   | -                  | 52      |
| March print win Color   Property   Propert  | Major/minor ions |                                        |       |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| Septimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                        |       |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| Figure 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Calcium                                | mg/L  | <u> </u>    |                    |      |                    |                   |                    |      | 10                |                   |                    |                    |                     |                    | 21      |
| Purch   Purc  |                  | Potassium                              | mg/L  | 1           | -                  |      | -                  | -                 | -                  | -    | 21                |                   |                    | -                  |                     | -                  | 12      |
| Secretary   Secr  |                  | Fluoride                               | mg/L  | 0.1         |                    |      |                    |                   |                    | -    | 1.1               |                   |                    |                    |                     |                    | 1.2     |
| STATES AND |                  |                                        |       |             |                    |      |                    |                   |                    |      |                   |                   | -                  | -                  |                     |                    |         |
| Amount of the content of the conte  | Nutrionto        | Ionic Balance                          | %     | 0.01        | -                  |      | -                  | -                 | -                  | -    | 6.24              |                   |                    |                    | -                   | -                  | -       |
| State of the content of the conten  | Numents          | Ammonium as N                          | mg/L  | 0.01        | -                  |      | -                  | -                 | -                  | -    | <0.1              |                   |                    |                    |                     | -                  | <0.01   |
| Series   Minister   Color     |                  | ,                                      |       |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| Proceedings   Procedure   Procedure   Process   Proces  |                  |                                        |       |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| Second   |                  | Reactive Phosphorus as P               | mg/L  | 0.01        | -                  |      | -                  | -                 | -                  | -    | 0.05              |                   |                    | -                  |                     | -                  | 0.03    |
| Second property   Second pro  |                  |                                        |       | <u> </u>    |                    | -    |                    |                   |                    |      |                   |                   | -                  |                    |                     |                    |         |
| Marie   Mari  |                  |                                        |       | -           |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| Banka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | Antimony                               | mg/L  |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| Section   Sect  |                  | Barium                                 | mg/L  | 0.001       | -                  |      | -                  | -                 | -                  |      | 4.72              |                   |                    | -                  |                     | -                  | 4.14    |
| Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | Cadmium                                | mg/L  | 0.0001      |                    | -    | -                  | -                 |                    |      | <0.0001           |                   | -                  | -                  |                     |                    | <0.0001 |
| March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                        |       |             |                    | -    | -                  |                   | -                  |      |                   |                   | -                  | -                  |                     |                    |         |
| Marche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Copper                                 | mg/L  |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Lead                                   | mg/L  | 0.001       | -                  |      | -                  | -                 | -                  |      | <0.001            |                   |                    | -                  |                     | -                  | <0.001  |
| Mercay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Zinc                                   | mg/L  | 0.005       |                    |      |                    |                   |                    |      | <0.005            |                   |                    |                    |                     |                    | < 0.005 |
| Model   Mode  |                  |                                        |       |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                        |       |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | Selenium                               | mg/L  | 0.01        |                    |      |                    |                   |                    |      | <0.01             |                   |                    |                    |                     |                    | <0.01   |
| Second   Clark   Cla  |                  | Tin                                    | mg/L  | 0.001       |                    |      |                    |                   |                    |      | <0.001            |                   |                    |                    |                     |                    | <0.001  |
| 2.46 Frictorophened                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oil and Grease   |                                        |       |             |                    | -    |                    | -                 |                    |      |                   |                   |                    |                    |                     |                    |         |
| Z.de-declorophane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                        |       |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| 26-destrosphend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o o mpo a mao    | 2,4-dichlorophenol                     | μg/L  | 1           | -                  |      |                    | -                 | -                  | -    | <1                |                   |                    | -                  | -                   | -                  | <1      |
| Emethylphaned   19th   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 2,6-dichlorophenol                     | μg/L  | 1           | -                  |      |                    | -                 |                    | -    | <1                |                   |                    | -                  |                     | -                  | <1      |
| Self-methylpherol   ppl.   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 2-methylphenol                         | μg/L  |             |                    |      |                    |                   |                    |      | 1.2               |                   |                    |                    |                     |                    | 1.2     |
| Achieve-Smethylpheroid   MpJL   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                        |       |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| Pinerd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 4-chloro-3-methylphenol                | μg/L  | 1           | -                  |      | -                  | -                 | -                  | -    | <1                |                   |                    |                    |                     | -                  | <1      |
| Acanaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DALL             | Phenol                                 | μg/L  | 1           | -                  |      | -                  | -                 | -                  | -    | <1                |                   | -                  |                    |                     | -                  | 1.1     |
| Benz(a) pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | РАП              | Acenaphthylene                         | μg/L  | 1           | -                  | -    | -                  | -                 | -                  | -    | <1                | -                 |                    | -                  |                     | -                  | <1      |
| Benzold pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                        |       | 1           |                    |      |                    |                   |                    |      | <1                |                   |                    |                    |                     |                    | <1      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Benzo(a) pyrene                        | μg/L  |             |                    |      |                    |                   |                    |      | <0.5              |                   |                    |                    |                     |                    | <0.5    |
| Benzo(a)pyrene TEG (zero)   µg/L   0.5   .   .   .   .   .   .   .   .   .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | Benzo(g,h,i)perylene                   | μg/L  | 1           | -                  | -    | -                  | -                 | -                  | -    | <1                | -                 |                    | -                  |                     | -                  | <1      |
| Diberz(a) Aparthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Benzo(a)pyrene TEQ (zero)              | μg/L  | 0.5         | -                  |      |                    | -                 |                    | -    | <0.5              |                   |                    | -                  |                     | -                  | <0.5    |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Dibenz(a,h)anthracene                  |       |             |                    |      |                    |                   |                    |      | <1                |                   |                    |                    |                     |                    | <1      |
| Indeno(1,2,3-c,d)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | Fluoranthene                           | μg/L  |             |                    |      |                    |                   |                    |      | <1                |                   |                    |                    |                     |                    | <1      |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Indeno(1,2,3-c,d)pyrene                | μg/L  | 1           | -                  |      |                    | -                 |                    |      | <1                |                   |                    | -                  |                     | -                  | <1      |
| Polycylic aromatic hydrocarbons EPA448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Phenanthrene                           | μg/L  | 1           | -                  |      | -                  | -                 | -                  | -    | <1                |                   | -                  | -                  |                     | -                  | <1      |
| C6 - C10 Fraction minus BTEX (F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | Polycylic aromatic hydrocarbons EPA448 |       |             |                    |      |                    |                   |                    |      | <0.5              |                   |                    |                    |                     |                    | <0.5    |
| C10 - C16 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRH              |                                        |       |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| C34 - C40 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | C10 - C16 Fraction                     | μg/L  | 100         | -                  |      | -                  | -                 |                    | -    | <100              |                   |                    |                    |                     | -                  | <100    |
| TRH > C10-C16 less Naphthalene (F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | C34 - C40 Fraction                     | μg/L  | 100         | -                  |      | -                  | -                 |                    | -    | <100              |                   |                    |                    |                     | -                  | <100    |
| C10 - C14 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | TRH >C10-C16 less Naphthalene (F2)     | μg/L  | 100         |                    |      |                    |                   |                    |      | <100              |                   |                    |                    |                     |                    | <100    |
| C15 - C28 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TPH              |                                        |       |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| Control   Figure     |                  | C15 - C28 Fraction                     | μg/L  | 100         | -                  |      |                    |                   |                    |      | 220               | -                 | -                  |                    | -                   | -                  | <100    |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DTEV             | +C10 - C36 (Sum of total)              | μg/L  | 50          | -                  | -    | - 40               | -                 | -                  | -    | 380               |                   |                    | -                  |                     | -                  | <50     |
| Xylene (m & p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DIEX             | Toluene                                | μg/L  | 2           | 9                  | 9    | 16                 | 17                | 18                 | 19   | 20                | 11                | 19                 | 12                 | 16                  | 16                 | 13      |
| Xylene (o)     µg/L     2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2     <2 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                        |       |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| Sum of BTEX   µg/L   1   16   16   32   35   38   40   42   24   40   25   34   33   27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | Xylene (o)                             | μg/L  |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    |                     |                    |         |
| Micro Unionized Hydrogen Sulfide μg/L 100 <100 <100 <100 <100 <100 <100 <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Sum of BTEX                            | μg/L  | 1           | 16                 | 16   | 32                 | 35                | 38                 | 40   | 42                | 24                | 40                 | 25                 | 34                  | 33                 | 27      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Micro            |                                        |       |             |                    |      |                    |                   |                    |      |                   |                   |                    |                    | <100                | <100               | <100    |

not analysed
a - All data is from ALS results unless otherwise stated.
b - Analysed by Envirolab.
c - Laboratory readings of pH (lab) is outside of the holding time, therefore field measurements of pH should be relied upon for accuracy.
d - NPOC analysis was carried out instead of TOC due to high inorganic carbon content

Table D.2 AST2 and Pilot wells cont.

| Comple data                     | Analyte <sup>a</sup>                                              | Units                | LOR             | AST2               | AST2               | AST2               | AST2          | AST2               | AST2            | AST2          | AST2                | AST2                | AST2                | AST2               | AST2               |
|---------------------------------|-------------------------------------------------------------------|----------------------|-----------------|--------------------|--------------------|--------------------|---------------|--------------------|-----------------|---------------|---------------------|---------------------|---------------------|--------------------|--------------------|
| Sample date<br>Field parameters |                                                                   | °C                   |                 | 16/07/2015<br>7.89 | 17/07/2015<br>5.28 | 18/07/2015<br>8.37 | 20/07/2015    | 21/07/2015<br>8.96 | 9.57            | 23/07/2015    | 24/07/2015<br>12.08 | 25/07/2015<br>13.33 | 27/07/2015<br>16.55 | 28/07/2015<br>5.74 | 29/07/2015<br>7.71 |
|                                 | Electrical conductivity pH                                        | uS/cm<br>pH units    |                 | 7654<br>8.99       | 7525<br>8.99       | 7657<br>9.04       | 7809<br>9.03  | 7794<br>9.01       | 7786<br>9.06    | 7723<br>9     | 7745<br>8.98        | 7836<br>9.06        | 8265<br>9.04        | 7766<br>9.04       | 7788<br>9.04       |
|                                 | TDS<br>DO %                                                       | mg/L<br>%            |                 | 4981<br>24.3       | 4891<br>23.8       | 4978<br>24.8       | 5076<br>54.4  | 5067<br>32.4       | 5061<br>53.5    | 5020<br>26.8  | 5034<br>25.1        | 5093<br>39.9        | 5372<br>26.7        | 5053<br>27.1       | 5062<br>14.6       |
|                                 | DO mg/L                                                           | mg/L<br>mV           |                 | 2.82               | 2.94<br>165.9      | 2.84<br>133.7      | 5.47<br>183.9 | 3.63<br>157        | 5.72<br>261.8   | 2.93<br>148.7 | 2.62<br>117.8       | 4.02<br>-53.9       | 2.52<br>43.1        | 3.31<br>177.5      | 1.69               |
|                                 | Redox<br>Chlorine Free                                            | mg/L                 |                 | 0.05               | 0.13               | 0                  | 0.09          | 0.03               | 0.04            | 0.08          | 0.06                | 0.25                | 0.06                | 0.03               | 195.8<br>0         |
| Key analytes                    | Chlorine Total Ethanolamine                                       | mg/L<br>μg/L         | 1               | 0.06               | 0.22               | -                  | 0.13          | 0.11               | 0.03<br>29      | 0.11          | -                   | 0.19                | 0.15                | 0.08               | 0.06<br>20         |
|                                 | Diethanolamine<br>THPS <sup>b</sup>                               | μg/L<br>μg/L         | 1<br>50         | -                  | -                  | -                  | -             | -                  | 26<br><50       | -             | -                   | -                   | -                   | -                  | <1<br><50          |
|                                 | Boron                                                             | mg/L                 | 0.05            | -                  | -                  | -                  |               | -                  | 8.52            | -             | -                   | -                   | -                   | -                  | 6.93               |
|                                 | Chloride (Method analysis ED009) Chloride (Method analysis ED045) | mg/L<br>mg/L         | 0.1             | -                  | -                  | -                  | -             | -                  | 668<br>508      | -             | -                   | -                   | -                   | -                  | 658<br>487         |
|                                 | Chlorine - Free<br>Chlorine - Total Residual                      | mg/L<br>mg/L         | 0.2<br>0.2      | -                  | -                  | -                  | -             | -                  | <0.2<br><0.2    | -             | -                   | -                   | -                   | -                  | <0.2<br><0.2       |
|                                 | Nitrogen (Total)                                                  | mg/L                 | 0.1             | -                  | -                  | -                  |               | -                  | 5.4             | -             | -                   | -                   | -                   | -                  | 9.5                |
|                                 | Sulfate as SO4 Sulphate as SO4 <sup>b</sup>                       | mg/L<br>mg/L         | 1               | -                  | -                  | -                  | -             | -                  | <10<br>1        | -             | -                   | -                   | -                   | -                  | <1<br>1            |
|                                 | Total Phosphorus  Total Phosphorus <sup>b</sup>                   | mg/L<br>mg/L         | 0.01<br>0.05    | -                  | -                  | -                  |               | -                  | 1.63<br>2.8     | -             | -                   | -                   | -                   | -                  | 2.69<br>3.1        |
| Lab physical                    | Electrical conductivity                                           | μS/cm                | 1               | 7780               | 7430               | 7910               | 7650          | 7770               | 7950            | 8000          | 7720                | 8460                | 7220                | 7880               | 7150               |
| parameters                      | pH (Lab) <sup>c</sup><br>TDS                                      | pH units<br>mg/L     | 0.01            | -                  | -                  | -                  | -             | -                  | 8.97<br>5240    | -             | -                   | -                   | -                   | -                  | 9.18<br>5330       |
|                                 | TSS                                                               | mg/L                 | 5               | -                  | -                  | -                  |               | -                  | 48              | -             | -                   | -                   | -                   | -                  | 42                 |
| Major/minor ions                | Bicarbonate Alkalinity-mg CaCO3/L Carbonate Alkalinity-mg CaCO3/L | mg/L<br>mg/L         | 1               | -                  | -                  | -                  |               | -                  | 3320<br>600     | -             | -                   | -                   | -                   | -                  | 3180<br>750        |
|                                 | Alkalinity (Hydroxide) as CaCO3  Alkalinity (total) as CaCO3      | mg/L<br>mg/L         | 1               | -                  | -                  | -                  |               | -                  | <1<br>3920      | -             | -                   | -                   | -                   | -                  | <1<br>3920         |
|                                 | Calcium                                                           | mg/L                 | 1               |                    | -                  | -                  |               | -                  | 24              | -             | -                   | -                   | -                   | -                  | 17                 |
|                                 | Magnesium<br>Potassium                                            | mg/L<br>mg/L         | 1               | -                  | -                  | -                  | -             | -                  | <10<br>15       | -             | -                   | -                   | -                   | -                  | 4<br>15            |
|                                 | Sodium<br>Fluoride                                                | mg/L<br>mg/L         | 0.1             | -                  | -                  | -                  |               | -                  | 2110<br>1.2     | -             | -                   | -                   | -                   | -                  | 2140<br>1.2        |
|                                 | Reactive Silica Bromine                                           | mg/L<br>mg/L         | 0.05            | -                  | -                  | -                  |               | -                  | 22.7            | -             | -                   | -                   | -                   | -                  | 24.6               |
|                                 | Ionic Balance                                                     | %                    | 0.01            | -                  | -                  | -                  |               | -                  | 0.32            | -             | -                   | -                   | -                   | -                  | 1.32               |
| Nutrients                       | Ammonia as N<br>Ammonium as N                                     | mg/L<br>mg/L         | 0.01<br>0.01    | -                  | -                  | -                  |               | -                  | 0.03<br>0.02    | -             | -                   | -                   | -                   | -                  | 0.01<br><0.01      |
|                                 | Nitrate (as N)<br>Nitrite (as N)                                  | mg/L<br>mg/L         | 0.01            | -                  | -                  | -                  | -             | -                  | 0.02            | -             | -                   | -                   | -                   | -                  | <0.01              |
|                                 | Nitrite + Nitrate as N                                            | mg/L                 | 0.01            | -                  | -                  | -                  |               | -                  | 0.02            | -             | -                   | -                   | -                   | -                  | <0.01              |
|                                 | Kjeldahl Nitrogen Total Reactive Phosphorus as P                  | mg/L<br>mg/L         | 0.1<br>0.01     | -                  | -                  | -                  | -             | -                  | 5.4<br>0.02     | -             | -                   | -                   | -                   | -                  | 9.5<br>0.06        |
|                                 | Total Organic Carbon                                              | mg/L<br>mg/L         | 1               | -                  | -                  | -                  |               | -                  | 291             | -             | -                   | -                   | -                   | -                  | 188                |
| Dissolved gas                   | Nonpurgeable Organic Carbon <sup>d</sup><br>Methane               | mg/L                 | 0.01            | -                  | -                  | -                  |               | -                  | 0.786           | -             | -                   | -                   | -                   | -                  | 0.494              |
| Dissolved metals                | Aluminium<br>Antimony                                             | mg/L<br>mg/L         | 0.01<br>0.001   | -                  | -                  | -                  |               | -                  | <0.1<br><0.01   | -             | -                   | -                   | -                   | -                  | <0.01<br><0.001    |
|                                 | Arsenic                                                           | mg/L                 | 0.001           | -                  | -                  | -                  |               | -                  | <0.01           | -             | -                   | -                   | -                   | -                  | 0.006              |
|                                 | Barium<br>Berryllium                                              | mg/L<br>mg/L         | 0.001<br>0.001  | -                  | -                  | -                  |               | -                  | 5.11<br><0.01   | -             | -                   | -                   | -                   | -                  | 5.91<br><0.001     |
|                                 | Cadmium<br>Chromium                                               | mg/L<br>mg/L         | 0.0001<br>0.001 | -                  | -                  | -                  | -             | -                  | <0.001<br><0.01 | -             | -                   | -                   | -                   | -                  | <0.0001<br>0.003   |
|                                 | Cobalt                                                            | mg/L                 | 0.001           | -                  | -                  | -                  |               | -                  | <0.01<br><0.01  | -             | -                   | -                   | -                   | -                  | <0.001<br><0.001   |
|                                 | Copper<br>Iron                                                    | mg/L<br>mg/L         | 0.05            | -                  | -                  | -                  | •             | -                  | 0.55            | -             | -                   | -                   | -                   | -                  | 0.3                |
|                                 | Lead<br>Vanadium                                                  | mg/L<br>mg/L         | 0.001           | -                  | -                  | -                  | -             | -                  | <0.01<br><0.1   | -             | -                   | -                   | -                   | -                  | <0.001<br><0.01    |
|                                 | Zinc<br>Manganese                                                 | mg/L                 | 0.005<br>0.001  | -                  | -                  | -                  |               | -                  | <0.05<br>0.021  | -             | -                   | -                   | -                   | -                  | <0.005<br>0.009    |
|                                 | Mercury                                                           | mg/L<br>mg/L         | 0.0001          | -                  | -                  | -                  |               | -                  | <0.0001         | -             | -                   | -                   | -                   | -                  | <0.0001            |
|                                 | Molybdenum<br>Nickel                                              | mg/L<br>mg/L         | 0.001<br>0.001  | -                  | -                  | -                  | -             | -                  | <0.01<br><0.01  | -             | -                   | -                   | -                   | -                  | 0.009<br>0.002     |
|                                 | Selenium<br>Strontium                                             | mg/L<br>mg/L         | 0.01<br>0.001   | -                  | -                  | -                  | -             | -                  | <0.1<br>3.33    | -             | -                   | -                   | -                   | -                  | <0.01<br>3.74      |
|                                 | Tin                                                               | mg/L                 | 0.001           | -                  | -                  | -                  |               | -                  | <0.01           | -             | -                   | -                   | -                   | -                  | <0.001             |
| Oil and Grease                  | Uranium Oil and Grease                                            | mg/L<br>mg/L         | 0.001<br>5      | -                  | -                  | -                  | -             | -                  | <0.01<br>14     | -             | -                   | -                   | -                   | -                  | <0.001<br><5       |
| Phenolic compounds              | 2,4,5-trichlorophenol<br>2.4.6-Trichlorophenol                    | μg/L<br>μg/L         | 1               | -                  | -                  | -                  |               | -                  | <1<br><1        | -             | -                   | -                   | -                   | -                  | <1<br><1           |
| compounds                       | 2,4-dichlorophenol                                                | μg/L                 | 1               | -                  | -                  | -                  |               | -                  | <1              | -             | -                   |                     | -                   | -                  | <1                 |
|                                 | 2,4-dimethylphenol 2,6-dichlorophenol                             | μg/L<br>μg/L         | 1               | -                  | -                  | -                  | -             | -                  | <1<br><1        | -             | -                   | -                   | -                   | -                  | <1<br><1           |
|                                 | 2-chlorophenol<br>2-methylphenol                                  | μg/L<br>μg/L         | 1               | -                  | -                  | -                  |               | -                  | <1<br>1.3       | -             | -                   | -                   | -                   | -                  | <1<br><1           |
|                                 | 2-nitrophenol                                                     | μg/L                 | 1               | -                  | -                  | -                  |               | -                  | <1              | -             | -                   | -                   | -                   | -                  | <1                 |
|                                 | 3-&4-methylphenol 4-chloro-3-methylphenol                         | μg/L<br>μg/L         | 1               | -                  | -                  | -                  | -             | -                  | 30.9<br><1      | -             | -                   | -                   | -                   | -                  | 24.2<br><1         |
|                                 | Pentachlorophenol<br>Phenol                                       | μg/L<br>μg/L         | 2               | -                  | -                  | -                  | -             | -                  | <2<br>1.6       | -             | -                   | -                   | -                   | -                  | <2<br>1.4          |
| PAH                             | Acenaphthene                                                      | μg/L                 | 1               | -                  | -                  | -                  |               | -                  | <1              | -             | -                   | -                   | -                   | -                  | <1                 |
|                                 | Acenaphthylene<br>Anthracene                                      | μg/L<br>μg/L         | 1               | -                  | -                  | -                  | -             | -                  | <1<br><1        | -             | -                   | -                   | -                   | -                  | <1<br><1           |
|                                 | Benz(a)anthracene<br>Benzo(a) pyrene                              | μg/L<br>μg/L         | 0.5             | -                  | -                  | -                  | -             | -                  | <1<br><0.5      | -             | -                   | -                   | -                   | -                  | <1<br><0.5         |
|                                 | Benzo(b&j)fluoranthene Benzo(g,h,i)perylene                       | μg/L<br>μg/L         | 1               | -                  | -                  | -                  | -             | -                  | <1<br><1        | -             | -                   | -                   | -                   | -                  | <1<br><1           |
|                                 | Benzo(k)fluoranthene                                              | μg/L                 | 1               | -                  | -                  | -                  |               | -                  | <1              | -             | -                   | -                   | -                   | -                  | <1                 |
|                                 | Benzo(a)pyrene TEQ (zero) Chrysene                                | μg/L<br>μg/L         | 0.5<br>1        | -                  | -                  | -                  | -             | -                  | <0.5<br><1      | -             | -                   | -                   | -                   | -                  | <0.5<br><1         |
|                                 | Dibenz(a,h)anthracene<br>Fluoranthene                             | μg/L<br>μg/L         | 1               | -                  | -                  | -                  |               | -                  | <1<br><1        | -             | -                   | -                   | -                   | -                  | <1<br><1           |
|                                 | Fluorene                                                          | μg/L                 | 1               | -                  | -                  | -                  |               | -                  | <1              | -             | -                   | -                   | -                   | -                  | <1                 |
|                                 | Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) | μg/L<br>μg/L         | 1               | -                  | -                  | -                  | -             | -                  | <1<br><1        | -             | -                   | -                   | -                   | -                  | <1<br><1           |
|                                 | Phenanthrene<br>Pyrene                                            | μg/L<br>μg/L         | 1               | -                  | -                  | -                  |               | -                  | <1<br><1        | -             | -                   | -                   | -                   | -                  | <1<br><1           |
| TDU                             | Polycylic aromatic hydrocarbons EPA448                            | ug/L                 | 0.5             | -                  | -                  | -                  |               | -                  | <0.5            | -             | -                   | -                   | -                   | -                  | <0.5               |
| TRH                             | TPH C6-C10<br>C6 - C10 Fraction minus BTEX (F1)                   | μg/L<br>μg/L         | 20<br>20        | -                  | -                  | -                  | -             | -                  | 40<br><20       | -             | -                   | -                   | -                   | -                  | <20<br><20         |
|                                 | C10 - C16 Fraction<br>C16 - C34 Fraction                          | μg/L<br>μg/L         | 100<br>100      | -                  | -                  | -                  | -             | -                  | 240<br>210      | -             | -                   | -                   | -                   | -                  | <100<br><100       |
|                                 | C34 - C40 Fraction                                                | μg/L                 | 100             | -                  | -                  | -                  |               | -                  | <100            | -             | -                   | -                   | -                   | -                  | <100               |
|                                 | C10 - C40 Fraction (Sum) TRH >C10-C16 less Naphthalene (F2)       | μg/L<br>μg/L         | 100<br>100      | -                  | -                  | -                  | -             | -                  | 450<br>240      | -             | -                   | -                   | -                   | -                  | <100<br><100       |
| TPH                             | C6 - C9 Fraction<br>C10 - C14 Fraction                            | μg/L<br>μg/L         | 20<br>50        | -                  | -                  | -                  | -             | -                  | 40<br>200       | -             | -                   | -                   | -                   | -                  | <20<br><50         |
|                                 | C15 - C28 Fraction                                                | μg/L                 | 100             | -                  | -                  | -                  | -             | -                  | 200             | -             | -                   | -                   | -                   | -                  | <100               |
|                                 | C29-C36 Fraction<br>+C10 - C36 (Sum of total)                     | μg/L<br>μg/L         | 50<br>50        | -                  | -                  | -                  | -             | -                  | 60<br>460       | -             | -                   | -                   | -                   | -                  | <50<br><50         |
| BTEX                            | Benzene<br>Toluene                                                | μg/L<br>μg/L         | 2               | 10<br>12           | 12<br>14           | 11<br>12           | 8<br>10       | 7 9                | 8<br>9          | 5<br>6        | 6<br>7              | 6<br>8              | 5<br>6              | 5<br>6             | 5<br>5             |
| Ī                               |                                                                   | µg/L                 | 2               | <2                 | <2                 | <2                 | <2<br>3       | <2<br>2            | <2<br>2         | <2<br><2      | <2<br>2             | <2<br><2            | <2<br><2            | <2                 | <2<br><2           |
|                                 | Ethylbenzene                                                      |                      | ^               | ^                  |                    |                    |               |                    |                 |               |                     |                     |                     |                    |                    |
|                                 | Xylene (m & p)<br>Xylene (o)                                      | μg/L<br>μg/L         | 2               | 3 <2               | 3 <2               | 4<br><2            | <2            | <2                 | <2              | <2            | <2                  | <2                  | <2                  | <2<br><2           | <2                 |
|                                 | Xylene (m & p)                                                    | μg/L                 |                 |                    |                    |                    |               |                    |                 |               |                     |                     |                     |                    |                    |
| Micro                           | Xylene (m & p)<br>Xylene (o)<br>Xylene Total                      | μg/L<br>μg/L<br>μg/L | 2               | <2<br>3            | <2<br>3            | <2<br>4            | <2<br>3       | <2<br>2            | <2<br>2         | <2<br><2      | <2<br>2             | <2<br><2            | <2<br><2            | <2<br><2           | <2<br><2           |

- Notes:
   not analysed
  a All data is from ALS results unless otherwise stated.
  b Analysed by Envirolab.
  c Laboratory readings of pH (lab) is outside of the holding time, therefore field measurements of pH should be relied upon for accuracy.
  d NPOC analysis was carried out instead of TOC due to high inorganic carbon content

Table D.2 AST2 and Pilot wells cont.

|                                 | Analyte <sup>a</sup>                                                       | Units                | LOR             | AST2                | AST2                | AST2              | AST2                | WK11               |
|---------------------------------|----------------------------------------------------------------------------|----------------------|-----------------|---------------------|---------------------|-------------------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Sample date<br>Field parameters | Temperature                                                                | °C                   |                 | 12/08/2015<br>15.56 | 26/08/2015<br>15.23 | 9/09/2015<br>13.3 | 23/09/2015<br>13.24 | 1/07/2015<br>19.11 | 2/07/2015<br>16.64 | 3/07/2015<br>16.65 | 4/07/2015<br>15.32 | 6/07/2015<br>19.78 | 7/07/2015<br>16.87 | 8/07/2015<br>18.39 | 9/07/2015<br>14.66 |
|                                 | Electrical conductivity pH                                                 | uS/cm<br>pH units    |                 | 8128<br>9.06        | 7932<br>9.03        | 7897<br>9.33      | 8234<br>9.63        | 11,205<br>7.08     | 11,498<br>7.09     | 10,566<br>7.04     | 9140<br>7.05       | 11,502<br>7.04     | 11,263<br>6.99     | 11,457<br>7.06     | 13,207<br>7.19     |
|                                 | TDS<br>DO %                                                                | mg/L                 |                 | 5283                | 5157                | 5135              | 5352                | 7285               | 7474               | 6867               | 5930<br>107.5      | 7479               | 7321               | 7448<br>37.2       | 8582               |
|                                 | DO mg/L                                                                    | %<br>mg/L            |                 | 28.1<br>2.71        | 41.9<br>4.06        | 31.1<br>3.15      | 72.6<br>7.41        | 30.3<br>2.7        | 27<br>2.52         | 28.1<br>2.69       | 10.48              | 21.8<br>1.89       | 16.6<br>1.55       | 3.34               | 40.3<br>3.94       |
|                                 | Redox<br>Chlorine Free                                                     | mV<br>mg/L           |                 | -27.2<br>0.07       | -197.5<br>0.02      | 12.9<br>0         | 112.1<br>0.01       | -133.8<br>0        | -119<br>0.02       | -115.4<br>0.03     | 107.9<br>0.06      | -126.6<br>0.01     | -131.1<br>0        | -134.5<br>0.06     | -120.5<br>0.04     |
| Key analytes                    | Chlorine Total Ethanolamine                                                | mg/L<br>μg/L         | 1               | 0.1<br>16           | 0.02<br>24          | 0<br>7            | 0<br>17             | 0                  | 0.1                | 0.1                | 0                  | 0.1                | 0                  | 0<br><1            | 0.01               |
| rtoy analytoo                   | Diethanolamine                                                             | μg/L                 | 1               | 3                   | 35                  | 15                | 36                  | -                  | -                  | -                  | -                  | -                  | -                  | <1<br><50          | -                  |
|                                 | THPS <sup>b</sup><br>Boron                                                 | μg/L<br>mg/L         | 50<br>0.05      | <50<br>8.32         | 6.99                | 51<br>7.13        | 7.37                | -                  | -                  | -                  | -                  | -                  | -                  | <0.05              | -                  |
|                                 | Chloride (Method analysis ED009) Chloride (Method analysis ED045)          | mg/L<br>mg/L         | 0.1             | 694<br>601          | 651<br>471          | 671<br>711        | 762<br>758          | -                  | -                  | -                  | -                  | -                  | -                  | 747<br>759         | -                  |
|                                 | Chlorine - Free<br>Chlorine - Total Residual                               | mg/L<br>mg/L         | 0.2<br>0.2      | <0.2<br><0.2        | <0.2<br><0.2        | <0.2<br><0.2      | <0.2<br><0.2        | -                  | -                  | -                  | -                  | -                  | -                  | <0.2<br><0.2       | -                  |
|                                 | Nitrogen (Total) Sulfate as SO4                                            | mg/L                 | 0.1             | 7.7                 | 6.7                 | 8.2               | 9.8                 | -                  | -                  | -                  | -                  | -                  | -                  | 8.5                | -                  |
|                                 | Sulphate as SO4 <sup>b</sup>                                               | mg/L<br>mg/L         | 1               | <1<br><1            | <1<br>-             | <10<br><1         |                     | -                  | -                  | -                  | -                  | -                  | -                  | <1<br>4            | -                  |
|                                 | Total Phosphorus  Total Phosphorus <sup>b</sup>                            | mg/L<br>mg/L         | 0.01<br>0.05    | 2.63<br>3.1         | 1.89                | 2.12<br>2.4       | 2.4                 | -                  | -                  | -                  | -                  | -                  | -                  | 3.12<br>3.6        | -                  |
| Lab physical parameters         | Electrical conductivity                                                    | μS/cm<br>pH units    | 1<br>0.01       | 9020<br>9.13        | 8490<br>9.43        | 7880<br>9.18      | 8350<br>9.42        | 11,200             | 11,400             | -                  |                    | -                  | -                  | 11,700<br>7.17     | -                  |
| parameters                      | pH (Lab) <sup>c</sup><br>TDS                                               | mg/L                 | 10              | 4510                | 4980                | 5320              | 5160                | -                  | -                  | -                  |                    | -                  | -                  | 6510               | -                  |
| Major/minor ions                | TSS Bicarbonate Alkalinity-mg CaCO3/L                                      | mg/L<br>mg/L         | 5<br>1          | 74<br>3100          | 37<br>3020          | 58<br>2980        | 72<br>2850          | -                  | -                  | -                  | -                  | -                  | -                  | 8<br>5940          | -                  |
|                                 | Carbonate Alkalinity-mg CaCO3/L Alkalinity (Hydroxide) as CaCO3            | mg/L<br>mg/L         | 1               | 700<br><1           | 900                 | 1000<br><1        | 1250<br><1          | -                  | -                  | -                  | -                  | -                  | -                  | <1<br><1           | -                  |
|                                 | Alkalinity (total) as CaCO3 Calcium                                        | mg/L<br>mg/L         | 1               | 3800<br>21          | 3920<br>19          | 3980<br>23        | 4100                | -                  | -                  | -                  |                    | -                  | -                  | 5940<br>36         | -                  |
|                                 | Magnesium                                                                  | mg/L                 | 1               | 5                   | <10                 | 5                 | 4                   | -                  | -                  | -                  | -                  | -                  | -                  | 5                  | -                  |
|                                 | Potassium<br>Sodium                                                        | mg/L<br>mg/L         | 1               | 15<br>2350          | 12<br>2190          | 18<br>2850        | 15<br>2400          | -                  | -                  | -                  | -                  | -                  | -                  | 23<br>3020         | -                  |
|                                 | Fluoride<br>Reactive Silica                                                | mg/L<br>mg/L         | 0.1<br>0.05     | 1.7<br>24.2         | 1.3<br>18.4         | 1.5<br>18         | 1.6<br>3.32         | -                  | -                  | -                  | -                  | -                  | -                  | 1<br>34.1          | -                  |
|                                 | Bromine Ionic Balance                                                      | mg/L<br>%            | 0.1<br>0.01     | 1.1<br>5.62         | 2.1                 | 1.4<br>11.6       | 1 1.19              | -                  | -                  | -                  | -                  | -                  | -                  | <1 2.22            | -                  |
| Nutrients                       | Ammonia as N                                                               | mg/L                 | 0.01            | 0.04                | 0.03                | <0.05             | 0.02                |                    | -                  | -                  |                    | -                  | -                  | 6.75               | -                  |
|                                 | Ammonium as N<br>Nitrate (as N)                                            | mg/L<br>mg/L         | 0.01            | 0.03<br><0.01       | 0.02<br><0.01       | <0.05<br>0.05     | <0.01<br>0.08       | -                  | -                  | -                  |                    | -                  | -                  | 6.72<br><0.01      | -                  |
|                                 | Nitrite (as N)<br>Nitrite + Nitrate as N                                   | mg/L<br>mg/L         | 0.01<br>0.01    | <0.01<br><0.01      | <0.01<br><0.01      | <0.01<br>0.05     | <0.01<br>0.08       |                    | -                  | -                  |                    | -                  | -                  | <0.01<br><0.01     | -                  |
|                                 | Kjeldahl Nitrogen Total Reactive Phosphorus as P                           | mg/L<br>mg/L         | 0.1             | 7.7<br>0.06         | 6.7<br>0.08         | 8.2<br>0.04       | 9.7<br>0.2          | -                  | -                  | -                  | -                  | -                  | -                  | 8.5<br>0.06        | -                  |
|                                 | Total Organic Carbon                                                       | mg/L                 | 1               | - 178               | - 101               | 66                | - 51                | -                  | -                  | -                  | -                  | -                  | -                  | - <1               | -                  |
| Dissolved gas                   | Nonpurgeable Organic Carbon <sup>d</sup> Methane                           | mg/L<br>mg/L         | 0.01            | 0.462               | 0.536               | 2.75              | 1.5                 | -                  | -                  | -                  | -                  | -                  | -                  | 7.63               | -                  |
| Dissolved metals                | Aluminium<br>Antimony                                                      | mg/L<br>mg/L         | 0.01            | 0.01<br><0.001      | <0.1<br><0.01       | 0.03<br><0.001    | 0.19<br>0.001       | -                  | -                  | -                  |                    | -                  | -                  | <0.1<br><0.01      | -                  |
|                                 | Arsenic<br>Barium                                                          | mg/L<br>mg/L         | 0.001           | 0.005<br>5.29       | <0.01<br>4.86       | 0.01<br>5.83      | 0.007<br>4.28       |                    | -                  | -                  |                    | -                  | -                  | <0.01<br>8.9       | -                  |
|                                 | Berryllium                                                                 | mg/L                 | 0.001           | <0.001              | <0.01               | <0.001            | <0.001              | -                  | -                  |                    |                    | -                  |                    | <0.01              | -                  |
|                                 | Cadmium<br>Chromium                                                        | mg/L<br>mg/L         | 0.0001          | <0.0001<br>0.002    | <0.001<br><0.01     | <0.0001<br>0.006  | <0.0001<br>0.002    | -                  | -                  | -                  |                    | -                  | -                  | <0.001<br>0.049    | -                  |
|                                 | Cobalt<br>Copper                                                           | mg/L<br>mg/L         | 0.001<br>0.001  | <0.001<br><0.001    | <0.01<br><0.01      | <0.001<br><0.001  | <0.001<br>0.003     | -                  | -                  | -                  | -                  | -                  | -                  | <0.01<br><0.01     | -                  |
|                                 | Iron<br>Lead                                                               | mg/L<br>mg/L         | 0.05<br>0.001   | 0.33<br><0.001      | 0.53<br><0.01       | 0.57<br><0.001    | 0.16<br><0.001      | -                  | -                  | -                  |                    | -                  | -                  | 3.54<br><0.01      | -                  |
|                                 | Vanadium                                                                   | mg/L                 | 0.01            | <0.01               | <0.1                | <0.01             | <0.01               |                    | -                  | -                  |                    | -                  | -                  | <0.1               | -                  |
|                                 | Zinc<br>Manganese                                                          | mg/L<br>mg/L         | 0.005<br>0.001  | <0.005<br>0.016     | <0.05<br>0.017      | <0.005<br>0.013   | <0.005<br>0.005     | -                  | -                  | -                  | -                  | -                  | -                  | <0.05<br>0.028     | -                  |
|                                 | Mercury<br>Molybdenum                                                      | mg/L<br>mg/L         | 0.0001<br>0.001 | <0.0001<br>0.007    | <0.0001<br><0.01    | <0.0001<br>0.015  | <0.0001<br>0.016    | -                  | -                  | -                  | -                  | -                  | -                  | <0.0001<br><0.01   | -                  |
|                                 | Nickel<br>Selenium                                                         | mg/L<br>mg/L         | 0.001<br>0.01   | 0.002<br><0.01      | <0.01<br><0.1       | 0.004<br><0.01    | 0.004<br><0.01      |                    | -                  | -                  | -                  | -                  | -                  | <0.01<br><0.1      | -                  |
|                                 | Strontium                                                                  | mg/L                 | 0.001           | 3.76                | 3.13                | 4.08              | 3.38                | -                  | -                  | -                  | -                  | -                  | -                  | 5.18               | -                  |
|                                 | Tin<br>Uranium                                                             | mg/L<br>mg/L         | 0.001           | <0.001              | <0.01               | <0.001            | <0.001              | -                  | -                  | -                  | -                  | -                  | -                  | <0.01              | -                  |
| Oil and Grease<br>Phenolic      | Oil and Grease<br>2,4,5-trichlorophenol                                    | mg/L<br>µg/L         | 5<br>1          | <5<br><1            | <5<br><1            | <5<br><1          | <5<br><1            | -                  | -                  | -                  | -                  | -                  | -                  | 10<br><1           | -                  |
| compounds                       | 2.4.6-Trichlorophenol 2,4-dichlorophenol                                   | μg/L<br>μg/L         | 1               | <1<br><1            | <1<br><1            | <1<br><1          | <1<br><1            |                    | -                  | -                  |                    | -                  | -                  | <1<br><1           | -                  |
|                                 | 2,4-dimethylphenol<br>2,6-dichlorophenol                                   | μg/L                 | 1               | <1<br><1            | <1<br><1            | <1<br><1          | <1<br><1            | -                  | -                  | -                  | -                  | -                  | -                  | 2.4                | -                  |
|                                 | 2-chlorophenol                                                             | μg/L<br>μg/L         | 1               | <1                  | <1                  | <1                | <1                  |                    | -                  | -                  | -                  | -                  | -                  | <1                 | -                  |
|                                 | 2-methylphenol<br>2-nitrophenol                                            | μg/L<br>μg/L         | 1               | <1<br><1            | <1<br><1            | <1<br><1          | <1<br><1            | -                  | -                  | -                  | -                  | -                  | -                  | 9<br><1            | -                  |
|                                 | 3-&4-methylphenol<br>4-chloro-3-methylphenol                               | μg/L<br>μg/L         | 2               | 7.9<br><1           | <2<br><1            | <2<br><1          | <2<br><1            | -                  | -                  | -                  | -                  | -                  | -                  | 49.5<br><1         | -                  |
|                                 | Pentachlorophenol Phenol                                                   | μg/L<br>μg/L         | 2               | <2<br>1.3           | <2<br><1            | <2<br><1          | <2<br><1            | -                  | -                  | -                  | -                  | -                  | -                  | <2<br>9.2          | -                  |
| PAH                             | Acenaphthene                                                               | μg/L                 | 1               | <1                  | <1                  | <1                | <1                  | -                  | -                  | -                  | -                  | -                  | -                  | <1                 | -                  |
|                                 | Acenaphthylene<br>Anthracene                                               | μg/L<br>μg/L         | 1               | <1<br><1            | <1<br><1            | <1<br><1          | <1<br><1            | -                  | -                  | -                  | -                  | -                  | -                  | <1<br><1           | -                  |
|                                 | Benz(a)anthracene<br>Benzo(a) pyrene                                       | μg/L<br>μg/L         | 1<br>0.5        | <1<br><0.5          | <1<br><0.5          | <1<br><0.5        | <1<br><0.5          | -                  | -                  | -                  | -                  | -                  | -                  | <1<br><0.5         | -                  |
|                                 | Benzo(b&j)fluoranthene Benzo(g,h,i)perylene                                | µg/L<br>µg/L         | 1               | <1<br><1            | <1<br><1            | <1<br><1          | <1<br><1            | -                  | -                  | -                  | -                  | -                  | -                  | <1<br><1           | -                  |
|                                 | Benzo(k)fluoranthene                                                       | μg/L                 | 1 0.5           | <1<br><1<br><0.5    | <1<br><1<br><0.5    | <1<br><1<br><0.5  | <1<br><1<br><0.5    | -                  | -                  | -                  | -                  | -                  | -                  | <1<br><1<br><0.5   | -                  |
|                                 | Benzo(a)pyrene TEQ (zero)<br>Chrysene                                      | μg/L<br>μg/L         | 0.5             | <1                  | <1                  | <1                | <1                  | -                  | -                  | -                  | - :                | -                  | -                  | <1                 | -                  |
|                                 | Dibenz(a,h)anthracene<br>Fluoranthene                                      | μg/L<br>μg/L         | 1               | <1<br><1            | <1<br><1            | <1<br><1          | <1<br><1            |                    | -                  | -                  |                    | -                  | -                  | <1<br><1           | -                  |
|                                 | Fluorene<br>Indeno(1,2,3-c,d)pyrene                                        | μg/L<br>μg/L         | 1               | <1<br><1            | <1<br><1            | <1<br><1          | <1<br><1            |                    | -                  | -                  |                    | -                  | -                  | <1<br><1           | -                  |
|                                 | Naphthalene (Method analysis EP075(SIM)B)                                  | μg/L                 | 1               | <1                  | <1                  | <1                | <1                  | -                  | -                  | -                  |                    | -                  | -                  | 2.1                | -                  |
|                                 | Phenanthrene<br>Pyrene                                                     | μg/L<br>μg/L         | 1               | <1<br><1            | <1<br><1            | <1<br><1          | <1<br><1            | -                  | -                  | -                  | -                  | -                  | -                  | <1<br><1           | -                  |
| TRH                             | Polycylic aromatic hydrocarbons EPA448<br>TPH C6-C10                       | ug/L<br>μg/L         | 0.5<br>20       | <0.5<br><20         | <0.5<br><20         | <0.5<br><20       | <0.5<br><20         |                    | -                  | -                  |                    | -                  | -                  | 2.1<br>950         | -                  |
|                                 | C6 - C10 Fraction minus BTEX (F1)                                          | μg/L<br>μg/L         | 20              | <20<br>170          | <20<br><100         | <20<br><100       | <20<br><100         | -                  | -                  | -                  | -                  | -                  | -                  | 290<br><100        | -                  |
|                                 | C16 - C34 Fraction                                                         | μg/L                 | 100             | <100                | <100                | <100              | <100                | -                  | -                  | -                  | -                  | -                  | -                  | <100               | -                  |
|                                 | C34 - C40 Fraction<br>C10 - C40 Fraction (Sum)                             | μg/L<br>μg/L         | 100             | <100<br>170         | <100<br><100        | <100<br><100      | <100<br><100        | -                  | -                  | -                  | -                  | -                  | -                  | <100<br><100       | -                  |
| TPH                             | TRH >C10-C16 less Naphthalene (F2)<br>C6 - C9 Fraction                     | μg/L<br>μg/L         | 100<br>20       | 170<br><20          | <100<br><20         | <100<br><20       | <100<br><20         | -                  | -                  | -                  | -                  | -                  | -                  | <100<br>940        | -                  |
|                                 | C10 - C14 Fraction<br>C15 - C28 Fraction                                   | μg/L<br>μg/L         | 50<br>100       | 190<br><100         | <50<br><100         | <50<br><100       | <50<br><100         |                    | -                  | -                  |                    | -                  | -                  | 90<br><100         | -                  |
|                                 | C29-C36 Fraction                                                           | μg/L                 | 50              | <50                 | <50                 | <50               | <50                 | -                  | -                  | -                  | -                  | -                  | -                  | <50                | -                  |
| BTEX                            | +C10 - C36 (Sum of total)<br>Benzene                                       | μg/L<br>μg/L         | 50<br>1         | 190<br>2            | <50<br>1            | <50<br><1         | <50<br><1           | 254                | 290                | -<br>345           | 296                | 237                | 224                | 90<br>269          | 181                |
|                                 | Toluene<br>Ethylbenzene                                                    | μg/L<br>μg/L         | 2               | 3<br><2             | <2<br><2            | <2<br><2          | <2<br><2            | 329<br>6           | 351<br>8           | 435<br>9           | 378<br>7           | 298<br>5           | 287<br>5           | 325<br>6           | 269<br>5           |
|                                 | Xylene (m & p) Xylene (o)                                                  | μg/L<br>μg/L         | 2 2             | <2<br><2            | <2<br><2            | <2<br><2          | <2<br><2            | 89<br>18           | 113<br>24          | 140<br>27          | 118<br>22          | 85<br>14           | 90<br>15           | 103<br>18          | 80<br>14           |
| Ī                               | Xylene Total                                                               | μg/L                 | 2               | <2                  | <2                  | <2                | <2                  | 107                | 137                | 167                | 140                | 99                 | 105                | 121                | 94                 |
|                                 |                                                                            |                      | 4               | F                   |                     | _4                | _4                  | 606                |                    |                    |                    |                    |                    |                    |                    |
| Micro                           | Sum of BTEX Naphthalene (Method analysis EP080) Unionized Hydrogen Sulfide | μg/L<br>μg/L<br>μg/L | 1<br>5<br>100   | 5<br><5<br><100     | 1<br><5<br><100     | <1<br><5<br><100  | <1<br><5<br><100    | 696<br><5<br><100  | 786<br><5<br><100  | 956<br><5<br><100  | 821<br><5<br><100  | 639<br><5<br><100  | 621<br><5<br><100  | 721<br><5<br><100  | <5<br><100         |

- not analysed
  a All data is from ALS results unless otherwise stated.
  b Analysed by Envirolab.
  c Laboratory readings of pH (lab) is outside of the holding time, therefore field measurements of pH should be relied upon for accuracy.
  d NPOC analysis was carried out instead of TOC due to high inorganic carbon content

Table D.2 AST2 and Pilot wells cont.

| Section   Sect   |                            | Analyte <sup>a</sup>                     | Units    | LOR   | WK11 | WK11     | WK11  | WK11  | WK11    | WK11     | WK11  | WK11     | WK11         | WK11  | WK11   | WK11    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------|----------|-------|------|----------|-------|-------|---------|----------|-------|----------|--------------|-------|--------|---------|
| Fig. 14.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                          |          |       | 14.3 | 14.93    | 19.35 | 15.67 | 15.28   | 13.34    | 12.54 | 21.24    | 19.16        | 22.68 | 22     | 12.56   |
| Mary      |                            | ,                                        |          |       |      |          |       |       |         |          |       |          |              |       |        |         |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                          |          |       |      |          |       |       |         |          |       |          |              |       |        |         |
| Second    |                            | DO mg/L                                  | mg/L     |       | 2.62 | 2.71     | 5.77  | 3.31  | 4.44    | 2.99     | 1.73  | 2.22     | 2.32         | 2.82  | 0.75   | 4.18    |
| Second   Property      |                            | Chlorine Free                            | mg/L     |       | 0    | 0        | 0     | 0     | 0.03    | 0.02     | 0.1   | 0        | 0            | 0.04  | 0.14   | 0.08    |
| The color of the   | Key analytes               |                                          |          | 1     |      |          |       |       |         |          |       |          | - 0.04       |       |        | 44      |
| Fig. 1. Sept. 1. Sept |                            |                                          |          |       |      |          |       |       |         |          |       |          | -            |       |        |         |
| Second Property of the Control of    |                            | Boron                                    |          |       | -    | -        | -     | -     |         | -        | -     | -        | -            |       |        |         |
| Part      |                            | Chloride (Method analysis ED045)         | mg/L     | 1     | -    | -        | -     | -     | 587     | -        | -     | -        | -            | 552   | 801    | 801     |
| Part      |                            | Chlorine - Total Residual                | mg/L     | 0.2   |      |          |       |       | <0.2    |          |       |          |              | <0.2  | <0.2   | <0.2    |
| WATER STATE OF THE PROPERTY OF |                            |                                          |          |       | -    | -        | -     | -     |         | -        | -     | -        | -            |       |        |         |
| Maintained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                          |          |       |      |          | -     |       |         |          | -     |          | -            |       | 2.66   |         |
| Services of the control of the contr | l ab ab air ai             | Total Phosphorus <sup>b</sup>            | mg/L     | 0.05  |      |          |       |       | 3.4     |          |       |          |              | -     | 3.1    | -       |
| Regimen of Control Assembly (COSA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | parameters                 | pH (Lab) <sup>c</sup>                    | pH units | 0.01  |      |          |       |       | 7.75    |          |       |          | <b>+</b>     | 8.51  | 7.88   | 7.95    |
| Description of Section 1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5     |                            |                                          | _        |       |      | <u> </u> |       |       |         |          |       | <u> </u> | <u> </u>     |       |        |         |
| Month   Mont   | Major/minor ions           |                                          |          | 1     |      |          |       |       |         | <u> </u> |       |          | +            |       |        |         |
| March   Marc   |                            | Alkalinity (Hydroxide) as CaCO3          | mg/L     |       |      |          |       | -     | <1      | <b>†</b> |       |          |              | <1    | <1     | <1      |
| Secretary   Secr   |                            | Calcium                                  | mg/L     | 1     | -    | -        | -     | -     | 27      | -        | -     | -        | -            | 41    | 36     | 18      |
| Figure   March   Mar   |                            | Potassium                                | mg/L     | 1     | -    | -        | -     |       | 9       | -        | -     | -        | -            | 17    | 19     | 13      |
| Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | Fluoride                                 | mg/L     | 0.1   |      |          |       |       | 1.3     | <u> </u> |       |          | -            | 1.7   | 1.7    | 1.9     |
| Notice   Section   Section |                            |                                          |          |       |      |          | -     |       |         | <b>-</b> | -     |          | -            |       |        |         |
| Secretary   March      | Nutriente                  | Ionic Balance                            | %        | 0.01  | -    | -        | -     | -     | -       | -        | -     | -        | -            | 1.97  | 6.45   | 11.7    |
| Streight   Color   C   |                            | Ammonium as N                            | mg/L     | 0.01  |      | -        | -     | -     | 5.87    |          | -     |          | -            | 5.64  | 4.55   | 4.56    |
| Section   Property Company   P   |                            | Nitrite (as N)                           | mg/L     | 0.01  |      | -        |       | -     | <0.05   |          | -     |          | -            | <0.01 | <0.01  | <0.01   |
| Teacher   Teac   |                            | Kjeldahl Nitrogen Total                  | mg/L     | 0.1   |      |          |       |       | 8.6     |          |       |          |              | 6.9   | 6.8    | 7.5     |
| Secondary Carbon   March   M   |                            |                                          | _        |       | -    |          | -     |       |         |          | -     |          | -            |       |        |         |
| Decompose   Color      | Dissolved ass              | Nonpurgeable Organic Carbon <sup>d</sup> | mg/L     |       |      |          |       |       |         |          |       |          |              |       |        |         |
| Appen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | Aluminium                                | mg/L     | 0.01  |      | -        |       | -     | <0.01   | -        |       |          |              | <0.1  | 0.01   | <0.01   |
| Deptitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                          |          |       | -    |          | -     |       |         |          | -     | -        | -            |       |        |         |
| Decrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                          |          |       |      |          |       |       |         |          | -     |          | <u> </u>     |       |        |         |
| County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                          |          |       | -    | -        | -     |       |         | <b>+</b> | -     | -        | -            |       |        |         |
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | Cobalt                                   | mg/L     | 0.001 |      |          |       |       | < 0.001 |          |       |          | <del>†</del> | <0.01 | <0.001 | < 0.001 |
| Consideration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | Iron                                     | mg/L     | 0.05  | -    | -        | -     | -     | <0.05   | -        | -     | -        | -            | 0.25  | 0.48   | 1.1     |
| Mangement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | Vanadium                                 | mg/L     | 0.01  | -    | -        | -     |       | <0.01   | -        | -     | -        | -            | <0.1  | <0.01  | <0.01   |
| Medical   March   Ma   |                            |                                          |          |       |      |          |       |       |         |          |       |          | +            |       |        |         |
| Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | ,                                        |          |       |      |          |       |       |         |          |       |          |              |       |        |         |
| Strottem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                          |          |       |      |          | -     |       |         | -        | -     | -        | -            |       |        |         |
| Direct Groups   Direct Group   |                            | Strontium                                | mg/L     | 0.001 | -    | -        | -     | -     | 3.64    | -        | -     | -        | -            | 5.11  | 5.29   | 3.54    |
| Prenote   2.4 functionerist   1921.   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | Uranium                                  | mg/L     | 0.001 |      |          |       |       | <0.001  |          |       |          | <b>+</b>     | <0.01 | <0.001 | <0.001  |
| 2-decinophysherion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oil and Grease<br>Phenolic | 2,4,5-trichlorophenol                    | μg/L     |       |      |          | -     |       |         | -        | -     |          | -            |       | <1     |         |
| 26 dichlosophered   1914   1   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | compounds                  |                                          |          |       |      |          |       |       |         |          |       |          | -            |       |        |         |
| Zeyharochared   jg/L   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                          |          |       |      |          |       |       |         |          |       |          | <del>†</del> |       |        |         |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 2-chlorophenol                           | μg/L     |       |      |          |       |       | <1      |          | -     |          | -            | <1    | <1     | <1      |
| Chico-3-methylphenol   Jight   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 2-nitrophenol                            | μg/L     | 1     | -    | -        | -     | -     | <1      | -        | -     | -        | -            | <1    | <1     | <1      |
| Phono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | 4-chloro-3-methylphenol                  | μg/L     | 1     | -    | -        |       | -     | <1      | -        |       | -        | <u> </u>     | <1    | <1     | <1      |
| Accessibly Number   1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | Phenol                                   | μg/L     |       |      |          | -     |       | 8.8     |          | -     |          | -            | 1.8   | 2      | 1.8     |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PAH                        |                                          |          |       |      |          |       |       |         |          |       |          | -            |       |        |         |
| Benzole   pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | Anthracene                               | μg/L     |       | -    |          |       |       | <1      |          | -     |          | -            | <1    | <1     | <1      |
| Benzo(ph)perviene   upil.   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | Benzo(a) pyrene                          | μg/L     | 0.5   |      | -        | -     |       | <0.5    | -        |       | -        |              | <0.5  | <0.5   | <0.5    |
| Benzo(a)pyrene TEQ (zero)   µg/L   0.5   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | Benzo(g,h,i)perylene                     | μg/L     | 1     | -    | -        | -     | -     | <1      | -        | -     | -        | -            | <1    | <1     | <1      |
| Dibent(a) high thracene   ygl   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | Benzo(a)pyrene TEQ (zero)                | μg/L     | 0.5   | -    | -        | -     | -     | <0.5    | -        | -     | -        | -            | <0.5  | <0.5   | <0.5    |
| Fluorien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | Dibenz(a,h)anthracene                    | μg/L     | 1     | -    | -        | -     | -     | <1      | -        | -     | -        | -            | <1    | <1     | <1      |
| Indemo(1,23-c,d)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                          |          |       |      |          |       |       |         |          |       |          |              |       |        |         |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | Indeno(1,2,3-c,d)pyrene                  | μg/L     | 1     | -    | -        | -     |       | <1      | -        | -     | -        | -            | <1    | <1     | <1      |
| Polycylic aromatic hydrocarbons EPA448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | Phenanthrene                             | μg/L     | 1     | -    | -        | -     | -     | <1      | -        | -     | -        | -            | <1    | <1     | <1      |
| C6 - C10 Fraction   yg/L   100   -   -   -   -   160   -   -   -   -   20   <20   70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TDU                        | Polycylic aromatic hydrocarbons EPA448   | ug/L     | 0.5   | -    | -        | -     | -     | 1.3     | -        | -     | -        | -            | <0.5  | <0.5   | <0.5    |
| C16 - C34 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IKH                        | C6 - C10 Fraction minus BTEX (F1)        | μg/L     | 20    |      |          |       |       | 160     |          |       |          |              | 20    | <20    | 70      |
| C34 - C40 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                          |          |       | -    |          | -     |       |         | -        | -     | -        | -            | <100  | <100   |         |
| TRH > C10-C16 less Naphthalene (F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | C34 - C40 Fraction                       | μg/L     | 100   |      |          |       |       | 590     |          |       |          |              | <100  | <100   | <100    |
| C10 - C14 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TPH                        | TRH >C10-C16 less Naphthalene (F2)       | μg/L     | 100   | -    | -        | -     | -     | <100    | -        | -     | -        | -            | <100  | <100   | <100    |
| C29-C36 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ling.                      | C10 - C14 Fraction                       | μg/L     | 50    | -    | -        | -     |       | 50      | -        | -     | -        | -            | <50   | <50    | <50     |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | C29-C36 Fraction                         | μg/L     | 50    | -    |          | -     | -     | 1140    | -        | -     | -        | -            | <50   | <50    | <50     |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BTEX                       |                                          |          |       | 216  | 161      | 165   | 152   |         | 104      | 91    | 53       | -<br>57      |       |        |         |
| Xylene (m & p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | Toluene                                  | μg/L     | 2     | 248  | 194      | 192   | 175   | 114     | 121      | 95    | 60       | 58           | 63    | 51     | 54      |
| Xylene Total   µg/L   2   111   69   74   68   47   44   37   21   19   16   17   16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | Xylene (m & p)                           | μg/L     | 2     | 94   | 59       | 63    | 58    | 40      | 36       | 32    | 18       | 16           | 13    | 14     | 13      |
| Naphthalene (Method analysis EP080)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | Xylene Total                             | μg/L     | 2     | 111  | 69       | 74    | 68    | 47      | 44       | 37    | 21       | 19           | 16    | 17     | 16      |
| Notes: PARSONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | Naphthalene (Method analysis EP080)      | μg/L     | 5     | <5   | <5       | <5    | <5    | <5      | <5       | <5    | <5       | <5           | <5    | <5     | <5      |
| PARSUNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Micro<br>Notes:            | Unionized Hydrogen Sulfide               | μg/L     | 100   | <100 | <100     | <100  | <100  | <100    | <100     | <100  | <100     | <100         |       |        |         |

- Notes:
   not analysed
   - All data is from ALS results unless otherwise stated.
  b Analysed by Envirolab.
  c Laboratory readings of pH (lab) is outside of the holding time, therefore field measurements of pH should be relied upon for accuracy.
  d NPOC analysis was carried out instead of TOC due to high inorganic carbon content

Table D.2 AST2 and Pilot wells cont.

|                                 | Analyte <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOR                                                                                                                         | WK12                                              | WK12               | WK12                | WK12                | WK12                | WK12                |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------------------------------------|--------------------|---------------------|---------------------|---------------------|---------------------|
| Sample date<br>Field parameters | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             | 1/07/2015<br>17.28 | 2/07/2015<br>14.69 | 3/07/2015<br>14.18 | 4/07/2015<br>12.13 | 6/07/2015<br>22.76 | 7/07/2015<br>10.64 | 8/07/2015<br>11.57                                | 9/07/2015<br>10.59 | 10/07/2015<br>12.22 | 11/07/2015<br>12.49 | 13/07/2015<br>20.56 | 16/07/2015<br>11.91 |
|                                 | Electrical conductivity pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uS/cm<br>pH units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                             | 7572<br>7.06       | 7328<br>7.1        | 7869<br>7.09       | 7553<br>7.12       | 4502<br>7.14       | 7436<br>7.16       | 7407<br>7.19                                      | 9057<br>7.27       | 7787<br>7.16        | 8463<br>7.35        | 7845<br>7.69        | 7850<br>7.29        |
|                                 | TDS<br>DO %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             | 4920<br>30         | 4750<br>34.8       | 5118<br>28.1       | 4910<br>29.6       | 2922<br>97.1       | 4835<br>44.5       | 4815<br>39.5                                      | 5884<br>35.7       | 5065<br>30.5        | 5502<br>27.4        | 5102<br>23.8        | 5102<br>32.8        |
|                                 | DO mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             | 2.83               | 3.44               | 2.81               | 3.1                | 8.27               | 4.81               | 4.2                                               | 3.9                | 3.19                | 2.82                | 2.07                | 3.43                |
|                                 | Redox<br>Chlorine Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mV<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                             | -150.2<br>0.08     | -137<br>0.02       | -137.6<br>0.01     | -128<br>0          | -146.8<br>0.08     | -152.6<br>0.02     | -136<br>0.09                                      | -130.6<br>0        | -152.3<br>0         | -144.4<br>0.06      | -148.5<br>0         | -115.8<br>0.11      |
| Key analytes                    | Chlorine Total Ethanolamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                           | 0.11               | 0                  | 0.06               | 0                  | 0.01               | 0 -                | 0.04<br><1                                        | 0 -                | 0 -                 | 0.1                 | 0 -                 | 0                   |
| ,,                              | Diethanolamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 50                                                                                                                        | -                  | -                  | -                  | -                  | -                  | -                  | <1<br><50                                         | -                  | -                   | -                   | -                   | -                   |
|                                 | THPS <sup>b</sup> Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05                                                                                                                        | -                  | -                  | -                  |                    | -                  | -                  | 5.03                                              | -                  | -                   | -                   | -                   |                     |
|                                 | Chloride (Method analysis ED009) Chloride (Method analysis ED045)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1                                                                                                                         | -                  | -                  | -                  |                    | -                  | -                  | 702<br>703                                        | -                  | -                   | -                   | -                   | -                   |
|                                 | Chlorine - Free<br>Chlorine - Total Residual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2                                                                                                                         | -                  | -                  | -                  | -                  | -                  | -                  | <0.2<br><0.2                                      | -                  | -                   | -                   | -                   |                     |
|                                 | Nitrogen (Total) Sulfate as SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                         | -                  | -                  | -                  | -                  | -                  | -                  | 3.3                                               | -                  | -                   | -                   | -                   | -                   |
|                                 | Sulphate as SO4 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                           | -                  | -                  | -                  | -                  | -                  | -                  | <1                                                | -                  | -                   | -                   | -                   | -                   |
|                                 | Total Phosphorus  Total Phosphorus <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01<br>0.05                                                                                                                | -                  | -                  | -                  | -                  | -                  | -                  | 1.54<br>1.8                                       | -                  | -                   | -                   | -                   | -                   |
| Lab physical                    | Electrical conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                           | 7590               | 7690               | -                  | -                  | -                  | -                  | 7660                                              | -                  | -                   | -                   | -                   | -                   |
| parameters                      | pH (Lab) <sup>c</sup><br>TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pH units<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01<br>10                                                                                                                  | -                  | -                  | -                  | -                  | -                  | -                  | 7.41<br>4210                                      | -                  | -                   | -                   | -                   | -                   |
| Major/minor ions                | TSS Bicarbonate Alkalinity-mg CaCO3/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5<br>1                                                                                                                      | -                  | -                  | -                  | -                  | -                  | -                  | 15<br>3400                                        | -                  | -                   | -                   | -                   | -                   |
| ,,,,,,                          | Carbonate Alkalinity-mg CaCO3/L<br>Alkalinity (Hydroxide) as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                           | -                  | -                  | -                  |                    | -                  | -                  | <1<br><1                                          | -                  | -                   | -                   | -                   | -                   |
|                                 | Alkalinity (total) as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                           | -                  | -                  | -                  |                    | -                  | -                  | 3400                                              |                    | -                   | -                   | -                   |                     |
|                                 | Calcium<br>Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                           | -                  | -                  | -                  | -                  | -                  | -                  | 24<br>4                                           | -                  | -                   | -                   | -                   | -                   |
|                                 | Potassium<br>Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                           | -                  | -                  | -                  | -                  | -                  | -                  | 14<br>1840                                        | -                  | -                   | -                   | -                   | -                   |
|                                 | Fluoride<br>Reactive Silica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1                                                                                                                         | -                  | -                  | -                  | -                  | -                  | -                  | 1 26.2                                            | -                  | -                   | -                   | -                   | -                   |
|                                 | Bromine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                         | -                  | -                  | -                  | -                  | -                  | -                  | <1                                                | -                  | -                   | -                   | -                   | -                   |
| Nutrients                       | Ionic Balance<br>Ammonia as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01<br>0.01                                                                                                                | -                  | -                  | -                  | -                  | -                  | -                  | 3.5<br>2.48                                       | -                  | -                   | -                   | -                   | -                   |
|                                 | Ammonium as N<br>Nitrate (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01<br>0.01                                                                                                                | -                  | -                  | -                  |                    | -                  | -                  | 2.47<br><0.01                                     | -                  | -                   | -                   | -                   |                     |
|                                 | Nitrite (as N) Nitrite + Nitrate as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01                                                                                                                        | -                  | -                  | -                  | -                  | -                  | -                  | <0.01<br><0.01                                    | -                  | -                   | -                   | -                   | -                   |
|                                 | Kjeldahl Nitrogen Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                         |                    | -                  | -                  |                    |                    | -                  | 3.3                                               | -                  | -                   | -                   | -                   | -                   |
|                                 | Reactive Phosphorus as P Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01                                                                                                                        | -                  | -                  | -                  | -                  | -                  | -                  | 0.05                                              | -                  | -                   | -                   | -                   | -                   |
| Dissolved gas                   | Nonpurgeable Organic Carbon <sup>d</sup><br>Methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>0.01                                                                                                                   | -                  | -                  | -                  | -                  | -                  | -                  | 2<br>11                                           | -                  | -                   | -                   | -                   | -                   |
| Dissolved gas Dissolved metals  | Aluminium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                        | -                  | -                  | -                  |                    | -                  | -                  | <0.1                                              | -                  | -                   | -                   | -                   | -                   |
|                                 | Antimony<br>Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001<br>0.001                                                                                                              | -                  | -                  | -                  | -                  | -                  | -                  | <0.01<br><0.01                                    | -                  | -                   | -                   | -                   | -                   |
|                                 | Barium<br>Berryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001<br>0.001                                                                                                              | -                  | -                  | -                  | -                  | -                  | -                  | 5.58<br><0.01                                     | -                  | -                   | -                   | -                   | -                   |
|                                 | Cadmium<br>Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0001                                                                                                                      | -                  | -                  | -                  | -                  | -                  | -                  | <0.001<br>0.032                                   | -                  | -                   | -                   | -                   | -                   |
|                                 | Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.001                                                                                                                       | -                  | -                  | -                  | -                  | -                  | -                  | <0.01                                             |                    | -                   | -                   | -                   | -                   |
|                                 | Copper<br>Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001<br>0.05                                                                                                               | -                  | -                  | -                  | -                  | -                  | -                  | <0.01<br>5.72                                     | -                  | -                   | -                   | -                   | -                   |
|                                 | Lead<br>Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001<br>0.01                                                                                                               | -                  | -                  | -                  | -                  | -                  | -                  | <0.01<br><0.1                                     | -                  | -                   | -                   | -                   | -                   |
|                                 | Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.005                                                                                                                       | -                  | -                  | -                  | -                  | -                  | -                  | <0.05<br>0.064                                    | -                  | -                   | -                   | -                   | -                   |
|                                 | Manganese<br>Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0001                                                                                                                      | -                  | -                  | -                  |                    | -                  | -                  | <0.0001                                           |                    | -                   | -                   | -                   | -                   |
|                                 | Molybdenum<br>Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001<br>0.001                                                                                                              | -                  | -                  | -                  | -                  | -                  | -                  | <0.01<br><0.01                                    | -                  | -                   | -                   | -                   | -                   |
|                                 | Selenium<br>Strontium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01<br>0.001                                                                                                               | -                  | -                  | -                  | -                  | -                  | -                  | <0.1<br>4.17                                      | -                  | -                   | -                   | -                   | -                   |
|                                 | Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.001                                                                                                                       | -                  | -                  | -                  |                    | -                  | -                  | <0.01                                             |                    | -                   | -                   | -                   |                     |
| Oil and Grease                  | Uranium<br>Oil and Grease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                           | -                  | -                  | -                  | -                  | -                  | -                  | <0.01<br>9                                        | -                  | -                   | -                   | -                   | -                   |
| Phenolic compounds              | 2,4,5-trichlorophenol<br>2.4.6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                           | -                  | -                  | -                  |                    |                    | -                  | <1<br><1                                          | -                  | -                   | -                   | -                   |                     |
|                                 | 2,4-dichlorophenol<br>2,4-dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                           | -                  | -                  | -                  |                    | -                  | -                  | <1<br><1                                          | -                  | -                   | -                   | -                   |                     |
|                                 | 2,6-dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                           | -                  | -                  | -                  | -                  | -                  | -                  | <1                                                | -                  | -                   | -                   | -                   | -                   |
|                                 | 2-chlorophenol<br>2-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                           | -                  | -                  | -                  |                    | -                  | -                  | <1<br><1                                          | -                  | -                   | -                   | -                   | -                   |
|                                 | 2-nitrophenol 3-&4-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                           | -                  | -                  | -                  | -                  | -                  | -                  | <1<br>5.8                                         | -                  | -                   | -                   | -                   | -                   |
|                                 | 4-chloro-3-methylphenol<br>Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 2                                                                                                                         | -                  | -                  | -                  | -                  | -                  | -                  | <1<br><2                                          | -                  | -                   | -                   | -                   | -                   |
| DAH                             | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                           |                    | -                  | -                  | -                  |                    | -                  | <1                                                | -                  | -                   | -                   | -                   | -                   |
| PAH                             | Acenaphthene<br>Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                           | -                  | -                  | -                  | -                  | -                  | -                  | <1<br><1                                          | -                  | -                   | -                   | -                   | -                   |
|                                 | Anthracene<br>Benz(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                           | -                  | -                  | -                  | -                  | -                  | -                  | <1<br><1                                          | -                  | -                   | -                   | -                   | -                   |
|                                 | Benzo(a) pyrene<br>Benzo(b&j)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5<br>1                                                                                                                    | -                  | -                  | -                  |                    | -                  | -                  | <0.5<br><1                                        | -                  | -                   | -                   | -                   |                     |
|                                 | Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                           | -                  | -                  | -                  |                    | -                  | -                  | <1                                                |                    | -                   | -                   | -                   | -                   |
|                                 | Renzo(k)fluoranthana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1100/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             | -                  | -                  | -                  | -                  | -                  | -                  | <1<br><0.5                                        | -                  | -                   | -                   | -                   | -                   |
|                                 | Benzo(k)fluoranthene Benzo(a)pyrene TEQ (zero)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                         | -                  | -                  |                    |                    |                    | -                  | <1                                                | -                  | -                   | -                   | -                   |                     |
| Ī                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             | -                  | -                  | -                  |                    | -                  | -                  | <1                                                | -                  | -                   | -                   | -                   | •                   |
|                                 | Benzo(a)pyrene TEQ (zero)<br>Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5<br>1                                                                                                                    | -                  | -                  |                    |                    |                    |                    | <1<br><1<br><1                                    | -                  | -                   | -                   |                     |                     |
|                                 | Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5<br>1<br>1<br>1<br>1<br>1                                                                                                | -                  |                    |                    | -                  | -                  | -                  | <1<br><1<br><1                                    | -                  | -                   | -                   |                     | -                   |
|                                 | Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                   | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                      |                    | -                  |                    |                    |                    |                    | <1<br><1<br><1<br><1<br><1                        |                    | -                   | -<br>-<br>-<br>-    |                     |                     |
|                                 | Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5<br>1<br>1<br>1<br>1<br>1<br>1                                                                                           |                    |                    |                    | -                  | -                  | -                  | <1<br><1<br><1<br><1                              |                    | -<br>-<br>-         |                     |                     | -                   |
| TRH                             | Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10                                                                                                                                                                                                                                                                                                                                                                                          | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.5<br>20                                                          | -                  | -                  |                    | -                  |                    | -                  | <1<br><1<br><1<br><1<br><1<br><1<br><1<br><0.5    |                    |                     |                     |                     | -                   |
| TRH                             | Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6-C10 Fraction minus BTEX (F1) C10-C16 Fraction                                                                                                                                                                                                                                                                                                                                         | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.5<br>20<br>20                                                    |                    |                    |                    |                    |                    |                    | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <21 <1 <21 <2 |                    |                     |                     |                     |                     |
| TRH                             | Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction minus BTEX (F1) C10 - C16 Fraction C14 - C34 Fraction C34 - C40 Fraction                                                                                                                                                                                                                                                                                               | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5 1 1 1 1 1 1 1 1 1 1 0.5 20 20 100 100 100                                                                               |                    |                    |                    |                    |                    | -                  | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <          |                    |                     |                     |                     |                     |
| TRH                             | Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction minus BTEX (F1) C10 - C16 Fraction C16 - C34 Fraction                                                                                                                                                                                                                                                                                                                  | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5 1 1 1 1 1 1 1 1 1 1 0.5 20 20 100 100                                                                                   |                    | -                  |                    |                    |                    | -                  | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <          |                    | -                   | -                   |                     |                     |
| TRH                             | Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction minus BTEX (F1) C10 - C16 Fraction C16 - C34 Fraction C34 - C40 Fraction C30 - C40 Fraction (Sum) TRH > C10-C16 Iess Naphthalene (F2) C6 - C9 Fraction                                                                                                                                                                                                                 | µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5 1 1 1 1 1 1 1 1 1 1 1 1 0.5 20 100 100 100 100 20                                                                       |                    |                    |                    |                    |                    |                    | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <          |                    |                     | -                   |                     |                     |
|                                 | Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction minus BTEX (F1) C10 - C16 Fraction C16 - C34 Fraction C34 - C40 Fraction C10 - C40 Fraction (Sum) TRH > C10-C16 less Naphthalene (F2) C6 - C9 Fraction C10 - C14 Fraction C10 - C14 Fraction C15 - C28 Fraction                                                                                                                                                        | рд/L                                                                                                                                                                                                                                                                                                                                           | 0.5 1 1 1 1 1 1 1 1 1 1 0.5 20 20 100 100 100 100 20 50 100                                                                 |                    |                    |                    |                    |                    |                    | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <          |                    |                     |                     |                     |                     |
| ТРН                             | Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction minus BTEX (F1) C10 - C16 Fraction C34 - C40 Fraction C34 - C40 Fraction (Sum) TRH > C10 - C16 Iess Naphthalene (F2) C6 - C9 Fraction C10 - C14 Fraction C10 - C14 Fraction C10 - C15 - C28 Fraction C10 - C36 (Sum of total)                                                                                                                                          | ру/L                                                                                                                                                                                                                                                                   | 0.5 1 1 1 1 1 1 1 1 1 1 1 1 0.5 20 20 100 100 100 100 20 50                                                                 |                    |                    |                    |                    |                    |                    | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <          |                    |                     |                     |                     |                     |
|                                 | Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction minus BTEX (F1) C10 - C16 Fraction C16 - C34 Fraction C34 - C40 Fraction C10 - C40 Fraction (Sum) TRH >C10-C16 less Naphthalene (F2) C6 - C9 Fraction C10 - C14 Fraction C10 - C14 Fraction C10 - C14 Fraction C10 - C36 (Sum of total) Benzene                                                                                                                    | ру/L                                                                                                                                           | 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 20 20 20 100 100 100 100 100 50 100 100 100 100                                       |                    |                    |                    |                    |                    |                    | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <          |                    |                     |                     |                     |                     |
| ТРН                             | Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction minus BTEX (F1) C10 - C16 Fraction C16 - C34 Fraction C34 - C40 Fraction C10 - C40 Fraction C10 - C40 Fraction C10 - C40 Fraction C10 - C14 Fraction C10 - C15 Fraction C10 - C35 Fraction C10 - C36 (Sum) TRH > C10 - C16 (Sum) TRH > C10 - C16 (Sum) TO10 - C14 Fraction C15 - C28 Fraction C15 - C28 Fraction C10 - C36 (Sum of total) Benzene Toluene Ethylbenzene | ру/L                                                                                                                                                                                                 | 0.5 1 1 1 1 1 1 1 1 1 1 1 0.5 20 100 100 100 20 50 50 50 1 2 2                                                              |                    |                    |                    |                    |                    |                    | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <          |                    |                     |                     |                     |                     |
| ТРН                             | Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction minus BTEX (F1) C10 - C16 Fraction C16 - C34 Fraction C34 - C40 Fraction C35 - C40 Fraction C10 - C40 Fraction (Sum) TRH > C10-C16 less Naphthalene (F2) C6 - C9 Fraction C10 - C14 Fraction C15 - C28 Fraction C15 - C28 Fraction C16 - C36 (Sum of total) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o)                                                 | ру/L   0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 20 20 20 100 100 100 100 100 100 100 10                                           |                    |                    |                    |                    |                    |                    | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <          |                    |                     |                     |                     |                     |
| ТРН                             | Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction minus BTEX (F1) C10 - C16 Fraction C34 - C40 Fraction C34 - C40 Fraction (C34 - C40 Fraction (Sum) TRH > C10 - C16 Iess Naphthalene (F2) C6 - C9 Fraction C10 - C14 Fraction C10 - C14 Fraction C10 - C15 - C28 Fraction C10 - C16 Iess Naphthalene (F2) C6 - C9 Fraction C10 - C16 Iess Naphthalene Tolucene Ethylbenzene Toluene Ethylbenzene Xylene (m & p)         | ру/L                                                                                                                                                                                                 | 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 20 100 100 100 100 20 50 100 50 100 20 50 100 20 20 20 20 20 20 20 20 20 20 20 20 2 |                    |                    |                    |                    |                    |                    | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <          |                    |                     |                     |                     |                     |
| ТРН                             | Benzo(a)pyrene TEQ (zero) Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B) Phenanthrene Pyrene Polycylic aromatic hydrocarbons EPA448 TPH C6-C10 C6 - C10 Fraction minus BTEX (F1) C10 - C16 Fraction C10 - C40 Fraction C34 - C40 Fraction C34 - C40 Fraction (Sum) TRH > C10 - C16 less Naphthalene (F2) C6 - C9 Fraction C10 - C15 Fraction C10 - C16 - C36 (Sum of total) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o) Xylene Total                                                                                     | ру/L                                     | 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.5 20 20 20 100 100 100 100 50 50 100 50 1 2 2 2 2 2                               |                    |                    |                    |                    |                    |                    | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <          |                    |                     |                     |                     |                     |

- not analysed
  a All data is from ALS results unless otherwise stated.
  b Analysed by Envirolab.
  c Laboratory readings of pH (lab) is outside of the holding time, therefore field measurements of pH should be relied upon for accuracy.
  d NPOC analysis was carried out instead of TOC due to high inorganic carbon content

Table D.2 AST2 and Pilot wells cont.

|                                 | Analyte <sup>a</sup>                                              | Units             | LOR             | WK12                | WK12              | WK13               | WK13               | WK13               |
|---------------------------------|-------------------------------------------------------------------|-------------------|-----------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------------|--------------------|--------------------|--------------------|
| Sample date<br>Field parameters | Temperature                                                       | °C                |                 | 17/07/2015<br>10.27 | 20/07/2015<br>19.03 | 21/07/2015<br>13.04 | 23/07/2015<br>14.46 | 25/07/2015<br>15.97 | 29/07/2015<br>11.18 | 12/08/2015<br>12.83 | 26/08/2015<br>22.36 | 9/09/2015<br>21.1 | 1/07/2015<br>20.65 | 2/07/2015<br>17.91 | 3/07/2015<br>18.33 |
|                                 | Electrical conductivity pH                                        | uS/cm<br>pH units |                 | 7566<br>7.44        | 7496<br>7.47        | 7520<br>7.38        | 7528<br>7.33        | 7682<br>7.34        | 7533<br>7.34        | 7267<br>7.41        | 7378<br>7.3         | 7410<br>7.48      | 7791<br>7.72       | 7927<br>7.76       | 8257<br>7.76       |
|                                 | TDS                                                               | mg/L              |                 | 4918                | 4911                | 4891                | 4895                | 4994                | 4902                | 4723                | 4797                | 4823              | 5067               | 5154               | 5367               |
|                                 | DO %<br>DO mg/L                                                   | %<br>mg/L         |                 | 24.1<br>2.61        | 32.2<br>2.94        | 28.8<br>2.91        | 30.3<br>2.99        | 34.5<br>3.31        | 18.6<br>1.99        | 29.9<br>3.12        | 18.1<br>1.53        | 10.6<br>0.92      | 22<br>1.94         | 21.2<br>1.94       | 19.5<br>1.81       |
|                                 | Redox<br>Chlorine Free                                            | mV<br>mg/L        |                 | -130.4<br>0.06      | -142.7<br>0.08      | -130.1<br>0.03      | -116.4<br>0.06      | -119.1<br>0         | -113<br>0.01        | -152.4<br>0.01      | -130.8<br>0.04      | -153.1<br>0.06    | -176.8<br>0.03     | -150.2<br>0.02     | -147.4<br>0        |
| Key analytes                    | Chlorine Total Ethanolamine                                       | mg/L<br>μg/L      | 1               | 0.08                | 0                   | 0                   | 0.04                | 0                   | 0.07                | 0                   | 0.05                | 0.05              | 0.09               | 0.1                | 0.03               |
| Rey analytes                    | Diethanolamine                                                    | μg/L              | 1               |                     | -                   |                     | -                   | -                   | <1                  | <1                  | 1                   | <1                | -                  | -                  | -                  |
|                                 | THPS <sup>b</sup><br>Boron                                        | μg/L<br>mg/L      | 50<br>0.05      | -                   | -                   | -                   | -                   | -                   | <50<br>3.18         | <50<br>3.56         | 4                   | 93<br>3.28        | -                  | -                  | -                  |
|                                 | Chloride (Method analysis ED009) Chloride (Method analysis ED045) | mg/L<br>mg/L      | 0.1             |                     | -                   | -                   | -                   | -                   | 721<br>499          | 720<br>601          | 685<br>489          | 662<br>700        | -                  | -                  | -                  |
|                                 | Chlorine - Free                                                   | mg/L              | 0.2             | -                   | -                   | -                   |                     | -                   | <0.2                | <0.2                | <0.2                | <0.2              | -                  | -                  | -                  |
|                                 | Chlorine - Total Residual<br>Nitrogen (Total)                     | mg/L<br>mg/L      | 0.2<br>0.1      | •                   | -                   | -                   | -                   | -                   | <0.2<br>3.6         | <0.2<br>3.3         | <0.2<br>2.8         | <0.2<br>3.3       | -                  | -                  | -                  |
|                                 | Sulfate as SO4 Sulphate as SO4 <sup>b</sup>                       | mg/L<br>mg/L      | 1               | -                   | -                   | -                   | -                   | -                   | <1<br><1            | <1<br><1            | <1<br>-             | <10<br><1         | -                  | -                  | -                  |
|                                 | Total Phosphorus                                                  | mg/L              | 0.01<br>0.05    |                     | -                   | -                   |                     | -                   | 1.55                | 1.28<br>1.7         | 1.17                | 0.38              | -                  |                    |                    |
| Lab physical                    | Total Phosphorus <sup>D</sup> Electrical conductivity             | mg/L<br>μS/cm     | 1               | -                   | -                   | -                   | -                   | -                   | 1.8<br>7860         | 7810                | 8070                | 1.5<br>7390       | 7810               | 7850               | -                  |
| parameters                      | pH (Lab) <sup>c</sup><br>TDS                                      | pH units<br>mg/L  | 0.01            |                     | -                   | -                   | -                   | -                   | 7.85<br>4570        | 7.98<br>3710        | 8.57<br>4450        | 7.83<br>4820      | -                  | -                  | -                  |
|                                 | TSS                                                               | mg/L              | 5               |                     | -                   | -                   |                     | -                   | 13                  | 16                  | <5                  | 120               | -                  | -                  |                    |
| Major/minor ions                | Bicarbonate Alkalinity-mg CaCO3/L Carbonate Alkalinity-mg CaCO3/L | mg/L<br>mg/L      | 1               |                     | -                   | -                   | -                   | -                   | 3720<br><1          | 3600<br><1          | 3550<br>200         | 3650<br><1        | -                  | -                  | -                  |
|                                 | Alkalinity (Hydroxide) as CaCO3 Alkalinity (total) as CaCO3       | mg/L<br>mg/L      | 1               | -                   | -                   | -                   | -                   | -                   | <1<br>3720          | <1<br>3600          | <1<br>3750          | <1<br>3650        | -                  | -                  | -                  |
|                                 | Calcium                                                           | mg/L              | 1               | -                   | -                   | -                   |                     | -                   | 22                  | 28                  | 23                  | 32                | -                  | -                  |                    |
|                                 | Magnesium<br>Potassium                                            | mg/L<br>mg/L      | 1               |                     | -                   | -                   | -                   | -                   | 10                  | 5<br>10             | <10<br>12           | 5<br>12           | -                  | -                  | -                  |
|                                 | Sodium<br>Fluoride                                                | mg/L<br>mg/L      | 1<br>0.1        |                     | -                   | -                   | -                   | -                   | 1920<br>1.1         | 2060<br>1.5         | 2260<br>1.3         | 2530<br>1.3       | -                  | -                  | -                  |
|                                 | Reactive Silica                                                   | mg/L              | 0.05            |                     | -                   |                     |                     | -                   | 29.7                | 27.3                | 25.1                | 23.2              | -                  |                    |                    |
|                                 | Bromine<br>Ionic Balance                                          | mg/L<br>%         | 0.1<br>0.01     | -                   | -                   | -                   | -                   | -                   | 1<br>1.91           | 0.6<br>1.48         | <1<br>5.8           | 0.9<br>9.54       | -                  | -                  | -                  |
| Nutrients                       | Ammonia as N<br>Ammonium as N                                     | mg/L<br>mg/L      | 0.01<br>0.01    |                     | -                   |                     |                     | -                   | 2.7<br>2.69         | 2.46<br>2.44        | 2.76<br>2.73        | 2.54<br>2.51      | -                  | -                  |                    |
|                                 | Nitrate (as N) Nitrite (as N)                                     | mg/L              | 0.01            | -                   | -                   | -                   | -                   | -                   | 0.03<br><0.01       | <0.01<br><0.01      | <0.01<br><0.01      | 0.01<br><0.01     | -                  | -                  | -                  |
|                                 | Nitrite + Nitrate as N                                            | mg/L<br>mg/L      | 0.01            |                     | -                   | -                   |                     | -                   | 0.03                | <0.01               | <0.01               | 0.01              | -                  |                    |                    |
|                                 | Kjeldahl Nitrogen Total Reactive Phosphorus as P                  | mg/L<br>mg/L      | 0.1<br>0.01     |                     | -                   | -                   | -                   | -                   | 3.6<br>0.06         | 3.3<br>0.01         | 2.8<br>0.03         | 3.3<br>0.1        | -                  | -                  | -                  |
|                                 | Total Organic Carbon                                              | mg/L<br>mg/L      | 1               |                     | -                   | -                   | -                   | -                   | 3                   | - 4                 | <1                  | 17                | -                  | -                  | -                  |
| Dissolved gas                   | Nonpurgeable Organic Carbon <sup>d</sup><br>Methane               | mg/L              | 0.01            | -                   | -                   | -                   | -                   | -                   | 12.9                | 8.9                 | 2.8                 | 5.87              | -                  | -                  | -                  |
| Dissolved metals                | Aluminium<br>Antimony                                             | mg/L<br>mg/L      | 0.01<br>0.001   |                     | -                   |                     |                     | -                   | <0.01<br><0.001     | 0.01<br><0.001      | <0.1<br><0.01       | 0.07<br><0.001    | -                  | -                  | -                  |
|                                 | Arsenic                                                           | mg/L              | 0.001           | -                   | -                   | -                   | -                   | -                   | 0.004               | 0.004               | <0.01               | 0.005<br>5.15     | -                  | -                  | -                  |
|                                 | Barium<br>Berryllium                                              | mg/L<br>mg/L      | 0.001           | -                   | -                   | -                   | -                   | -                   | <0.001              | <0.001              | <0.01               | <0.001            | -                  | -                  | -                  |
|                                 | Cadmium<br>Chromium                                               | mg/L<br>mg/L      | 0.0001<br>0.001 |                     | -                   | -                   | -                   | -                   | <0.0001<br>0.005    | <0.0001<br>0.03     | <0.001<br><0.01     | <0.0001<br>0.026  | -                  |                    | -                  |
|                                 | Cobalt<br>Copper                                                  | mg/L<br>mg/L      | 0.001           |                     | -                   | -                   | -                   | -                   | <0.001<br><0.001    | <0.001<br><0.001    | <0.01<br><0.01      | <0.001<br>0.004   | -                  | -                  | -                  |
|                                 | Iron                                                              | mg/L              | 0.05            | -                   | -                   | -                   |                     | -                   | 0.06                | 5.3                 | <0.1                | 3.61              | -                  | -                  |                    |
|                                 | Lead<br>Vanadium                                                  | mg/L<br>mg/L      | 0.001<br>0.01   |                     | -                   | -                   | -                   | -                   | <0.001<br><0.01     | <0.001<br><0.01     | <0.01<br><0.1       | <0.001<br><0.01   | -                  | -                  | -                  |
|                                 | Zinc<br>Manganese                                                 | mg/L<br>mg/L      | 0.005<br>0.001  |                     | -                   | -                   | -                   | -                   | <0.005<br>0.021     | <0.005<br>0.051     | <0.05<br>0.026      | 0.009<br>0.039    | -                  | -                  | -                  |
|                                 | Mercury                                                           | mg/L              | 0.0001          | -                   | -                   | -                   |                     | -                   | <0.0001             | <0.0001             | <0.0001             | <0.0001           | -                  | -                  |                    |
|                                 | Molybdenum<br>Nickel                                              | mg/L<br>mg/L      | 0.001<br>0.001  |                     | -                   | -                   | -                   | -                   | 0.004<br>0.001      | 0.002<br><0.001     | <0.01<br><0.01      | 0.005<br>0.001    | -                  | -                  | -                  |
|                                 | Selenium<br>Strontium                                             | mg/L<br>mg/L      | 0.01<br>0.001   |                     | -                   | -                   | -                   | -                   | <0.01<br>3.05       | <0.01<br>3.52       | <0.1<br>2.21        | 0.01<br>4.2       | -                  | -                  | -                  |
|                                 | Tin                                                               | mg/L              | 0.001           | -                   | -                   | -                   |                     | -                   | < 0.001             | <0.001              | <0.01<br><0.01      | <0.001            | -                  | -                  |                    |
| Oil and Grease                  | Uranium<br>Oil and Grease                                         | mg/L<br>mg/L      | 5               | -                   | -                   | -                   | -                   | -                   | <0.001<br><5        | <0.001<br><5        | 6                   | 0.001<br>9        | -                  | -                  | -                  |
| Phenolic compounds              | 2,4,5-trichlorophenol 2.4.6-Trichlorophenol                       | μg/L<br>μg/L      | 1               |                     | -                   |                     |                     | -                   | <1<br><1            | <1<br><1            | <1<br><1            | <1<br><1          | -                  | -                  | -                  |
|                                 | 2,4-dichlorophenol                                                | μg/L              | 1               |                     | -                   | -                   |                     | -                   | <1                  | <1                  | <1                  | <1                | -                  | -                  | -                  |
|                                 | 2,4-dimethylphenol<br>2,6-dichlorophenol                          | μg/L<br>μg/L      | 1               |                     | -                   | -                   | -                   | -                   | <1<br><1            | <1<br><1            | <1<br><1            | <1<br><1          | -                  | -                  | -                  |
|                                 | 2-chlorophenol<br>2-methylphenol                                  | μg/L<br>μg/L      | 1               | -                   | -                   | -                   | -                   | -                   | <1<br><1            | <1<br><1            | <1<br><1            | <1<br><1          | -                  | -                  | -                  |
|                                 | 2-nitrophenol<br>3-&4-methylphenol                                | μg/L<br>μg/L      | 1 2             |                     | -                   | -                   | -                   | -                   | <1<br>13.5          | <1<br>10.8          | <1<br><2            | <1<br><2          | -                  | -                  | -                  |
|                                 | 4-chloro-3-methylphenol                                           | μg/L              | 1               | -                   | -                   | -                   | -                   | -                   | <1                  | <1                  | <1                  | <1                | -                  | -                  | -                  |
|                                 | Pentachlorophenol Phenol                                          | μg/L<br>μg/L      | 1               |                     | -                   | -                   |                     | -                   | <2<br><1            | <2<br><1            | <2<br><1            | <2<br><1          | -                  | -                  | -                  |
| PAH                             | Acenaphthene<br>Acenaphthylene                                    | μg/L<br>μg/L      | 1               | -                   | -                   | -                   | -                   | -                   | <1<br><1            | <1<br><1            | <1<br><1            | <1<br><1          | -                  | -                  | -                  |
|                                 | Anthracene                                                        | μg/L              | 1               | -                   | -                   | -                   |                     | -                   | <1                  | <1                  | <1<br><1            | <1<br><1          | -                  | -                  |                    |
|                                 | Benz(a) anthracene Benzo(a) pyrene                                | μg/L<br>μg/L      | 0.5             | -                   | -                   | -                   | -                   | -                   | <1<br><0.5          | <1<br><0.5          | <0.5                | <0.5              | -                  | -                  | -                  |
|                                 | Benzo(b&j)fluoranthene Benzo(g,h,i)perylene                       | μg/L<br>μg/L      | 1               | -                   | -                   | -                   | -                   | -                   | <1<br><1            | <1<br><1            | <1<br><1            | <1<br><1          | -                  | -                  | -                  |
|                                 | Benzo(k)fluoranthene Benzo(a)pyrene TEQ (zero)                    | μg/L<br>μg/L      | 1 0.5           | -                   | -                   | -                   | -                   | -                   | <1<br><0.5          | <1<br><0.5          | <1<br><0.5          | <1<br><0.5        | -                  | -                  | -                  |
|                                 | Chrysene                                                          | μg/L              | 1               | -                   | -                   | -                   |                     | -                   | <1                  | <1                  | <1                  | <1                | -                  | -                  | -                  |
|                                 | Dibenz(a,h)anthracene<br>Fluoranthene                             | μg/L<br>μg/L      | 1               | -                   | -                   | -                   | -                   | -                   | <1<br><1            | <1<br><1            | <1<br><1            | <1<br><1          | -                  | -                  | -                  |
|                                 | Fluorene<br>Indeno(1,2,3-c,d)pyrene                               | μg/L<br>μg/L      | 1               | -                   | -                   | -                   | -                   | -                   | <1<br><1            | <1<br><1            | <1<br><1            | <1<br><1          | -                  | -                  | -                  |
|                                 | Naphthalene (Method analysis EP075(SIM)B)                         | μg/L              | 1               | -                   | -                   | -                   |                     | -                   | <1                  | <1                  | <1                  | <1                | -                  | -                  | -                  |
|                                 | Phenanthrene<br>Pyrene                                            | μg/L<br>μg/L      | 1               | •                   | -                   | -                   | -                   | -                   | <1<br><1            | <1<br><1            | <1<br><1            | <1<br><1          | -                  | -                  | -                  |
| TRH                             | Polycylic aromatic hydrocarbons EPA448 TPH C6-C10                 | 3 ug/L<br>μg/L    | 0.5<br>20       | -                   | -                   | -                   | -                   | -                   | <0.5<br><20         | <0.5<br><20         | <0.5<br><20         | <0.5<br><20       | -                  | -                  | -                  |
|                                 | C6 - C10 Fraction minus BTEX (F1)                                 | μg/L              | 20              | -                   | -                   | -                   |                     | -                   | <20<br><100         | <20<br><100         | <20<br><100         | <20<br><100       | -                  | -                  | -                  |
|                                 | C16 - C34 Fraction                                                | μg/L<br>μg/L      | 100             | -                   | -                   | -                   | -                   | -                   | <100                | <100                | <100                | 1190              | -                  | -                  | -                  |
|                                 | C34 - C40 Fraction<br>C10 - C40 Fraction (Sum)                    | μg/L<br>μg/L      | 100<br>100      | -                   | -                   | -                   | -                   | -                   | <100<br><100        | <100<br><100        | <100<br><100        | 250<br>1440       | -                  | -                  | -                  |
| TPH                             | TRH >C10-C16 less Naphthalene (F2) C6 - C9 Fraction               | μg/L<br>μg/L      | 100             | -                   | -                   | -                   | -                   | -                   | <100<br><20         | <100<br><20         | <100<br><20         | <100<br><20       | -                  | -                  | -                  |
| ['''                            | C10 - C14 Fraction                                                | μg/L              | 50              |                     | -                   | -                   | -                   | -                   | <50                 | 60                  | <50                 | <50               | -                  | -                  | -                  |
|                                 | C15 - C28 Fraction<br>C29-C36 Fraction                            | μg/L<br>μg/L      | 100<br>50       | -                   | -                   | -                   | -                   | -                   | <100<br><50         | <100<br><50         | <100<br><50         | 1000<br>280       | -                  | -                  | -                  |
| BTEX                            | +C10 - C36 (Sum of total) Benzene                                 | μg/L<br>μg/L      | 50              | - 2                 | -<br>1              | -<br>1              | -<br>1              | -<br>1              | <50<br><1           | 60                  | <50<br>1            | 1280<br><1        | -<br>199           | -<br>215           | -<br>198           |
| J.L.\                           | Toluene                                                           | μg/L              | 2               | 2                   | <2                  | <2                  | <2                  | <2                  | <2                  | <2                  | <2                  | <2                | 234                | 254                | 224                |
|                                 | Ethylbenzene<br>Xylene (m & p)                                    | μg/L<br>μg/L      | 2               | <2<br><2            | <2<br><2          | 5<br>72            | 6<br>76            | 5<br>74            |
|                                 | Xylene (o)<br>Xylene Total                                        | μg/L<br>μg/L      | 2               | <2<br><2            | <2<br><2          | 14<br>86           | 16<br>92           | 14<br>88           |
|                                 | Sum of BTEX                                                       | μg/L              | 1               | 4                   | 1                   | 1                   | 1                   | 1                   | <1                  | <1                  | 1                   | <1                | 524                | 567                | 515                |
| Micro                           | Naphthalene (Method analysis EP080) Unionized Hydrogen Sulfide    | μg/L<br>μg/L      | 5<br>100        | <5<br><100          | <5<br><100        | <5<br><100         | <5<br><100         | <5<br><100         |
| Notes:                          |                                                                   |                   |                 |                     |                     |                     |                     |                     |                     |                     |                     |                   | D/                 | RSONS              | 1                  |

- not analysed
  a All data is from ALS results unless otherwise stated.
  b Analysed by Envirolab.
  c Laboratory readings of pH (lab) is outside of the holding time, therefore field measurements of pH should be relied upon for accuracy.
  d NPOC analysis was carried out instead of TOC due to high inorganic carbon content

Table D.2 AST2 and Pilot wells cont.

| Key analytes  Eight File Community C | Temperature  Electrical conductivity  H DS DO % DO mg/L  Redox  Chlorine Free Chlorine Total  Ethanolamine Diethanolamine  Chloride (Method analysis ED009) Chloride (Method analysis ED009) Chloride (Method analysis ED045) Chlorine - Free Chlorine - Total Residual  Electrical Conductivity  H (Lab) <sup>6</sup> Cotal Phosphorus  Cotal Phosphorus  Cotal Phosphorus  Electrical conductivity  H (Lab) <sup>6</sup> CS SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | °C uS/cm pH units mg/L mg/L mg/L mg/L pg/L pg/L pg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m                                                                                                                                                                | 1<br>1<br>50<br>0.05<br>0.1<br>1<br>0.2<br>0.2<br>0.1<br>1<br>1<br>0.01<br>0.05<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 4/07/2015 16.17 7882 7.82 5122 28.3 2.74 -142 0.04 0.07                                                                     | 6/07/2015 21.74 8015 7.81 5211 18.1 1.555 -146.1 0.04 0                                                               | 7/07/2015 18.6 7764 7.78 5050 31 2.76 -162.9 0.19 0 | 8/07/2015 16.74 8195 7.92 5328 31.8 3.02 -131.4 0.01 0.06 <1 <1 <1 <50 4.29 721 723 <0.2 <0.2 <0.2 <0.1 12 2 2.95 3.6 8220 8.04 5630 <5 3400 <1 <1 3400 12 2 2 2 | 9/07/2015 14.55 9386 7.97 6101 24.5 2.39 -138.2 0.02 0.07 | 10/07/2015 15.17 8121 7.89 5279 14.8                                                                                  | 11/07/2015 15.66 8717 7.99 5666 17.8 1.71 -169.1 0.08 0                                                                     | 13/07/2015 20 7954 8.12 5171 15.3 1.36 -105.7 0.04 0.11                                                                                  | 14/07/2015 15.86 7719 8.15 5018 10.1 0.97 -128 0 0                                                              | 15/07/2015 13.7 7474 8.15 4860 37.1 3.6 -111.7 0 0 42 <1 <50 2.35 666 532 <0.2 <0.2 5.8 <10 2 2.6 2.9 8020 8.37 4300 <5 3780 47 <1     | 16/07/2015 11.92 7801 8.25 5071 26 2.73 -71.6 0.11 0                                                                               | 17/07/2015 10.36 10.36 7530 8.16 4895 22.6 22.43 -104.8 0 0.02                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Key analytes  C  Key analytes  D  R  C  C  C  C  C  C  C  C  C  C  C  C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H DS DO mg/L Redox Chlorine Free Chlorine Total Ethanolamine Diethanolamine Dieth           | pH units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                         | 1<br>50<br>0.05<br>0.1<br>1<br>0.2<br>0.2<br>0.1<br>1<br>1<br>0.01<br>0.05<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | 7.82 5122 28.3 2.74 -142 0.04 0.07                                                                                          | 7.81 5211 18.1 1.55 -146.1 0.04 0                                                                                     | 7.78 5050 31 2.76 -162.9 0.19 0                     | 7.92 5328 31.8 3.02 -131.4 0.01 0.06 <1 <1 <50 4.29 721 723 <0.2 <0.2 6.1 12 2 2.95 3.6 8220 8.04 5630 <5 3400 <1 <1 3400 12                                     | 7.97 6101 24.5 2.39 -138.2 0.02 0.07                      | 7.89 5279 14.8 1.44 -150.9 0.06 0                                                                                     | 7.99<br>5666<br>17.8<br>1.71<br>-169.1<br>0.08<br>0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-        | 8.12<br>5171<br>15.3<br>1.36<br>-105.7<br>0.04<br>0.11<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                  | 8.15<br>5018<br>10.1<br>0.97<br>-128<br>0<br>0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 8.15 4860 37.1 3.6 -111.7 0 0 42 <1 <50 2.35 666 532 <0.2 <0.2 <1.2 <0.2 40.2 3.8 3780 4300 <5 3780 47                                 | 8.25<br>5071<br>26<br>2.73<br>-71.6<br>0.11<br>0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                  | 8.16<br>4895<br>22.6<br>2.43<br>-104.8<br>0<br>0.02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-       |
| Key analytes  Ei  C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DO % DO mg/L Redox           | mg/L % mg/L my/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg                                                                                                                                                                                                   | 1<br>50<br>0.05<br>0.1<br>1<br>0.2<br>0.2<br>0.1<br>1<br>1<br>0.01<br>0.05<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | 5122 28.3 2.74 -142 0.04 0.07                                                                                               | 5211 18.1 1.55 -146.1 0.04 0                                                                                          | 5050 31 2.76 -162.9 0.19 0                          | 5328 31.8 3.02 -131.4 0.01 0.06 <1 <50 4.29 721 723 <0.2 <0.2 6.1 12 2 2.95 3.6 8220 8.04 5630 <5 3400 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                    | 6101 24.5 2.39 -138.2 0.02 0.07                           | 5279 14.8 1.44 -150.9 0.06 0                                                                                          | 5666<br>17.8<br>1.71<br>-169.1<br>0.08<br>0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 5171<br>15.3<br>1.36<br>-105.7<br>0.04<br>0.11<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 5018 10.1 0.97 -128 0 0                                                                                         | 4860 37.1 3.6 -111.7 0 0 42 <1 <50 2.35 666 532 <0.2 <0.2 5.8 <10 2 2.6 2.9 8020 8.37 4300 -5 3780 47                                  | 5071<br>26<br>2.73<br>-71.6<br>0.11<br>0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 4895 22.6 2.43 -104.8 0 0.02                                                                                               |
| Key analytes  E  Key analytes  E  C  C  C  C  C  C  C  C  C  C  C  C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DO mg/L Redox Chlorine Free Chlorine Free Chlorine Free Chlorine Total Ethanolamine Diethanolamine CHPS <sup>b</sup> Soron Chloride (Method analysis ED009) Chloride (Method analysis ED009) Chloride (Method analysis ED045) Chlorine - Free Chlorine - Total Residual Litrogen (Total) Sulfate as SO4 Sulphate as SO4  | mg/L mV mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                          | 1<br>50<br>0.05<br>0.1<br>1<br>0.2<br>0.2<br>0.1<br>1<br>1<br>0.01<br>0.05<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | 2.74<br>-142<br>0.04<br>0.07<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 1.55<br>-146.1<br>0.04<br>0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2.76 -162.9 0.19 0                                  | 3.02 -131.4 0.01 0.06 <1 <1 <1 <50 4.29 721 723 <0.2 <0.2 6.1 12 2 2.95 3.6 8220 8.04 5630 <5 3400 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                        | 2.39 -138.2 0.02 0.07                                     | 1.44<br>-150.9<br>0.06<br>0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 1.71<br>-169.1<br>0.08<br>0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-       | 1.36<br>-105.7<br>0.04<br>0.11<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                 | 0.97 -128 0 0                                                                                                   | 3.6 -111.7 0 0 42 <1 <50 2.35 666 532 <0.2 <0.2 <1.2 <2.2 <1.2 <1.2 <1.3 <1.0 <1.3 <1.0 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3        | 2.73<br>-71.6<br>0.11<br>0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-               | 2.43<br>-104.8<br>0<br>0.02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| Key analytes  El  C  C  C  C  C  C  C  C  C  C  C  C  C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chlorine Free Chlorine Total Ethanolamine Diethanolamine CHPS <sup>b</sup> Boron Chloride (Method analysis ED009) Chloride (Method analysis ED045) Chlorine - Free Chlorine - Total Residual Litrogen (Total) Sulfate as SO4 Sulphate as SO4 Sulphate as SO4 Sulphate as SO4 Sulphate as Co4 Sulphate as Co5 Sissing CaCO3/L Starbonate Alkalinity-mg CaCO3/L Carbonate Alkalinity-mg CaCO3/L Sukalinity (Hydroxide) as CaCO3 Sukalinity (total) as CaCO3 Sukalinity (total) as CaCO3 Sukalinity (total) as CaCO3 Sukalinity (total) as CaCO3 Sukalinity (Sulphate Sulphate Sulp | mg/L mg/L pg/L pg/L pg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m                                                                                                                                                                                            | 1<br>50<br>0.05<br>0.1<br>1<br>0.2<br>0.2<br>0.1<br>1<br>1<br>0.01<br>0.05<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | 0.04<br>0.07<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                               | 0.04<br>0                                                                                                             | 0.19<br>0                                           | 0.01 0.06 <1 <1 <50 4.29 721 723 <0.2 <0.2 6.1 12 2 2.95 3.6 8220 8.04 5630 <5 3400 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                       | 0.02<br>0.07<br>                                          | 0.06<br>0<br>                                                                                                         | 0.08<br>0<br>                                                                                                               | 0.04<br>0.11<br>                                                                                                                         | 0 0 0                                                                                                           | 0<br>0<br>42<br><1<br><50<br>2.35<br>666<br>532<br><0.2<br><0.2<br>5.8<br><10<br>2<br>2.6<br>2.9<br>8020<br>8.37<br>4300<br><5<br>3780 | 0.11<br>0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                | 0<br>0.02                                                                                                                  |
| Key analytes E D TI BB C C C C C C S S S T T T C Lab physical parameters pi parameters pi T T S Major/minor ions E C A A A A A A A A N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ethanolamine Diethanolamine HPS <sup>b</sup> Soron Chloride (Method analysis ED009) Chloride (Method analysis ED009) Chloride (Method analysis ED045) Chlorine - Free Chlorine - Total Residual ditrogen (Total) Culfate as SO4 Culphate as CaCO3/L Culphate as CaCO3/L Culphate as CaCO3  | μg/L μg/L μg/L μg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m                                                                                                                                                                                                 | 1<br>50<br>0.05<br>0.1<br>1<br>0.2<br>0.2<br>0.1<br>1<br>1<br>0.01<br>0.05<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      |                                                                                                                             |                                                                                                                       |                                                     | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <                                                                                                                         |                                                           |                                                                                                                       |                                                                                                                             |                                                                                                                                          |                                                                                                                 | 42 <1 <50 2.35 666 532 <0.2 <0.2 <10 2 8.37 4300 <5 3780 47                                                                            |                                                                                                                                    |                                                                                                                            |
| Lab physical parameters Ti Major/minor ions Bi AA AA C S S S F T T T T S P P S S F F R B B I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHPS <sup>b</sup> Soron Chloride (Method analysis ED009) Chloride (Method analysis ED009) Chlorine - Free Chlorine - Total Residual Litrogen (Total) Sulfate as SO4 Su | μg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m                                                                                                                                                                                                                | 50<br>0.05<br>0.1<br>1<br>1<br>0.2<br>0.2<br>0.1<br>1<br>1<br>0.01<br>0.05<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    |                                                                                                                             |                                                                                                                       |                                                     | <50 4.29 721 723 <0.2 <0.2 6.1 12 2 2.95 3.6 8220 8.04 5630 <5 3400 <1 <1 3400 12                                                                                |                                                           |                                                                                                                       |                                                                                                                             |                                                                                                                                          |                                                                                                                 | <50 2.35 666 532 <0.2 <0.2 5.8 <10 2 2.6 2.9 8020 8.37 4300 <5 3780 47                                                                 |                                                                                                                                    |                                                                                                                            |
| CC CC CC N S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chloride (Method analysis ED009) Chloride (Method analysis ED009) Chlorine - Free Chlorine - Total Residual Litrogen (Total) Sulfate as SO4 Sulphate as SO3/L Sulphate as SO3/           | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                                  | 0.1<br>1<br>0.2<br>0.2<br>0.2<br>0.1<br>1<br>1<br>0.01<br>0.05<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                |                                                                                                                             |                                                                                                                       |                                                     | 721 723 <0.2 <0.2 <0.2 6.1 12 2 2.95 3.6 8220 8.04 5630 <5 3400 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                           |                                                           |                                                                                                                       |                                                                                                                             |                                                                                                                                          |                                                                                                                 | 666<br>532<br><0.2<br><0.2<br>5.8<br><10<br>2<br>2.6<br>2.9<br>8020<br>8.37<br>4300<br><5<br>3780<br>47                                |                                                                                                                                    |                                                                                                                            |
| CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chloride (Method analysis ED045) Chlorine - Free Chlorine - Tree Chlorine - Tree Chlorine - Total Residual Chlorine Ch           | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                                  | 1<br>0.2<br>0.2<br>0.2<br>0.1<br>1<br>1<br>0.01<br>0.05<br>1<br>0.01<br>10<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.1<br>0.05<br>0.01                            |                                                                                                                             |                                                                                                                       |                                                     | 723 <0.2 <0.2 <0.2 6.1 12 2 2.95 3.6 8220 8220 5630 <5 3400 <1 3400 12                                                                                           |                                                           |                                                                                                                       |                                                                                                                             |                                                                                                                                          |                                                                                                                 | 532 <0.2 <0.2 <0.2 <5.8 <10 2 2.6 2.9 8020 8.37 4300 <5 3780 47                                                                        |                                                                                                                                    |                                                                                                                            |
| Lab physical parameters physical physical parameters physical ph | Chlorine - Total Residual litrogen (Total) Sulfate as SO4 Sulfate as            | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                                  | 0.2<br>0.1<br>1<br>1<br>0.01<br>0.05<br>1<br>0.01<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.01                                                                    |                                                                                                                             |                                                                                                                       |                                                     | <0.2 6.1 12 2 2.95 3.6 8220 8.04 5630 <5 3400 <1 <1 3400 12                                                                                                      |                                                           |                                                                                                                       |                                                                                                                             |                                                                                                                                          |                                                                                                                 | <0.2 5.8 <10 2 2.6 2.9 8020 8.37 4300 <5 3780 47                                                                                       |                                                                                                                                    |                                                                                                                            |
| Signature of the state of the s | Sulfate as SO4 Sulphate as Sulphat           | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                                  | 1<br>0.01<br>0.05<br>1<br>0.01<br>10<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.1<br>0.01                                                                     |                                                                                                                             |                                                                                                                       |                                                     | 12<br>2<br>2.95<br>3.6<br>8220<br>8.04<br>5630<br><5<br>3400<br><1<br><1<br>3400                                                                                 |                                                           |                                                                                                                       |                                                                                                                             |                                                                                                                                          |                                                                                                                 | <10 2 2.6 2.9 8020 8.37 4300 <5 3780 47                                                                                                |                                                                                                                                    |                                                                                                                            |
| Lab physical parameters Time In Inc. In Inc. Inc. Inc. Inc. Inc. Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | otal Phosphorus  otal Phosphorus  otal Phosphorus  lectrical conductivity  H (Lab) <sup>c</sup> DS  SS  SS  Sicarbonate Alkalinity-mg CaCO3/L  carbonate Alkalinity-mg CaCO3/L  dkalinity (Hydroxide) as CaCO3  dkalinity (total) as CaCO3  dkalinity (total) as CaCO3  dkalinity (total) as CaCO3  dagnesium  odagnesium  odagnesium  odagnesium  odagnesium  odagnesium  odagnesium  odagnesium  odalitimate  dilitimate (as N)  litirate (as N)  litirate (as N)  litirate + Nitrate as N  Geldahl Nitrogen Total  Reactive Phosphorus as P  otal Organic Carbon  lonpurgeable Organic Carbon  lonpurgeable Organic Carbon  lonpurgeable Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L mg/L pg/cm pH units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                         | 0.01<br>0.05<br>1<br>0.01<br>10<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.1<br>0.05                                                                                    |                                                                                                                             |                                                                                                                       |                                                     | 2.95<br>3.6<br>8220<br>8.04<br>5630<br><5<br>3400<br><1<br><1<br>3400<br>12                                                                                      |                                                           |                                                                                                                       | -                                                                                                                           |                                                                                                                                          |                                                                                                                 | 2.6<br>2.9<br>8020<br>8.37<br>4300<br><5<br>3780                                                                                       |                                                                                                                                    |                                                                                                                            |
| Lab physical parameters physical parameters physical parameters physical parameters physical parameters physical parameters physical physi | Total Phosphorus Delectrical conductivity  H (Lab) CON CONTROLOGY  TOS  SS  Sicarbonate Alkalinity-mg CaCO3/L Carbonate Alkalinity-mg CaCO3/L Calcium Cacon Control Cacon Calcium Cacon Cacon Calcium Cacon Caco           | mg/L  µS/cm pH units  mg/L   1<br>0.01<br>10<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.1<br>0.05<br>0.1                                                                                        |                                                                                                                             |                                                                                                                       |                                                     | 8220<br>8.04<br>5630<br><5<br>3400<br><1<br><1<br>3400<br>12                                                                                                     |                                                           |                                                                                                                       |                                                                                                                             | -<br>-<br>-<br>-                                                                                                                         |                                                                                                                 | 8020<br>8.37<br>4300<br><5<br>3780<br>47                                                                                               | -<br>-<br>-<br>-                                                                                                                   |                                                                                                                            |
| parameters print in the parameters print in the parameters print in the parameter in the pa | H (Lab) <sup>c</sup> DS SS SS Sicarbonate Alkalinity-mg CaCO3/L Carbonate Alkalinity-mg CaCO3/L Carbonate Alkalinity-mg CaCO3/L Carbonate Alkalinity-mg CaCO3/L Calcium Calcium Codassium Codassium Codassium Codassium Codassium Codium Codassium Codium  | pH units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                         | 0.01<br>10<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.1<br>0.05<br>0.01                                                                                       |                                                                                                                             |                                                                                                                       |                                                     | 8.04<br>5630<br><5<br>3400<br><1<br><1<br>3400<br>12                                                                                                             | -                                                         | -                                                                                                                     |                                                                                                                             |                                                                                                                                          |                                                                                                                 | 8.37<br>4300<br><5<br>3780<br>47                                                                                                       |                                                                                                                                    | -                                                                                                                          |
| Major/minor ions Bi C AI AI A C M P P S I R B I I I N N I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS  Bicarbonate Alkalinity-mg CaCO3/L Carbonate Alkalinity-mg CaCO3/L Carbonate Alkalinity-mg CaCO3/L Likalinity (Hydroxide) as CaCO3 Calcium Alagnesium Codassium Codium Cluoride Reactive Silica Bromine Conic Balance Cummonia as N Cummonium as N            | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                                  | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.1<br>0.05<br>0.1                                                                                                           |                                                                                                                             |                                                                                                                       |                                                     | <5<br>3400<br><1<br><1<br><1<br>3400<br>12                                                                                                                       | -                                                         | -                                                                                                                     | -                                                                                                                           |                                                                                                                                          | -                                                                                                               | <5<br>3780<br>47                                                                                                                       |                                                                                                                                    | -                                                                                                                          |
| C. A.I. A.I. A.I. A.I. A.I. A.I. A.I. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Carbonate Alkalinity-mg CaCO3/L ulkalinity (Hydroxide) as CaCO3 ulkalinity (total) as CaCO3 ulkalinity (total) as CaCO3 calcium dagnesium Potassium Potassiu           | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.1<br>0.05<br>0.1<br>0.01                                                                                                                  |                                                                                                                             |                                                                                                                       | -                                                   | <1<br><1<br>3400<br>12                                                                                                                                           | -                                                         | -                                                                                                                     |                                                                                                                             |                                                                                                                                          |                                                                                                                 | 47                                                                                                                                     | -                                                                                                                                  | -                                                                                                                          |
| AI A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Alkalinity (Hydroxide) as CaCO3 Alkalinity (total) as CaCO3 Alkalinity (total) as CaCO3 Alkalinity (total) as CaCO3 Calcium Aggnesium Potassium Sodium Fluoride Reactive Silica Bromine Donic Balance Ammonia as N Ammonium as N Altirate (as N) Altirite + Nitrate as N Cjeldahl Nitrogen Total Reactive Phosphorus as P Fotal Organic Carbon Lonpurgeable Organic Carbon Lonpurgeable Organic Carbon Lonpurgeable Organic Carbon Lonpurgeable Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                                  | 1<br>1<br>1<br>1<br>1<br>0.1<br>0.05<br>0.1<br>0.01                                                                                                                            |                                                                                                                             |                                                                                                                       | -                                                   | <1<br>3400<br>12                                                                                                                                                 |                                                           | -                                                                                                                     |                                                                                                                             |                                                                                                                                          |                                                                                                                 |                                                                                                                                        |                                                                                                                                    |                                                                                                                            |
| C. M. P. S. S. S. R. B. Io Nutrients A. A. N. N. N. K. K. R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Calcium Aggnesium Potassium Potassiu           | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                                  | 1<br>1<br>1<br>1<br>0.1<br>0.05<br>0.1<br>0.01                                                                                                                                 | -                                                                                                                           | -                                                                                                                     | -                                                   | 12                                                                                                                                                               |                                                           | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | 3820                                                                                                                                   | -                                                                                                                                  | -                                                                                                                          |
| P. S. S. F. I. S.  | Potassium Sodium Fluoride Reactive Silica Remine Donic Balance Minmonia as N Mitrate (as N) Mitrite + Nitrate as N Gjeldahl Nitrogen Total Reactive Phosphorus as P Fotal Organic Carbon Monpurgeable Organic Carbon Mondum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                                  | 1<br>1<br>0.1<br>0.05<br>0.1<br>0.01                                                                                                                                           | -                                                                                                                           | -                                                                                                                     | -                                                   | 2                                                                                                                                                                |                                                           | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        |                                                                                                                 | 11                                                                                                                                     | -                                                                                                                                  | -                                                                                                                          |
| FI<br>R.<br>B.<br>Io<br>Nutrients A.<br>A.<br>N.<br>N.<br>N.<br>N.<br>K.<br>K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cluoride Reactive Silica Bromine Soronine Soroni           | mg/L mg/L mg/L % mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                                | 0.1<br>0.05<br>0.1<br>0.01                                                                                                                                                     |                                                                                                                             | -                                                                                                                     |                                                     | 18                                                                                                                                                               | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | 10                                                                                                                                     | -                                                                                                                                  | -                                                                                                                          |
| R. B. Io Nutrients A. A. N. N. N. N. K. R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reactive Silica  Bromine  Dric Balance  Ammonia as N  Ammonium as N  Jitriate (as N)  Jitrite (as N)  Jitrite + Nitrate as N  Gjeldahl Nitrogen Total  Reactive Phosphorus as P  Jotal Organic Carbon  Jonpurgeable Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L mg/L % mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                                     | 0.1<br>0.01                                                                                                                                                                    | -                                                                                                                           | -                                                                                                                     | -                                                   | 2000<br>2.3                                                                                                                                                      |                                                           | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        |                                                                                                                 | 1790<br>2.6                                                                                                                            | -                                                                                                                                  | -                                                                                                                          |
| Nutrients AI AI N N N N N K R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | onic Balance ummonia as N ummonium as N iltirate (as N) iltirite + Nitrate as N (jeldahl Nitrogen Total Reactive Phosphorus as P otal Organic Carbon Ionpurgeable Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                                                                                                                                                                                                        | 0.01                                                                                                                                                                           | -                                                                                                                           | -                                                                                                                     | -                                                   | 25.7<br><1                                                                                                                                                       | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | 24.1<br>1.4                                                                                                                            | -                                                                                                                                  | -                                                                                                                          |
| A<br>N<br>N<br>N<br>K<br>R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ammonium as N litrate (as N) litrite (as N) litrite + Nitrate as N Gjeldahl Nitrogen Total Reactive Phosphorus as P Total Organic Carbon Ionpurgeable Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L<br>mg/L<br>mg/L                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                           |                                                                                                                             | -                                                                                                                     | -                                                   | 0.26<br>3.97                                                                                                                                                     | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | 3.99                                                                                                                                   | -                                                                                                                                  | -                                                                                                                          |
| N<br>N<br>K<br>R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jitrite (as N) Jitrite + Nitrate as N Geldahl Nitrogen Total Reactive Phosphorus as P Total Organic Carbon Jonpurgeable Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                           | -                                                                                                                           | -                                                                                                                     | -                                                   | 3.87                                                                                                                                                             |                                                           | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        |                                                                                                                 | 3.65                                                                                                                                   | -                                                                                                                                  | -                                                                                                                          |
| Kj<br>R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Geldahl Nitrogen Total<br>Reactive Phosphorus as P<br>Total Organic Carbon<br>Jonpurgeable Organic Carbon <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          | 0.01                                                                                                                                                                           | -                                                                                                                           | -                                                                                                                     | -                                                   | 0.01<br><0.01                                                                                                                                                    | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | 0.04<br><0.01                                                                                                                          | -                                                                                                                                  | -                                                                                                                          |
| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reactive Phosphorus as P<br>Total Organic Carbon<br>Honpurgeable Organic Carbon <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L<br>mg/L                                                                                                                                                                                                                                             | 0.01<br>0.1                                                                                                                                                                    | -                                                                                                                           | -                                                                                                                     | -                                                   | 0.01<br>6.1                                                                                                                                                      |                                                           | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        |                                                                                                                 | 0.04<br>5.8                                                                                                                            | -                                                                                                                                  | -                                                                                                                          |
| I ITO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lonpurgeable Organic Carbon <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L<br>mg/L                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                           | -                                                                                                                           | -                                                                                                                     | -                                                   | 0.12                                                                                                                                                             | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | 0.16                                                                                                                                   | -                                                                                                                                  | -                                                                                                                          |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L                                                                                                                                                                                                                                                     | 1                                                                                                                                                                              | -                                                                                                                           | -                                                                                                                     | -                                                   | 4<br>14.5                                                                                                                                                        | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | 152<br>32.9                                                                                                                            | -                                                                                                                                  | -                                                                                                                          |
| Dissolved metals Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | luminium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L<br>mg/L                                                                                                                                                                                                                                             | 0.01<br>0.01                                                                                                                                                                   | -                                                                                                                           | -                                                                                                                     | -                                                   | <0.1                                                                                                                                                             | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <0.01                                                                                                                                  | -                                                                                                                                  | -                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | antimony<br>arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L<br>mg/L                                                                                                                                                                                                                                             | 0.001<br>0.001                                                                                                                                                                 | -                                                                                                                           | -                                                                                                                     | -                                                   | <0.01<br><0.01                                                                                                                                                   |                                                           | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        |                                                                                                                 | 0.003<br>0.006                                                                                                                         | -                                                                                                                                  | -                                                                                                                          |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Barium<br>Berryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L<br>mg/L                                                                                                                                                                                                                                             | 0.001<br>0.001                                                                                                                                                                 | -                                                                                                                           | -                                                                                                                     | -                                                   | 6.33<br><0.01                                                                                                                                                    |                                                           | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        |                                                                                                                 | 2.48<br><0.001                                                                                                                         | -                                                                                                                                  | -                                                                                                                          |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cadmium<br>Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L<br>mg/L                                                                                                                                                                                                                                             | 0.0001                                                                                                                                                                         | -                                                                                                                           |                                                                                                                       | -                                                   | <0.001<br><0.01                                                                                                                                                  | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <0.0001<br><0.001                                                                                                                      | -                                                                                                                                  | -                                                                                                                          |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                          | -                                                                                                                           | -                                                                                                                     | -                                                   | <0.01<br><0.01                                                                                                                                                   | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <0.001                                                                                                                                 | -                                                                                                                                  | -                                                                                                                          |
| Iro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Copper<br>Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L<br>mg/L                                                                                                                                                                                                                                             | 0.05                                                                                                                                                                           | -                                                                                                                           | -                                                                                                                     | -                                                   | 4.11                                                                                                                                                             |                                                           | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        |                                                                                                                 | <0.05                                                                                                                                  | -                                                                                                                                  | -                                                                                                                          |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ead<br>/anadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L<br>mg/L                                                                                                                                                                                                                                             | 0.001<br>0.01                                                                                                                                                                  | -                                                                                                                           | -                                                                                                                     | -                                                   | <0.01<br><0.1                                                                                                                                                    | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <0.001<br><0.01                                                                                                                        | -                                                                                                                                  | -                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | linc<br>Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L<br>mg/L                                                                                                                                                                                                                                             | 0.005<br>0.001                                                                                                                                                                 | -                                                                                                                           | -                                                                                                                     | -                                                   | <0.05<br>0.039                                                                                                                                                   | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <0.005<br>0.002                                                                                                                        | -                                                                                                                                  | -                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mercury<br>Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/L<br>mg/L                                                                                                                                                                                                                                             | 0.0001<br>0.001                                                                                                                                                                | -                                                                                                                           | -                                                                                                                     | -                                                   | <0.0001<br><0.01                                                                                                                                                 |                                                           | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        |                                                                                                                 | <0.0001<br>0.006                                                                                                                       | -                                                                                                                                  | -                                                                                                                          |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lickel<br>Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L<br>mg/L                                                                                                                                                                                                                                             | 0.001                                                                                                                                                                          | -                                                                                                                           | -                                                                                                                     | -                                                   | <0.01                                                                                                                                                            | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <0.001<br><0.01                                                                                                                        | -                                                                                                                                  | -                                                                                                                          |
| Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Strontium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                          |                                                                                                                             | -                                                                                                                     | -                                                   | 4.03                                                                                                                                                             |                                                           | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        |                                                                                                                 | 2.26                                                                                                                                   | -                                                                                                                                  | -                                                                                                                          |
| U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in<br>Jranium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L<br>mg/L                                                                                                                                                                                                                                             | 0.001<br>0.001                                                                                                                                                                 | -                                                                                                                           | -                                                                                                                     | -                                                   | <0.01<br><0.01                                                                                                                                                   | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <0.001<br><0.001                                                                                                                       | -                                                                                                                                  | -                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dil and Grease<br>1,4,5-trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L<br>μg/L                                                                                                                                                                                                                                             | 5<br>1                                                                                                                                                                         | -                                                                                                                           | -                                                                                                                     | -                                                   | 11<br><1                                                                                                                                                         | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <5<br><1                                                                                                                               | -                                                                                                                                  | -                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.4.6-Trichlorophenol<br>4.4-dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μg/L<br>μg/L                                                                                                                                                                                                                                             | 1                                                                                                                                                                              | -                                                                                                                           | -                                                                                                                     | -                                                   | <1<br><1                                                                                                                                                         |                                                           | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        |                                                                                                                 | <1<br><1                                                                                                                               | -                                                                                                                                  | -                                                                                                                          |
| 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,4-dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L<br>μg/L                                                                                                                                                                                                                                             | 1                                                                                                                                                                              | -                                                                                                                           |                                                                                                                       | -                                                   | 2<br><1                                                                                                                                                          | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | 1.6<br><1                                                                                                                              | -                                                                                                                                  |                                                                                                                            |
| 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μg/L                                                                                                                                                                                                                                                     | 1                                                                                                                                                                              |                                                                                                                             | -                                                                                                                     |                                                     | <1<br>6.3                                                                                                                                                        |                                                           | -                                                                                                                     |                                                                                                                             |                                                                                                                                          |                                                                                                                 | <1<br>5.2                                                                                                                              | -                                                                                                                                  | -                                                                                                                          |
| 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t-methylphenol<br>t-nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μg/L<br>μg/L                                                                                                                                                                                                                                             | 1                                                                                                                                                                              | -                                                                                                                           | -                                                                                                                     | -                                                   | <1                                                                                                                                                               | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <1                                                                                                                                     | -                                                                                                                                  | -                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -&4-methylphenol<br>-chloro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L<br>μg/L                                                                                                                                                                                                                                             | 1                                                                                                                                                                              | -                                                                                                                           | -                                                                                                                     | -                                                   | 65.1<br><1                                                                                                                                                       | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | 50.6<br><1                                                                                                                             | -                                                                                                                                  | -                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pentachlorophenol<br>Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μg/L<br>μg/L                                                                                                                                                                                                                                             | 2                                                                                                                                                                              | -                                                                                                                           | -                                                                                                                     | -                                                   | <2<br>1.8                                                                                                                                                        | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <2<br><1                                                                                                                               | -                                                                                                                                  | -                                                                                                                          |
| PAH A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μg/L<br>μg/L                                                                                                                                                                                                                                             | 1                                                                                                                                                                              | -                                                                                                                           | -                                                                                                                     | -                                                   | <1<br><1                                                                                                                                                         | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <1<br><1                                                                                                                               | -                                                                                                                                  | -                                                                                                                          |
| Ai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Anthracene<br>Benz(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μg/L<br>μg/L                                                                                                                                                                                                                                             | 1                                                                                                                                                                              | -                                                                                                                           | -                                                                                                                     | -                                                   | <1                                                                                                                                                               |                                                           | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <1                                                                                                                                     | -                                                                                                                                  | -                                                                                                                          |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Benzo(a) pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μg/L                                                                                                                                                                                                                                                     | 0.5                                                                                                                                                                            | -                                                                                                                           | -                                                                                                                     | -                                                   | <0.5                                                                                                                                                             |                                                           | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        |                                                                                                                 | <0.5                                                                                                                                   | -                                                                                                                                  | -                                                                                                                          |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Benzo(b&j)fluoranthene<br>Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg/L<br>μg/L                                                                                                                                                                                                                                             | 1                                                                                                                                                                              | -                                                                                                                           | -                                                                                                                     | -                                                   | <1<br><1                                                                                                                                                         | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <1<br><1                                                                                                                               | -                                                                                                                                  | -                                                                                                                          |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Senzo(k)fluoranthene<br>Senzo(a)pyrene TEQ (zero)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L<br>μg/L                                                                                                                                                                                                                                             | 1<br>0.5                                                                                                                                                                       | -                                                                                                                           | -                                                                                                                     | -                                                   | <1<br><0.5                                                                                                                                                       | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <1<br><0.5                                                                                                                             | -                                                                                                                                  | -                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chrysene<br>Dibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L<br>μg/L                                                                                                                                                                                                                                             | 1                                                                                                                                                                              | -                                                                                                                           | -                                                                                                                     | -                                                   | <1<br><1                                                                                                                                                         | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <1<br><1                                                                                                                               | -                                                                                                                                  | -                                                                                                                          |
| FI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µg/L<br>µg/L                                                                                                                                                                                                                                             | 1                                                                                                                                                                              | -                                                                                                                           | -                                                                                                                     | -                                                   | <1<br><1                                                                                                                                                         | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <1<br><1                                                                                                                               | -                                                                                                                                  | -                                                                                                                          |
| In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ndeno(1,2,3-c,d)pyrene Japhthalene (Method analysis EP075(SIM)B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μg/L                                                                                                                                                                                                                                                     | 1                                                                                                                                                                              | -                                                                                                                           | -                                                                                                                     | -                                                   | <1                                                                                                                                                               | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <1                                                                                                                                     | -                                                                                                                                  | -                                                                                                                          |
| PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μg/L<br>μg/L                                                                                                                                                                                                                                             | 1                                                                                                                                                                              | -                                                                                                                           | -                                                                                                                     | -                                                   | <1                                                                                                                                                               | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <1                                                                                                                                     | -                                                                                                                                  | -                                                                                                                          |
| Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pyrene<br>Polycylic aromatic hydrocarbons EPA448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μg/L<br>ug/L                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                            | -                                                                                                                           | -                                                                                                                     | -                                                   | <1<br><0.5                                                                                                                                                       | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <1<br><0.5                                                                                                                             | -                                                                                                                                  | -                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PH C6-C10<br>C6 - C10 Fraction minus BTEX (F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg/L<br>μg/L                                                                                                                                                                                                                                             | 20<br>20                                                                                                                                                                       | -                                                                                                                           | -                                                                                                                     | -                                                   | 410<br>120                                                                                                                                                       | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | 250<br>80                                                                                                                              | -                                                                                                                                  | -                                                                                                                          |
| С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C10 - C16 Fraction<br>C16 - C34 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | μg/L<br>μg/L                                                                                                                                                                                                                                             | 100                                                                                                                                                                            | -                                                                                                                           | -                                                                                                                     | -                                                   | <100<br><100                                                                                                                                                     | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <100<br><100                                                                                                                           | -                                                                                                                                  | -                                                                                                                          |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C34 - C40 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                     | 100                                                                                                                                                                            |                                                                                                                             | -                                                                                                                     |                                                     | <100                                                                                                                                                             |                                                           | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <100                                                                                                                                   | -                                                                                                                                  | -                                                                                                                          |
| TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C10 - C40 Fraction (Sum)  RH >C10-C16 less Naphthalene (F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μg/L<br>μg/L                                                                                                                                                                                                                                             | 100                                                                                                                                                                            | -                                                                                                                           | -                                                                                                                     | -                                                   | <100<br><100                                                                                                                                                     | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <100<br><100                                                                                                                           | -                                                                                                                                  | -                                                                                                                          |
| С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C6 - C9 Fraction<br>C10 - C14 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μg/L<br>μg/L                                                                                                                                                                                                                                             | 20<br>50                                                                                                                                                                       | -                                                                                                                           | -                                                                                                                     | -                                                   | 400<br>80                                                                                                                                                        | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | 250<br>80                                                                                                                              | -                                                                                                                                  | -                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C15 - C28 Fraction<br>C29-C36 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μg/L<br>μg/L                                                                                                                                                                                                                                             | 100<br>50                                                                                                                                                                      | -                                                                                                                           | -                                                                                                                     | -                                                   | <100<br><50                                                                                                                                                      | -                                                         | -                                                                                                                     | -                                                                                                                           | -                                                                                                                                        | -                                                                                                               | <100<br><50                                                                                                                            | -                                                                                                                                  | -                                                                                                                          |
| +(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C10 - C36 (Sum of total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | μg/L<br>μg/L                                                                                                                                                                                                                                             | 50                                                                                                                                                                             | -<br>176                                                                                                                    | -<br>127                                                                                                              | -<br>114                                            | 80<br>133                                                                                                                                                        | -<br>94                                                   | -<br>105                                                                                                              | -<br>78                                                                                                                     | 90                                                                                                                                       | -<br>86                                                                                                         | 80<br>73                                                                                                                               | -<br>64                                                                                                                            | -<br>67                                                                                                                    |
| To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μg/L                                                                                                                                                                                                                                                     | 2                                                                                                                                                                              | 210                                                                                                                         | 146                                                                                                                   | 136                                                 | 150                                                                                                                                                              | 102                                                       | 111                                                                                                                   | 90                                                                                                                          | 91                                                                                                                                       | 85                                                                                                              | 69                                                                                                                                     | 60                                                                                                                                 | 61                                                                                                                         |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ethylbenzene<br>(ylene (m & p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg/L<br>μg/L                                                                                                                                                                                                                                             | 2 2                                                                                                                                                                            | 4<br>61                                                                                                                     | 38                                                                                                                    | 2<br>35                                             | 3<br>42                                                                                                                                                          | 2<br>27                                                   | 2 28                                                                                                                  | <2<br>23                                                                                                                    | <2<br>23                                                                                                                                 | <2<br>21                                                                                                        | <2<br>18                                                                                                                               | <2<br>13                                                                                                                           | <2<br>14                                                                                                                   |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ylene (o)<br>(ylene Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L<br>μg/L                                                                                                                                                                                                                                             | 2                                                                                                                                                                              | 12<br>73                                                                                                                    | 7<br>45                                                                                                               | 7<br>42                                             | 8<br>50                                                                                                                                                          | 6<br>33                                                   | 6<br>34                                                                                                               | 4<br>27                                                                                                                     | 4<br>27                                                                                                                                  | 4<br>25                                                                                                         | 3<br>21                                                                                                                                | 3<br>16                                                                                                                            | 3<br>17                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sum of BTEX<br>Japhthalene (Method analysis EP080)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L<br>μg/L                                                                                                                                                                                                                                             | 1<br>5                                                                                                                                                                         | 463<br><5                                                                                                                   | 321<br><5                                                                                                             | 294<br><5                                           | 336<br><5                                                                                                                                                        | 231<br><5                                                 | 252<br><5                                                                                                             | 195<br><5                                                                                                                   | 208<br><5                                                                                                                                | 196<br><5                                                                                                       | 163<br><5                                                                                                                              | 140<br><5                                                                                                                          | 145<br><5                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inionized Hydrogen Sulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L                                                                                                                                                                                                                                                     | 100                                                                                                                                                                            | <100                                                                                                                        | <100                                                                                                                  | <100                                                | <100                                                                                                                                                             | <100                                                      | <100                                                                                                                  | <100                                                                                                                        | <100                                                                                                                                     | <100                                                                                                            | <100                                                                                                                                   | <100                                                                                                                               | <100                                                                                                                       |

- not analysed
  a All data is from ALS results unless otherwise stated.
  b Analysed by Envirolab.
  c Laboratory readings of pH (lab) is outside of the holding time, therefore field measurements of pH should be relied upon for accuracy.
  d NPOC analysis was carried out instead of TOC due to high inorganic carbon content

Table D.2 AST2 and Pilot wells cont.

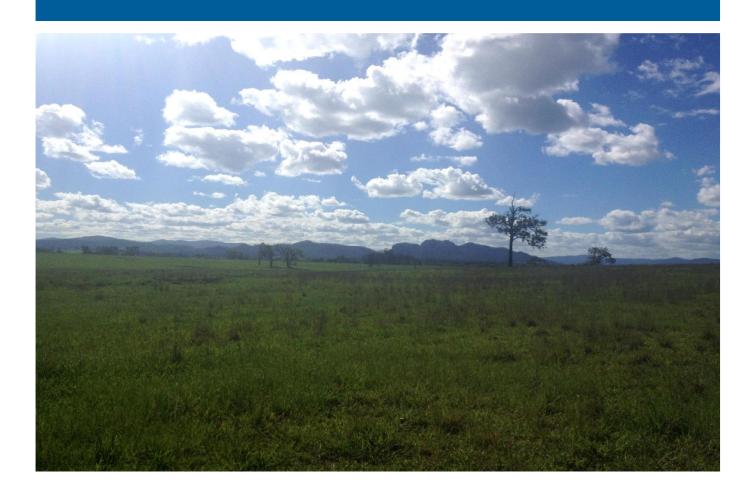
|                                 | Analyte <sup>a</sup>                                               | Units                        | LOR             | WK13                | WK13                | WK13               | WK13               | WK13                 | WK13               | WK13                 | WK13                 | WK13                 | WK14               | WK14              | WK14               |
|---------------------------------|--------------------------------------------------------------------|------------------------------|-----------------|---------------------|---------------------|--------------------|--------------------|----------------------|--------------------|----------------------|----------------------|----------------------|--------------------|-------------------|--------------------|
| Sample date<br>Field parameters | Temperature                                                        | °C                           |                 | 18/07/2015<br>15.15 | 23/07/2015<br>17.29 | 27/07/2015<br>19.8 | 28/07/2015<br>13.6 | 29/07/2015<br>13.4   | 12/08/2015<br>12.9 | 26/08/2015<br>23.64  | 9/09/2015<br>17.8    | 23/09/2015<br>13.27  | 1/07/2015<br>16.94 | 2/07/2015<br>14.4 | 3/07/2015<br>13.44 |
| ,                               | Electrical conductivity                                            | uS/cm<br>pH units            |                 | 7622<br>8.37        | 7306<br>8.15        | 7746<br>8.15       | 7309<br>8.17       | 7356<br>8.25         | 6851<br>8.52       | 6953<br>8.34         | 7078<br>7.75         | 7173<br>8.67         | 12,256<br>7.05     | 11,108<br>7.15    | 10,993<br>7.11     |
|                                 | TDS                                                                | mg/L                         |                 | 4955                | 4754                | 5036               | 4750               | 4781                 | 4453               | 4519                 | 4596                 | 4662                 | 7967               | 7222              | 7149               |
|                                 | DO %<br>DO mg/L                                                    | %<br>mg/L                    |                 | 15.3<br>1.49        | 31.9<br>2.95        | 14.5<br>1.29       | 18.9<br>1.91       | 17.7<br>1.81         | 19.5<br>2          | 19.1<br>1.54         | 11.9<br>1.11         | 19.5<br>2.96         | 31.7<br>2.93       | 111.1<br>10.94    | 26.8<br>2.68       |
|                                 | Redox<br>Chlorine Free                                             | mV<br>mg/L                   |                 | -66.9<br>0.06       | -140.3<br>0.04      | -146.3<br>0.05     | -130<br>0.11       | 13.8<br>0            | -51.8<br>0         | -130.7<br>0.03       | -200.7<br>0          | 92.9<br>0.03         | -142.6<br>0        | -138<br>0.04      | -132.8<br>0.02     |
| Kausaat :                       | Chlorine Total                                                     | mg/L                         |                 | 0                   | 0.01                | 0.03               | 0.04               | 0                    | 0                  | 0.01                 | 0                    | 0.07                 | 0                  | 0                 | 0                  |
| Key analytes                    | Ethanolamine Diethanolamine                                        | μg/L<br>μg/L                 | 1               | -                   | -                   | -                  | -                  | 13<br><1             | 11<br>3            | 36<br>4              | 8                    | 38<br>4              | -                  | -                 | -                  |
|                                 | THPS <sup>b</sup><br>Boron                                         | μg/L<br>mg/L                 | 50<br>0.05      | -                   | -                   | -                  | -                  | <50<br>2.81          | <50<br>2.44        | 2.67                 | 150<br>2.65          | 2.57                 | -                  | -                 | -                  |
|                                 | Chloride (Method analysis ED009)                                   | mg/L                         | 0.1             | -                   | -                   | -                  | -                  | 696                  | 668                | 675                  | 659                  | 674                  | -                  | -                 | -                  |
|                                 | Chloride (Method analysis ED045) Chlorine - Free                   | mg/L<br>mg/L                 | 0.2             | -                   | -                   | -                  | -                  | 504<br><0.2          | 575<br><0.2        | 542<br><0.2          | 705<br><0.2          | 687<br><0.2          | -                  | -                 | -                  |
|                                 | Chlorine - Total Residual Nitrogen (Total)                         | mg/L<br>mg/L                 | 0.2<br>0.1      |                     | -                   | -                  |                    | <0.2<br>6.3          | <0.2<br>6.2        | <0.2<br>5.6          | <0.2<br>5.9          | <0.2                 | -                  | -                 | -                  |
|                                 | Sulfate as SO4                                                     | mg/L                         | 1               | -                   | -                   | -                  | -                  | <1                   | <1                 | <1                   | <10                  | <1                   | -                  | -                 | -                  |
|                                 | Sulphate as SO4 <sup>b</sup> Total Phosphorus                      | mg/L<br>mg/L                 | 0.01            | -                   | -                   | -                  | -                  | 2<br>2.55            | 2.46               | 1.78                 | <1<br>1.79           | 0.12                 | -                  | -                 | -                  |
| l ab abusisal                   | Total Phosphorus <sup>b</sup> Electrical conductivity              | mg/L                         | 0.05            | -                   | -                   | -                  | -                  | 3.1<br>7670          | 2.8<br>7410        | - 7670               | 2.2<br>7140          | 7190                 | -                  | - 44 200          | -                  |
| Lab physical<br>parameters      | pH (Lab) <sup>c</sup>                                              | μS/cm<br>pH units            | 0.01            | - :                 | -                   | -                  | -                  | 8.47                 | 8.61               | 7670<br>8.94         | 8.65                 | 8.42                 | 12,200             | 11,200            | -                  |
|                                 | TDS<br>TSS                                                         | mg/L<br>mg/L                 | 10<br>5         | - :                 | -                   | -                  | -                  | 4610<br>22           | 3920<br>29         | 4100<br>75           | 4430<br>20           | 4440<br>7            | -                  | -                 | -                  |
| Major/minor ions                | Bicarbonate Alkalinity-mg CaCO3/L                                  | mg/L                         | 1               |                     | -                   | -                  | -                  | 3380                 | 3000               | 3250                 | 3700                 | 3280                 | -                  | -                 | -                  |
|                                 | Carbonate Alkalinity-mg CaCO3/L<br>Alkalinity (Hydroxide) as CaCO3 | mg/L<br>mg/L                 | 1               | -                   | -                   | -                  |                    | 150<br><1            | 200<br><1          | 350<br><1            | 300<br><1            | 100<br><1            | -                  | -                 | -                  |
|                                 | Alkalinity (total) as CaCO3 Calcium                                | mg/L<br>mg/L                 | 1               | -                   | -                   | -                  |                    | 3520<br>11           | 3200<br>10         | 3600<br><10          | 4000<br>10           | 3380<br>12           | -                  | -                 | -                  |
|                                 | Magnesium                                                          | mg/L                         | 1               |                     | -                   | -                  |                    | 2                    | 2                  | <10                  | 2                    | 2                    | -                  | -                 | -                  |
|                                 | Potassium<br>Sodium                                                | mg/L<br>mg/L                 | 1               | - :                 | -                   | -                  | -                  | 11<br>1880           | 11<br>1990         | 12<br>1960           | 13<br>2160           | 13<br>1860           | -                  | -                 | -                  |
|                                 | Fluoride<br>Reactive Silica                                        | mg/L<br>mg/L                 | 0.1<br>0.05     | -                   | -                   | -                  | -                  | 2.2<br>29            | 3<br>25            | 2.5<br>24.6          | 2.4<br>23.5          | 2.6<br>26.9          | -                  | -                 | -                  |
|                                 | Bromine<br>Ionic Balance                                           | mg/L<br>%                    | 0.1<br>0.01     |                     | -                   | -                  | -                  | 1.9<br>1.12          | 1.6<br>4.32        | 1.9<br>1.02          | 1.9<br>2.55          | 1.3                  | -                  | -                 | -                  |
| Nutrients                       | Ammonia as N                                                       | mg/L                         | 0.01            | -                   | -                   | -                  | -                  | 4                    | 4.28               | 4.46                 | 4.38                 | 0.02                 | -                  | -                 | -                  |
|                                 | Ammonium as N<br>Nitrate (as N)                                    | mg/L<br>mg/L                 | 0.01<br>0.01    |                     | -                   | -                  | -                  | 3.84<br>0.01         | 3.97<br>0.02       | 4.01<br><0.01        | 4.3<br>0.01          | 0.02<br>0.03         | -                  | -                 | -                  |
|                                 | Nitrite (as N)                                                     | mg/L                         | 0.01            |                     | -                   | -                  | -                  | <0.01                | <0.01              | <0.01                | <0.01                | <0.01                | -                  |                   | -                  |
|                                 | Nitrite + Nitrate as N<br>Kjeldahl Nitrogen Total                  | mg/L<br>mg/L                 | 0.01            | -                   | -                   | -                  | -                  | 0.01<br>6.3          | 0.02<br>6.2        | <0.01<br>5.6         | 0.01<br>5.9          | 0.03                 | -                  | -                 | -                  |
|                                 | Reactive Phosphorus as P Total Organic Carbon                      | mg/L<br>mg/L                 | 0.01            | •                   | -                   | -                  |                    | 0.6<br>81            | 0.16               | 0.12                 | 0.14                 | 0.14                 | -                  |                   | -                  |
| Dianchia                        | Nonpurgeable Organic Carbon <sup>d</sup>                           | mg/L                         | 1               |                     | -                   | -                  |                    | -                    | 26                 | 25                   |                      | 22                   | -                  | -                 | -                  |
| Dissolved gas Dissolved metals  | Methane<br>Aluminium                                               | mg/L<br>mg/L                 | 0.01            | -                   | -                   | -                  | -                  | 5.56<br><0.01        | 21.3<br>0.01       | 8.33<br><0.1         | 1.14<br><0.01        | 26.4<br>0.02         | -                  | -                 | -                  |
|                                 | Antimony<br>Arsenic                                                | mg/L<br>mg/L                 | 0.001<br>0.001  |                     | -                   | -                  |                    | <0.001<br>0.004      | <0.001<br>0.004    | <0.01<br><0.01       | <0.001<br>0.006      | <0.001<br>0.004      | -                  | -                 | -                  |
|                                 | Barium                                                             | mg/L                         | 0.001           | -                   | -                   | -                  | -                  | 2.64                 | 3.06               | 2.76                 | 3.34                 | 3.69                 | -                  | -                 | -                  |
|                                 | Berryllium<br>Cadmium                                              | mg/L<br>mg/L                 | 0.001<br>0.0001 | -                   | -                   | -                  |                    | <0.001<br><0.0001    | <0.001<br><0.0001  | <0.01<br><0.001      | <0.001<br><0.0001    | <0.001<br><0.0001    | -                  | -                 | -                  |
|                                 | Chromium<br>Cobalt                                                 | mg/L<br>mg/L                 | 0.001<br>0.001  | - :                 | -                   | -                  |                    | 0.001<br><0.001      | 0.002<br><0.001    | <0.01<br><0.01       | 0.001<br><0.001      | 0.002<br><0.001      | -                  | -                 | -                  |
|                                 | Copper                                                             | mg/L                         | 0.001           |                     | -                   | -                  |                    | 0.003                | 0.001              | <0.01                | <0.001               | <0.001               | -                  | -                 | -                  |
|                                 | Iron<br>Lead                                                       | mg/L<br>mg/L                 | 0.05<br>0.001   | -                   | -                   | -                  |                    | 0.12<br><0.001       | 1.4<br><0.001      | 0.34<br><0.01        | 0.53<br><0.001       | 0.74<br><0.001       | -                  | -                 | -                  |
|                                 | Vanadium<br>Zinc                                                   | mg/L<br>mg/L                 | 0.01<br>0.005   | - :                 | -                   | -                  |                    | <0.01<br><0.005      | <0.01<br><0.005    | <0.1<br><0.05        | <0.01<br><0.005      | <0.01<br><0.005      | -                  | -                 | -                  |
|                                 | Manganese                                                          | mg/L                         | 0.001           | -                   | -                   | -                  | -                  | 0.006                | 0.01               | <0.01                | 0.01                 | 0.009                | -                  | -                 | -                  |
|                                 | Mercury<br>Molybdenum                                              | mg/L<br>mg/L                 | 0.0001<br>0.001 | - :                 | -                   | -                  | -                  | <0.0001<br>0.009     | <0.0001<br>0.008   | <0.0001<br>0.011     | <0.0001<br>0.017     | <0.0001<br>0.004     | -                  | -                 | -                  |
|                                 | Nickel<br>Selenium                                                 | mg/L<br>mg/L                 | 0.001<br>0.01   |                     | -                   |                    |                    | 0.002<br><0.01       | 0.001<br><0.01     | <0.01<br><0.1        | 0.002<br><0.01       | 0.002<br><0.01       | -                  |                   | -                  |
|                                 | Strontium                                                          | mg/L                         | 0.001           | •                   | -                   |                    |                    | 2.47                 | 2.12               | 1.89                 | 2.4                  | 2.45                 | -                  |                   |                    |
|                                 | Tin<br>Uranium                                                     | mg/L<br>mg/L                 | 0.001           | - :                 | -                   | -                  |                    | <0.001<br><0.001     | <0.001<br><0.001   | <0.01                | <0.001               | <0.001<br><0.001     | -                  | -                 |                    |
| Oil and Grease<br>Phenolic      | Oil and Grease<br>2,4,5-trichlorophenol                            | mg/L<br>μg/L                 | 5<br>1          |                     | -                   | -                  |                    | <5<br><1             | <5<br><1           | <5<br><1             | <5<br><1             | <5<br><1             | -                  | -                 | -                  |
| compounds                       | 2.4.6-Trichlorophenol                                              | μg/L                         | 1               |                     | -                   | -                  | -                  | <1                   | <1                 | <1                   | <1                   | <1                   | -                  | -                 | -                  |
|                                 | 2,4-dichlorophenol<br>2,4-dimethylphenol                           | μg/L<br>μg/L                 | 1               |                     | -                   | -                  |                    | <1<br>1.8            | <1<br>1.3          | <1<br><1             | <1<br><1             | <1<br><1             | -                  | -                 | -                  |
|                                 | 2,6-dichlorophenol 2-chlorophenol                                  | μg/L<br>μg/L                 | 1               | - :                 | -                   |                    |                    | <1<br><1             | <1<br><1           | <1<br><1             | <1<br><1             | <1<br><1             | -                  |                   | -                  |
|                                 | 2-methylphenol                                                     | μg/L                         | 1               |                     | -                   | -                  |                    | 5.4                  | 4.7                | <1                   | 3.6                  | <1                   | -                  | -                 | -                  |
|                                 | 2-nitrophenol 3-&4-methylphenol                                    | μg/L<br>μg/L                 | 2               | -                   | -                   | -                  | -                  | <1<br>62.5           | <1<br>72.6         | <1<br>20.8           | <1<br><2             | <1<br>26.3           | -                  | -                 | -                  |
|                                 | 4-chloro-3-methylphenol Pentachlorophenol                          | μg/L<br>μg/L                 | 1 2             | -                   | -                   | -                  |                    | <1<br><2             | <1<br><2           | <1<br><2             | <1<br><2             | <1<br><2             | -                  | -                 | -                  |
| PAH                             | Phenol Acenaphthene                                                | μg/L                         | 1               | -                   | -                   | -                  | -                  | 1.1                  | <1<br><1           | <1<br><1             | <1<br><1             | <1<br><1             | -                  | -                 | -                  |
| 1 711                           | Acenaphthylene                                                     | μg/L<br>μg/L                 | 1               |                     | -                   | -                  | -                  | <1                   | <1                 | <1                   | <1                   | <1                   | -                  | -                 | -                  |
|                                 | Anthracene<br>Benz(a)anthracene                                    | μg/L<br>μg/L                 | 1               | -                   | -                   | -                  | -                  | <1<br><1             | <1<br><1           | <1<br><1             | <1<br><1             | <1<br><1             | -                  | -                 | -                  |
|                                 | Benzo(a) pyrene Benzo(b&j)fluoranthene                             | μg/L<br>μg/L                 | 0.5<br>1        | -                   | -                   | -                  |                    | <0.5<br><1           | <0.5<br><1         | <0.5<br><1           | <0.5<br><1           | <0.5<br><1           | -                  | -                 | -                  |
|                                 | Benzo(g,h,i)perylene                                               | μg/L                         | 1               |                     | -                   | -                  |                    | <1                   | <1                 | <1                   | <1                   | <1                   | -                  | -                 | -                  |
|                                 | Benzo(k)fluoranthene Benzo(a)pyrene TEQ (zero)                     | μg/L<br>μg/L                 | 0.5             | - :                 | -                   | -                  | -                  | <1<br><0.5           | <1<br><0.5         | <1<br><0.5           | <1<br><0.5           | <1<br><0.5           | -                  | -                 | -                  |
|                                 | Chrysene Dibenz(a,h)anthracene                                     | μg/L<br>μg/L                 | 1               | -                   | -                   | -                  | -                  | <1<br><1             | <1<br><1           | <1<br><1             | <1<br><1             | <1<br><1             | -                  | -                 | -                  |
|                                 | Fluoranthene                                                       | μg/L                         | 1               | -                   | -                   | -                  |                    | <1                   | <1                 | <1                   | <1                   | <1                   | -                  | -                 | -                  |
|                                 | Fluorene<br>Indeno(1,2,3-c,d)pyrene                                | μg/L<br>μg/L                 | 1               |                     | -                   | -                  | -                  | <1<br><1             | <1<br><1           | <1<br><1             | <1<br><1             | <1<br><1             | -                  | -                 | -                  |
|                                 | Naphthalene (Method analysis EP075(SIM)B) Phenanthrene             | μg/L<br>μg/L                 | 1               | -                   | -                   | -                  | -                  | <1<br><1             | <1<br><1           | <1<br><1             | <1<br><1             | <1<br><1             | -                  | -                 | -                  |
|                                 | Pyrene                                                             | μg/L                         | 1               |                     | -                   | -                  |                    | <1                   | <1                 | <1                   | <1                   | <1                   | -                  |                   | -                  |
| TRH                             | TPH C6-C10                                                         | rene                         | <0.5<br>180     | -                   | -                   | -                  |                    |                      |                    |                      |                      |                      |                    |                   |                    |
|                                 | C6 - C10 Fraction minus BTEX (F1)<br>C10 - C16 Fraction            |                              |                 |                     |                     |                    |                    |                      |                    | 70<br><100           | -                    | -                    | -                  |                   |                    |
|                                 | C16 - C34 Fraction<br>C34 - C40 Fraction                           | μg/L                         | 100             | -                   | -                   | -                  | •                  | <100<br><100<br><100 | <100<br><100       | <100<br><100<br><100 | <100<br><100<br><100 | <100<br><100<br><100 | -                  | -                 | -                  |
|                                 | C10 - C40 Fraction (Sum)                                           | μg/L<br>μg/L                 | 100             | -                   | -                   | -                  | -                  | <100                 | <100               | <100                 | <100                 | <100                 | -                  | -                 | -                  |
| TPH                             | TRH >C10-C16 less Naphthalene (F2) C6 - C9 Fraction                | μg/L<br>μg/L                 | 100<br>20       | -                   | -                   | -                  | -                  | <100<br>200          | <100<br>140        | <100<br>100          | <100<br>60           | <100<br>180          | -                  | -                 | -                  |
| IPH                             | C10 - C14 Fraction<br>C15 - C28 Fraction                           | μg/L                         | 50<br>100       | -                   | -                   | -                  | -                  | <50<br><100          | 110                | <50<br><100          | <50<br><100          | <50<br><100          | -                  | -                 | -                  |
| I                               | C29-C36 Fraction                                                   | μg/L<br>μg/L                 | 50              | -                   | -                   | -                  | -                  | <50                  | <50                | <50                  | <50                  | <50                  | -                  | -                 | -                  |
|                                 | +C10 - C36 (Sum of total)                                          | μg/L<br>μg/L                 | 50<br>1         | -<br>65             | -<br>71             | -<br>68            | -<br>65            | <50<br>68            | 110<br>37          | <50<br>40            | <50<br>26            | <50<br>48            | -<br>159           | -<br>142          | -<br>163           |
| ВТЕХ                            | Benzene                                                            | µu/L                         |                 |                     | 72                  | 70                 | 63                 | 62                   | 32                 | 34                   | 25                   | 49                   | 172                | 180               | 186<br>4           |
| ВТЕХ                            | Benzene<br>Toluene                                                 | μg/L                         | 2               | 58                  |                     | -0                 | -2                 | -2                   | -2                 | -0                   | -0                   |                      | 7                  | 1                 |                    |
| втех                            | Benzene<br>Toluene<br>Ethylbenzene<br>Xylene (m & p)               | μg/L<br>μg/L<br>μg/L         | 2               | <2<br>14            | <2<br>12            | <2<br>17           | <2<br>16           | <2<br>15             | <2<br>7            | <2<br>5              | <2<br>5              | <2<br>9              | 28                 | 4                 | 49                 |
| ВТЕХ                            | Benzene<br>Toluene<br>Ethylbenzene                                 | μg/L<br>μg/L                 | 2               | <2                  | <2                  |                    |                    |                      | _                  |                      |                      |                      |                    |                   |                    |
| ВТЕХ                            | Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o)             | µg/L<br>µg/L<br>µg/L<br>µg/L | 2<br>2<br>2     | <2<br>14<br>3       | <2<br>12<br>3       | 17<br>4            | 16<br>3            | 15<br>4              | 7<br><2            | 5<br><2              | 5<br><2              | 9<br><2              | 28<br>8            | 44<br>11          | 49<br>11           |

- not analysed
  a All data is from ALS results unless otherwise stated.
  b Analysed by Envirolab.
  c Laboratory readings of pH (lab) is outside of the holding time, therefore field measurements of pH should be relied upon for accuracy.
  d NPOC analysis was carried out instead of TOC due to high inorganic carbon content

Table D.2 AST2 and Pilot wells cont.

| Committee of the                | Analyte <sup>a</sup>                                               | Units                      | LOR                | WK14                    | WK14                    | WK14               | WK14                    | WK14                    | WK14                    | WK14                    | WK14                | WK14                    | WK14                    | WK14                    | WK14                |
|---------------------------------|--------------------------------------------------------------------|----------------------------|--------------------|-------------------------|-------------------------|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------|-------------------------|-------------------------|-------------------------|---------------------|
| Sample date<br>Field parameters | Temperature                                                        | °C                         |                    | 4/07/2015<br>11.53      | 6/07/2015<br>21.88      | 7/07/2015<br>11.18 | 8/07/2015<br>13.74      | 9/07/2015               | 10/07/2015              | 15/07/2015<br>12.24     | 16/07/2015<br>10.97 | 18/07/2015<br>13.06     | 22/07/2015              | 15.58                   | 28/07/2015<br>12.05 |
|                                 | Electrical conductivity pH                                         | uS/cm<br>pH units          |                    | 10,160<br>7.22          | 10,321<br>7.16          | 9863<br>7.12       | 10,337<br>7.25          | 12,003<br>7.44          | 10,229<br>7.57          | 9975<br>7.64            | 10,961<br>7.21      | 11,290<br>7.57          | 11,015<br>7.52          | 11,060<br>7.44          | 11,071<br>7.43      |
|                                 | TDS<br>DO %                                                        | mg/L<br>%                  |                    | 6606<br>25.9            | 6709<br>34.7            | 6418<br>30.5       | 6718<br>27.5            | 7802<br>122.2           | 6652<br>16.4            | 6474<br>26              | 7124<br>42.1        | 7339<br>19.1            | 7159<br>19.3            | 7193<br>37.4            | 7196<br>21.4        |
|                                 | DO mg/L                                                            | mg/L                       |                    | 2.71                    | 2.96                    | 3.22               | 2.74                    | 13.03                   | 1.78                    | 2.68                    | 4.45                | 1.92                    | 1.99                    | 3.54                    | 2.21                |
|                                 | Redox<br>Chlorine Free                                             | mV<br>mg/L                 |                    | -128.1<br>0.09          | -142<br>0.04            | 141.7<br>0         | -151.7<br>0             | -132.8<br>0.04          | -144<br>0.06            | -125.3<br>0.09          | -107.8<br>0.01      | -122.5<br>0.08          | -121.4<br>0.04          | -141<br>0.1             | -138.9<br>0.04      |
| Key analytes                    | Chlorine Total Ethanolamine                                        | mg/L<br>μg/L               | 1                  | 0.16                    | -                       | -                  | 0<br><1                 | -                       | 0.13                    | 0.06<br>50              | 0.07                | 0.05                    | 0.09<br>26              | -                       | 0.01                |
|                                 | Diethanolamine<br>THPS <sup>b</sup>                                | μg/L<br>μg/L               | 1<br>50            | -                       | -                       | -                  | <1<br><50               | -                       | -                       | <1<br><50               | -                   | -                       | 10<br><50               | -                       | -                   |
|                                 | Boron                                                              | mg/L                       | 0.05               |                         | -                       | -                  | 4.69                    | -                       | -                       | 2.87                    | -                   | -                       | 4.18                    | -                       | -                   |
|                                 | Chloride (Method analysis ED009) Chloride (Method analysis ED045)  | mg/L<br>mg/L               | 0.1                |                         | -                       | -                  | 1240<br>1170            | -                       | -                       | 1230<br>886             | -                   | -                       | 1850<br>1280            | -                       | -                   |
|                                 | Chlorine - Free<br>Chlorine - Total Residual                       | mg/L<br>mg/L               | 0.2                | -                       | -                       | -                  | <0.2<br><0.2            | -                       | -                       | <0.2<br><0.2            | -                   | -                       | <0.2<br><0.2            | -                       | -                   |
|                                 | Nitrogen (Total) Sulfate as SO4                                    | mg/L<br>mg/L               | 0.1                | -                       | -                       | -                  | 5.3<br><1               | -                       | -                       | 5.8<br><10              | -                   | -                       | 6.6<br><10              | -                       | -                   |
|                                 | Sulphate as SO4 <sup>b</sup>                                       | mg/L                       | 1                  |                         | -                       | -                  | <1                      | -                       | -                       | <1                      | -                   | -                       | <1                      | -                       | -                   |
|                                 | Total Phosphorus<br>Total Phosphorus <sup>b</sup>                  | mg/L<br>mg/L               | 0.01<br>0.05       | -                       | -                       | -                  | 2<br>2.4                | -                       | -                       | 2.07<br>2.2             | -                   | -                       | 1.96                    | -                       | -                   |
| Lab physical parameters         | Electrical conductivity pH (Lab) <sup>c</sup>                      | μS/cm<br>pH units          | 0.01               |                         | -                       | -                  | 10,600<br>7.74          | -                       | -                       | 10,400<br>7.96          | -                   | -                       | 11,700<br>7.7           | -                       | -                   |
|                                 | TDS<br>TSS                                                         | mg/L<br>mg/L               | 10<br>5            | - :                     | -                       | -                  | 6840<br>7               | -                       | -                       | 6520<br>11              |                     | -                       | 7190<br>10              | -                       | -                   |
| Major/minor ions                | Bicarbonate Alkalinity-mg CaCO3/L                                  | mg/L                       | 1                  | -                       | -                       | -                  | 4360                    | -                       | -                       | 4540                    | -                   | -                       | 4200                    | -                       | -                   |
|                                 | Carbonate Alkalinity-mg CaCO3/L<br>Alkalinity (Hydroxide) as CaCO3 | mg/L<br>mg/L               | 1                  |                         | -                       | -                  | <1<br><1                | -                       | -                       | <1<br><1                | -                   | -                       | <1<br><1                | -                       | -                   |
|                                 | Alkalinity (total) as CaCO3 Calcium                                | mg/L<br>mg/L               | 1                  | -                       | -                       | -                  | 4360<br>39              | -                       | -                       | 4540<br>21              | -                   | -                       | 4200<br>46              | -                       | -                   |
|                                 | Magnesium<br>Potassium                                             | mg/L<br>mg/L               | 1                  | -                       | -                       | -                  | 9 22                    | -                       | -                       | 7                       |                     | -                       | 10                      | -                       | -                   |
|                                 | Sodium                                                             | mg/L                       | 1                  | -                       | -                       | -                  | 2540                    | -                       | -                       | 2090                    | -                   | -                       | 2800                    | -                       | -                   |
|                                 | Fluoride<br>Reactive Silica                                        | mg/L<br>mg/L               | 0.1<br>0.05        | -                       | -                       | -                  | 1<br>32.5               | -                       | -                       | 1.1<br>30.2             | -                   | -                       | 1<br>39.2               | -                       | -                   |
|                                 | Bromine<br>Ionic Balance                                           | mg/L<br>%                  | 0.1<br>0.01        |                         | -                       | -                  | <1<br>2.78              | -                       | -                       | 0.6                     |                     | -                       | 4.2<br>2.1              | -                       | -                   |
| Nutrients                       | Ammonia as N<br>Ammonium as N                                      | mg/L<br>mg/L               | 0.01               | -                       | -                       | -                  | 4.19<br>4.17            | -                       | -                       | 4.82<br>4.77            |                     | -                       | 4.57<br>4.54            | -                       | -                   |
|                                 | Nitrate (as N)                                                     | mg/L                       | 0.01               |                         | -                       | -                  | <0.01                   | -                       | -                       | 0.03                    |                     | -                       | <0.01                   | -                       |                     |
|                                 | Nitrite (as N) Nitrite + Nitrate as N                              | mg/L<br>mg/L               | 0.01               | -                       | -                       | -                  | 0.04<br>0.01            | -                       | -                       | 0.02<br>0.05            |                     | -                       | <0.01<br><0.01          | -                       | -                   |
|                                 | Kjeldahl Nitrogen Total<br>Reactive Phosphorus as P                | mg/L<br>mg/L               | 0.1<br>0.01        |                         | -                       | -                  | 5.3<br>0.99             | -                       | -                       | 5.7<br>0.17             |                     | -                       | 6.6<br>0.06             | -                       | -                   |
|                                 | Total Organic Carbon  Nonpurgeable Organic Carbon <sup>d</sup>     | mg/L<br>mg/L               | 1                  | -                       | -                       | -                  | 594                     | -                       | -                       | - 66                    |                     | -                       | 8                       | -                       | -                   |
| Dissolved gas                   | Methane                                                            | mg/L                       | 0.01               | -                       | -                       | -                  | 26.5                    | -                       | -                       | 14.3                    | -                   | -                       | 22.8                    | -                       | -                   |
| Dissolved metals                | Aluminium<br>Antimony                                              | mg/L<br>mg/L               | 0.01<br>0.001      | -                       | -                       | -                  | <0.1<br><0.01           | -                       | -                       | <0.01<br>0.002          | -                   | -                       | <0.1<br><0.01           | -                       | -                   |
|                                 | Arsenic<br>Barium                                                  | mg/L<br>mg/L               | 0.001<br>0.001     |                         | -                       | -                  | <0.01<br>2.11           | -                       | -                       | 0.008<br>3.59           |                     | -                       | <0.01<br>6.53           | -                       | -                   |
|                                 | Berryllium                                                         | mg/L                       | 0.001              | -                       | -                       | -                  | <0.01                   | -                       | -                       | <0.001                  | -                   | -                       | <0.01                   | -                       | -                   |
|                                 | Cadmium<br>Chromium                                                | mg/L<br>mg/L               | 0.0001             | - :                     | -                       | -                  | <0.001<br><0.01         | -                       | -                       | <0.0001<br><0.001       | -                   | -                       | <0.001<br>0.05          |                         | -                   |
|                                 | Cobalt<br>Copper                                                   | mg/L<br>mg/L               | 0.001<br>0.001     | -                       | -                       | -                  | <0.01<br><0.01          | -                       | -                       | <0.001<br>0.002         | -                   | -                       | <0.01<br><0.01          | -                       | -                   |
|                                 | Iron<br>Lead                                                       | mg/L<br>mg/L               | 0.05<br>0.001      | - :                     | -                       | -                  | <0.5<br><0.01           | -                       | -                       | <0.05<br><0.001         |                     | -                       | 5.04<br><0.01           | -                       | -                   |
|                                 | Vanadium<br>Zinc                                                   | mg/L<br>mg/L               | 0.01               | -                       | -                       | -                  | <0.1<br><0.05           | -                       | -                       | <0.01<br><0.005         |                     | -                       | <0.1<br><0.05           | -                       | -                   |
|                                 | Manganese                                                          | mg/L                       | 0.001              |                         | -                       | -                  | 0.018                   | -                       | -                       | 0.008                   |                     | -                       | 0.048                   | -                       | -                   |
|                                 | Mercury<br>Molybdenum                                              | mg/L<br>mg/L               | 0.0001<br>0.001    | -                       | -                       | -                  | <0.0001<br><0.01        | -                       | -                       | <0.0001<br>0.004        | -                   | -                       | <0.0001<br><0.01        | -                       | -                   |
|                                 | Nickel<br>Selenium                                                 | mg/L<br>mg/L               | 0.001<br>0.01      | -                       | -                       | -                  | <0.01<br><0.1           | -                       | -                       | <0.001<br><0.01         | -                   | -                       | <0.01<br><0.1           | -                       | -                   |
|                                 | Strontium<br>Tin                                                   | mg/L<br>mg/L               | 0.001<br>0.001     |                         | -                       | -                  | 2.11<br><0.01           | -                       | -                       | 3.41<br><0.001          |                     | -                       | 4.96<br><0.01           | -                       | -                   |
| Oil and Grease                  | Uranium                                                            | mg/L                       | 0.001              | -                       | -                       | -                  | <0.01                   | -                       | -                       | <0.001                  | -                   | -                       | <0.01                   | -                       | -                   |
| Phenolic                        | Oil and Grease<br>2,4,5-trichlorophenol                            | mg/L<br>μg/L               | 5<br>1             | -                       | -                       | -                  | <1                      | -                       | -                       | <5<br><1                | -                   | -                       | 10<br><1                | -                       | -                   |
| compounds                       | 2.4.6-Trichlorophenol 2,4-dichlorophenol                           | μg/L<br>μg/L               | 1                  | -                       | -                       | -                  | <1<br><1                | -                       | -                       | <1<br><1                | -                   | -                       | <1<br><1                | -                       | -                   |
|                                 | 2,4-dimethylphenol<br>2,6-dichlorophenol                           | μg/L<br>μg/L               | 1                  | -                       | -                       | -                  | <1<br><1                | -                       | -                       | <1<br><1                | -                   | -                       | <1<br><1                | -                       | -                   |
|                                 | 2-chlorophenol 2-methylphenol                                      | μg/L                       | 1                  | -                       | -                       | -                  | <1<br>1.4               | -                       | -                       | <1<br>1.4               | -                   | -                       | <1<br>1.6               | -                       | -                   |
|                                 | 2-nitrophenol                                                      | μg/L<br>μg/L               | 1                  | -                       | -                       | -                  | <1                      | -                       | -                       | <1                      | -                   | -                       | <1                      | -                       | -                   |
|                                 | 3-&4-methylphenol 4-chloro-3-methylphenol                          | μg/L<br>μg/L               | 1                  | -                       | -                       | -                  | 40.9<br><1              | -                       | -                       | 214<br><1               | -                   | -                       | 66.5<br><1              | -                       | -                   |
| L                               | Pentachlorophenol<br>Phenol                                        | μg/L<br>μg/L               | 2                  | -                       | -                       | -                  | <2<br>1.9               | -                       | -                       | <2<br>2.3               | -                   | -                       | <2<br>2.5               | -                       | -                   |
| PAH                             | Acenaphthene<br>Acenaphthylene                                     | μg/L<br>μg/L               | 1                  | -                       | -                       | -                  | <1<br><1                | -                       | -                       | <1<br><1                | -                   | -                       | <1<br><1                | -                       | -                   |
|                                 | Anthracene                                                         | μg/L                       | 1                  |                         | -                       | -                  | <1                      | -                       | -                       | <1                      |                     | -                       | <1                      | -                       | -                   |
|                                 | Benz(a)anthracene<br>Benzo(a) pyrene                               | μg/L<br>μg/L               | 0.5                | - :                     | -                       | -                  | <1<br><0.5              | -                       | -                       | <1<br><0.5              | -                   | -                       | <1<br><0.5              | -                       | -                   |
|                                 | Benzo(b&j)fluoranthene Benzo(g,h,i)perylene                        | μg/L<br>μg/L               | 1                  |                         | -                       | -                  | <1<br><1                | -                       | -                       | <1<br><1                |                     | -                       | <1<br><1                | -                       | -                   |
|                                 | Benzo(k)fluoranthene Benzo(a)pyrene TEQ (zero)                     | μg/L<br>μg/L               | 1 0.5              | -                       | -                       | -                  | <1<br><0.5              | -                       | -                       | <1<br><0.5              |                     | -                       | <1<br><0.5              | -                       | -                   |
|                                 | Chrysene                                                           | μg/L                       | 1                  | -                       | -                       | -                  | <1                      | -                       | -                       | <1                      | -                   | -                       | <1                      | -                       | -                   |
|                                 | Dibenz(a,h)anthracene Fluoranthene                                 | μg/L<br>μg/L               | 1                  | -                       | -                       | -                  | <1<br><1                | -                       | -                       | <1<br><1                | -                   | -                       | <1<br><1                | -                       | -                   |
|                                 | Fluorene<br>Indeno(1,2,3-c,d)pyrene                                | μg/L<br>μg/L               | 1                  | -                       | -                       | -                  | <1<br><1                | -                       | -                       | <1<br><1                |                     | -                       | <1<br><1                | -                       | -                   |
|                                 | Naphthalene (Method analysis EP075(SIM)B) Phenanthrene             | μg/L<br>μg/L               | 1                  | -                       | -                       | -                  | <1<br><1                | -                       | -                       | <1<br><1                | -                   | -                       | <1                      | -                       | -                   |
|                                 | Pyrene                                                             | μg/L                       | 1                  |                         | -                       | -                  | <1                      | -                       | -                       | <1                      |                     | -                       | <1                      | -                       | -                   |
| TRH                             | TPH C6-C10                                                         | omatic hydrocarbons EPA448 | -                  | <0.5<br>230             | -                       | -                  | <0.5<br>220             | -                       | -                       |                         |                     |                         |                         |                         |                     |
|                                 | C6 - C10 Fraction minus BTEX (F1)<br>C10 - C16 Fraction            | μg/L<br>μg/L               | 20<br>100          | -                       | -                       | -                  | 100<br><100             | -                       | -                       | 90<br>110               | -                   | -                       | 60<br><100              | -                       | -                   |
|                                 | C16 - C34 Fraction<br>C34 - C40 Fraction                           | μg/L<br>μg/L               | 100<br>100         | -                       | -                       | -                  | <100<br><100            | -                       | -                       | 300<br><100             | -                   | -                       | <100<br><100            | -                       | -                   |
|                                 | C10 - C40 Fraction (Sum)                                           | μg/L                       | 100                | -                       | -                       | -                  | <100                    | -                       | -                       | 410                     | -                   | -                       | <100                    | -                       | -                   |
| TPH                             | TRH >C10-C16 less Naphthalene (F2) C6 - C9 Fraction                | μg/L<br>μg/L               | 100<br>20          | -                       | -                       | -                  | <100<br>380             | -                       | -                       | 110<br>230              | -                   | -                       | <100<br>220             | -                       | -                   |
|                                 | C10 - C14 Fraction<br>C15 - C28 Fraction                           | μg/L<br>μg/L               | 50<br>100          | -                       | -                       | -                  | <50<br><100             | -                       | -                       | 120<br>220              |                     | -                       | <50<br><100             | -                       | -                   |
|                                 | C29-C36 Fraction<br>+C10 - C36 (Sum of total)                      | μg/L<br>μg/L               | 50<br>50           | -                       | -                       | -                  | <50<br><50              | -                       | -                       | 120<br>460              | -                   | -                       | <50<br><50              | -                       | -                   |
| ВТЕХ                            | Benzene                                                            | μg/L                       | 1                  | 165                     | 133                     | 144                | 137                     | 75                      | 63                      | 42                      | 113                 | 94                      | 85                      | 59                      | 55                  |
|                                 | Toluene<br>Ethylbenzene                                            | μg/L<br>μg/L               | 2                  | 177<br>3                | 134<br>3                | 144<br>3           | 146<br>3                | 89<br>2                 | 77<br>2                 | 49<br><2                | 90<br><2            | 102                     | 80<br><2                | 55<br><2                | 46<br><2            |
|                                 | Xylene (m & p)<br>Xylene (o)                                       | μg/L<br>μg/L               | 2                  | 46<br>10                | 36<br>8                 | 36<br>8            | 38<br>8                 | 24<br>6                 | 26<br>6                 | 19<br>4                 | 15<br>4             | 20<br>5                 | 18<br>5                 | 14                      | 11<br>3             |
|                                 | 7tylono (0)                                                        |                            |                    |                         |                         |                    |                         |                         |                         |                         |                     |                         |                         |                         | 14                  |
|                                 | Xylene Total                                                       | μg/L                       | 2                  | 56<br>401               | 44<br>314               | 44<br>335          | 46<br>332               | 30<br>196               | 32<br>174               | 23<br>114               | 19<br>222           | 25<br>221               | 23<br>188               | 17<br>131               |                     |
| Micro                           |                                                                    |                            | 2<br>1<br>5<br>100 | 56<br>401<br><5<br><100 | 44<br>314<br><5<br><100 | 335<br><5<br><100  | 46<br>332<br><5<br><100 | 30<br>196<br><5<br><100 | 32<br>174<br><5<br><100 | 23<br>114<br><5<br><100 | 222<br><5<br><100   | 25<br>221<br><5<br><100 | 23<br>188<br><5<br><100 | 17<br>131<br><5<br><100 | 115<br><5<br><100   |

- not analysed
  a All data is from ALS results unless otherwise stated.
  b Analysed by Envirolab.
  c Laboratory readings of pH (lab) is outside of the holding time, therefore field measurements of pH should be relied upon for accuracy.
  d NPOC analysis was carried out instead of TOC due to high inorganic carbon content


Table D.2 AST2 and Pilot wells cont.

| Sample date                | Analyte <sup>a</sup>                                               | Units                | LOR              | WK14<br>9/09/2015   | WK14<br>23/09/201 |
|----------------------------|--------------------------------------------------------------------|----------------------|------------------|---------------------|-------------------|
| ield parameters            | Temperature                                                        | °C                   |                  | 18.9                | 12.77             |
|                            | Electrical conductivity pH                                         | uS/cm<br>pH units    |                  | 11,846<br>7.86      | 12,270<br>7.03    |
|                            | TDS<br>DO %                                                        | mg/L<br>%            |                  | 7646<br>16.3        | 7973<br>27.3      |
|                            | DO mg/L                                                            | mg/L                 |                  | 1.44                | 2.76              |
|                            | Redox<br>Chlorine Free                                             | mV<br>mg/L           |                  | -89<br>0            | -80.8<br>0        |
| (av analytea               | Chlorine Total<br>Ethanolamine                                     | mg/L                 | 1                | 0<br>6              | 0.01<br>23        |
| Key analytes               | Diethanolamine                                                     | μg/L<br>μg/L         | 1                | 3                   | 10                |
|                            | THPS <sup>b</sup><br>Boron                                         | μg/L<br>mg/L         | 50<br>0.05       | 86<br>3.06          | 3.03              |
|                            | Chloride (Method analysis ED009)                                   | mg/L                 | 0.1              | 2090                | 2130              |
|                            | Chloride (Method analysis ED045) Chlorine - Free                   | mg/L<br>mg/L         | 0.2              | 2200<br><0.2        | 2130<br><0.2      |
|                            | Chlorine - Total Residual<br>Nitrogen (Total)                      | mg/L<br>mg/L         | 0.2<br>0.1       | <0.2<br>6.1         | <0.2<br>5.8       |
|                            | Sulfate as SO4                                                     | mg/L                 | 1                | <10                 | <1                |
|                            | Sulphate as SO4 <sup>b</sup> Total Phosphorus                      | mg/L<br>mg/L         | 0.01             | 8<br>1.52           | 1.43              |
|                            | Total Phosphorus <sup>b</sup>                                      | mg/L                 | 0.05             | 1.8                 | -                 |
| ab physical parameters     | Electrical conductivity pH (Lab) <sup>c</sup>                      | μS/cm<br>pH units    | 0.01             | 12,100<br>8.07      | 12,300<br>7.72    |
|                            | TDS<br>TSS                                                         | mg/L                 | 10               | 7610                | 8060              |
| //ajor/minor ions          | Bicarbonate Alkalinity-mg CaCO3/L                                  | mg/L<br>mg/L         | 5<br>1           | <5<br>4300          | 14<br>4480        |
|                            | Carbonate Alkalinity-mg CaCO3/L<br>Alkalinity (Hydroxide) as CaCO3 | mg/L<br>mg/L         | 1                | <1<br><1            | <1<br><1          |
|                            | Alkalinity (total) as CaCO3                                        | mg/L                 | 1                | 4300                | 4480              |
|                            | Calcium<br>Magnesium                                               | mg/L<br>mg/L         | 1                | 40<br>15            | 34<br>12          |
|                            | Potassium                                                          | mg/L                 | 1                | 23                  | 18                |
|                            | Sodium<br>Fluoride                                                 | mg/L<br>mg/L         | 0.1              | 3990<br>1.1         | 3150<br>0.9       |
|                            | Reactive Silica Bromine                                            | mg/L<br>mg/L         | 0.05<br>0.1      | 32.5<br>1.3         | 44.4<br>0.9       |
|                            | Ionic Balance                                                      | %                    | 0.01             | 8.99                | 3.3               |
| Nutrients                  | Ammonia as N<br>Ammonium as N                                      | mg/L<br>mg/L         | 0.01<br>0.01     | 5.08<br>4.95        | 4.94<br>4.86      |
|                            | Nitrate (as N)                                                     | mg/L                 | 0.01             | 0.01                | <1                |
|                            | Nitrite (as N)<br>Nitrite + Nitrate as N                           | mg/L<br>mg/L         | 0.01<br>0.01     | <0.01<br>0.01       | <1<br><1          |
|                            | Kjeldahl Nitrogen Total<br>Reactive Phosphorus as P                | mg/L<br>mg/L         | 0.1<br>0.01      | 6.1<br>0.16         | 5.8<br>0.07       |
|                            | Total Organic Carbon                                               | mg/L                 | 1                | <1                  | -                 |
| Dissolved gas              | Nonpurgeable Organic Carbon <sup>d</sup><br>Methane                | mg/L<br>mg/L         | 0.01             | 2.6                 | 11<br>23.8        |
| Dissolved metals           | Aluminium                                                          | mg/L                 | 0.01             | <0.01               | <0.01             |
|                            | Antimony<br>Arsenic                                                | mg/L<br>mg/L         | 0.001<br>0.001   | <0.001<br>0.007     | <0.001<br>0.004   |
|                            | Barium<br>Berryllium                                               | mg/L<br>mg/L         | 0.001<br>0.001   | 9.24 <0.001         | 7.5<br><0.001     |
|                            | Cadmium                                                            | mg/L                 | 0.0001           | <0.0001             | <0.0001           |
|                            | Chromium<br>Cobalt                                                 | mg/L<br>mg/L         | 0.001            | 0.01<br><0.001      | 0.006<br><0.001   |
|                            | Copper<br>Iron                                                     | mg/L<br>mg/L         | 0.001            | <0.001<br>2.99      | <0.001<br>2.97    |
|                            | Lead                                                               | mg/L                 | 0.001            | <0.001              | <0.001            |
|                            | Vanadium<br>Zinc                                                   | mg/L<br>mg/L         | 0.01<br>0.005    | <0.01<br>0.008      | <0.01<br><0.005   |
|                            | Manganese<br>Mercury                                               | mg/L<br>mg/L         | 0.001<br>0.0001  | 0.046<br><0.0001    | 0.035<br><0.0001  |
|                            | Molybdenum                                                         | mg/L                 | 0.001            | 0.011               | 0.008             |
|                            | Nickel<br>Selenium                                                 | mg/L<br>mg/L         | 0.001            | 0.002<br><0.01      | 0.002<br><0.01    |
|                            | Strontium                                                          | mg/L                 | 0.001            | 8.04                | 6.68              |
|                            | Tin<br>Uranium                                                     | mg/L<br>mg/L         | 0.001<br>0.001   | <0.001<br><0.001    | <0.001<br><0.001  |
| Dil and Grease<br>Phenolic | Oil and Grease<br>2,4,5-trichlorophenol                            | mg/L<br>μg/L         | 5<br>1           | <5<br><1            | <5<br><1          |
| compounds                  | 2.4.6-Trichlorophenol                                              | μg/L                 | 1                | <1                  | <1                |
|                            | 2,4-dichlorophenol 2,4-dimethylphenol                              | μg/L<br>μg/L         | 1                | <1<br><1            | <1<br><1          |
|                            | 2,6-dichlorophenol<br>2-chlorophenol                               | μg/L<br>μg/L         | 1                | <1<br><1            | <1<br><1          |
|                            | 2-methylphenol                                                     | μg/L                 | 1                | <1                  | <1                |
|                            | 2-nitrophenol 3-&4-methylphenol                                    | μg/L<br>μg/L         | 2                | <1<br><2            | <1<br>40.3        |
|                            | 4-chloro-3-methylphenol                                            | μg/L                 | 1                | <1                  | <1                |
|                            | Pentachlorophenol Phenol                                           | μg/L<br>μg/L         | 1                | <2<br><1            | <2<br><1          |
| PAH                        | Acenaphthene<br>Acenaphthylene                                     | μg/L<br>μg/L         | 1                | <1<br><1            | <1<br><1          |
|                            | Anthracene                                                         | μg/L                 | 1                | <1                  | <1                |
|                            | Benz(a)anthracene<br>Benzo(a) pyrene                               | μg/L<br>μg/L         | 0.5              | <1<br><0.5          | <1<br><0.5        |
|                            | Benzo(b&j)fluoranthene<br>Benzo(g,h,i)perylene                     | μg/L                 | 1                | <1<br><1            | <1<br><1          |
|                            | Benzo(k)fluoranthene                                               | μg/L<br>μg/L         | 1                | <1                  | <1                |
|                            | Benzo(a)pyrene TEQ (zero) Chrysene                                 | μg/L<br>μg/L         | 0.5              | <0.5<br><1          | <0.5<br><1        |
|                            | Dibenz(a,h)anthracene                                              | μg/L                 | 1                | <1                  | <1                |
|                            | Fluoranthene<br>Fluorene                                           | μg/L<br>μg/L         | 1                | <1<br><1            | <1<br><1          |
|                            | Indeno(1,2,3-c,d)pyrene Naphthalene (Method analysis EP075(SIM)B)  | μg/L<br>μg/L         | 1                | <1<br><1            | <1<br><1          |
|                            | Phenanthrene                                                       | μg/L                 | 1                | <1                  | <1                |
|                            | Pyrene Polycylic aromatic hydrocarbons EPA448                      | μg/L<br>ug/L         | 0.5              | <1<br><0.5          | <1<br><0.5        |
| RH                         | TPH C6-C10<br>C6 - C10 Fraction minus BTEX (F1)                    | μg/L<br>μg/L         | 20<br>20         | 70<br><20           | 130<br>50         |
|                            | C10 - C16 Fraction                                                 | μg/L                 | 100              | <100                | <100              |
|                            | C16 - C34 Fraction<br>C34 - C40 Fraction                           | μg/L<br>μg/L         | 100<br>100       | 400<br>180          | <100<br><100      |
|                            | C10 - C40 Fraction (Sum)                                           | μg/L                 | 100              | 580<br><100         | <100              |
| PH                         | TRH >C10-C16 less Naphthalene (F2)<br>C6 - C9 Fraction             | μg/L<br>μg/L         | 100<br>20        | 70                  | <100<br>130       |
|                            | C10 - C14 Fraction<br>C15 - C28 Fraction                           | μg/L<br>μg/L         | 50<br>100        | 60<br>240           | <50<br><100       |
|                            | C29-C36 Fraction                                                   | μg/L                 | 50               | 260                 | <50               |
| BTEX                       | +C10 - C36 (Sum of total) Benzene                                  | μg/L<br>μg/L         | 50<br>1          | 560<br>23           | <50<br>31         |
|                            | Toluene                                                            | μg/L                 | 2                | 27                  | 28                |
|                            | Ethylbenzene<br>Xylene (m & p)                                     | μg/L<br>μg/L         | 2                | <2<br>6             | <2<br>6           |
|                            |                                                                    |                      |                  |                     |                   |
|                            | Xylene (o)                                                         | μg/L                 | 2                | <2                  | <2                |
|                            |                                                                    | μg/L<br>μg/L<br>μg/L | 2<br>2<br>1<br>5 | <2<br>6<br>56<br><5 | 6<br>65           |

a - All data is from ALS results unless otherwise stated.
b - Analysed by Envirolab.
c - Laboratory readings of pH (lab) is outside of the holding time, therefore field measurements of pH should be relied upon for accuracy.
d - NPOC analysis was carried out instead of TOC due to high inorganic carbon content

## Appendix E

Pilot well analyte time-series hydrographs



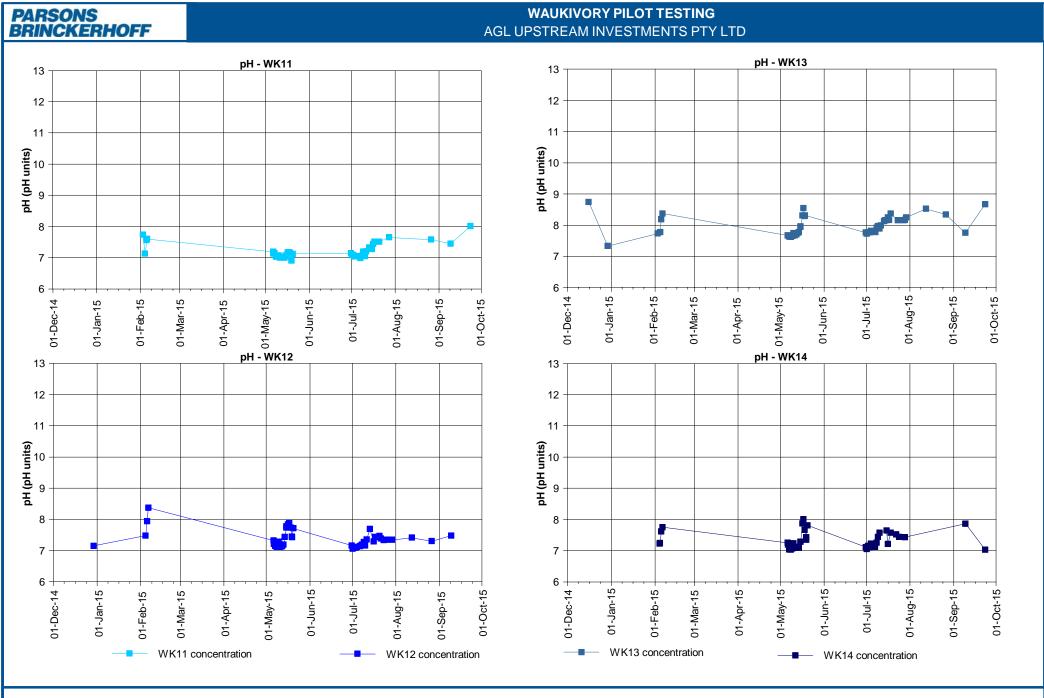



Figure E1.1: Field pH measurements at the Waukivory pilot wells

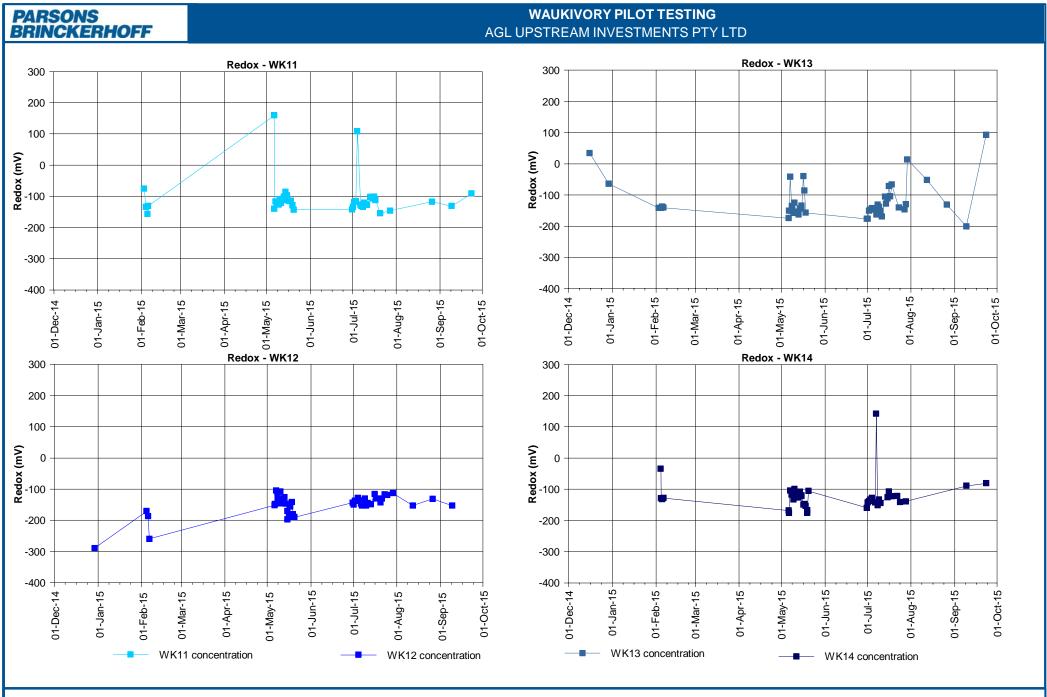
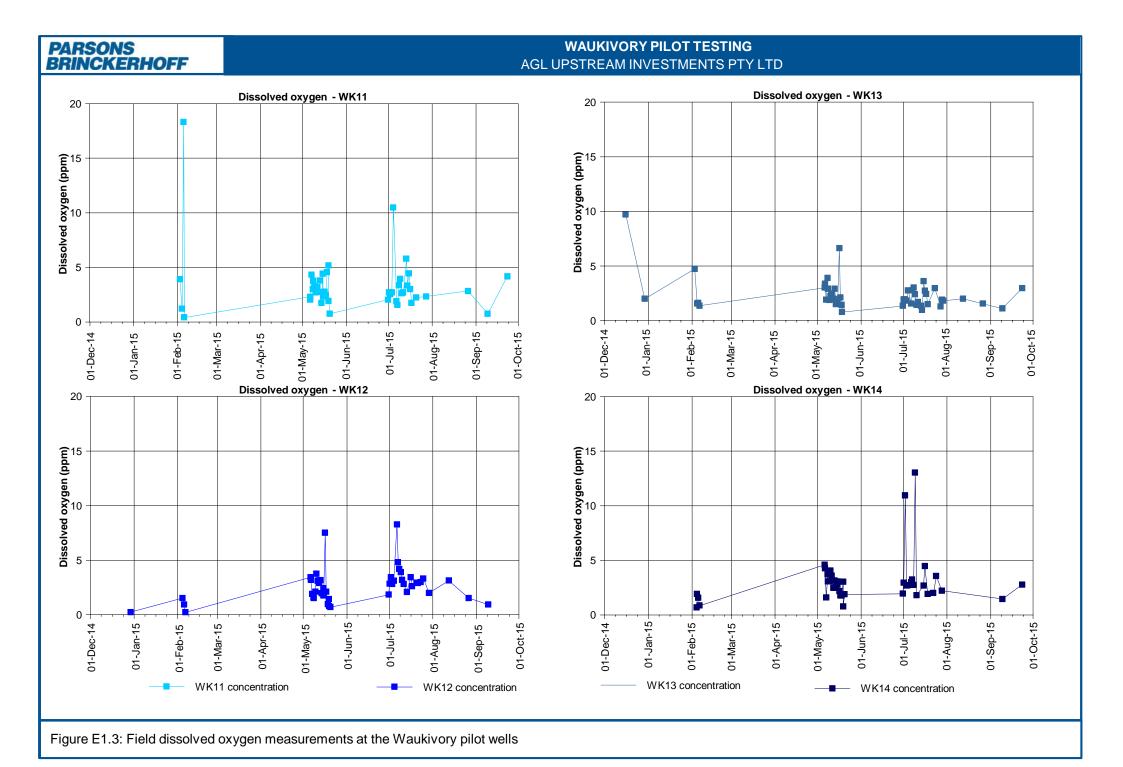
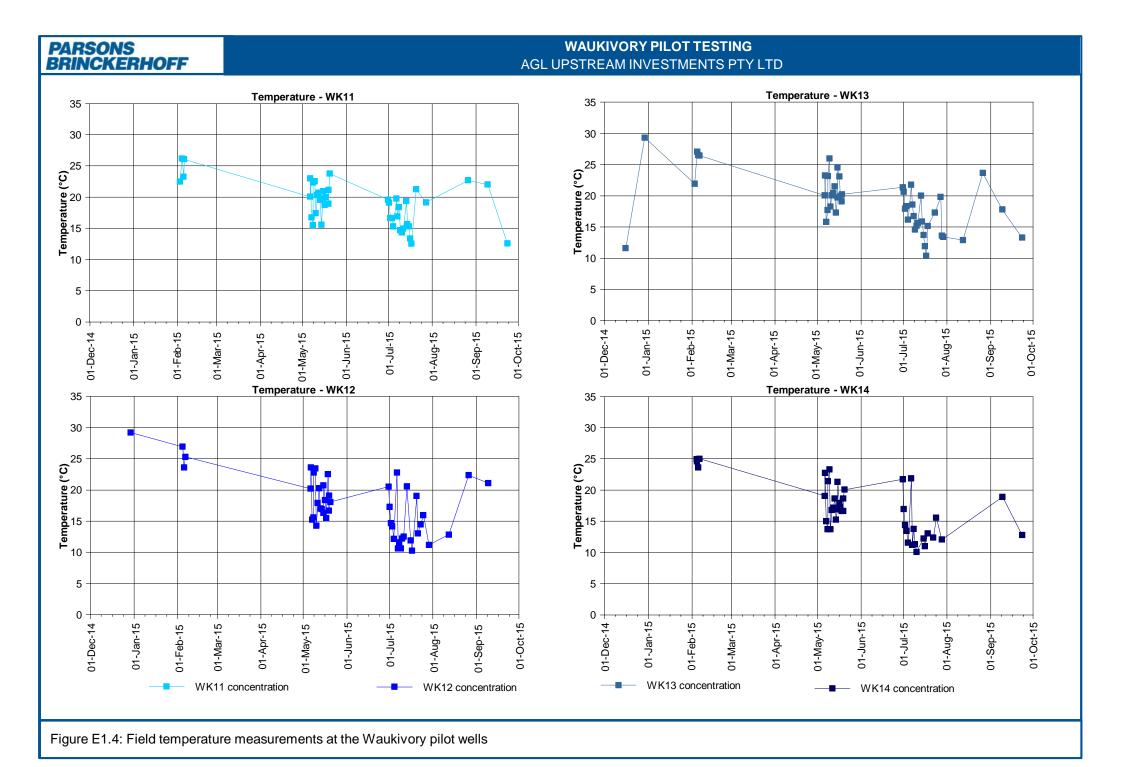





Figure E1.2: Field redox measurements at the Waukivory pilot wells





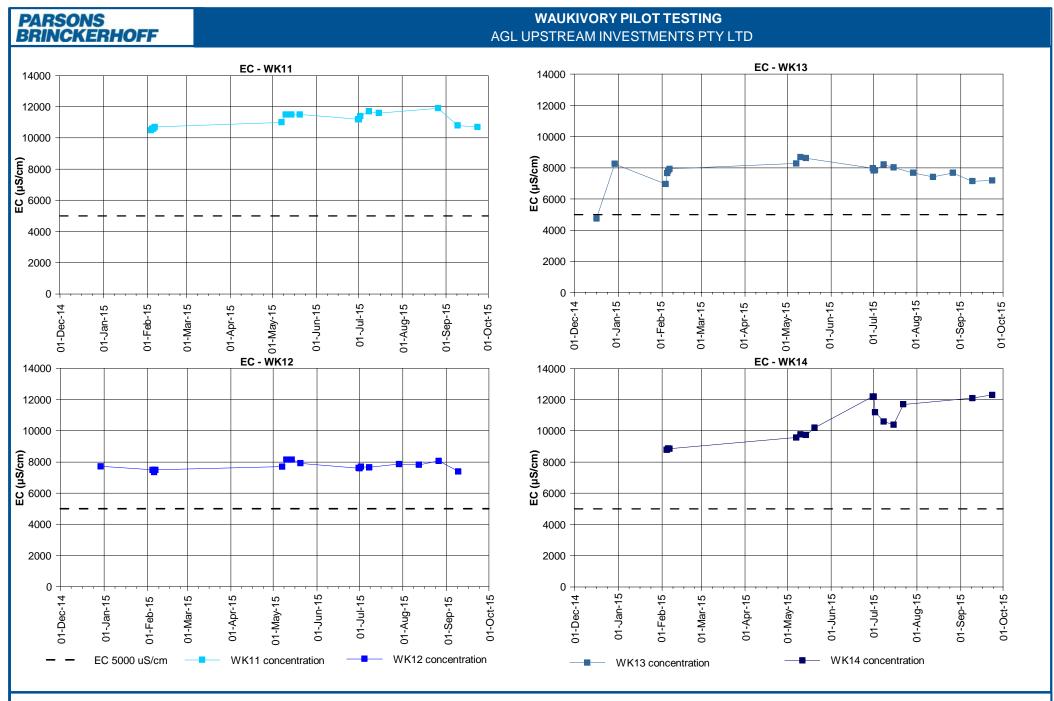



Figure E1.5: Laboratory electrical conductivity (EC) measurements at the Waukivory pilot wells

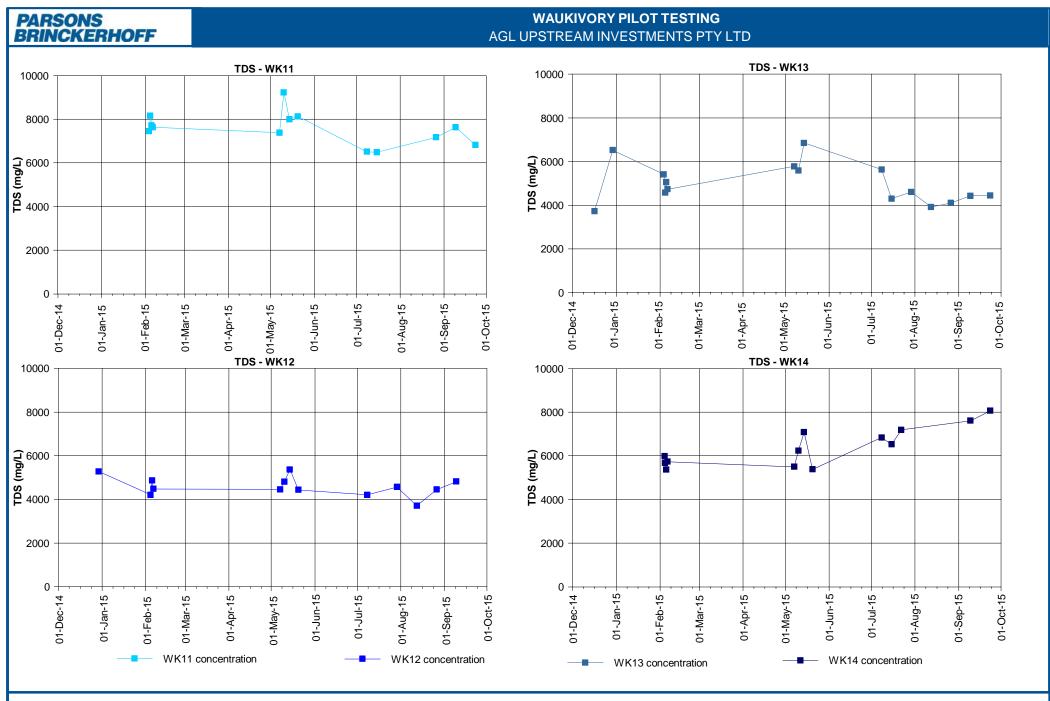



Figure E1.6: Laboratory total dissolved solids (TDS) measurements at the Waukivory pilot wells

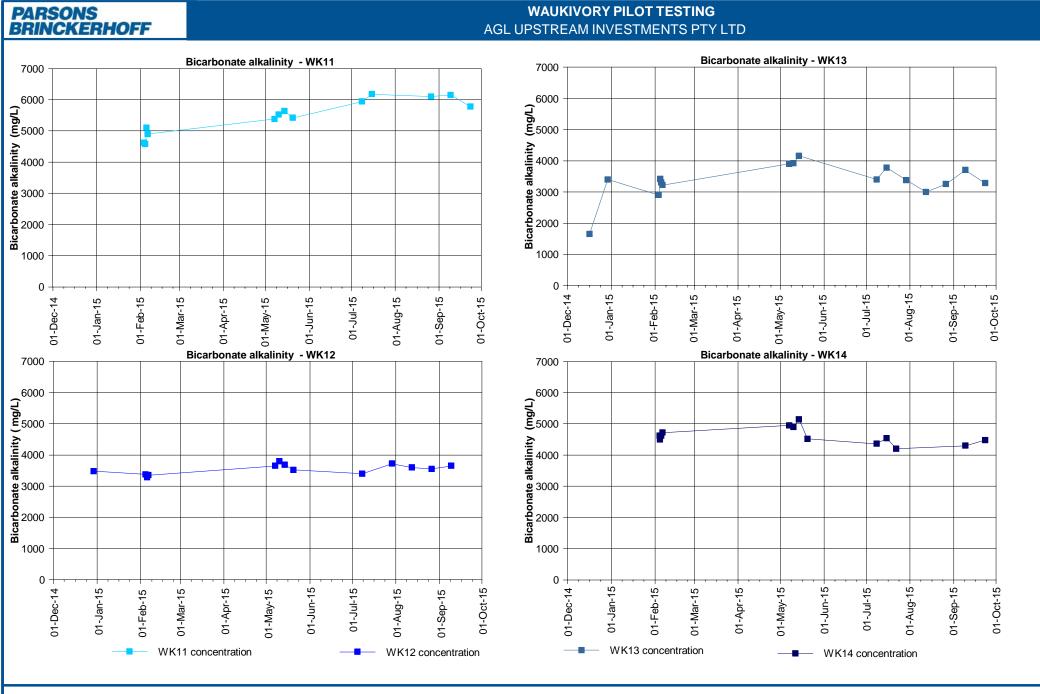



Figure E2.1: Bicarbonate alkalinity concentrations at the Waukivory pilot wells

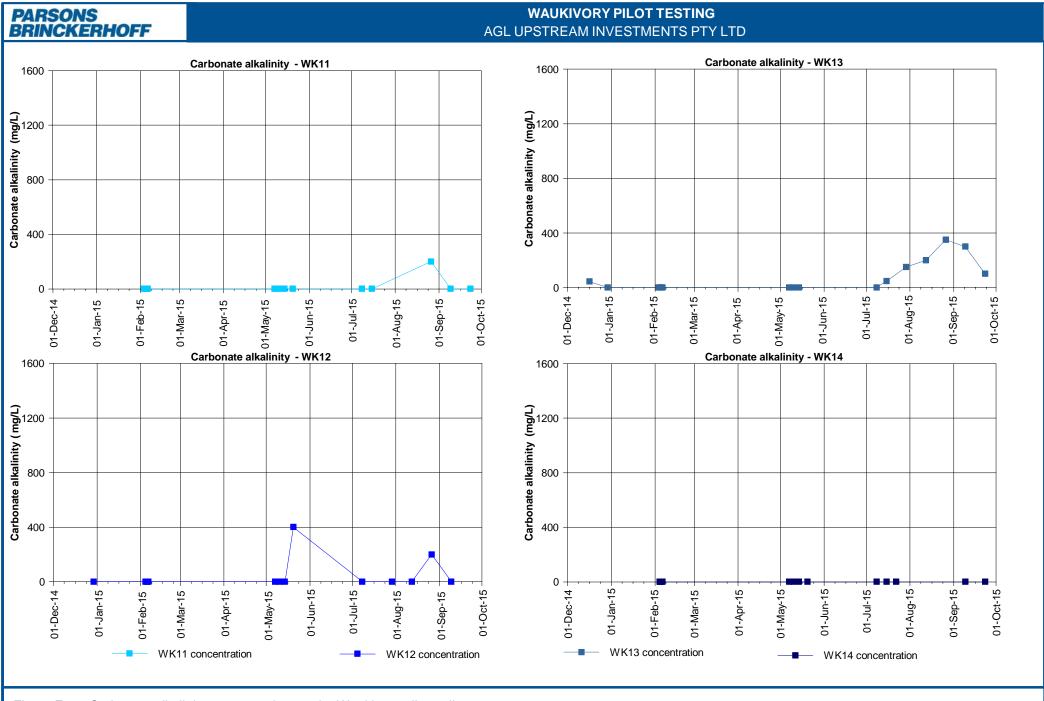



Figure E2.2: Carbonate alkalinity concentrations at the Waukivory pilot wells

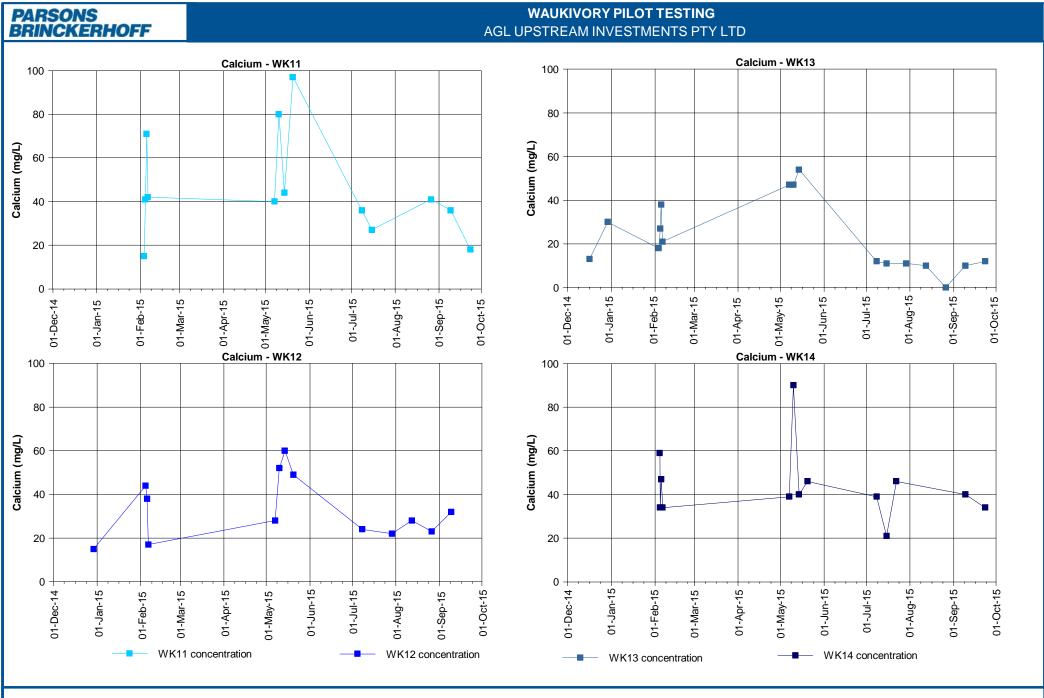
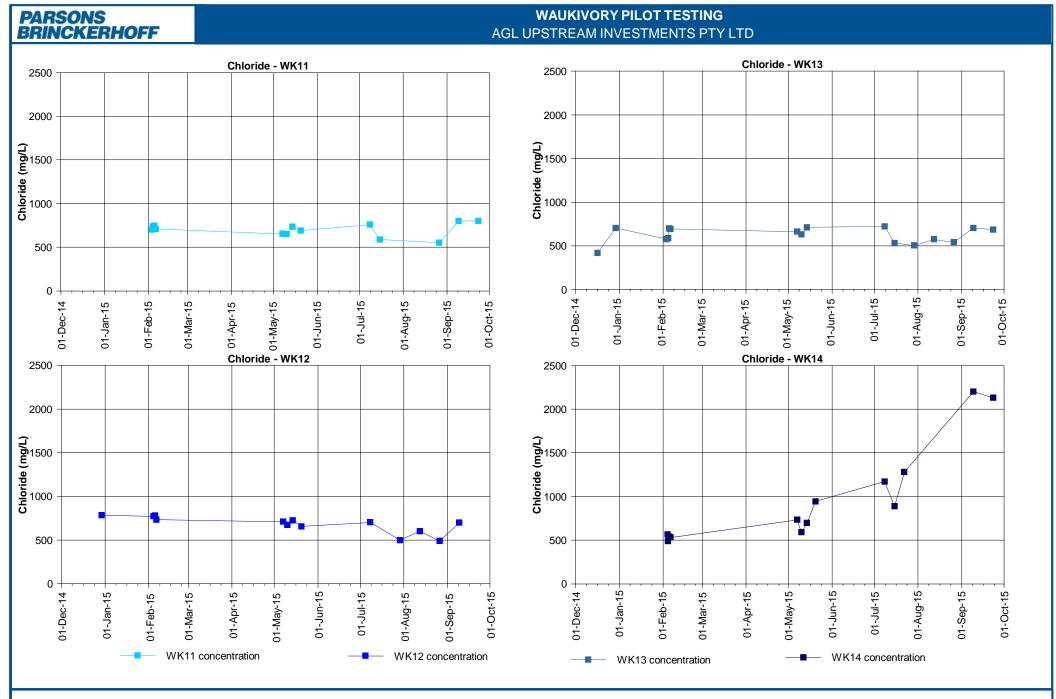
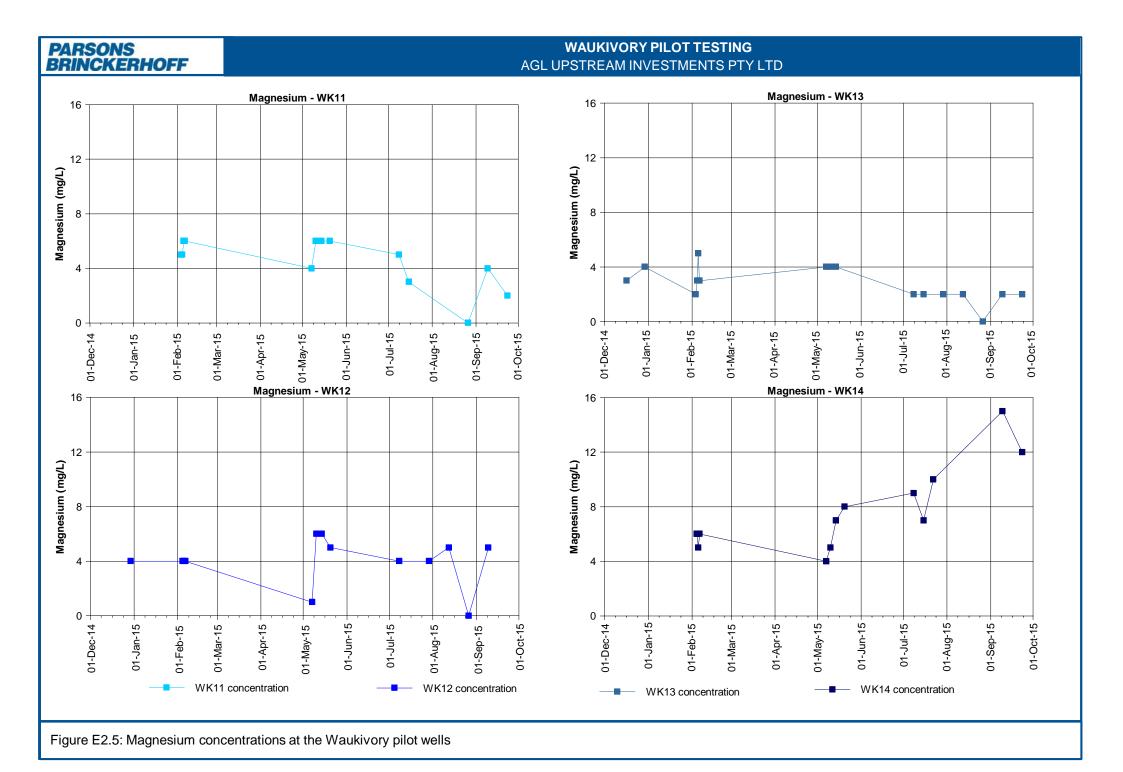





Figure E2.3: Calcium concentrations at the Waukivory pilot wells





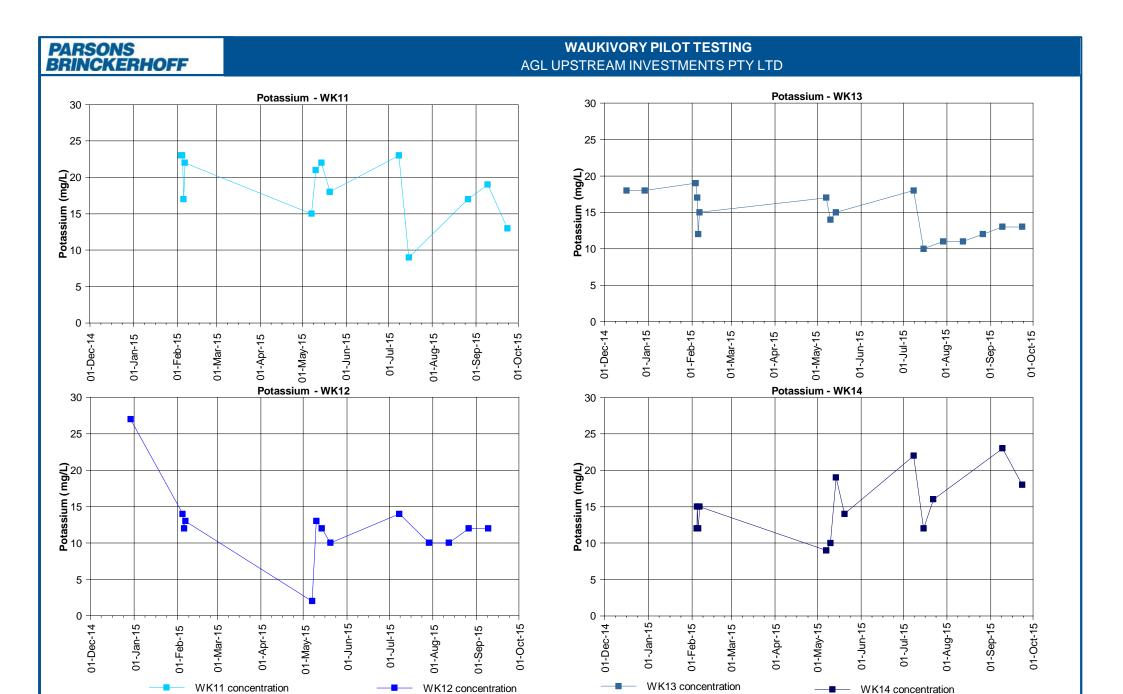



Figure E2.6: Potassium concentrations at the Waukivory pilot wells

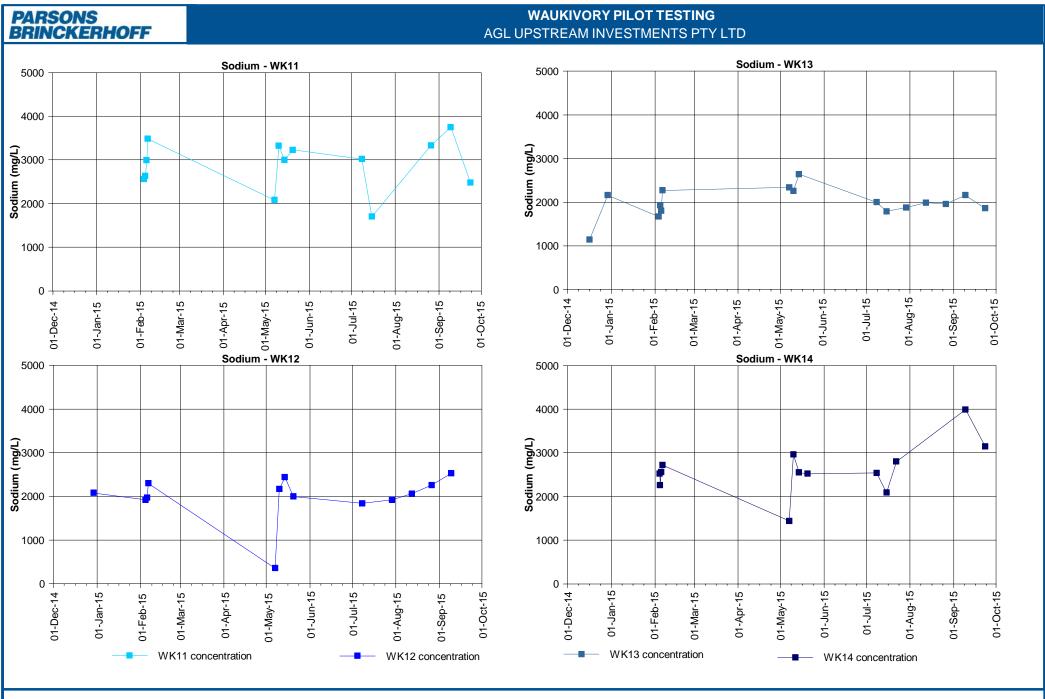
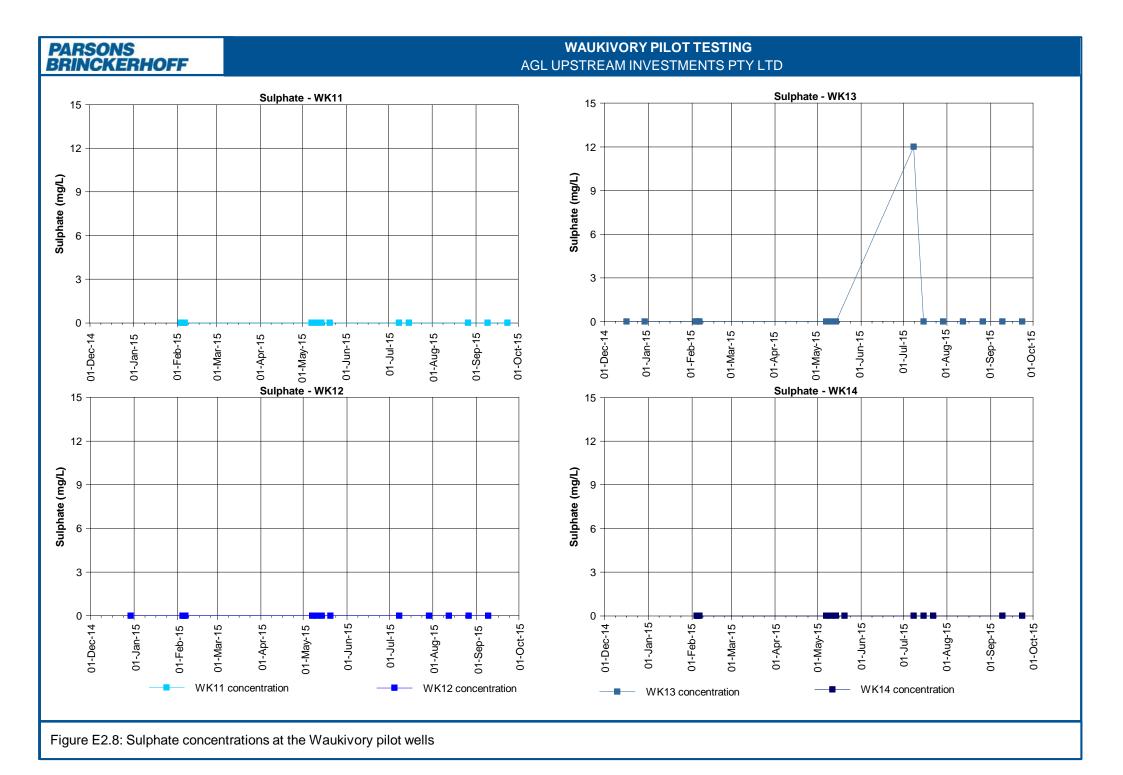




Figure E2.7: Sodium concentrations at the Waukivory pilot wells



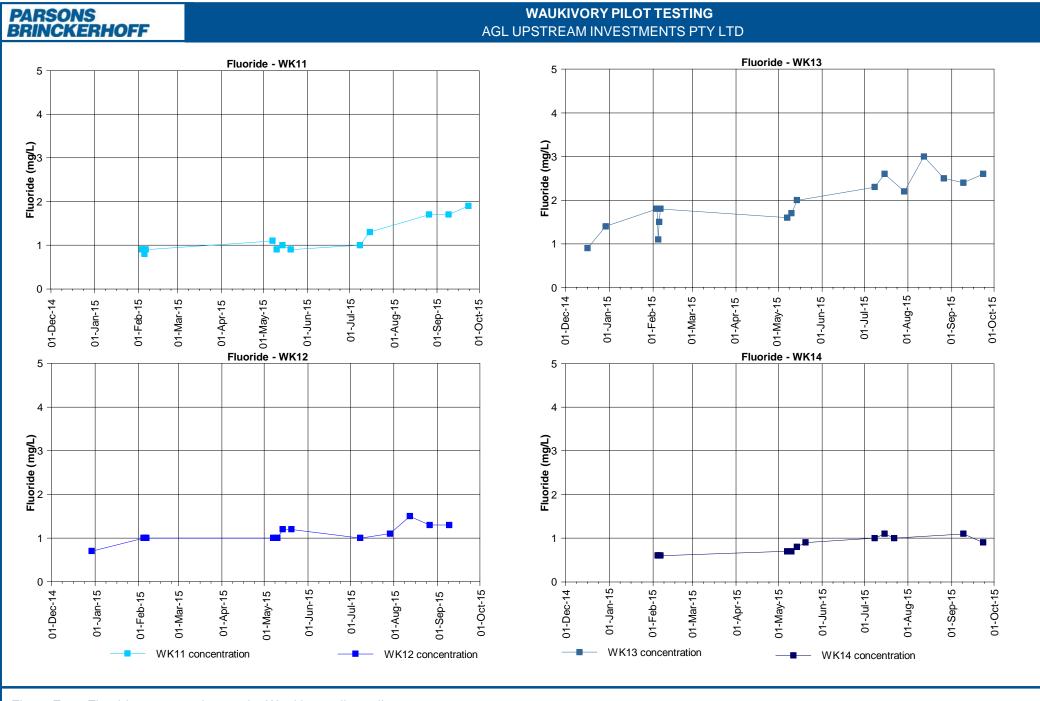



Figure E2.9: Fluoride concentrations at the Waukivory pilot wells

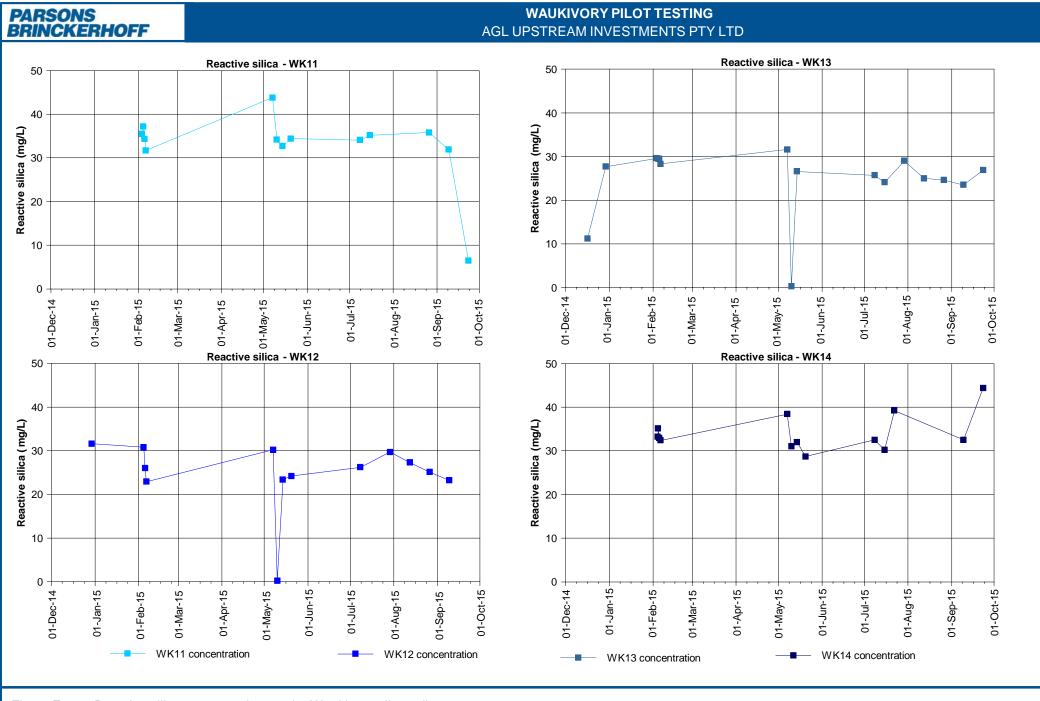



Figure E2.10: Reactive silica concentrations at the Waukivory pilot wells

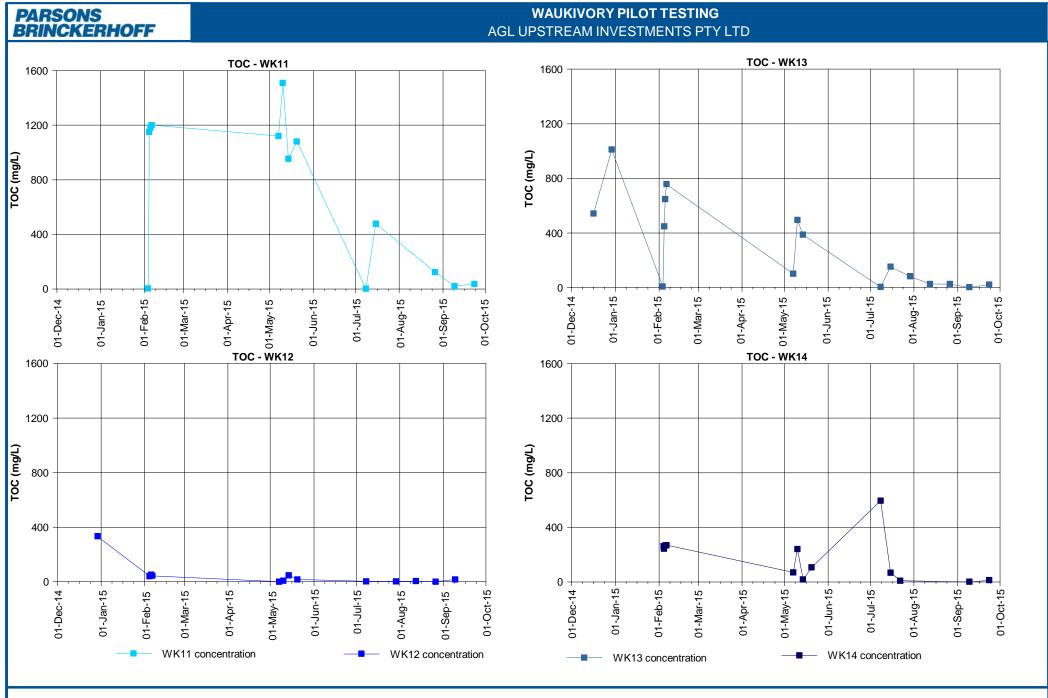



Figure E2.11: Total organic carbon (TOC) concentrations at the Waukivory pilot wells

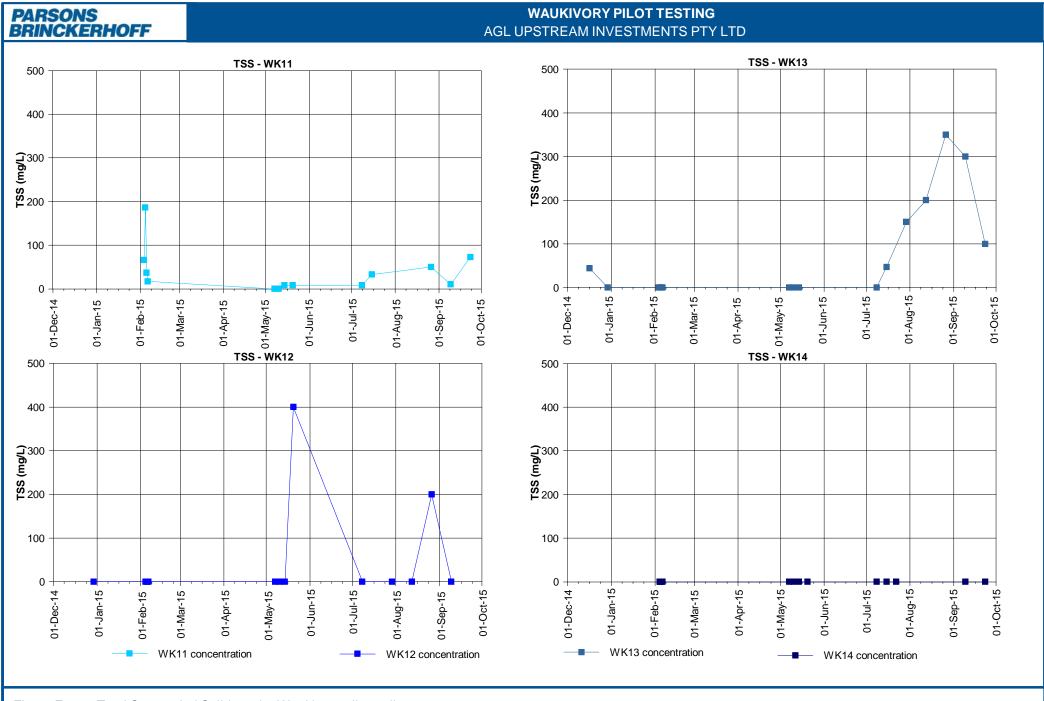



Figure E2.12: Total Suspended Solids at the Waukivory pilot wells

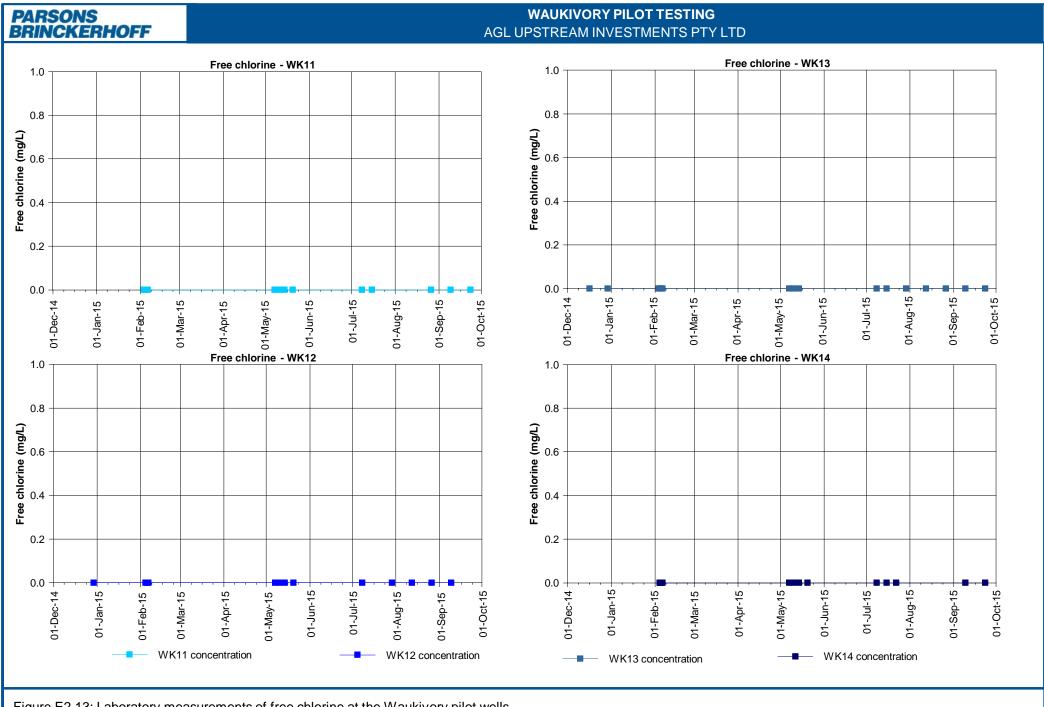
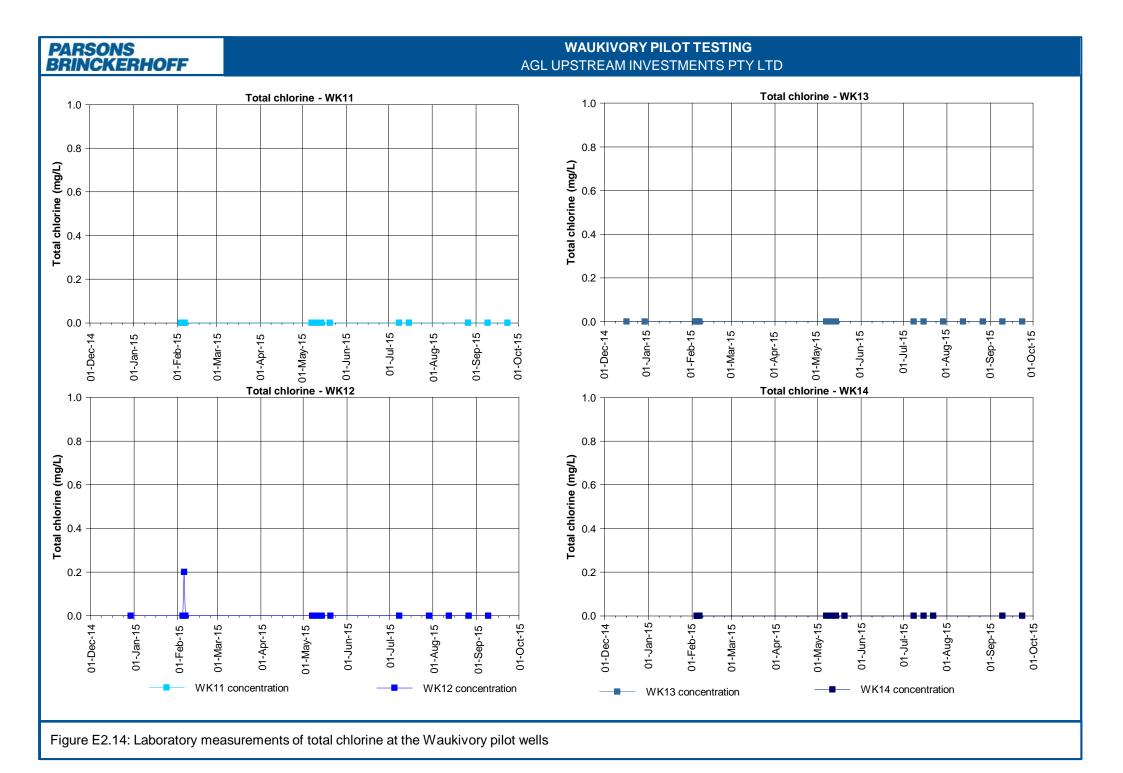
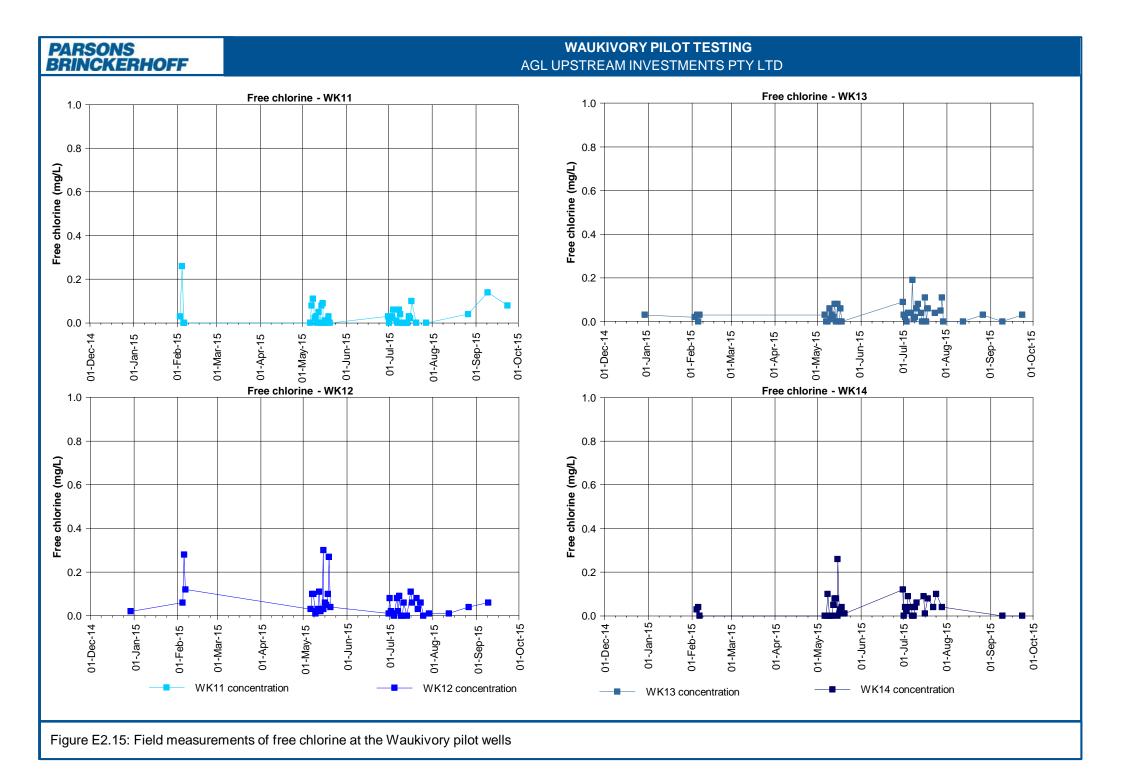
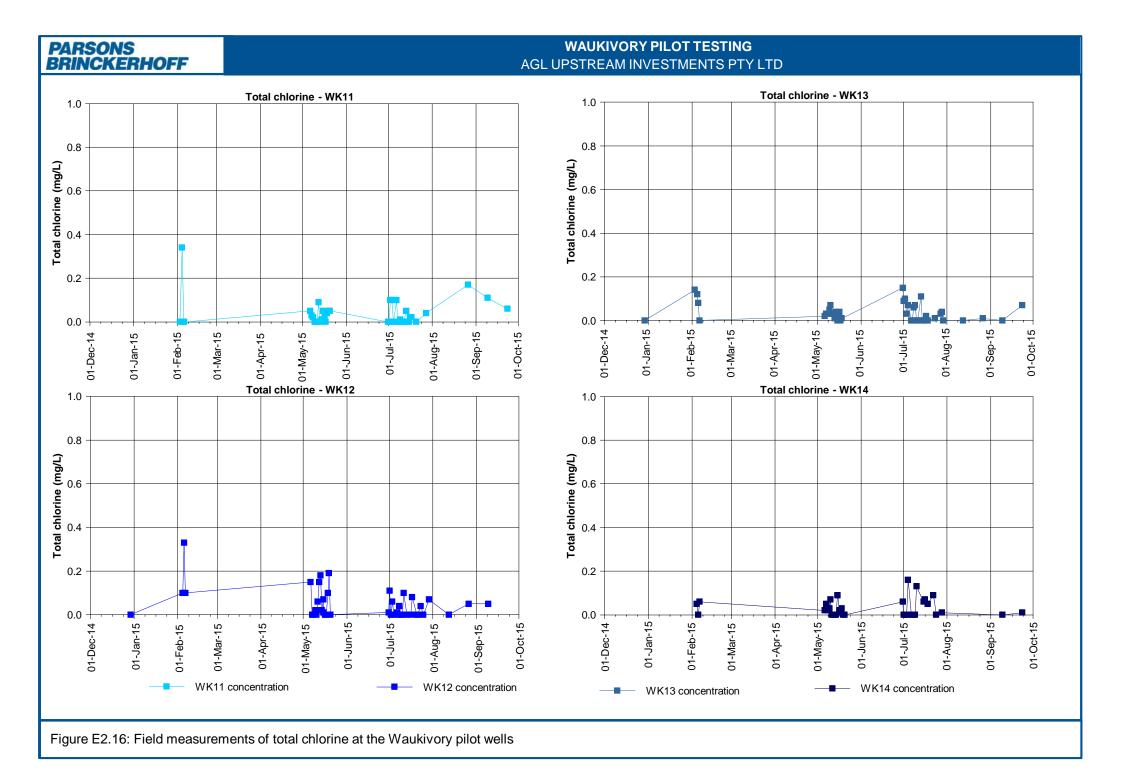
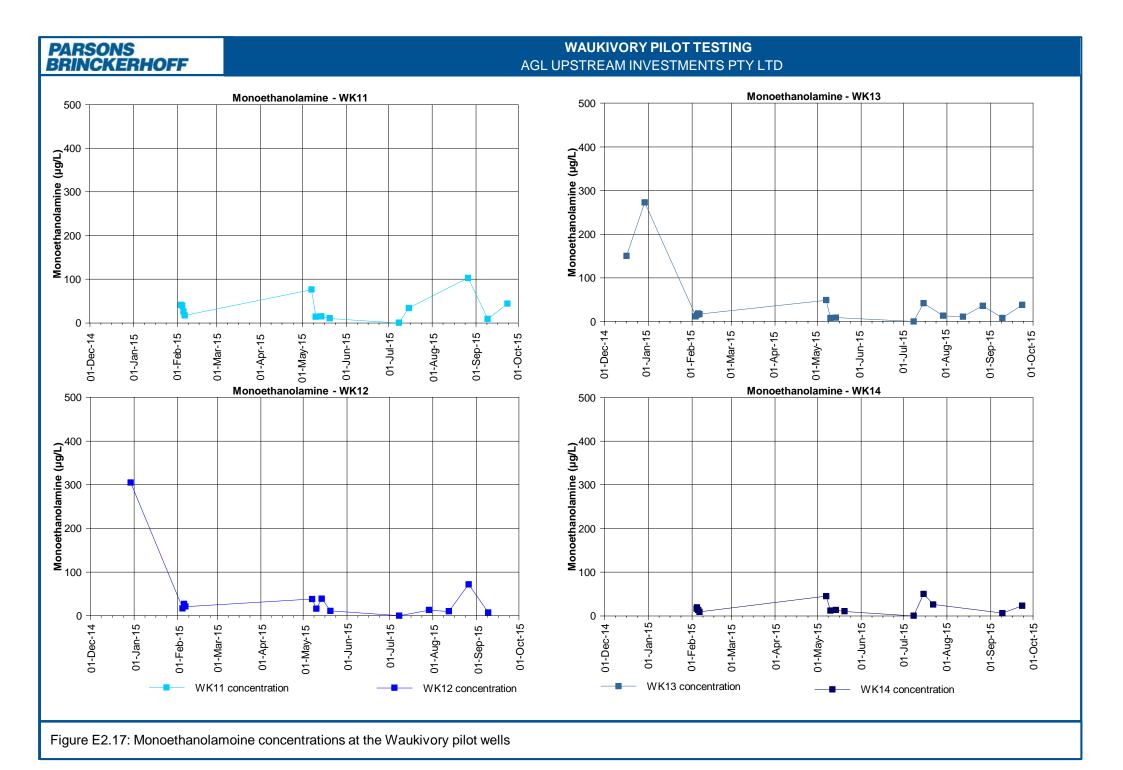







Figure E2.13: Laboratory measurements of free chlorine at the Waukivory pilot wells









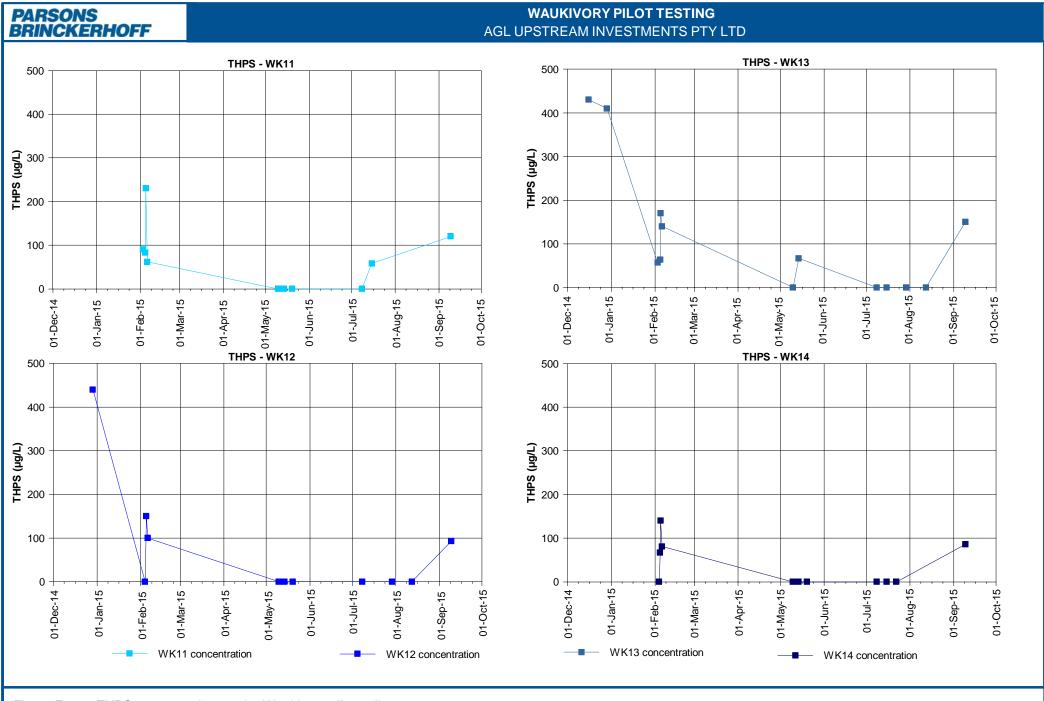



Figure E2.18: THPS concentrations at the Waukivory pilot wells

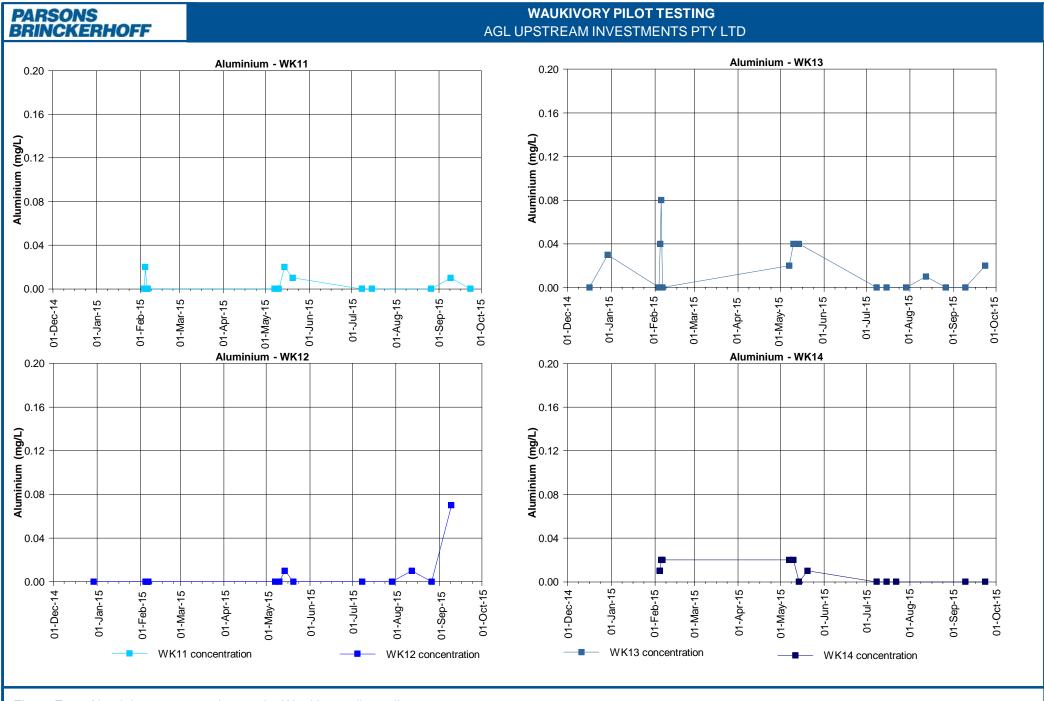



Figure E3.1: Aluminium concentrations at the Waukivory pilot wells

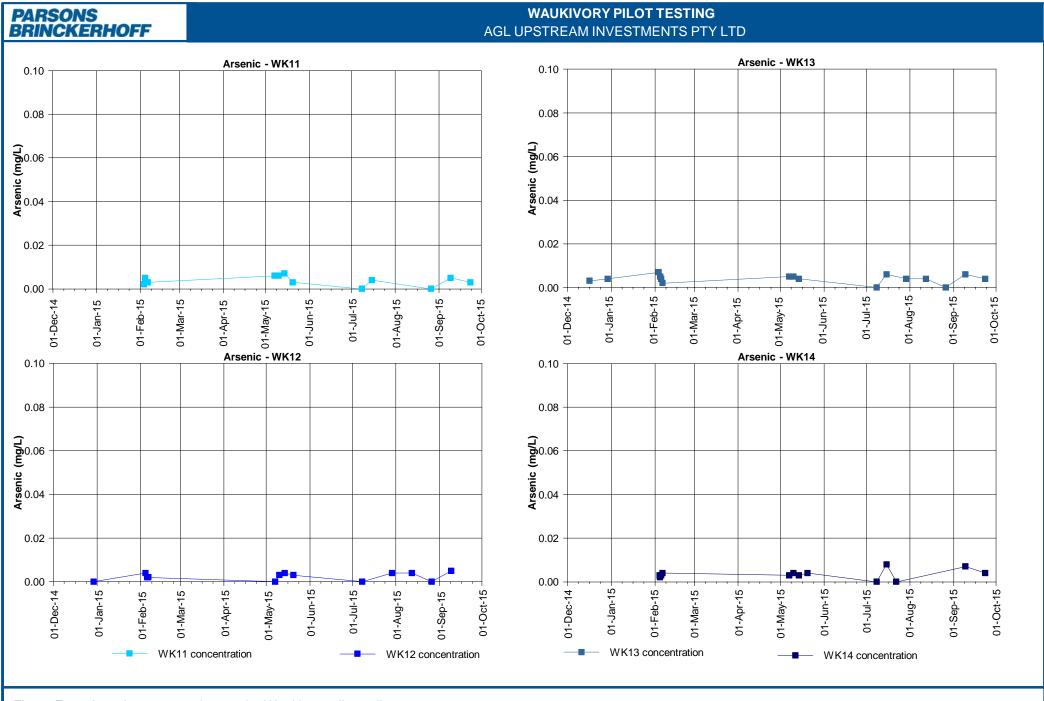



Figure E3.2: Arsenic concentrations at the Waukivory pilot wells

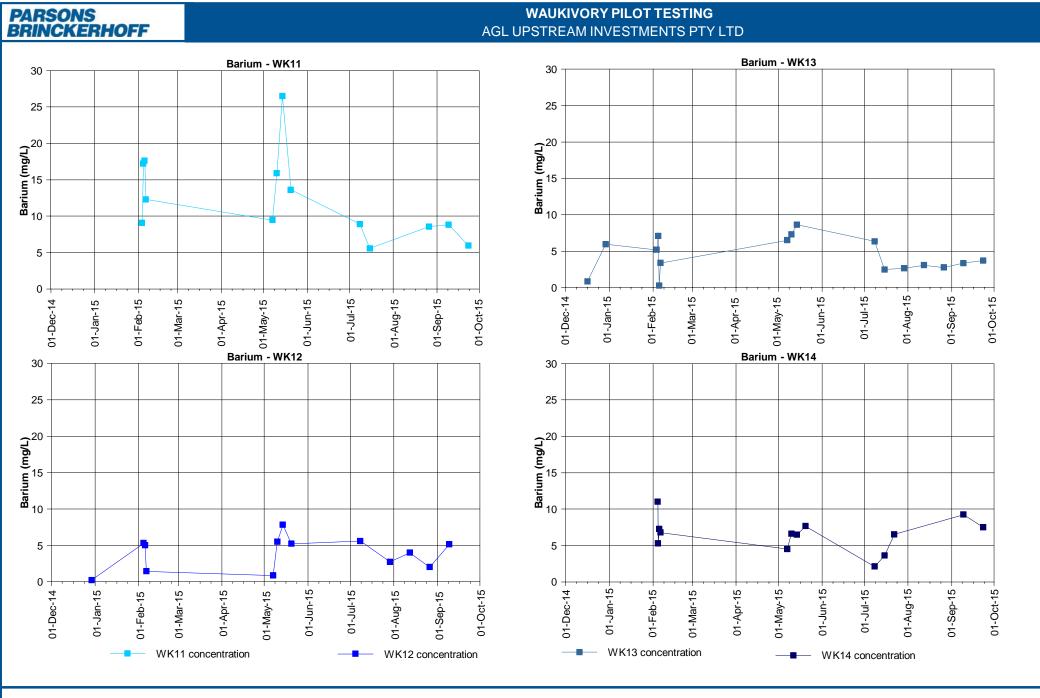
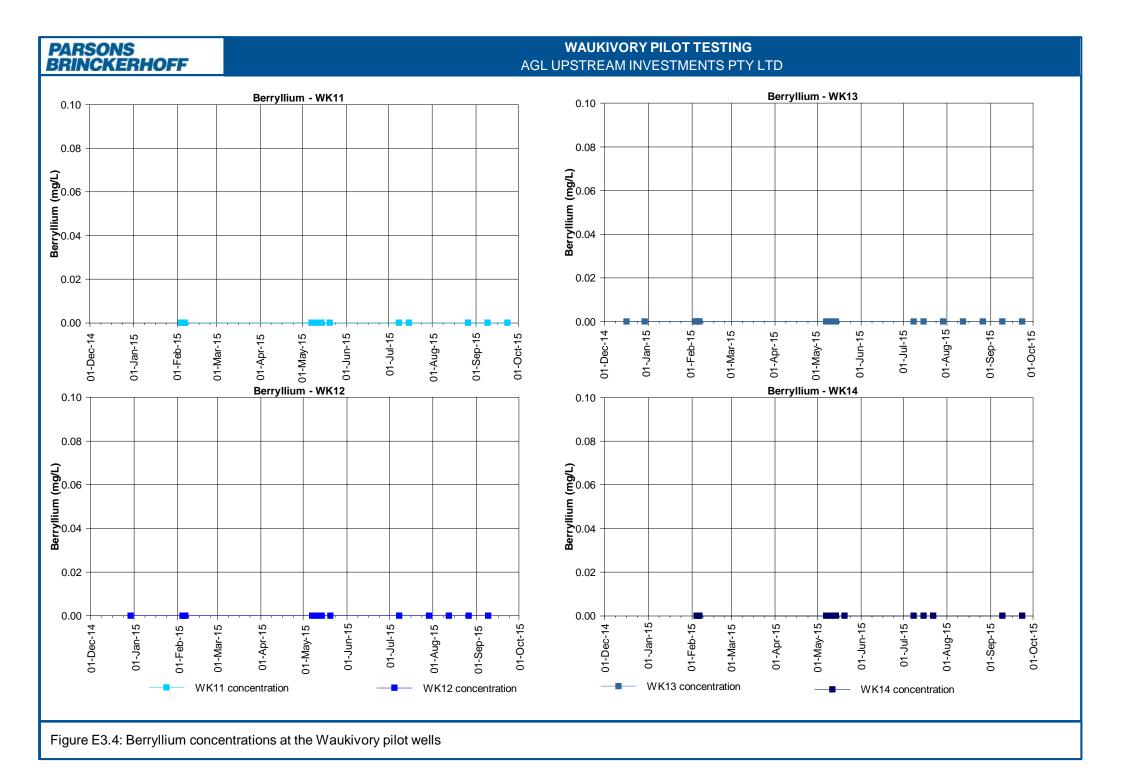




Figure E3.3: Barium concentrations at the Waukivory pilot wells



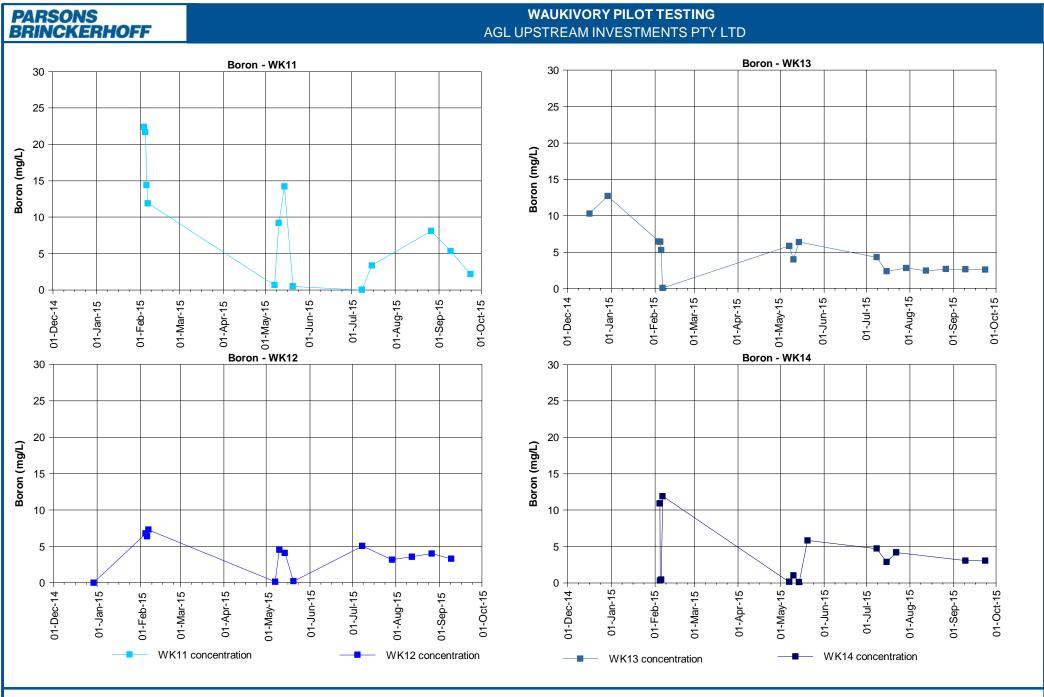
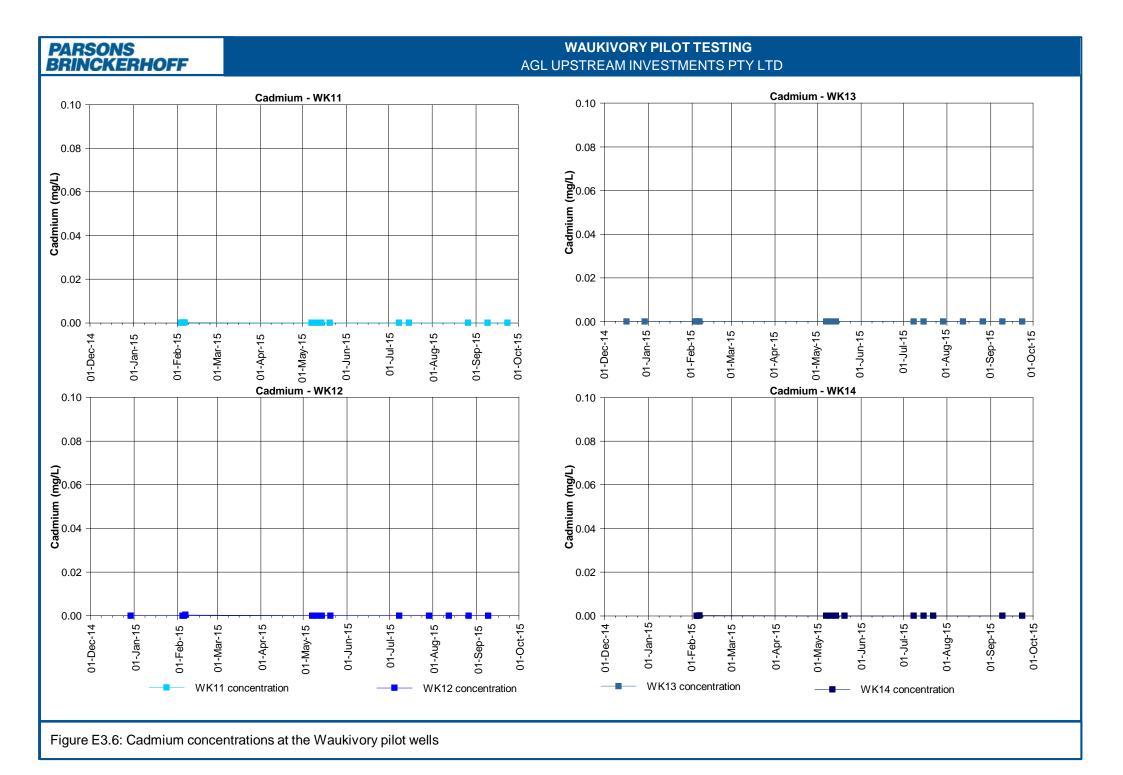




Figure E3.5: Boron concentrations at the Waukivory pilot wells



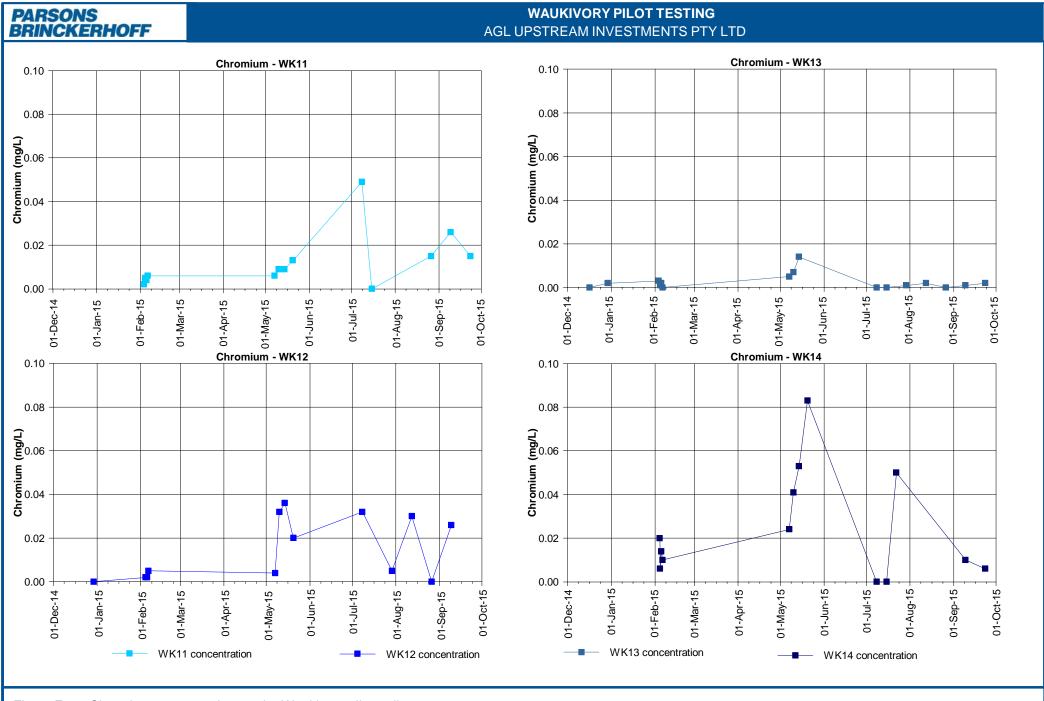
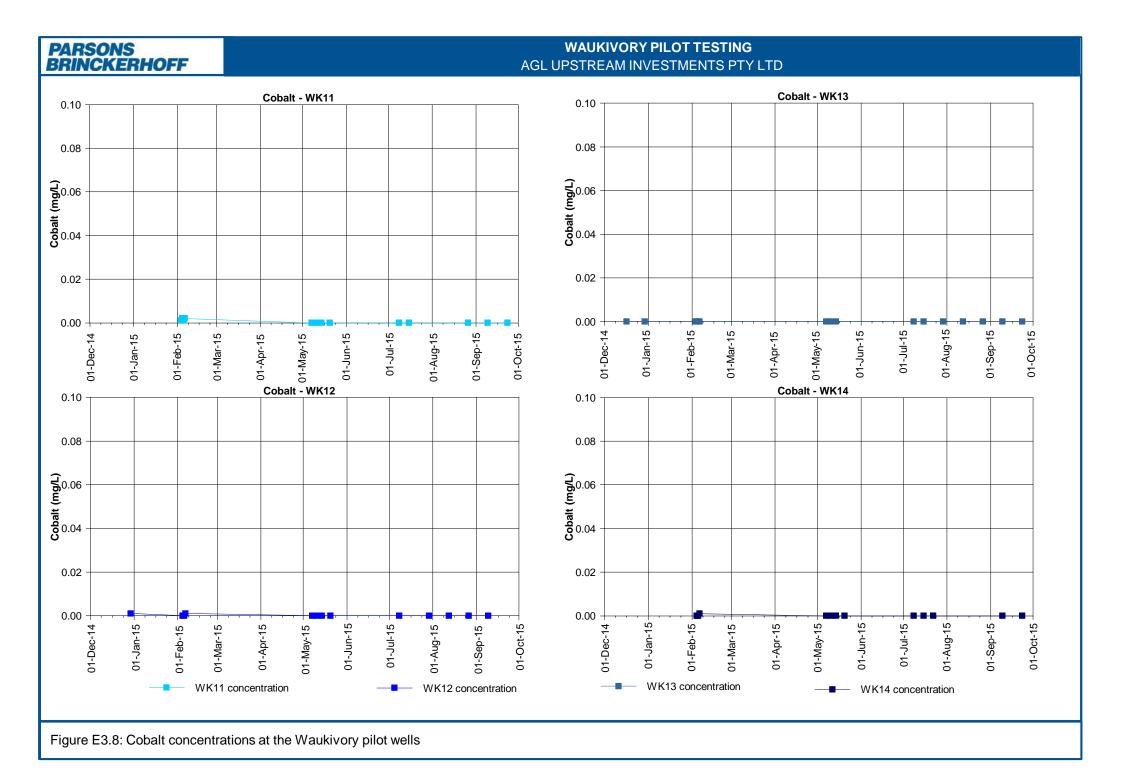




Figure E3.7: Chromium concentrations at the Waukivory pilot wells



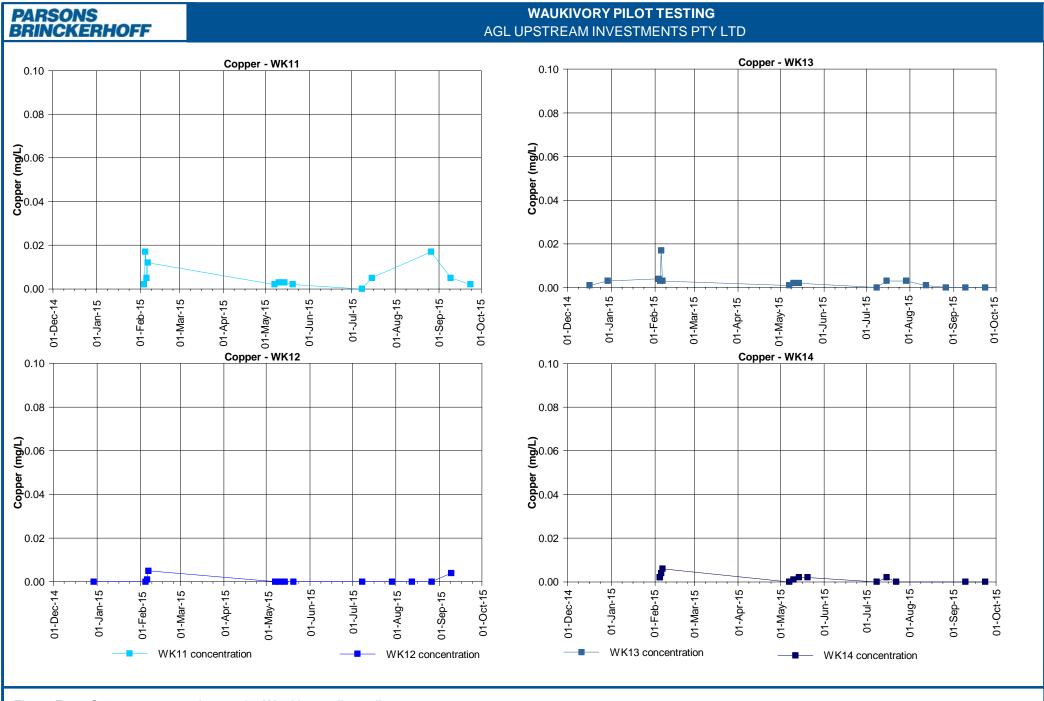
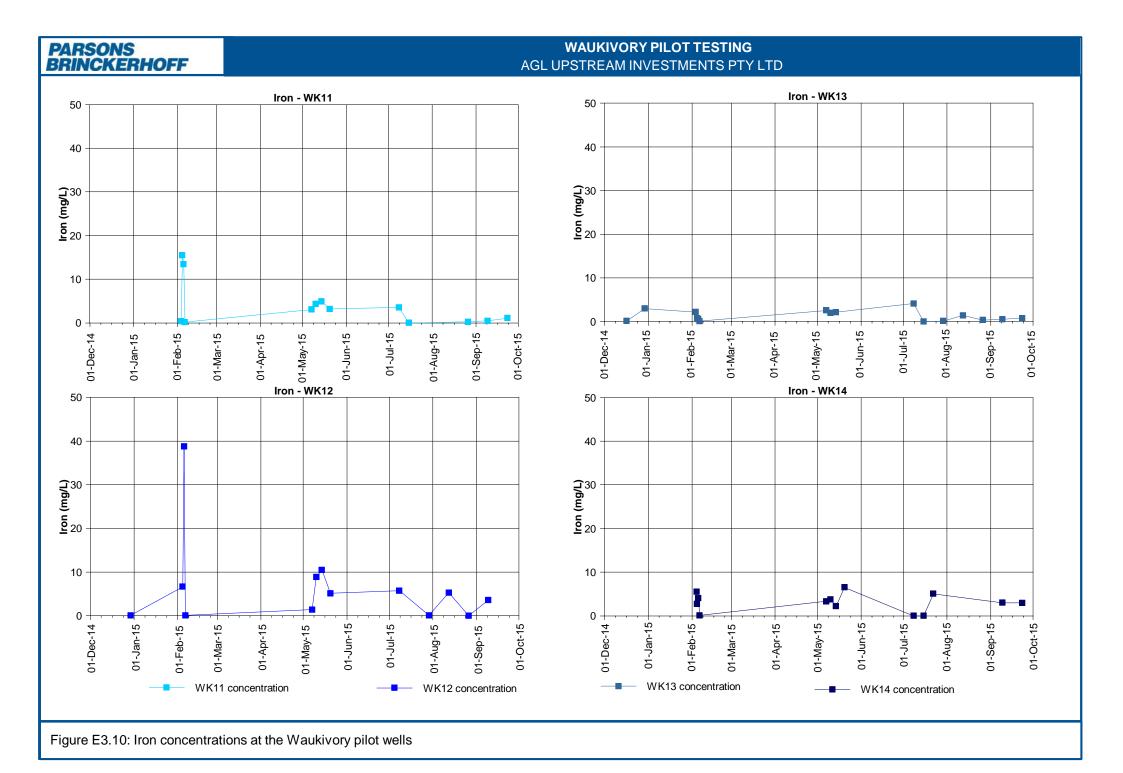




Figure E3.9: Copper concentrations at the Waukivory pilot wells



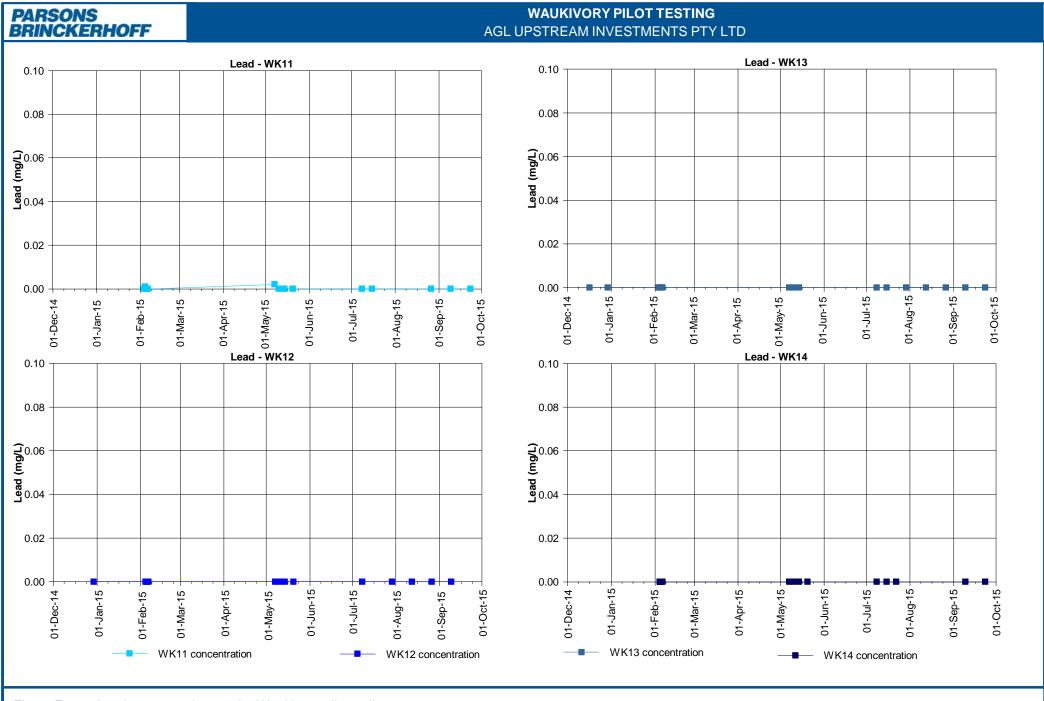



Figure E3.11: Lead concentrations at the Waukivory pilot wells

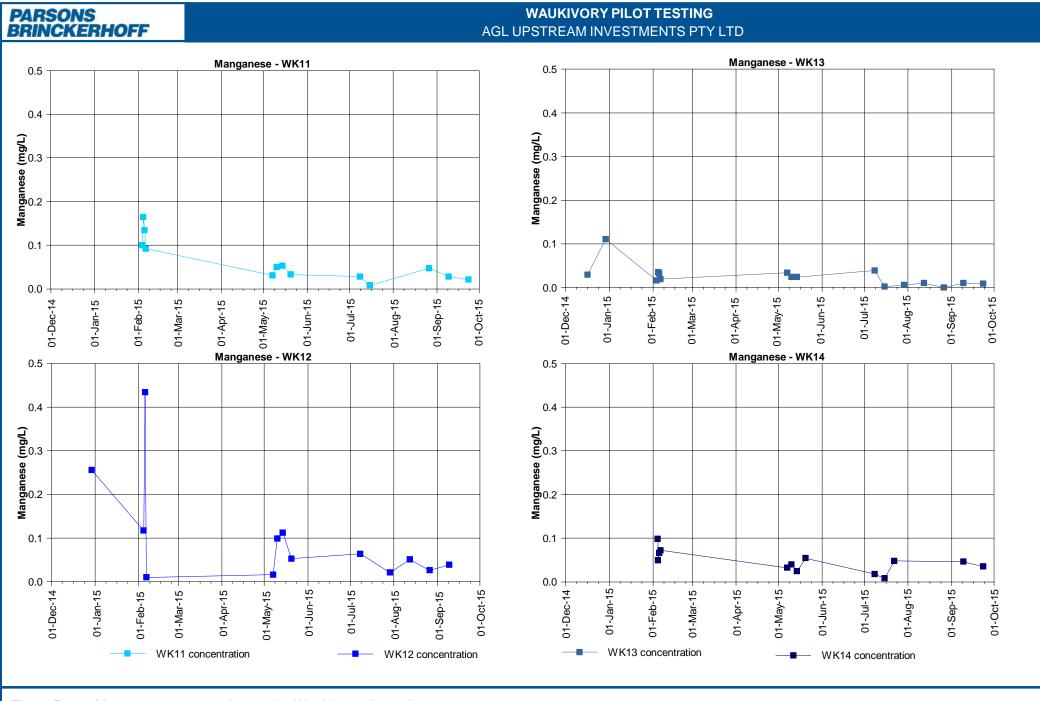
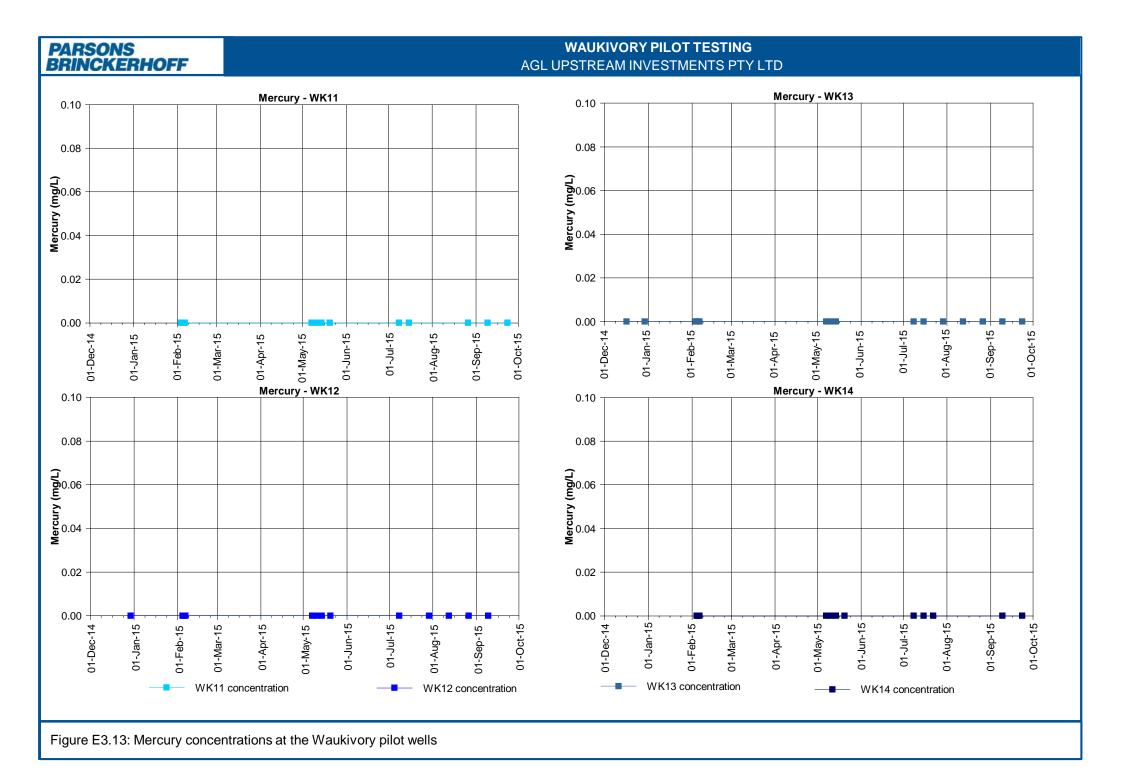




Figure E3.12: Manganese concentrations at the Waukivory pilot wells



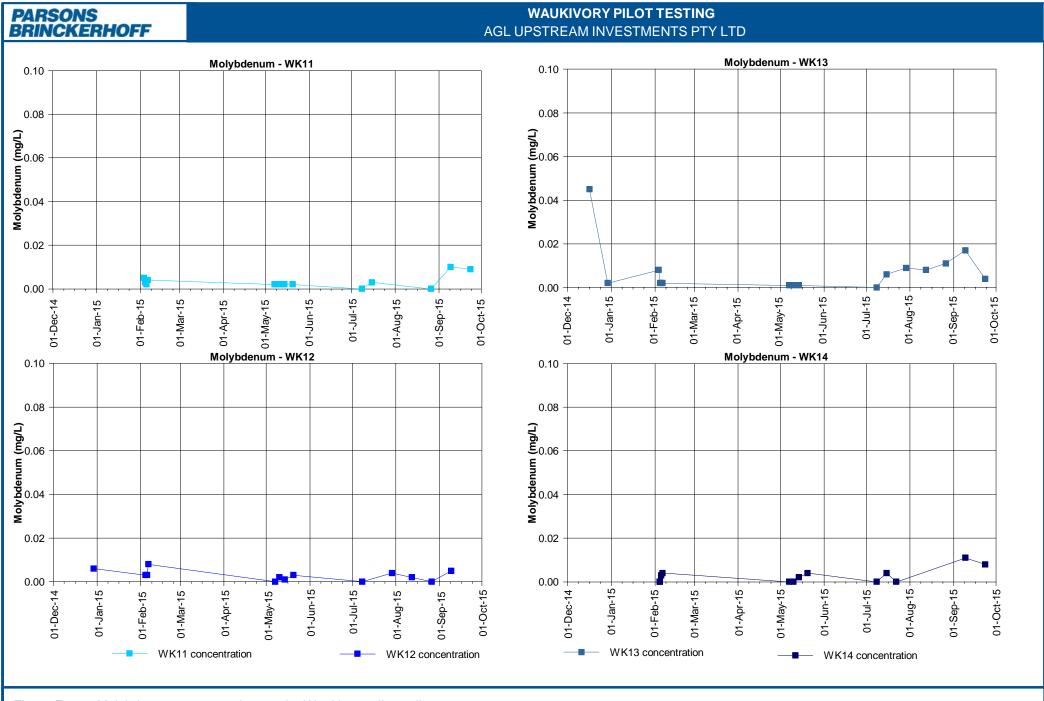



Figure E3.14: Molybdenum concentrations at the Waukivory pilot wells

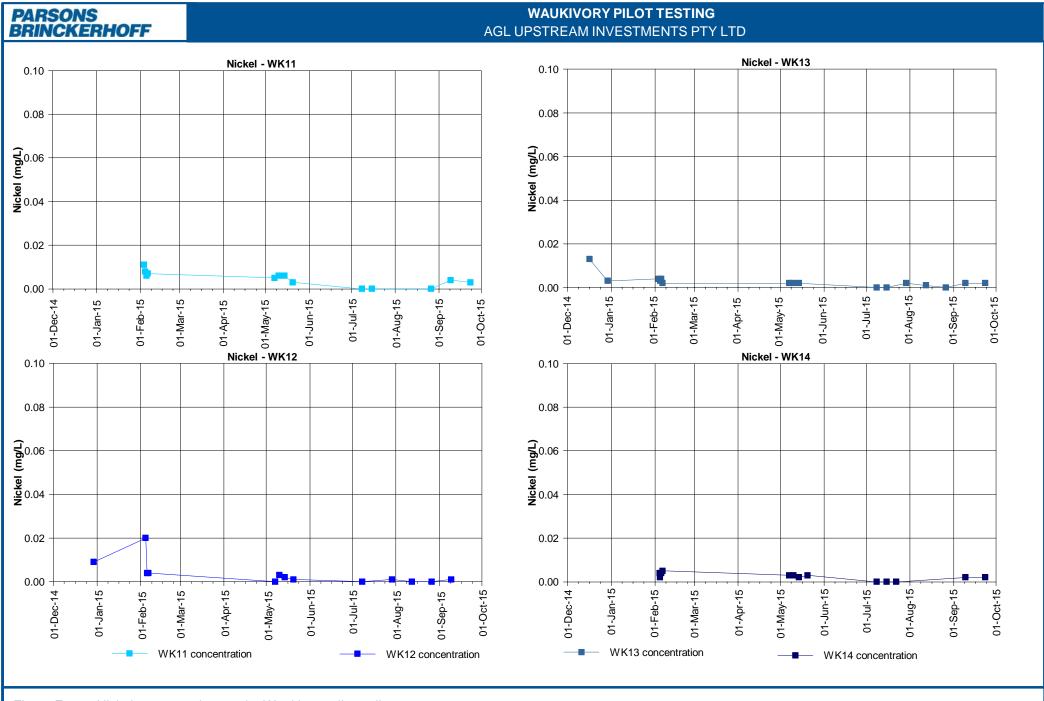
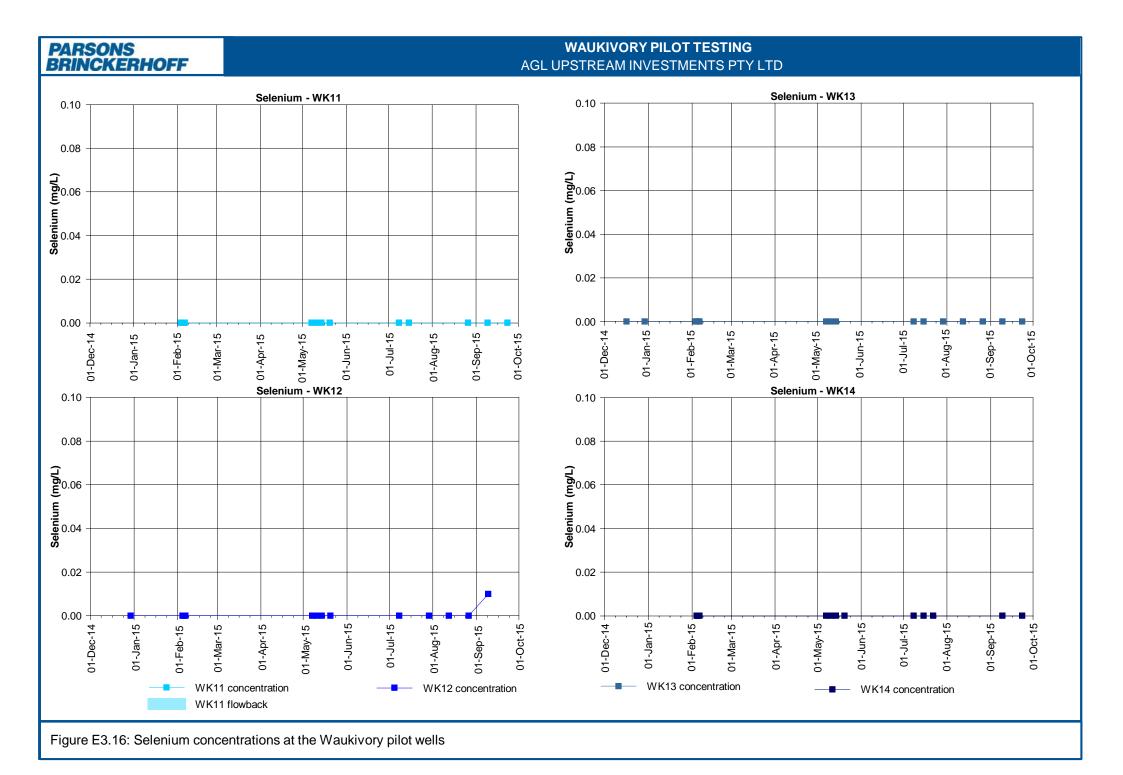




Figure E3.15: Nickel concentrations at the Waukivory pilot wells



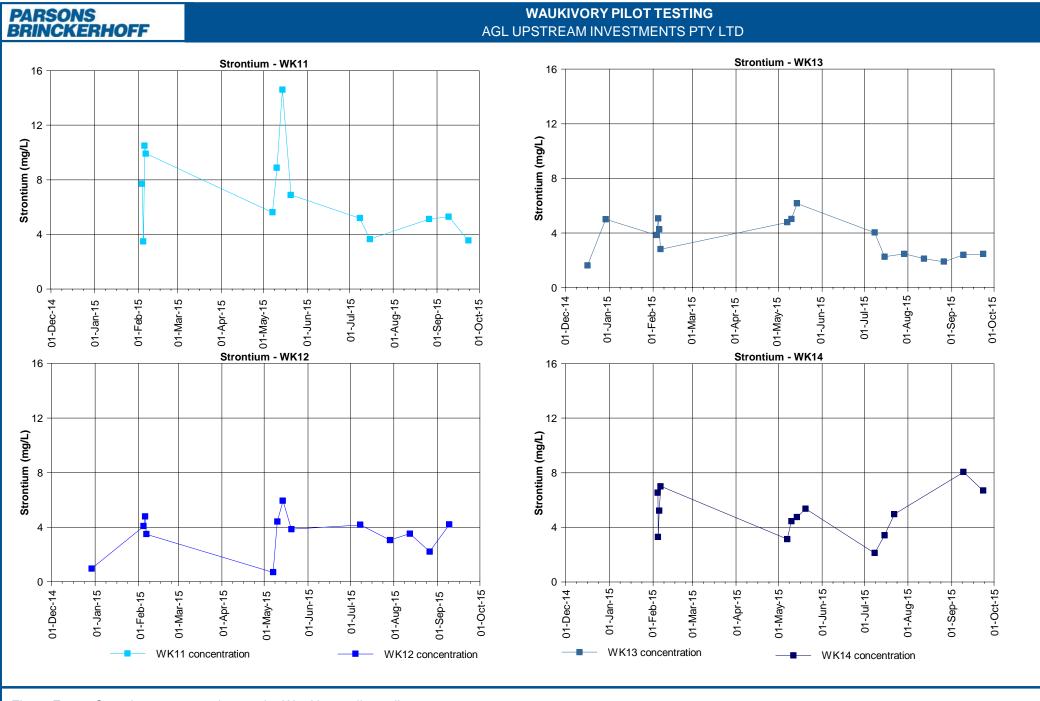
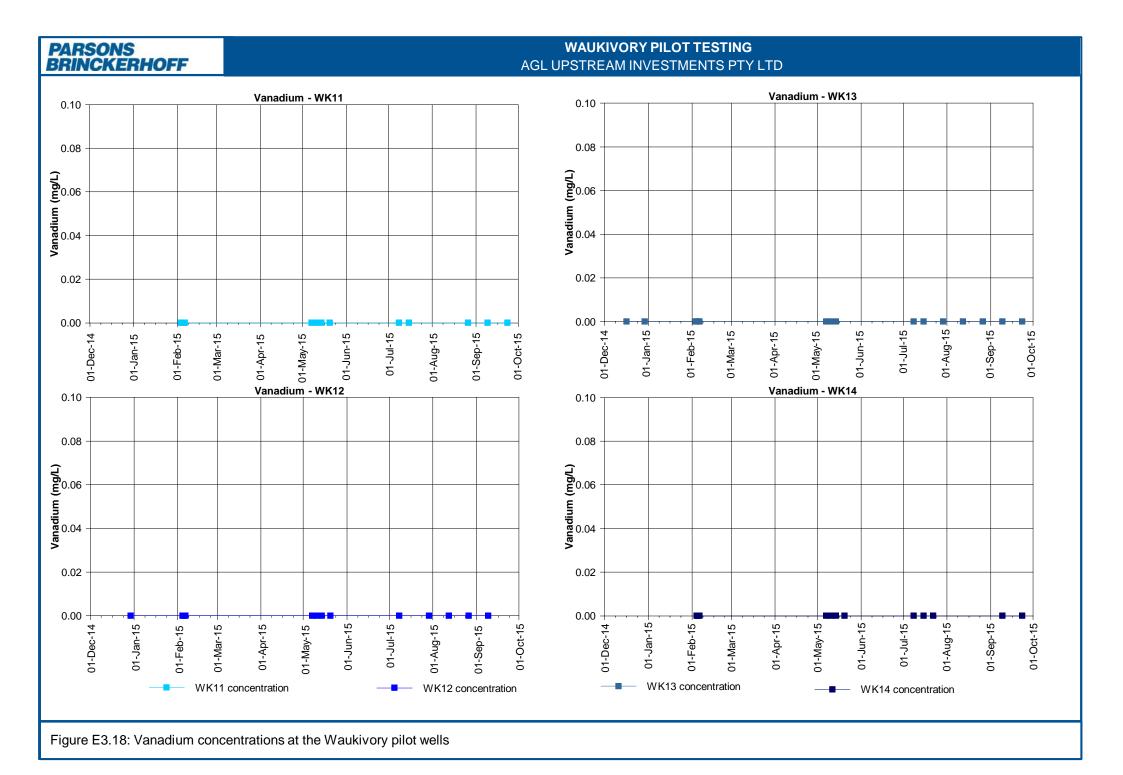




Figure E3.17: Strontium concentrations at the Waukivory pilot wells



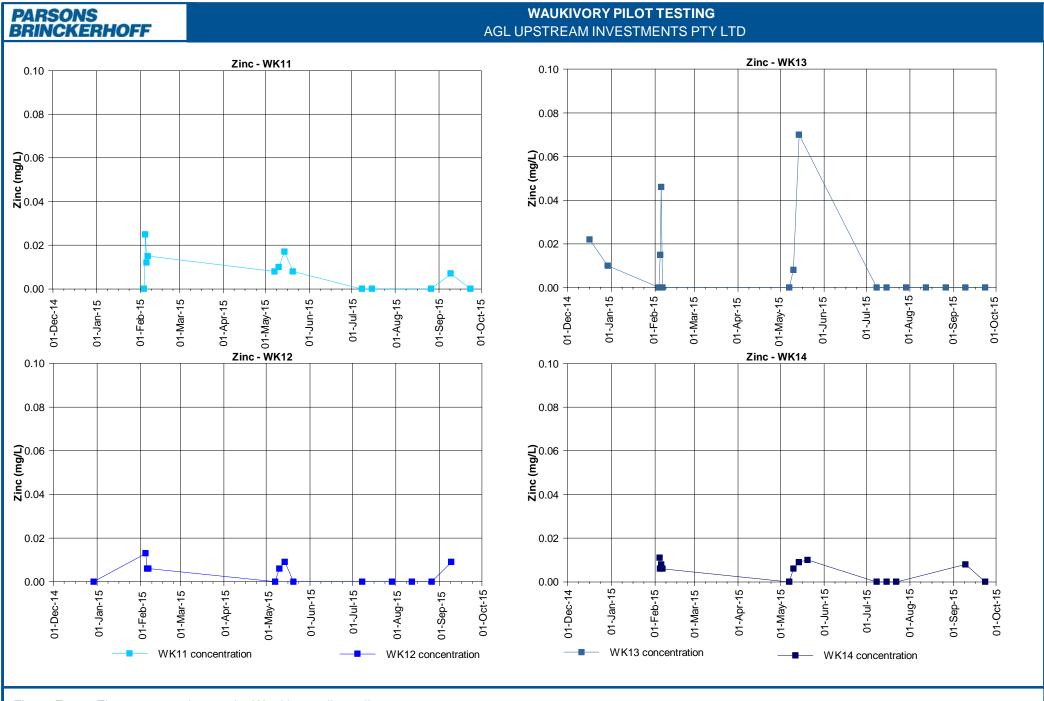



Figure E3.19: Zinc concentrations at the Waukivory pilot wells

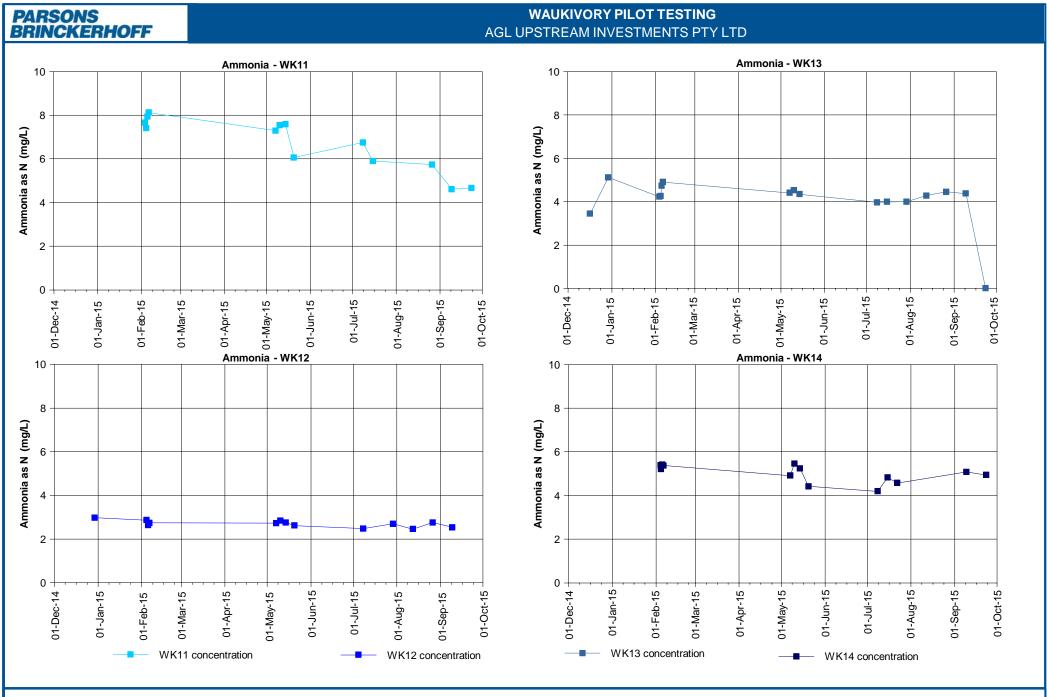



Figure E4.1: Ammonia concentrations and flowback volumes at the Waukivory pilot wells

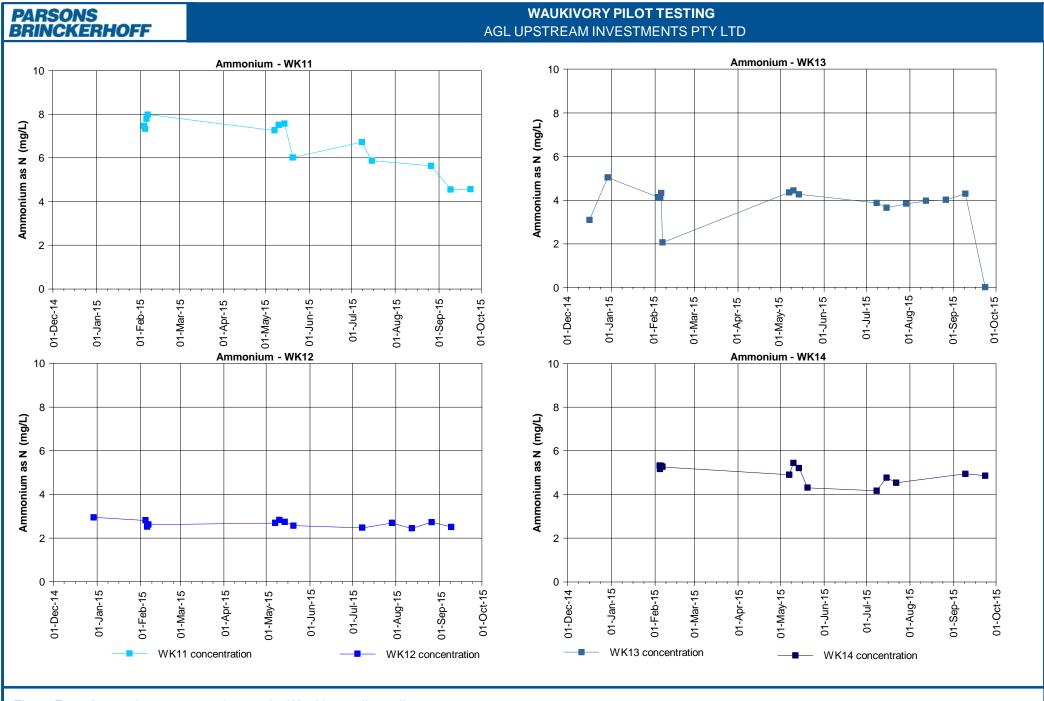



Figure E4.2: Ammonium concentrations at the Waukivory pilot wells

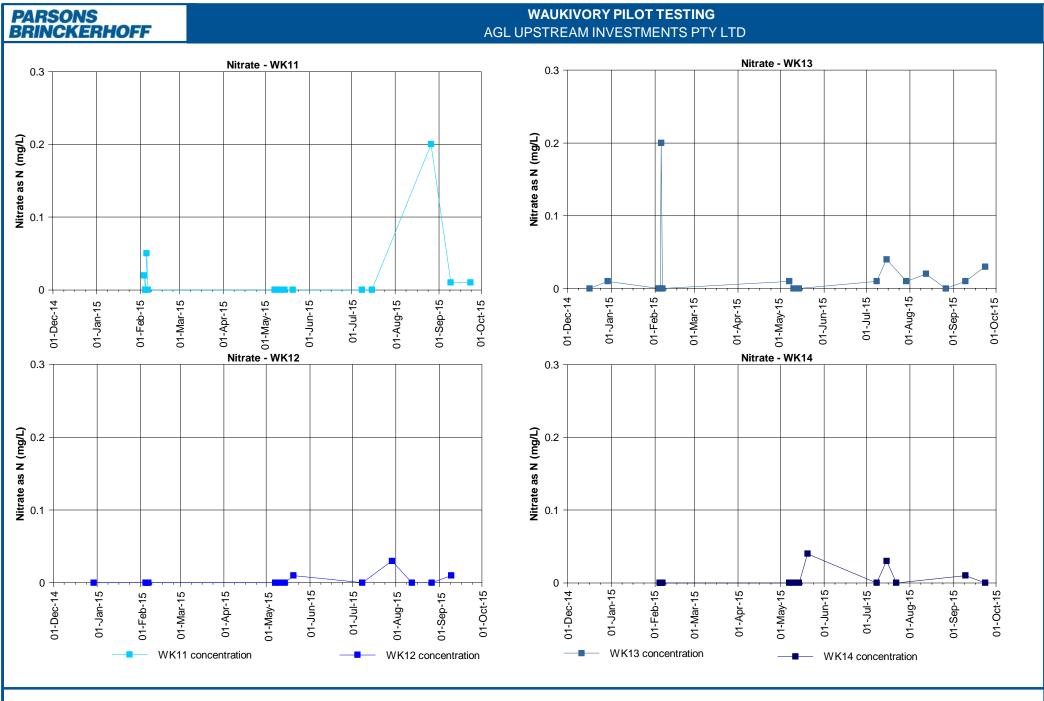



Figure E4.3: Nitrate concentrations at the Waukivory pilot wells

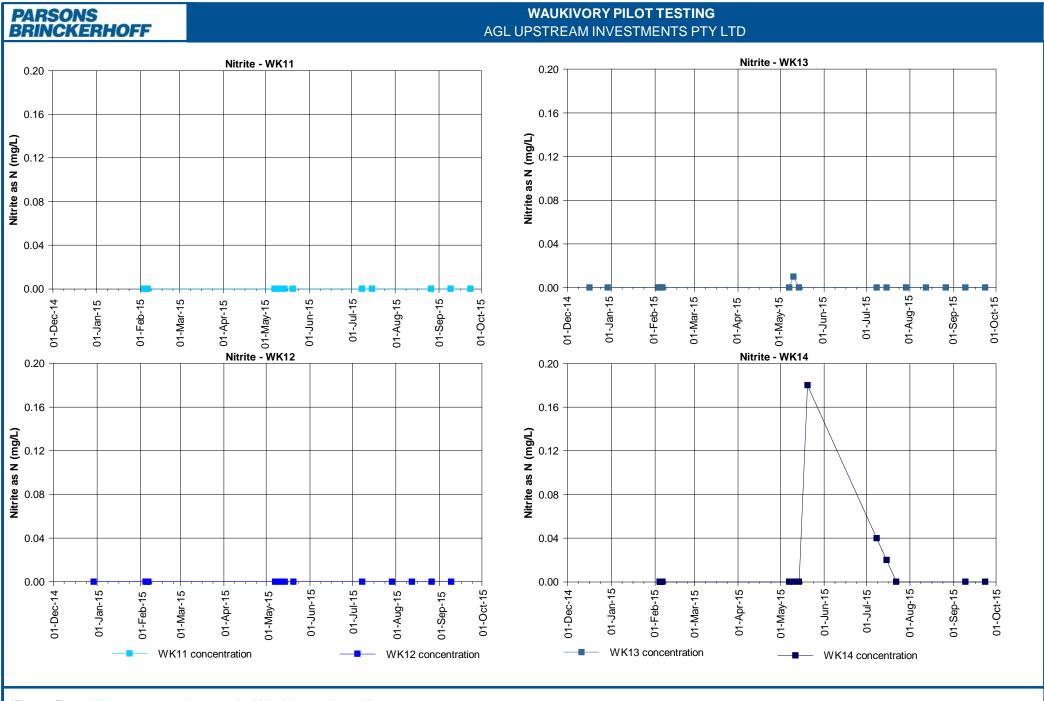
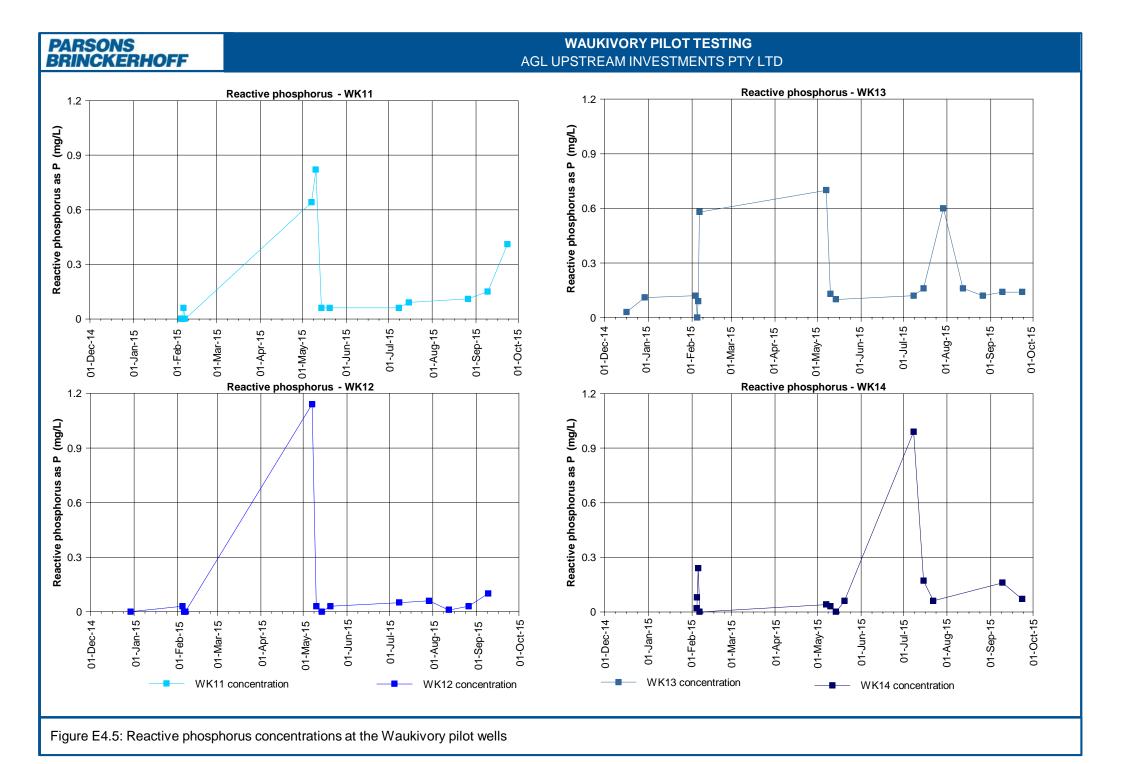
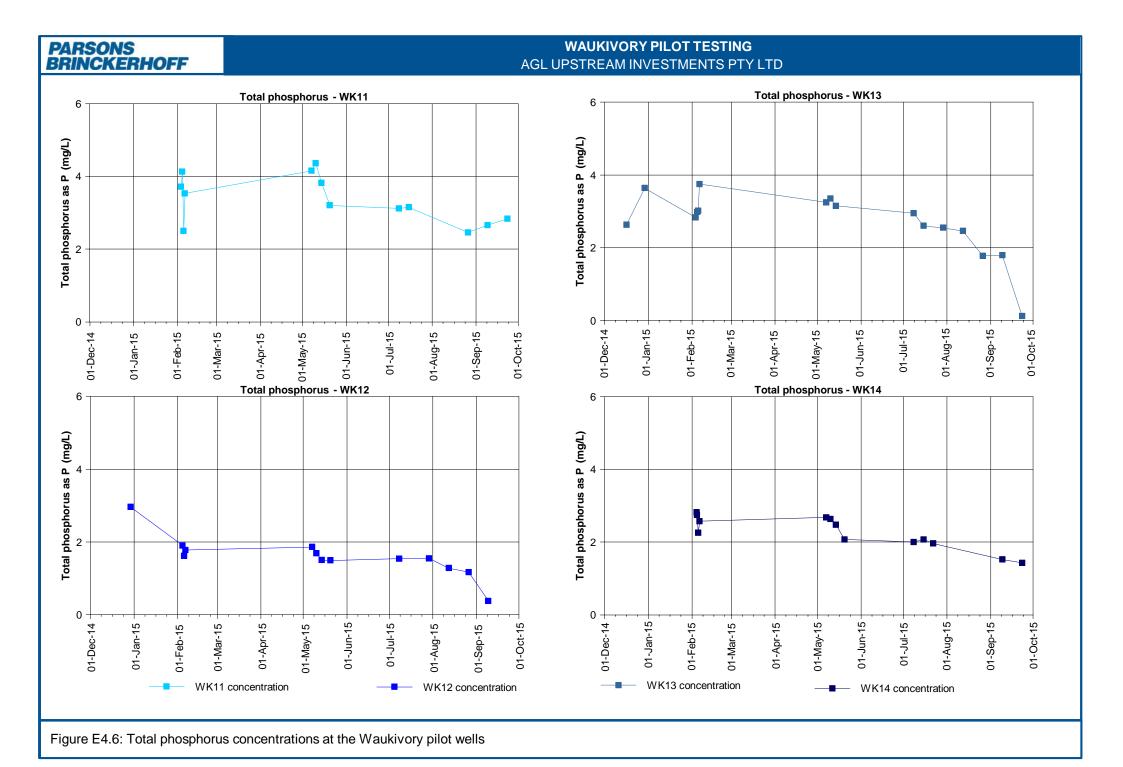





Figure E4.4: Nitrite concentrations at the Waukivory pilot wells





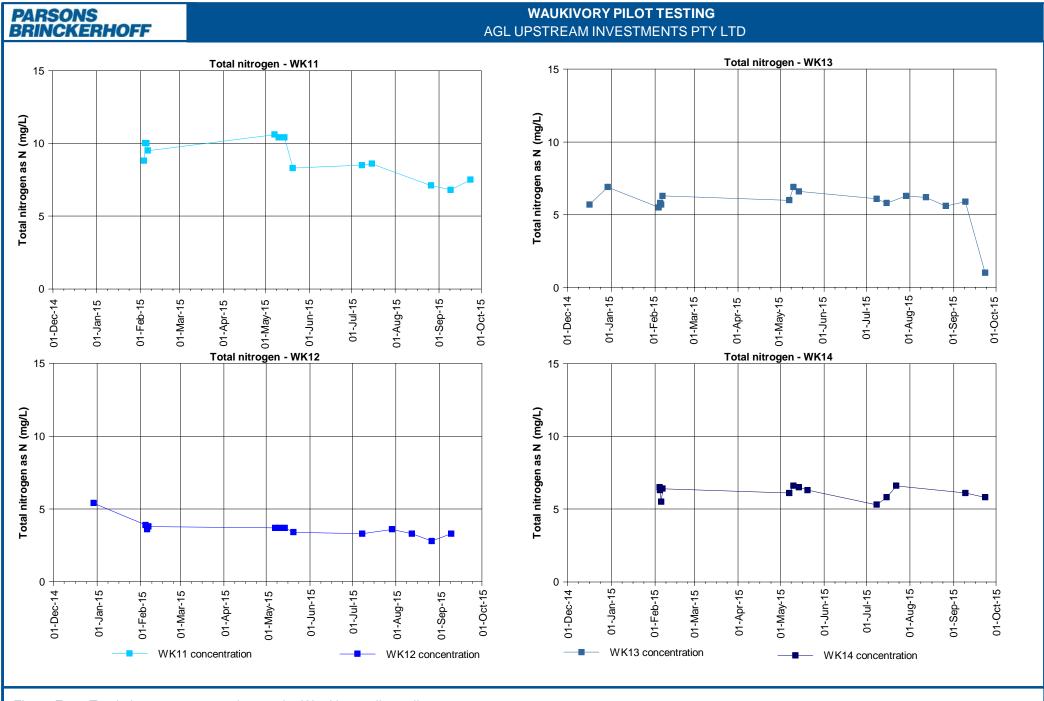



Figure E4.7: Total nitrogen concentrations at the Waukivory pilot wells

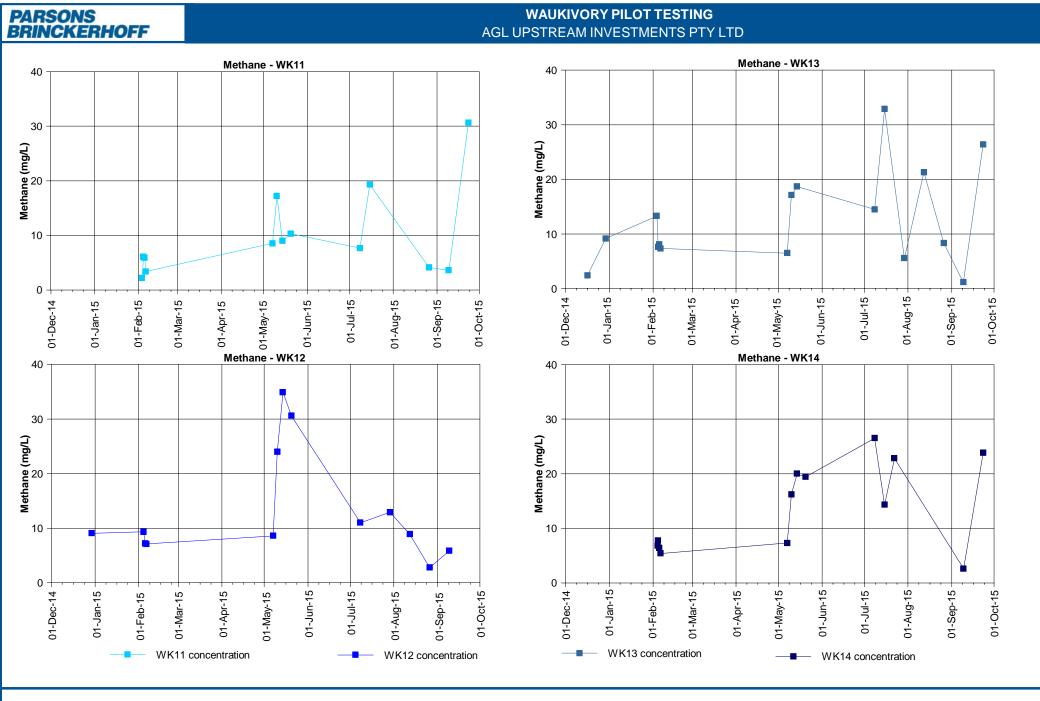



Figure E5.1: Methane concentrations at the Waukivory pilot wells

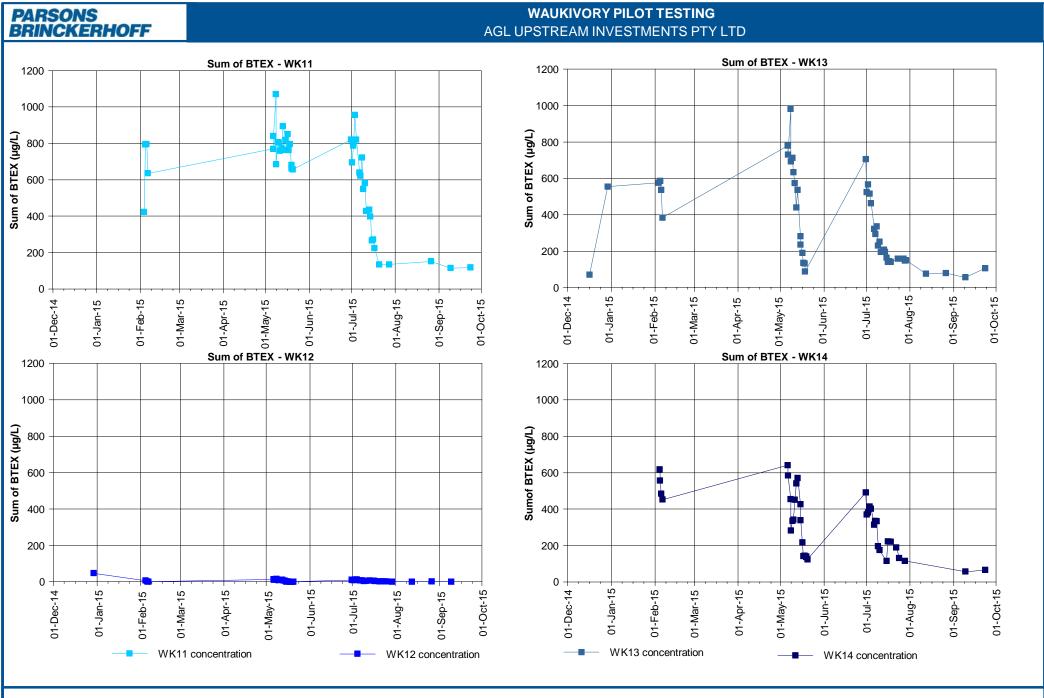



Figure E6.1: Sum of BTEX concentrations at the Waukivory pilot wells

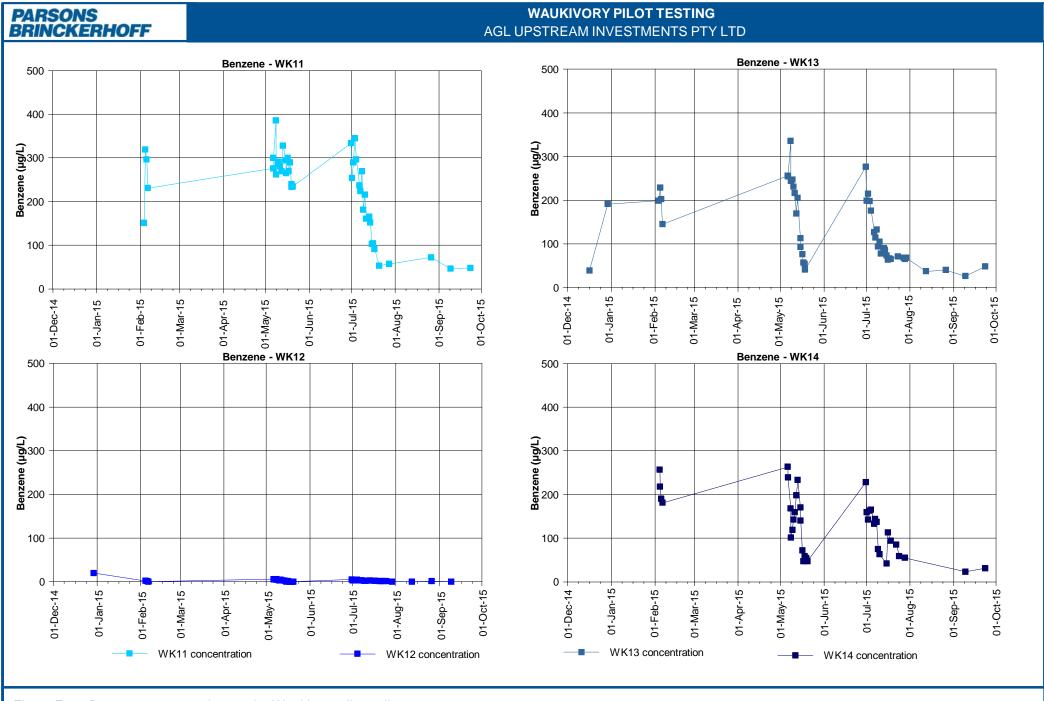



Figure E6.2: Benzene concentrations at the Waukivory pilot wells

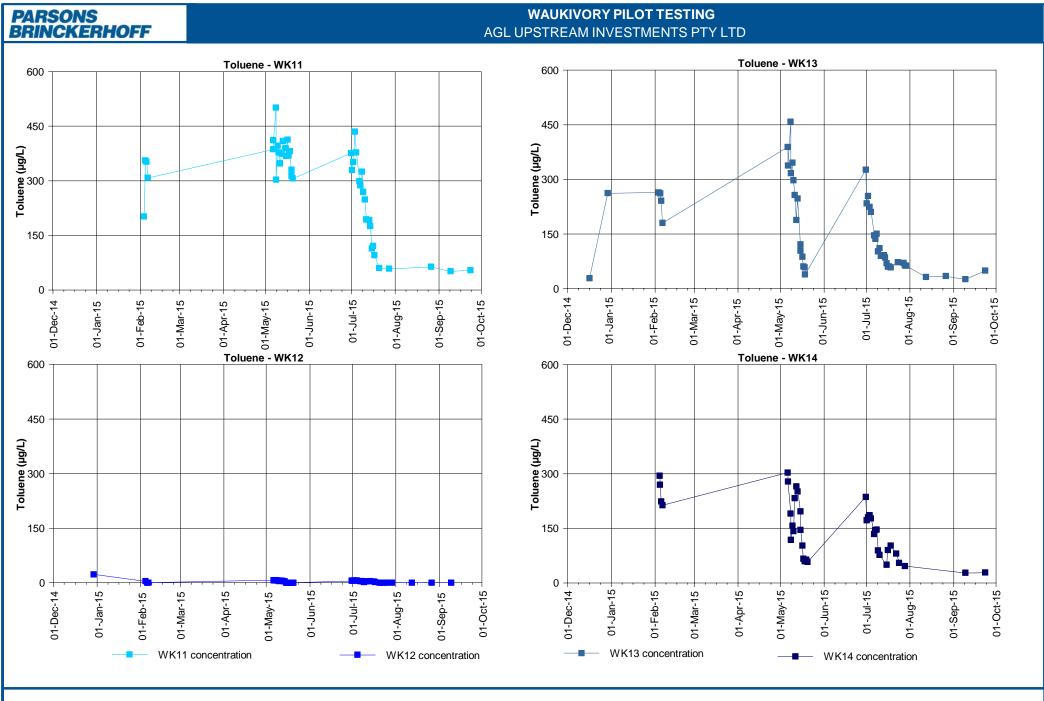




Figure E6.3: Toluene concentrations at the Waukivory pilot wells



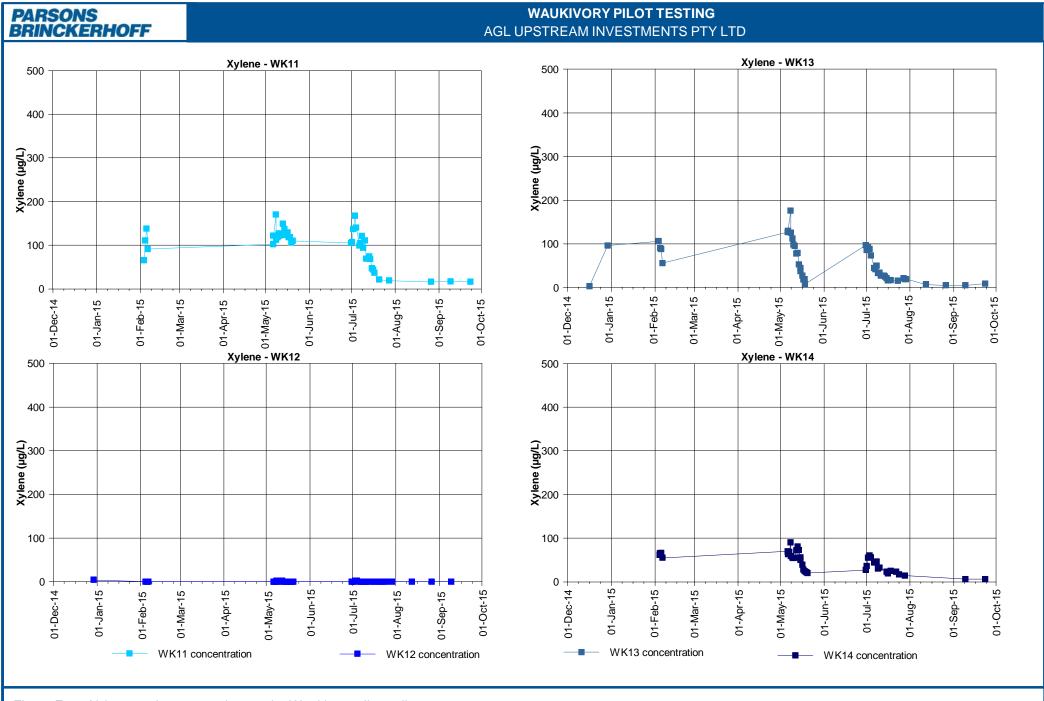



Figure E6.5: Xylene total concentrations at the Waukivory pilot wells

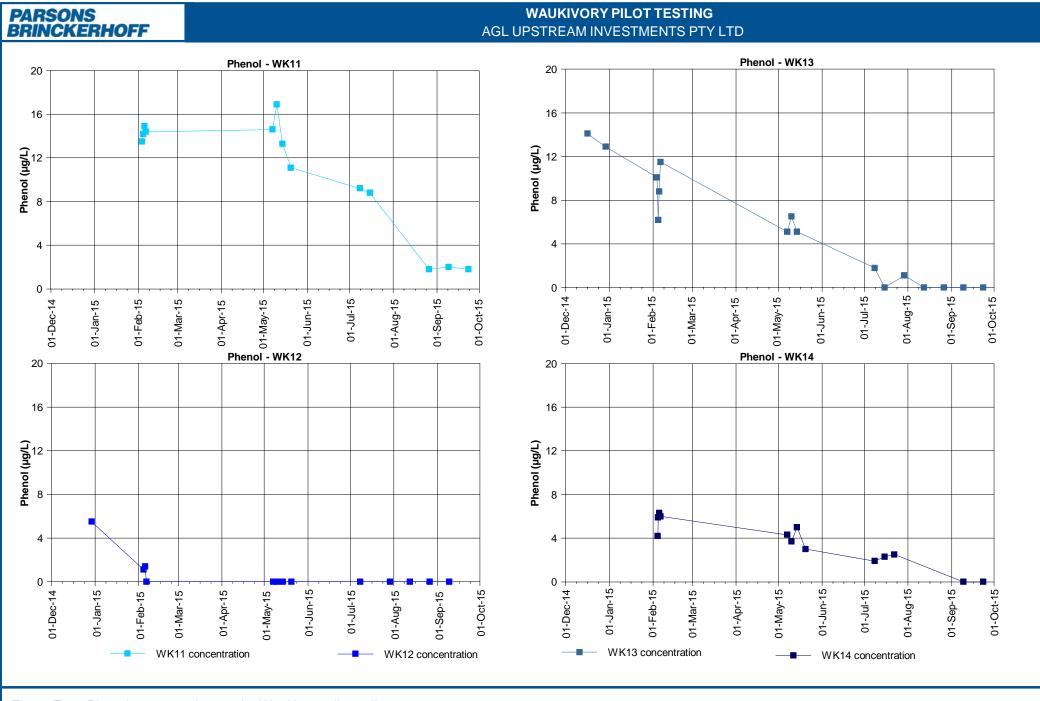
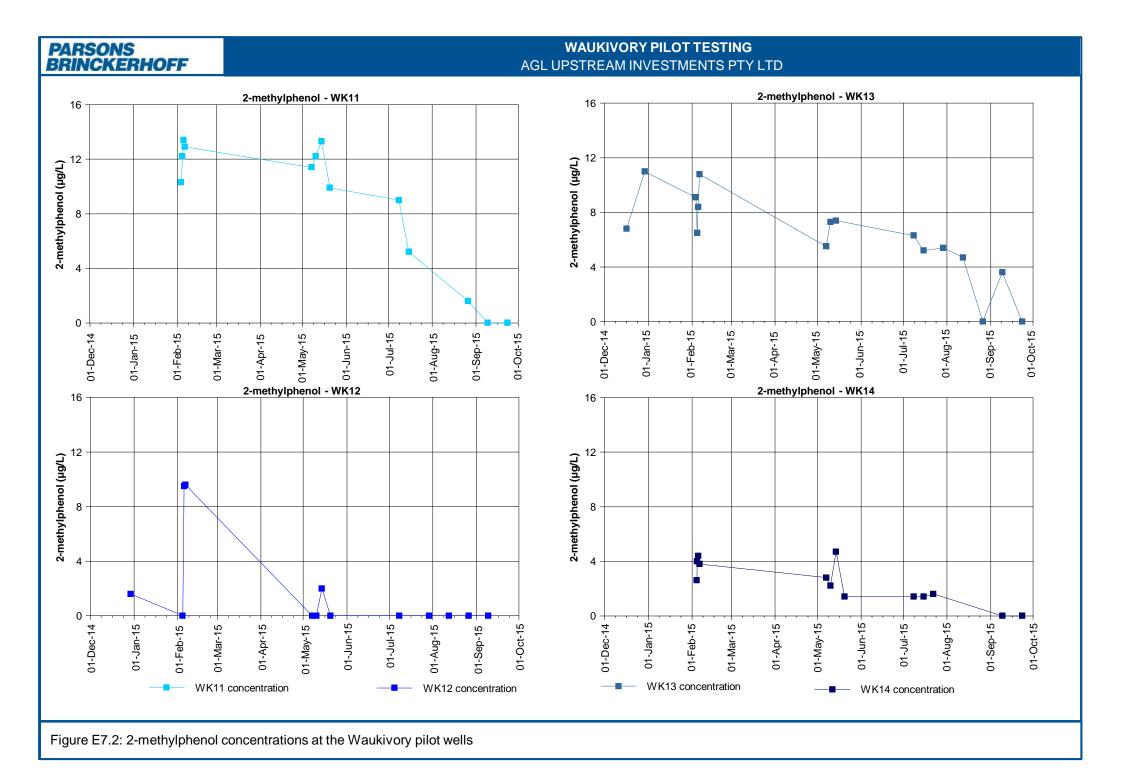




Figure E7.1: Phenol concentrations at the Waukivory pilot wells



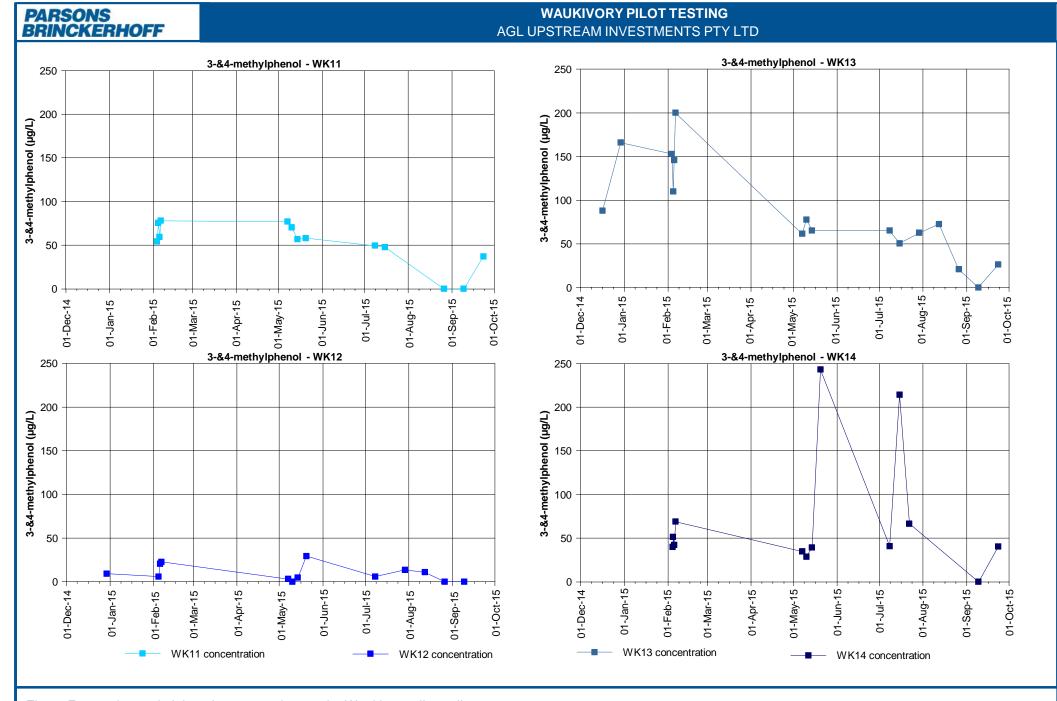



Figure E7.3: 3-&4-methylphenol concentrations at the Waukivory pilot wells

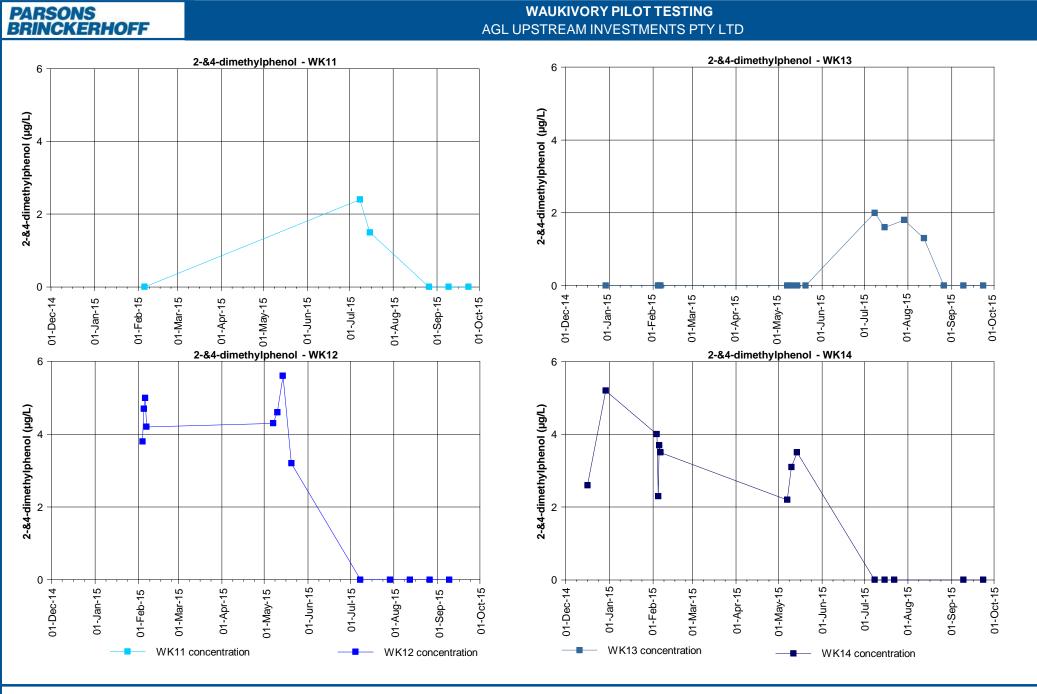
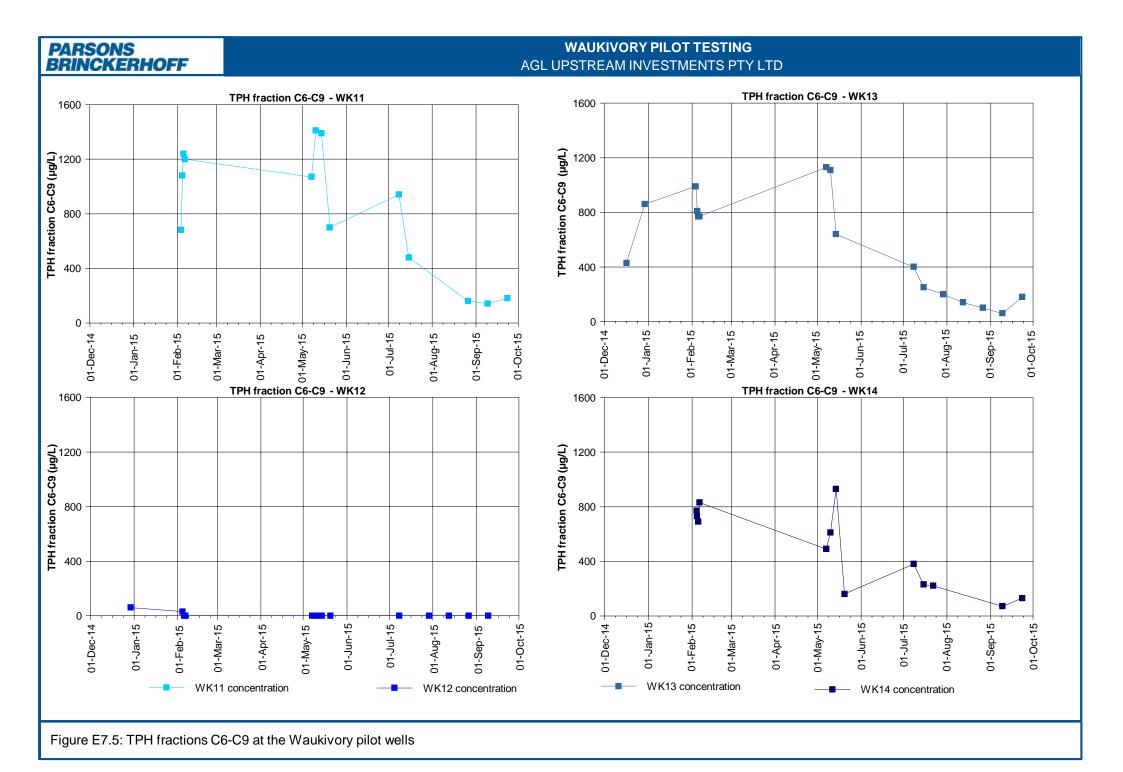
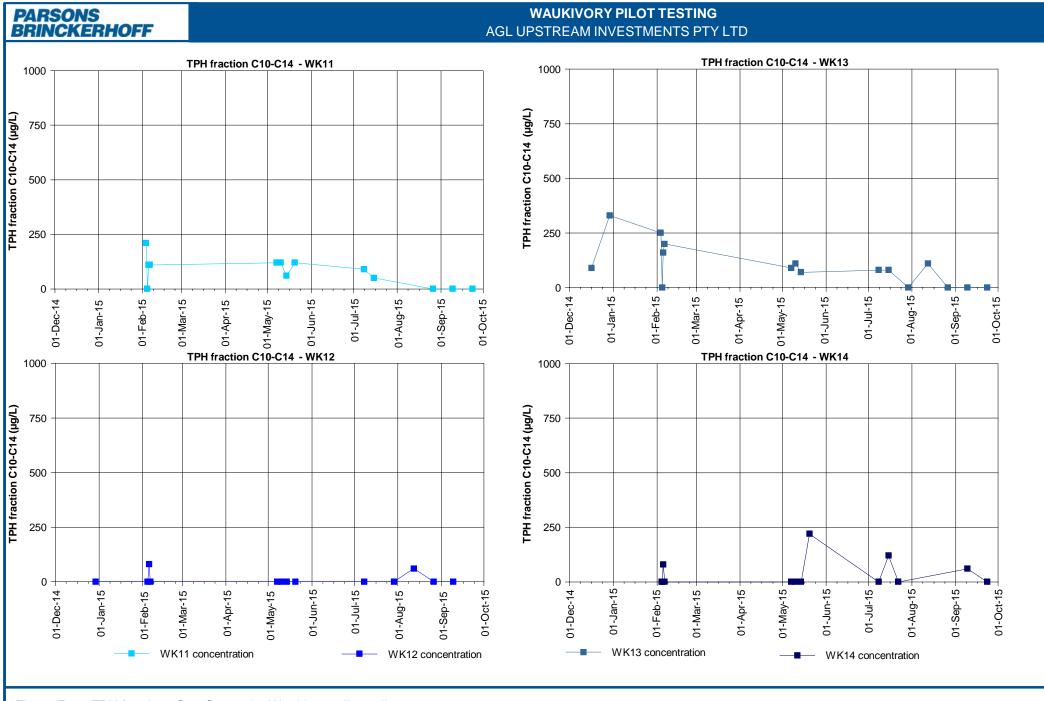
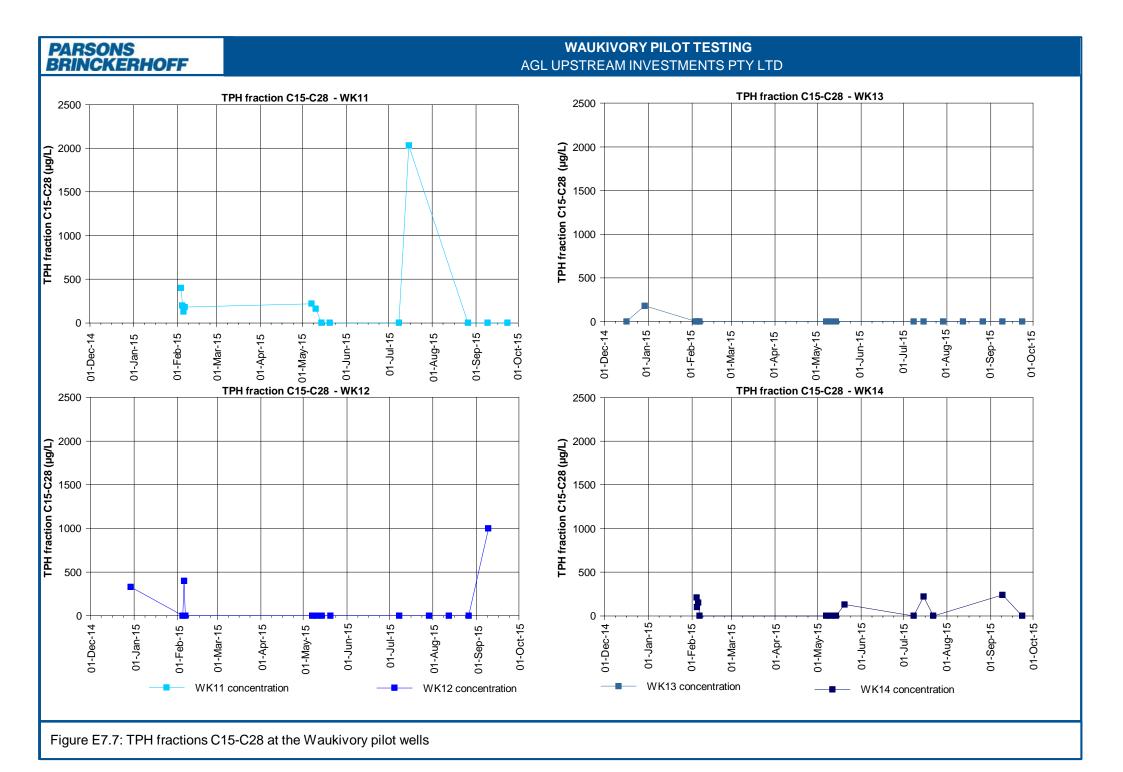
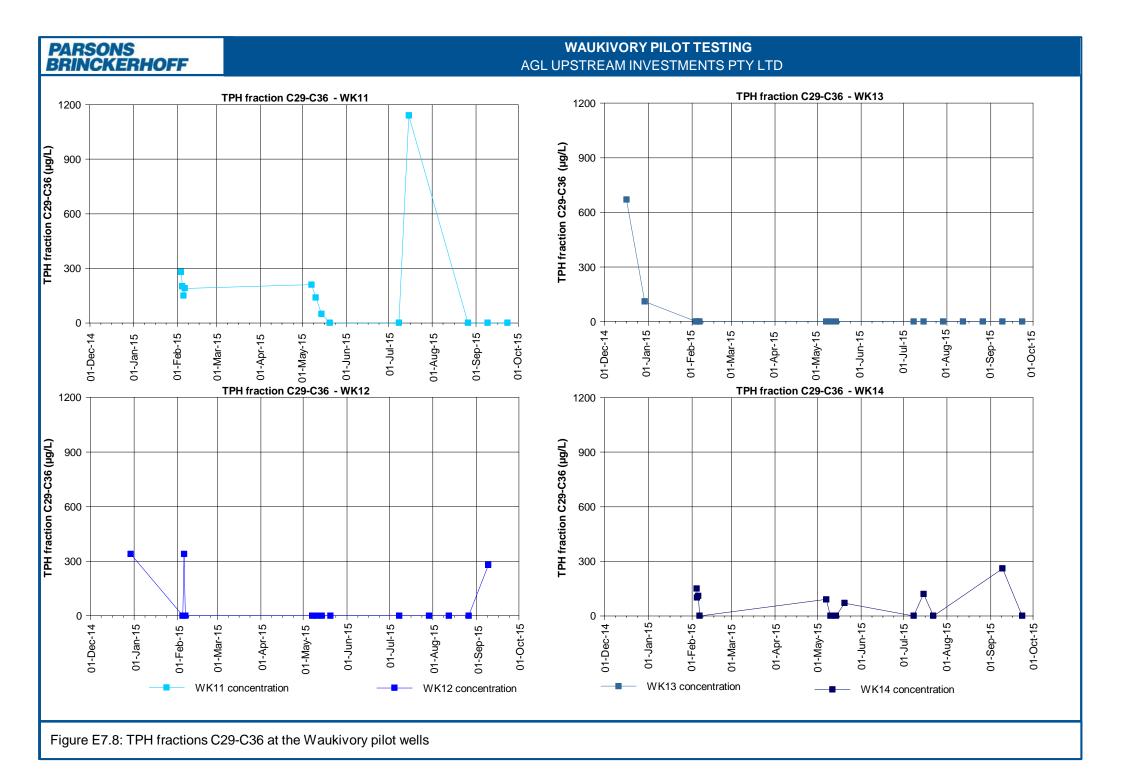
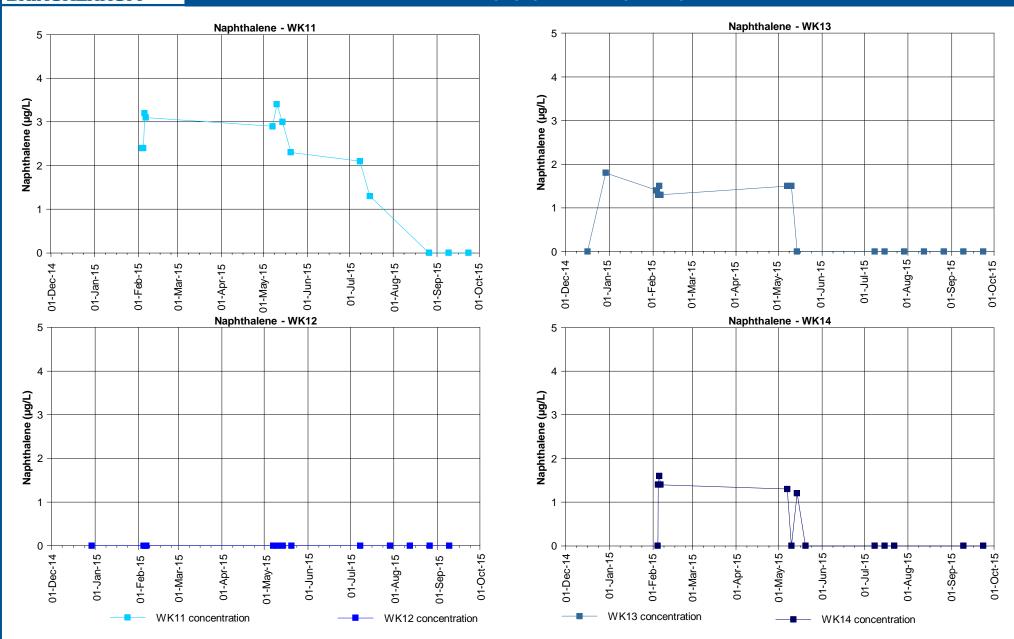
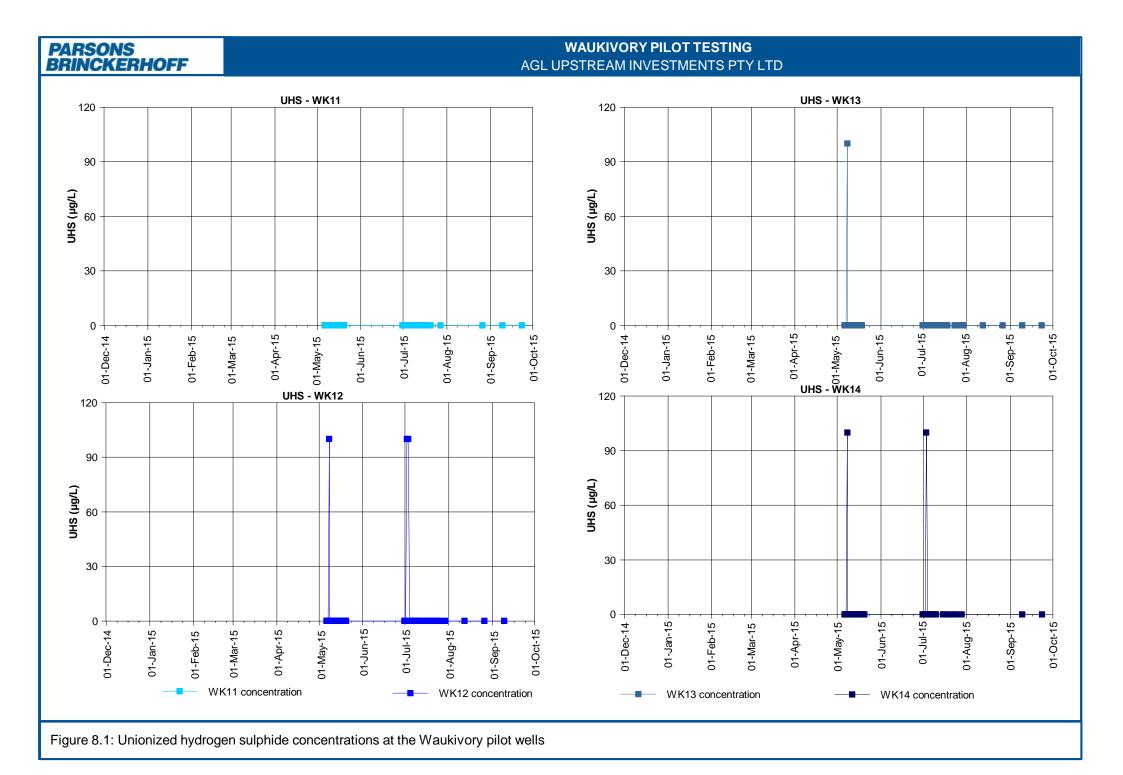




Figure E7.4: 2-&4-dimethylphenol concentrations at the Waukivory pilot wells

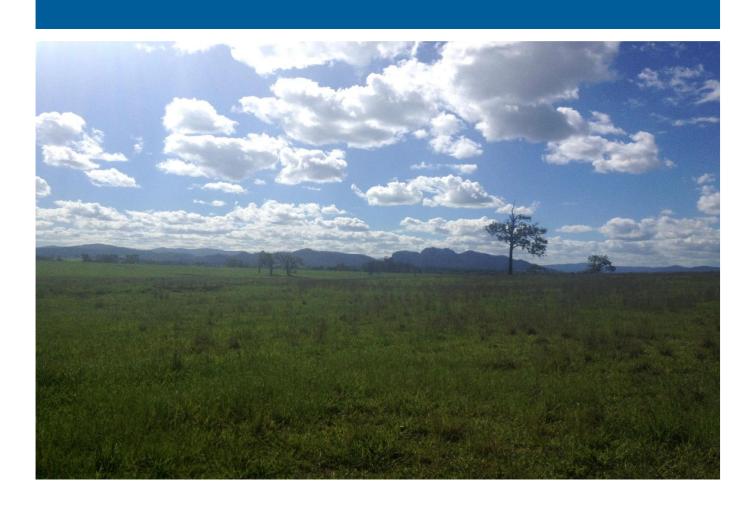




Figure E7.6: TPH fractions C10-C14 at the Waukivory pilot wells












# Appendix F

AST2 analyte time-series hydrographs



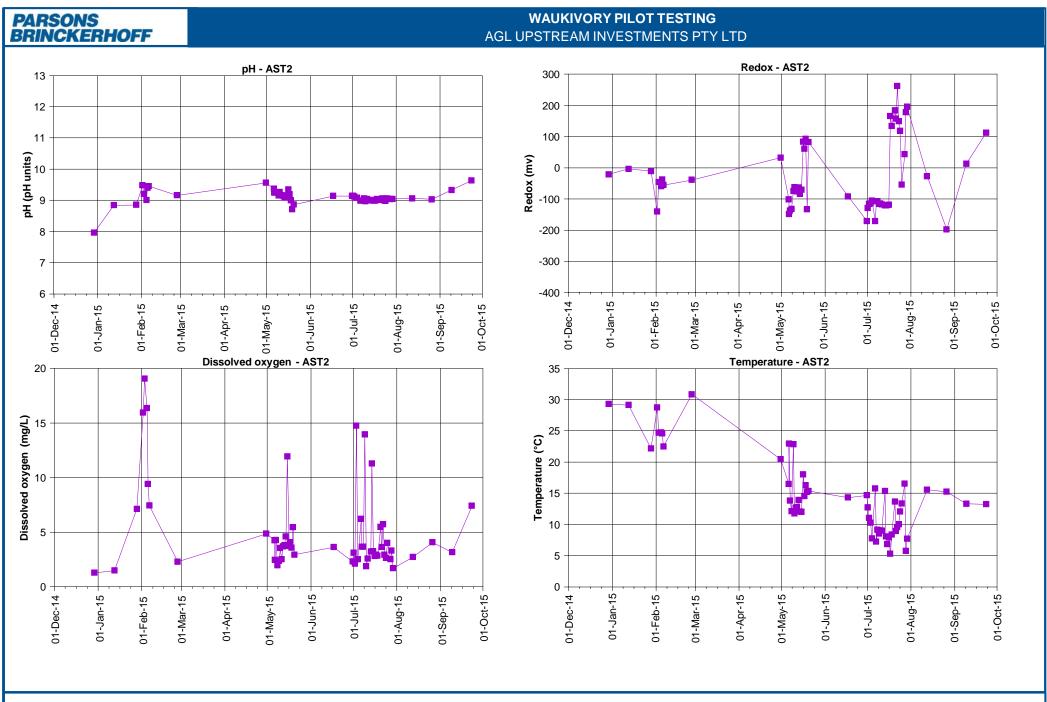



Figure F1.1: Field measurements of pH, redox, dissolved oxygen and temperature at AST2.



Figure F1.2: Laboratory measurements of electrical conductivity and Total Dissolved Solids (TDS) at AST2.

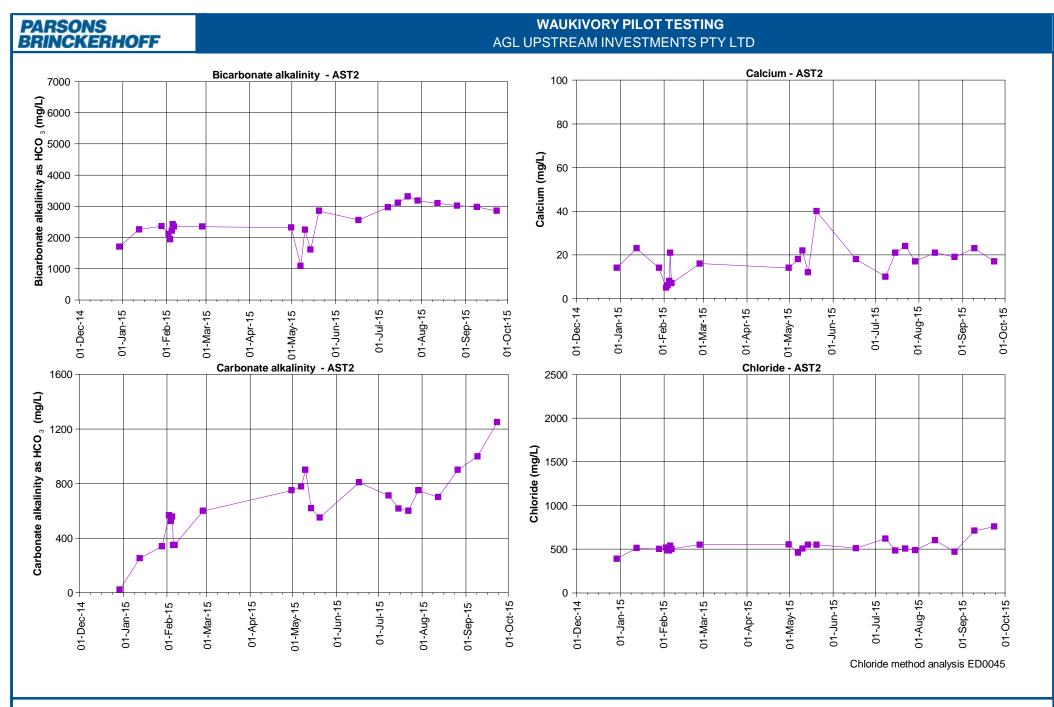



Figure F2.1: Bicarbonate alkalinity, carbonate alkalinity, calcium and chloride concentrations at AST2

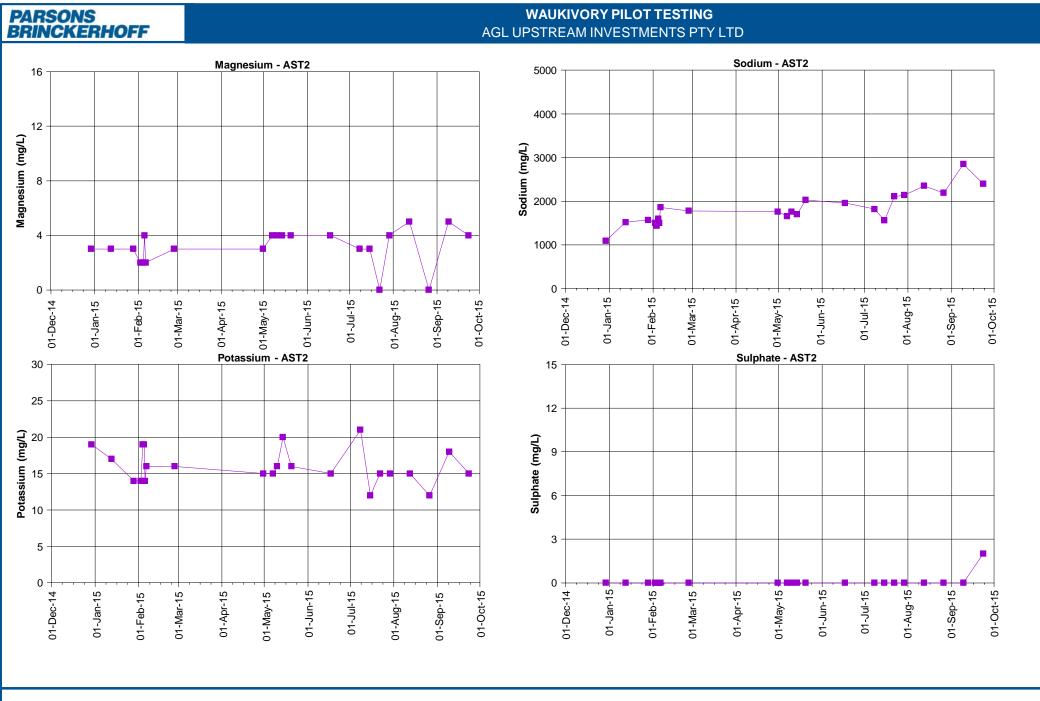



Figure F2.2: Magnesium, potassium, sodium and sulphate concentrations at AST2

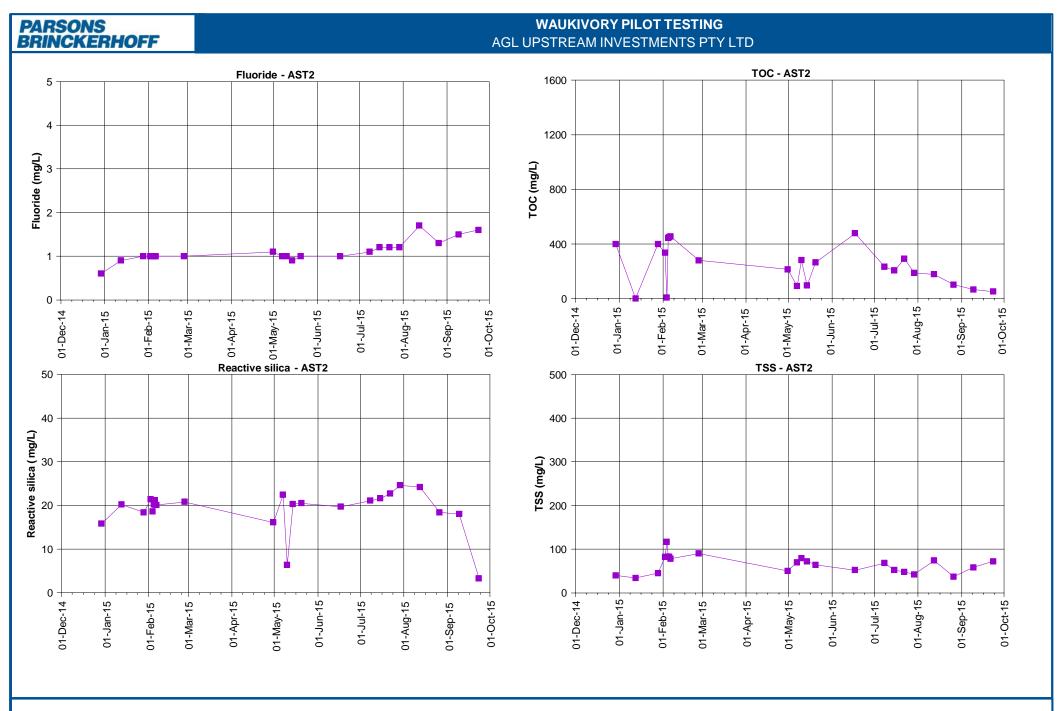
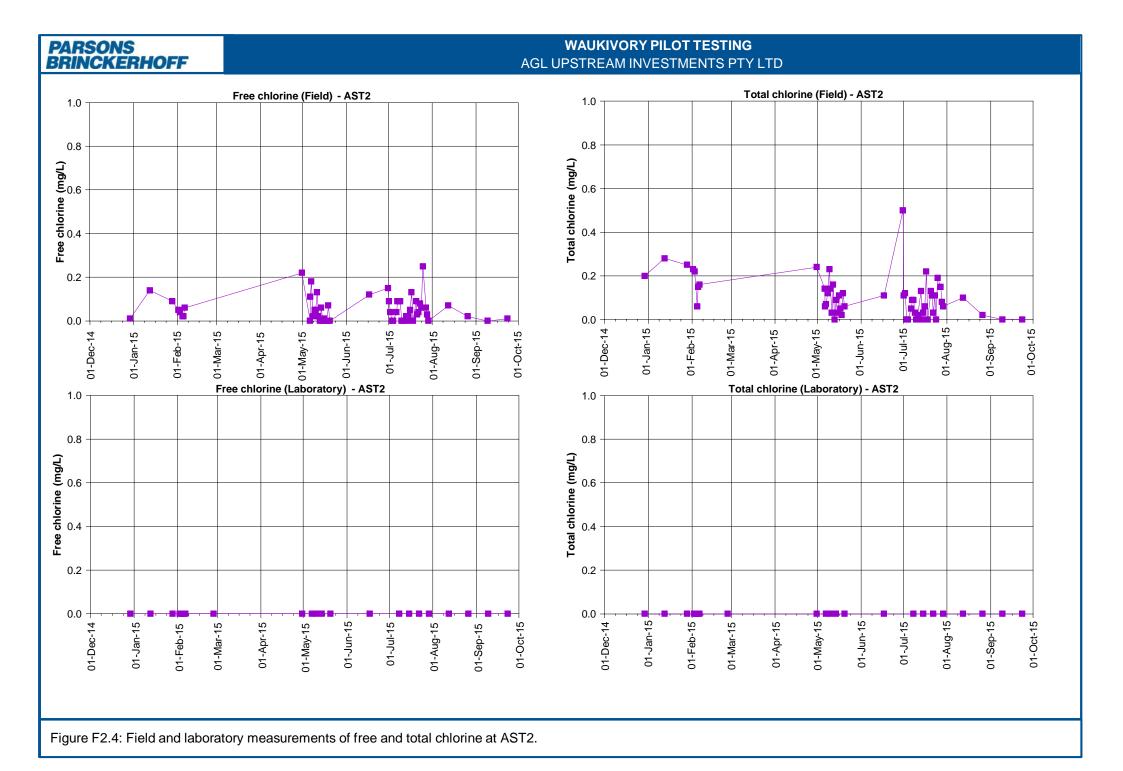
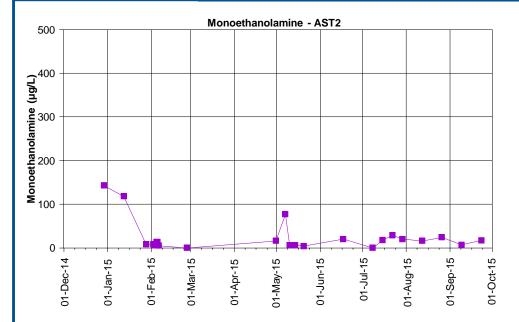





Figure F2.3: Fluoride, reactive silica, total organic carbon (TOC) and total suspended solids (TSS) concentrations at AST2







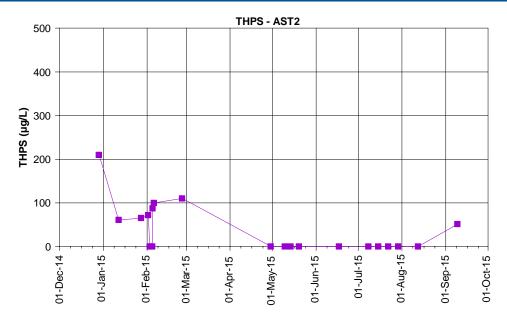



Figure F2.5: Monoethanolamine and THPS concentrations at AST2.

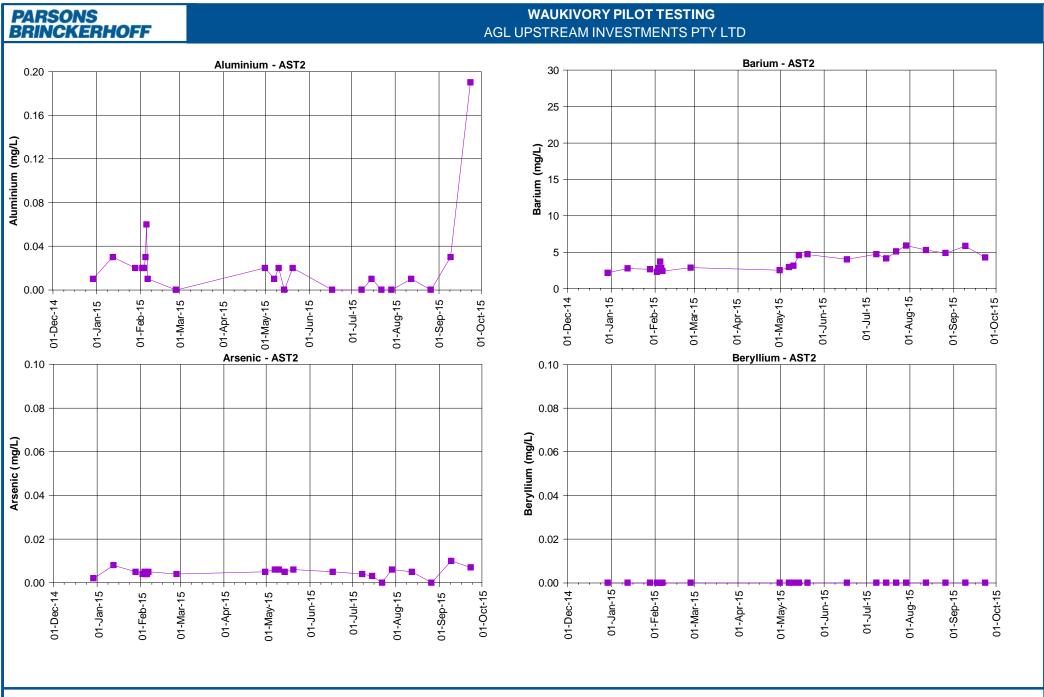
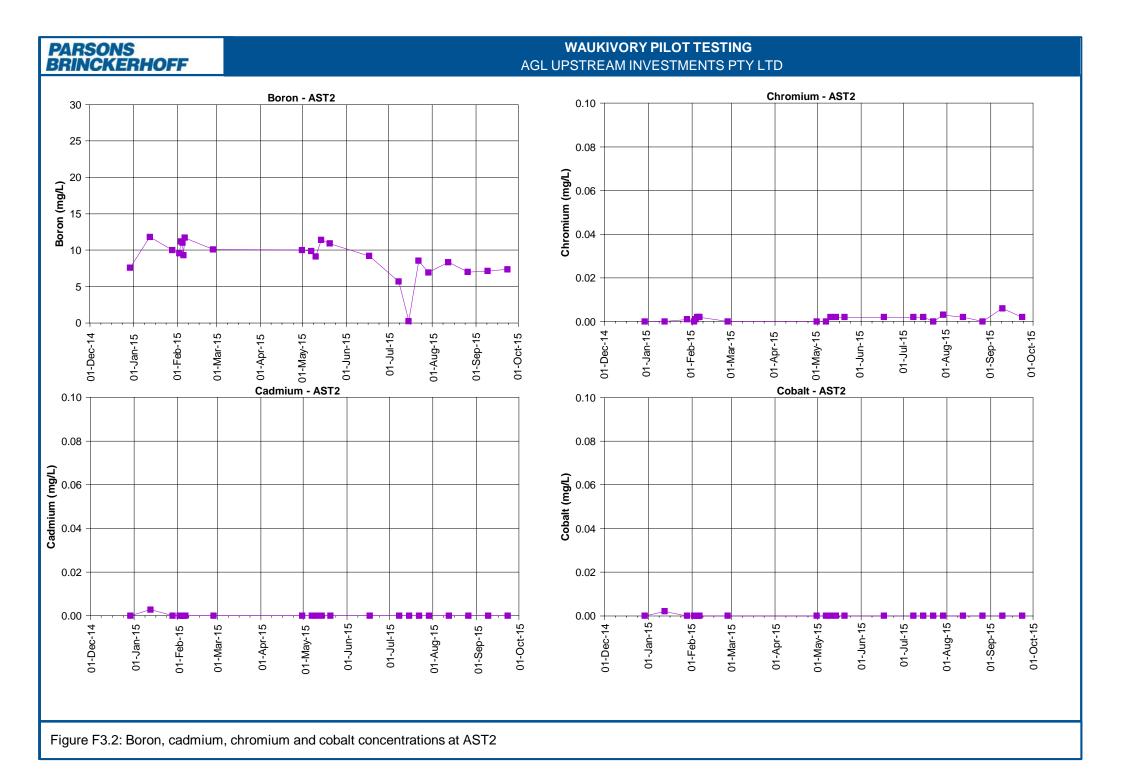




Figure F3.1: Aluminium, arsenic, barium and beryllium concentrations at AST2



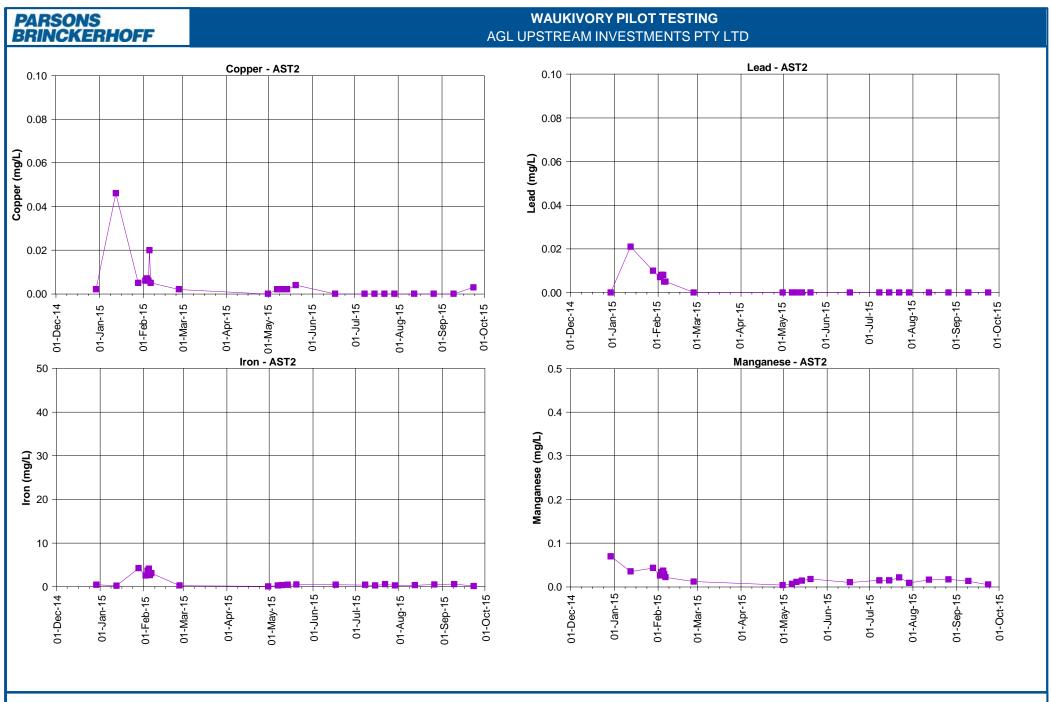



Figure F3.3: Copper, iron, lead and manganese concentrations at AST2

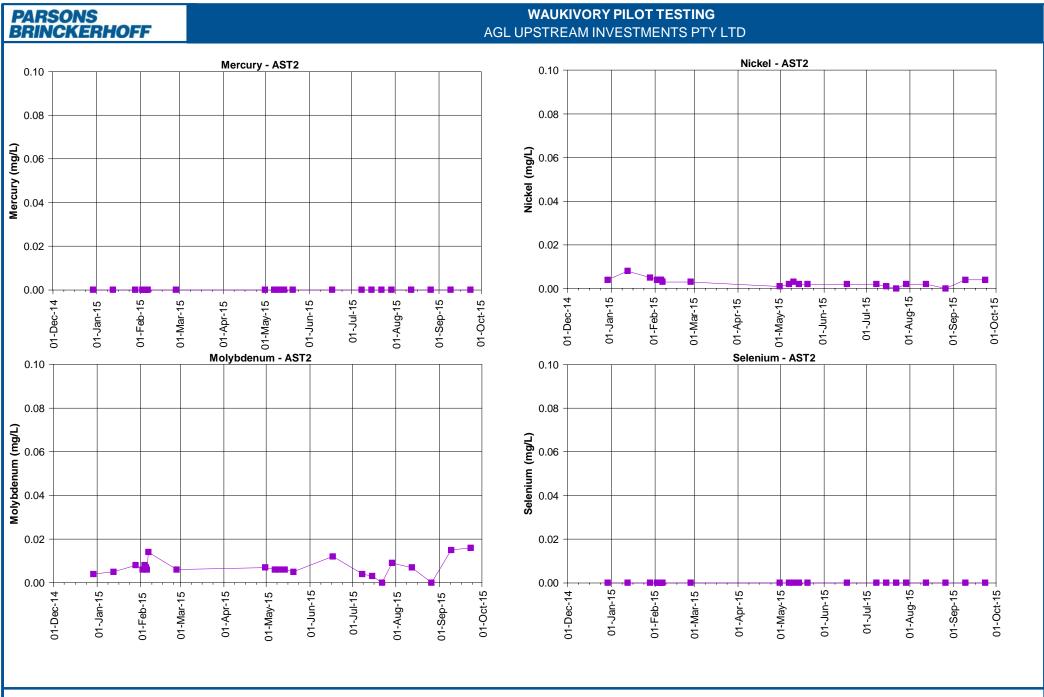
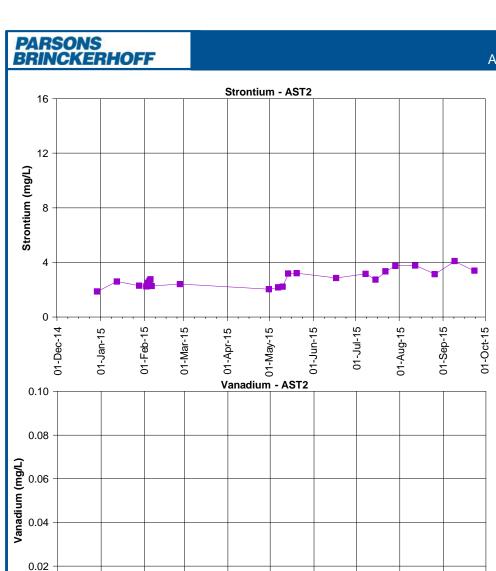




Figure F3.4: Mercury, molybdenum, nickel and selenium concentrations at AST2



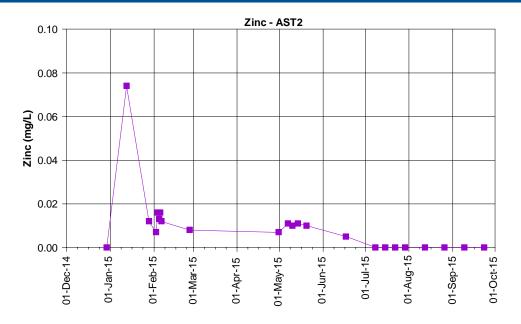



Figure F3.5: Strontium, vanadium and zinc concentrations at AST2

01-Apr-15

01-Jul-15

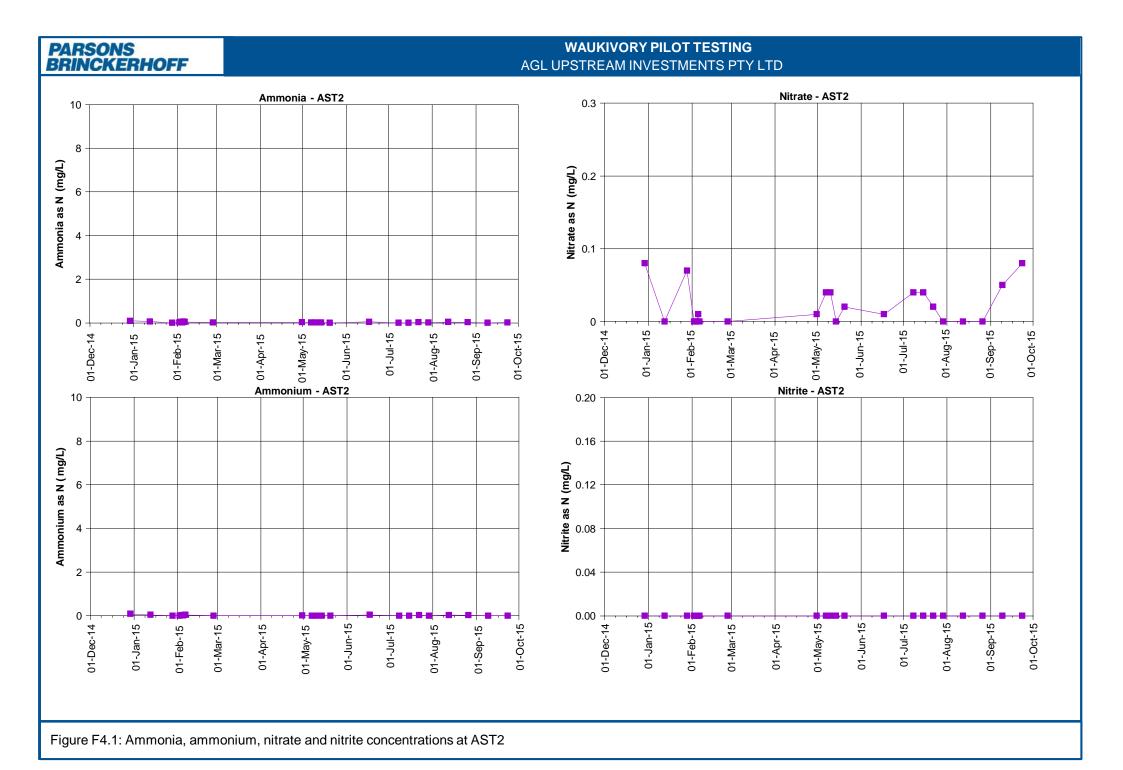
01-Jun-15

01-May-15

01-Aug-15 <sup>!</sup>

01-Sep-15

01-Oct-15


0.00

01-Dec-14

01-Jan-15

01-Feb-15

01-Mar-15



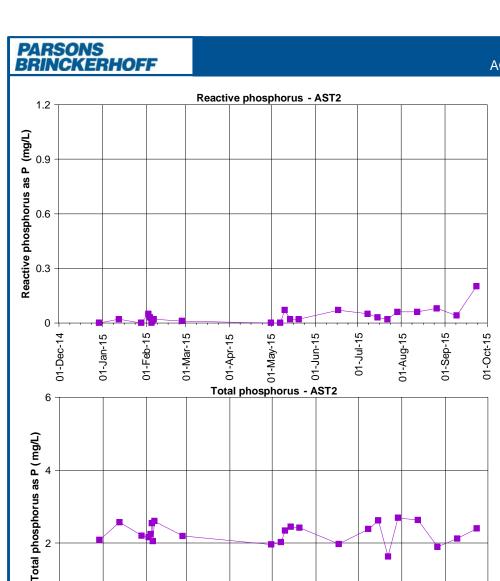





Figure F4.2: Reactive phosphorus, total phosphorus and total nitrogen concentrations at AST2

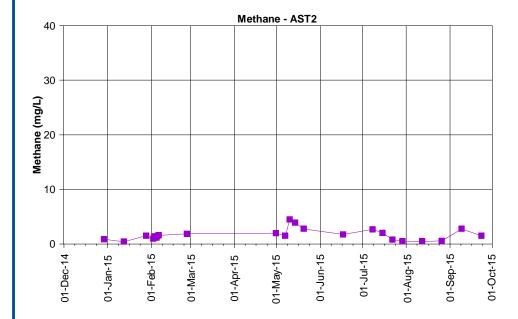



Figure G5.1: Concentration of methane at AST2.

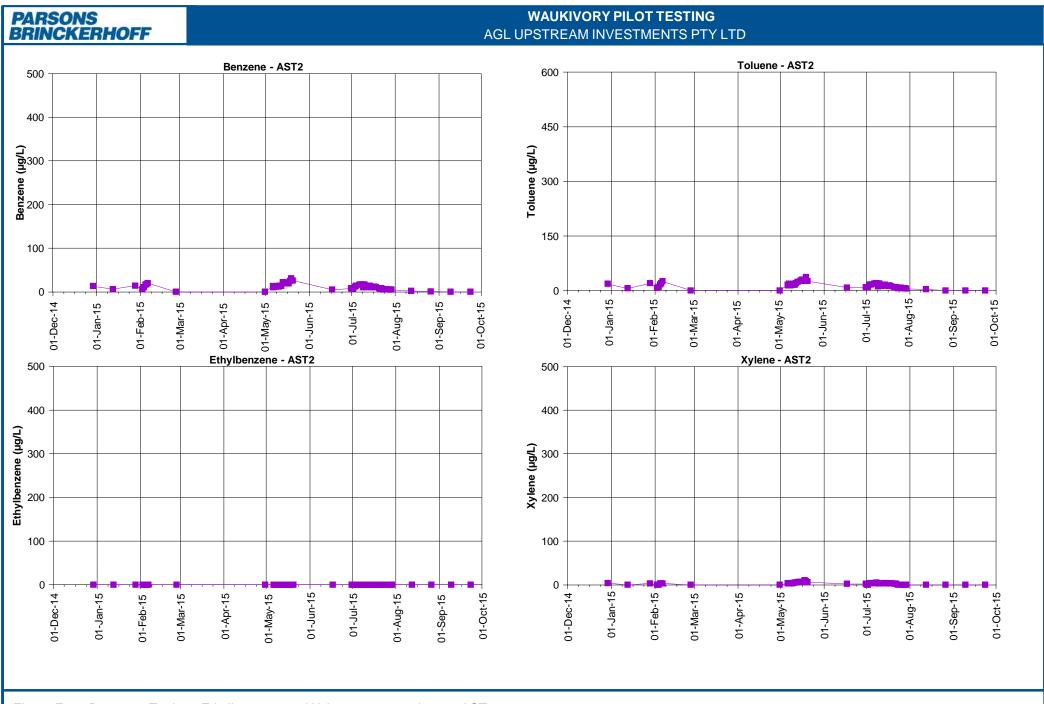
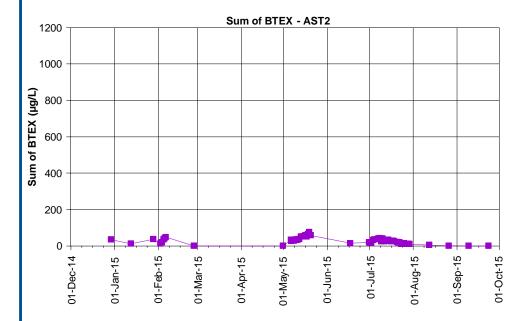




Figure F6.1: Benzene, Toulene Ethylbenzene and Xylene concentrations at AST2



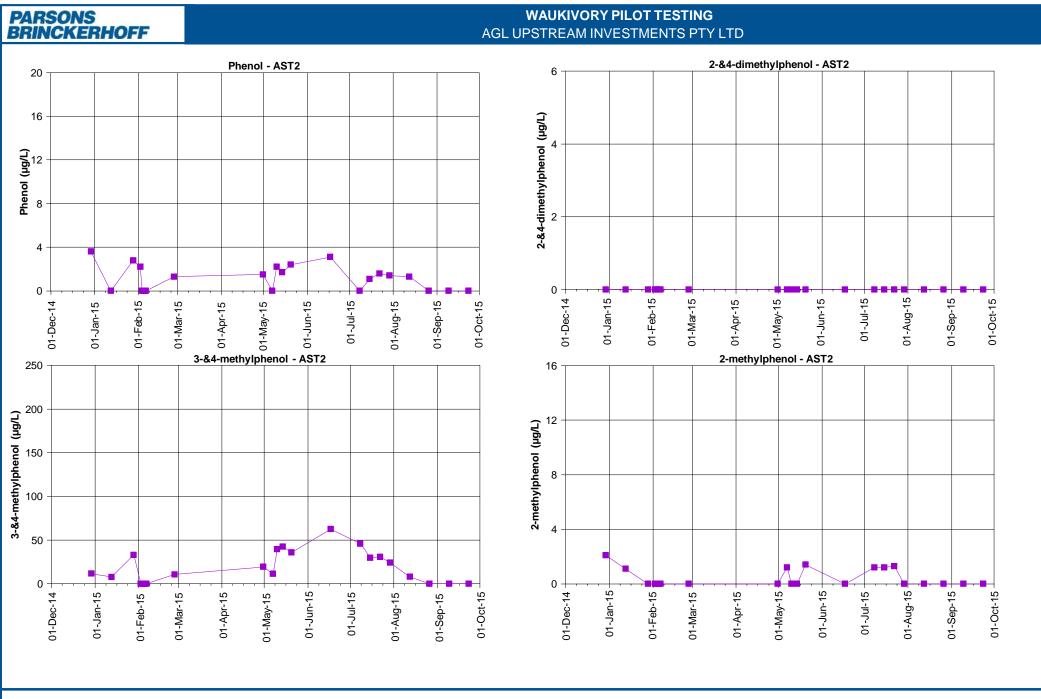



Figure F7.1: Phenol, 3-&4-methylphenol, 2-&4-dimethylphenol and 2-methylphenol concentrations at AST2.

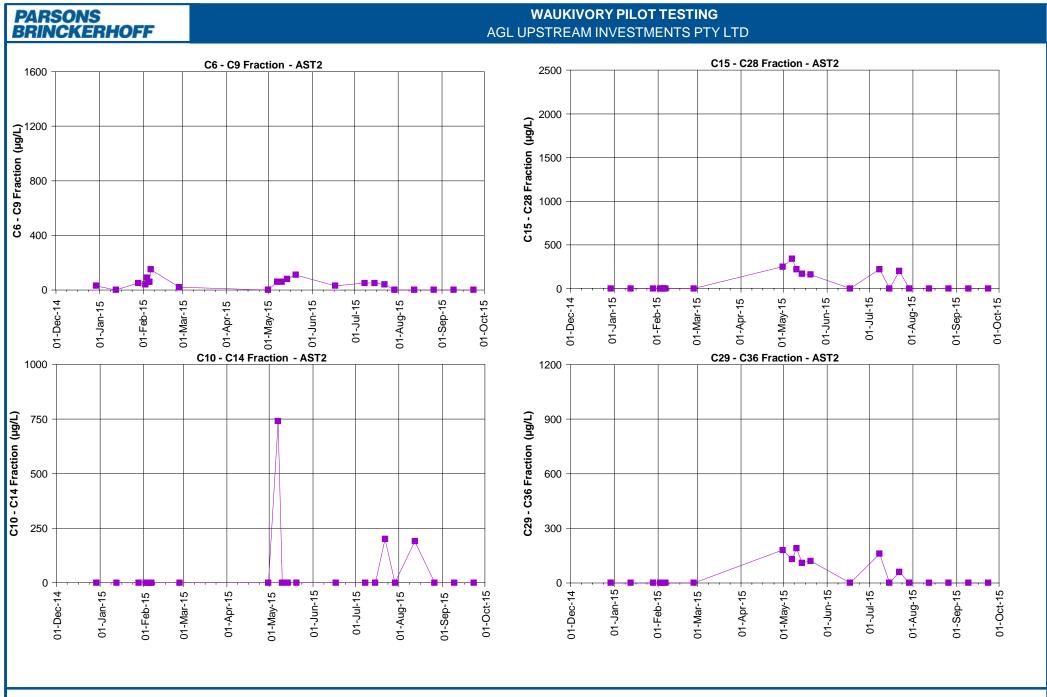
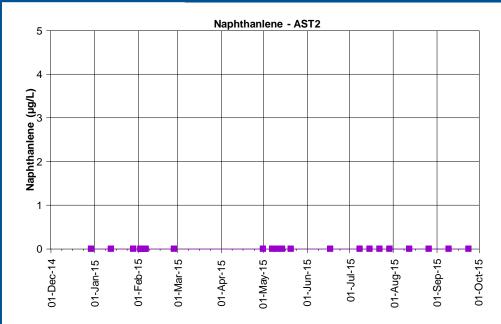




Figure F7.2: C6-C9 fraction, C10-C14 fraction, C15-C28 fraction and C29-C36 fraction concentrations at AST2.



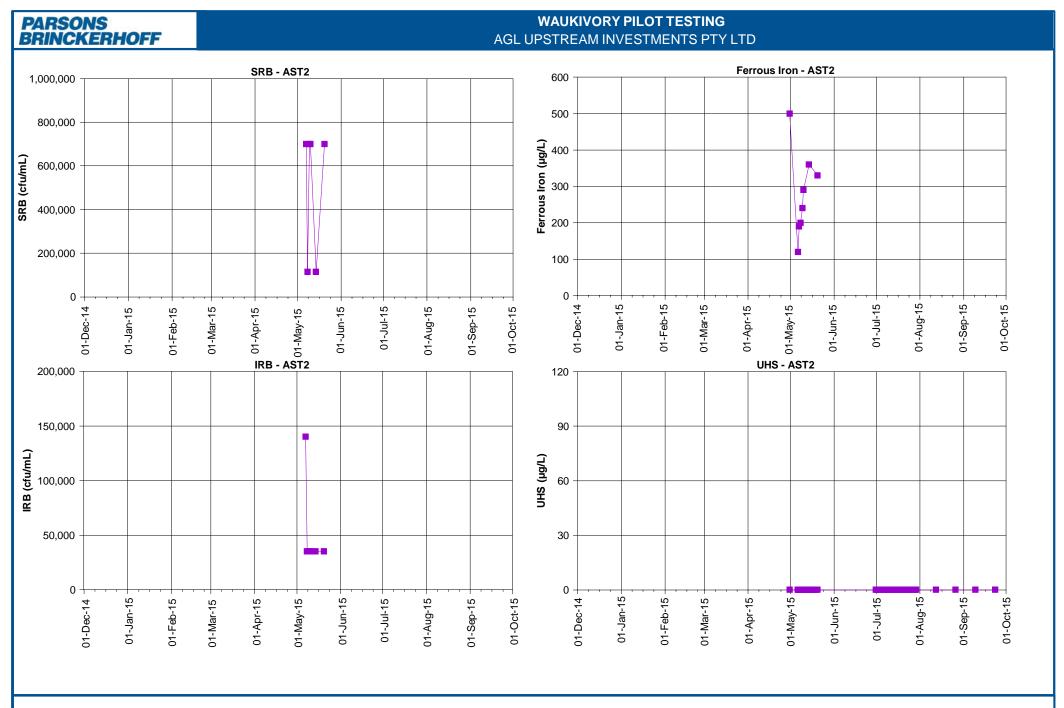
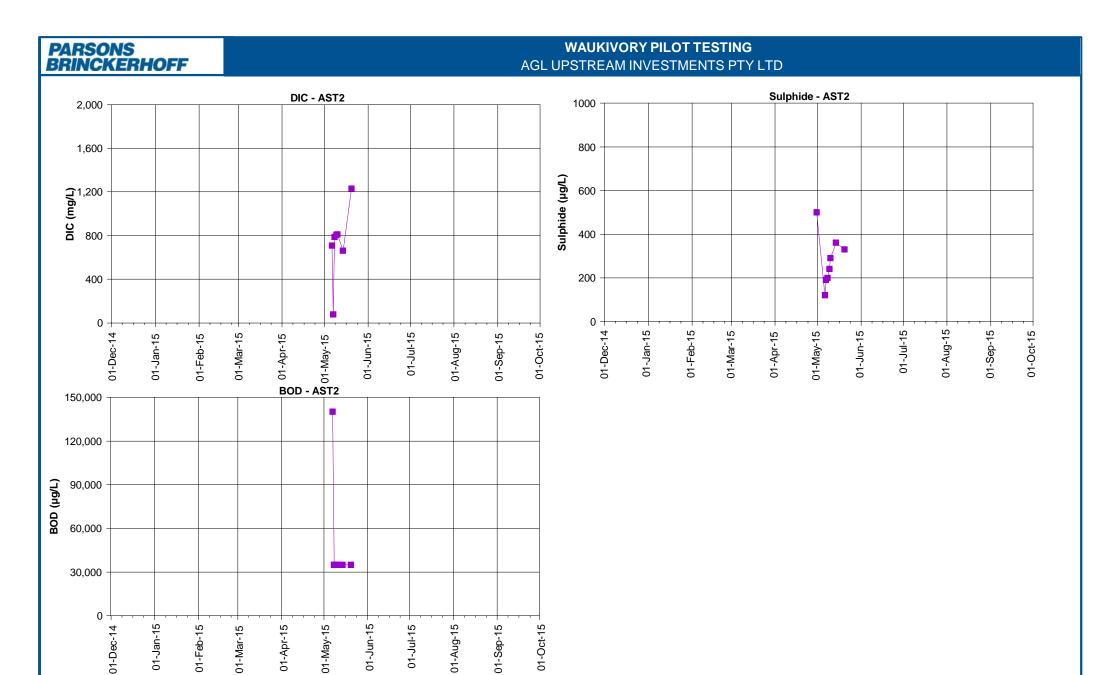



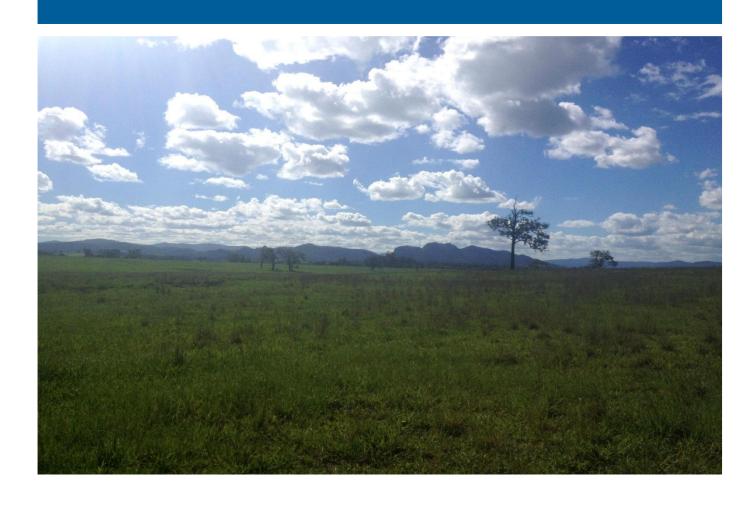

Figure F8.1 Sulphate Reducing Bacteria (SRB), Iron Related Bacteria (IRB), ferrous iron and Unionized Hydrogen Sulphide (UHS) concentrations at AST2.



01-Oct-15

Figure F8.2 Dissolved Inorganic Carbon (DIC), Biochemical Oxygen Demand (BOD) and sulphide concentrations at AST2.

01-Aug-15


01-May-15

01-Dec-14

01-Jan-15

## Appendix G

Groundwater and surface water analyte time-series hydrographs



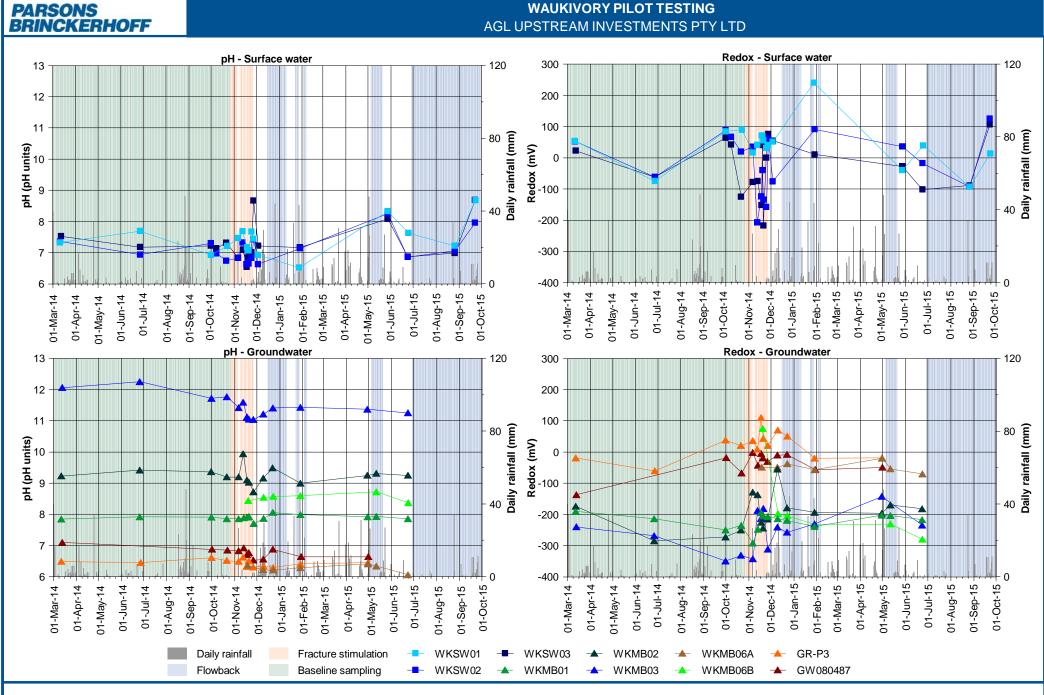
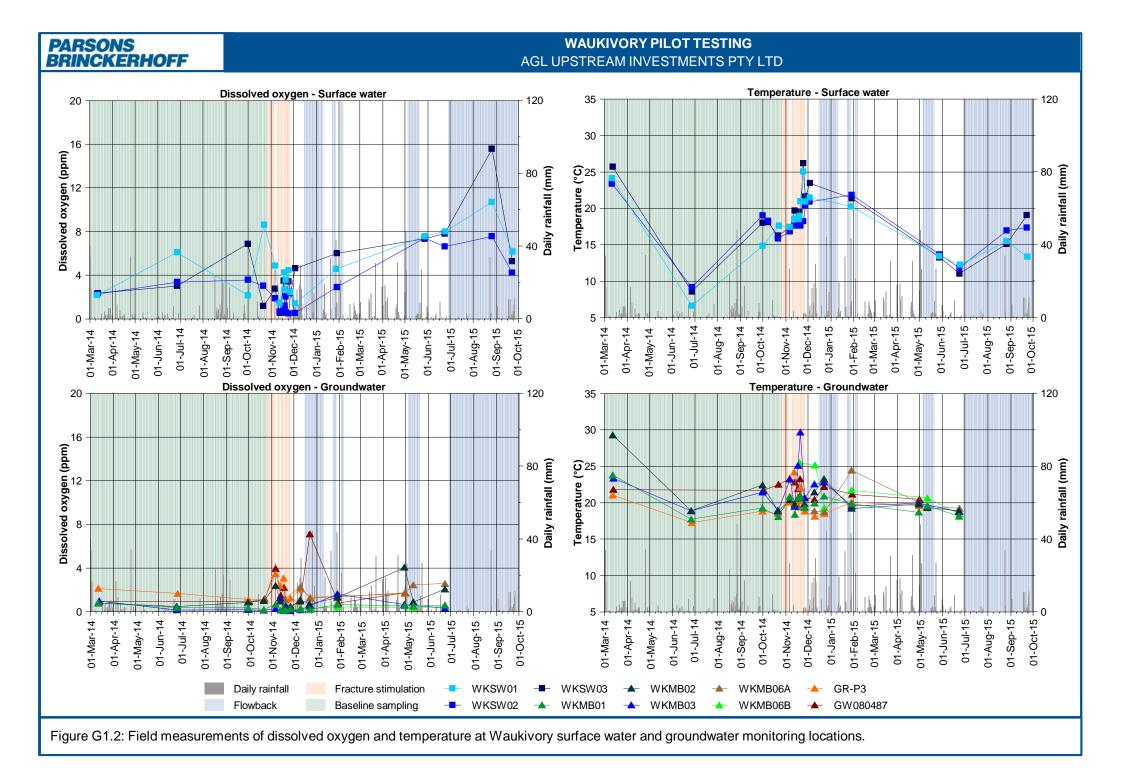
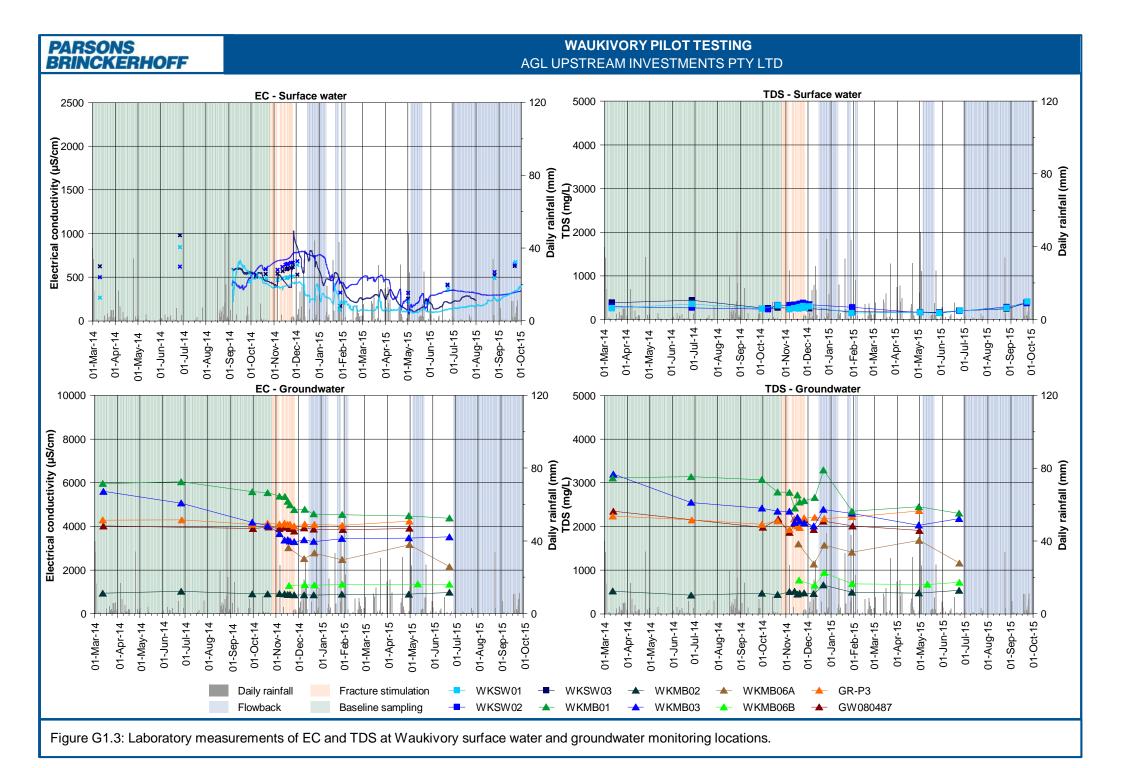
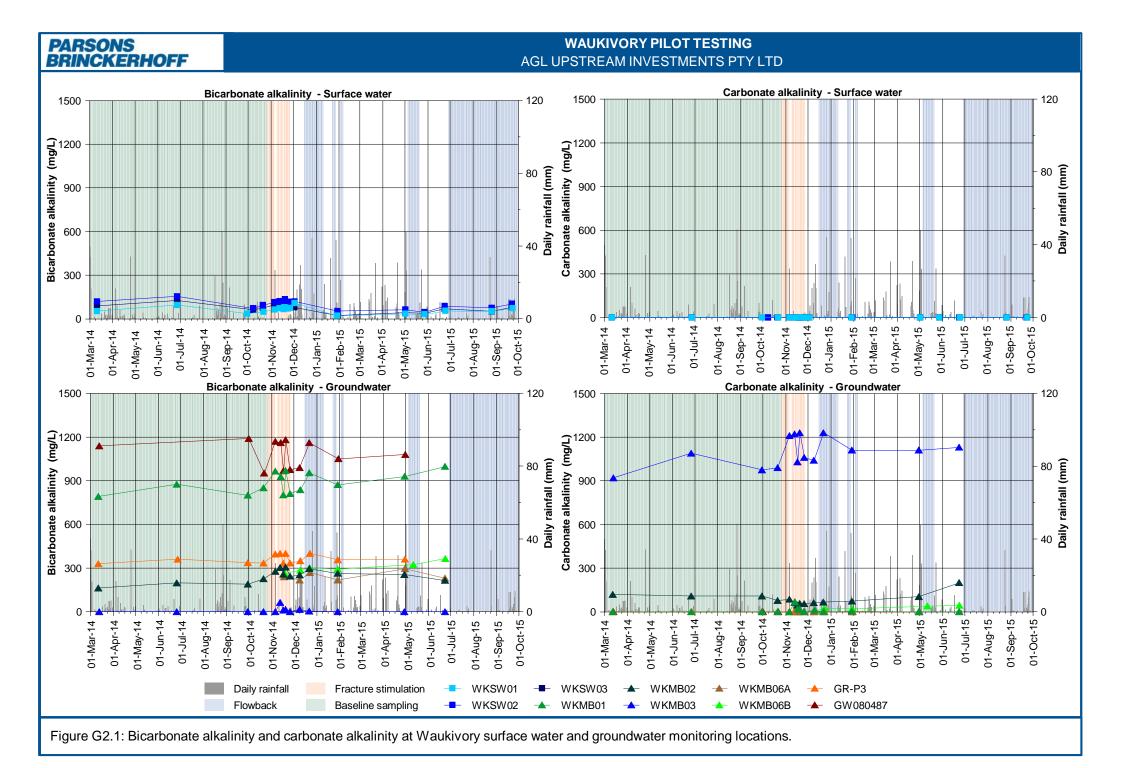
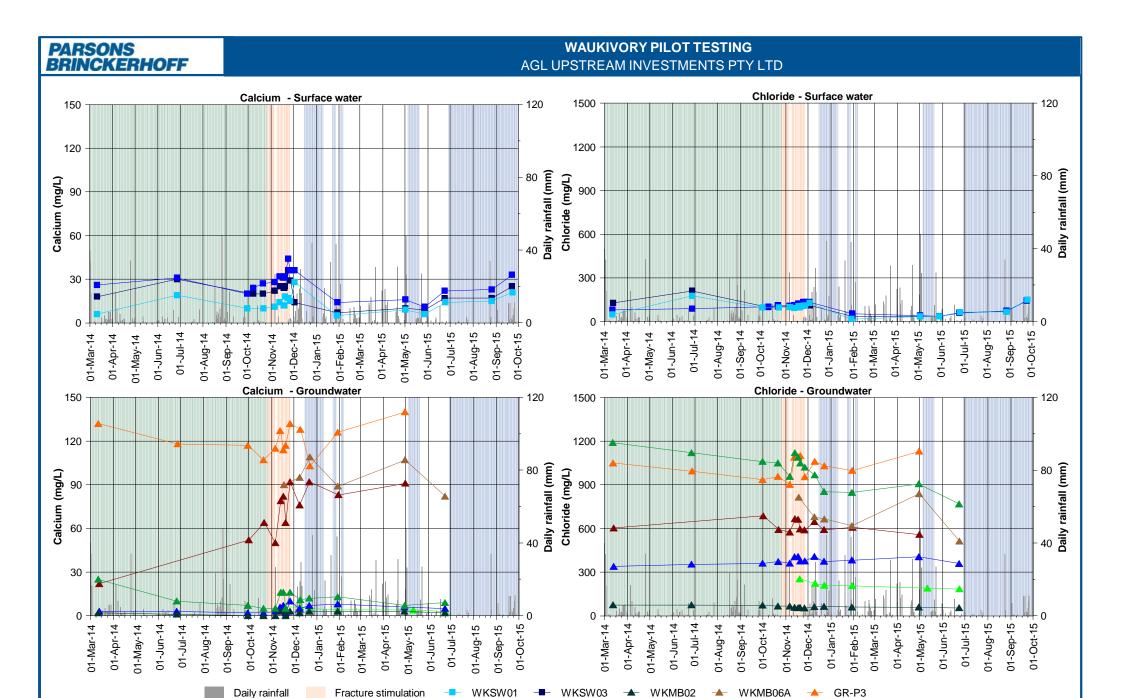







Figure G1.1: Field measurements of pH and redox at Waukivory surface water and groundwater monitoring locations.





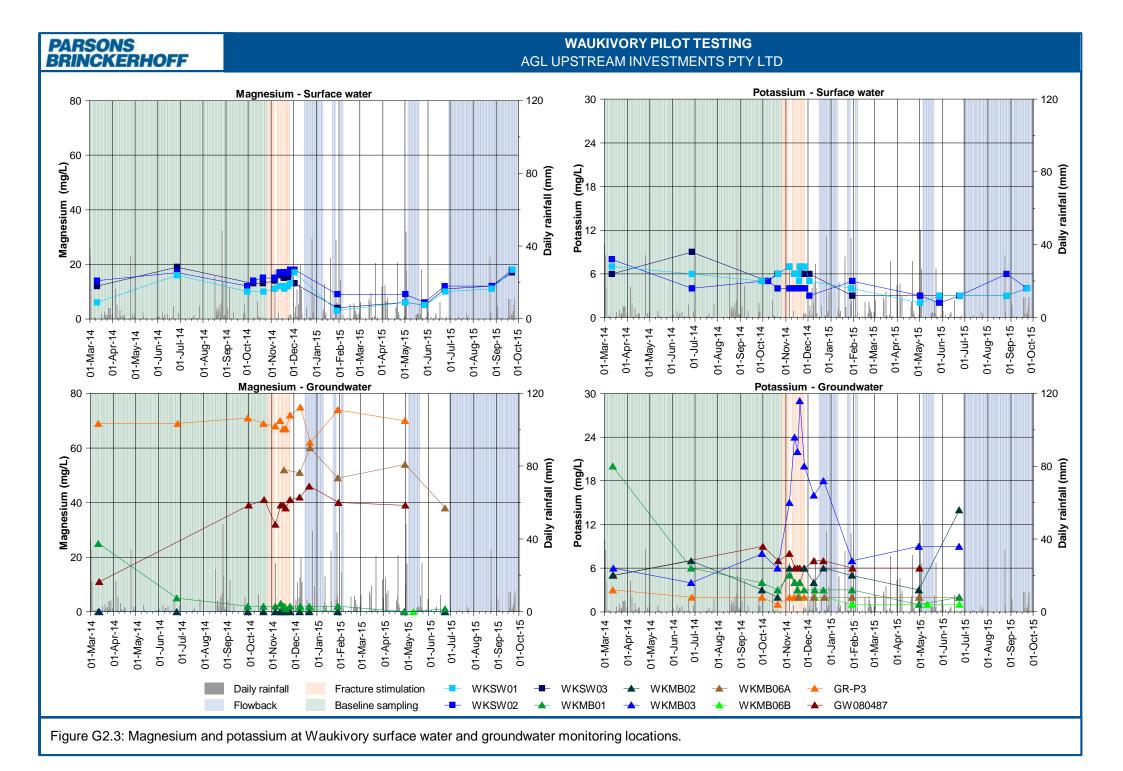




WKMB01

WKMB03

WKMB06B


**→** GW080487

Note: Chloride method - ED0045

Figure G2.2: Calcium and chloride at Waukivory surface water and groundwater monitoring locations.

Baseline sampling

Flowback



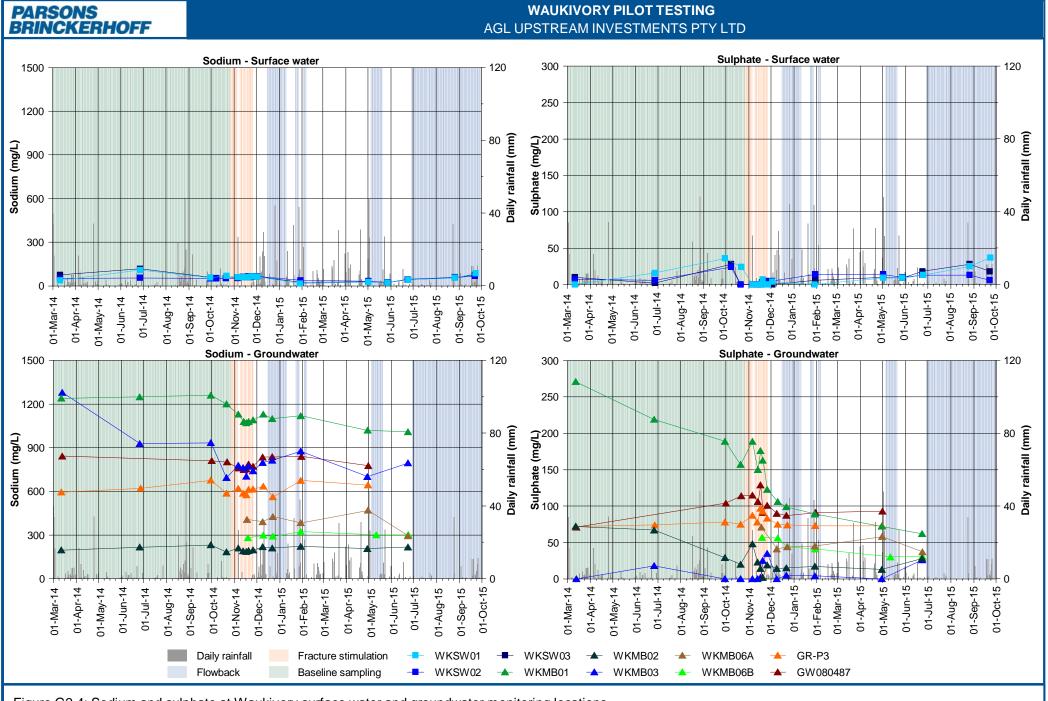



Figure G2.4: Sodium and sulphate at Waukivory surface water and groundwater monitoring locations.

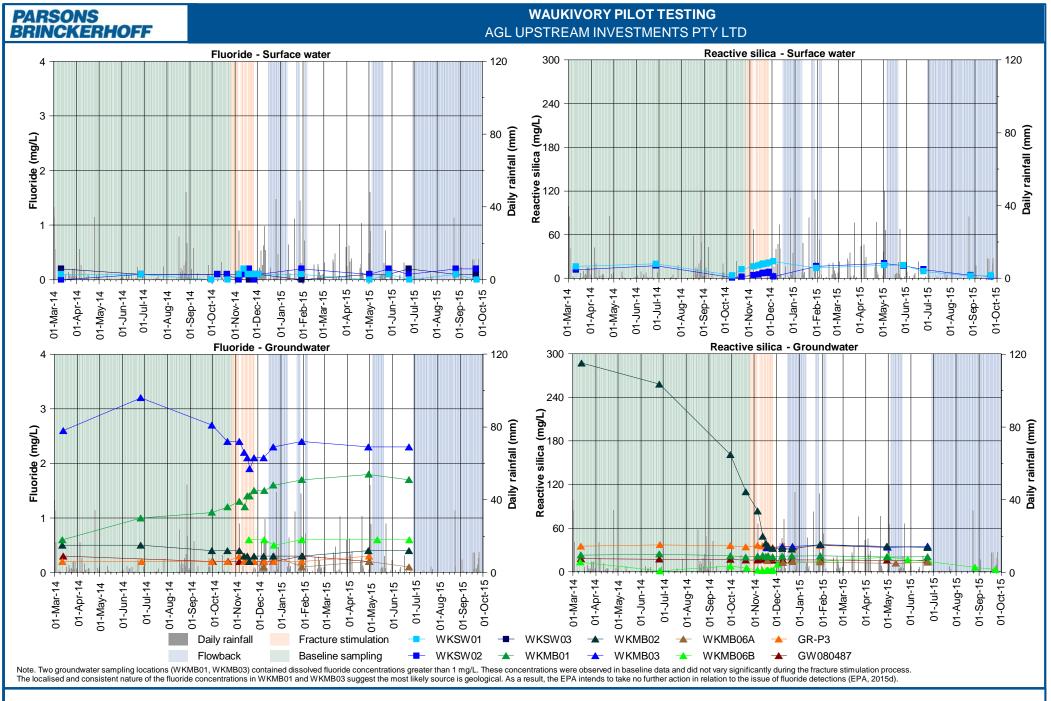
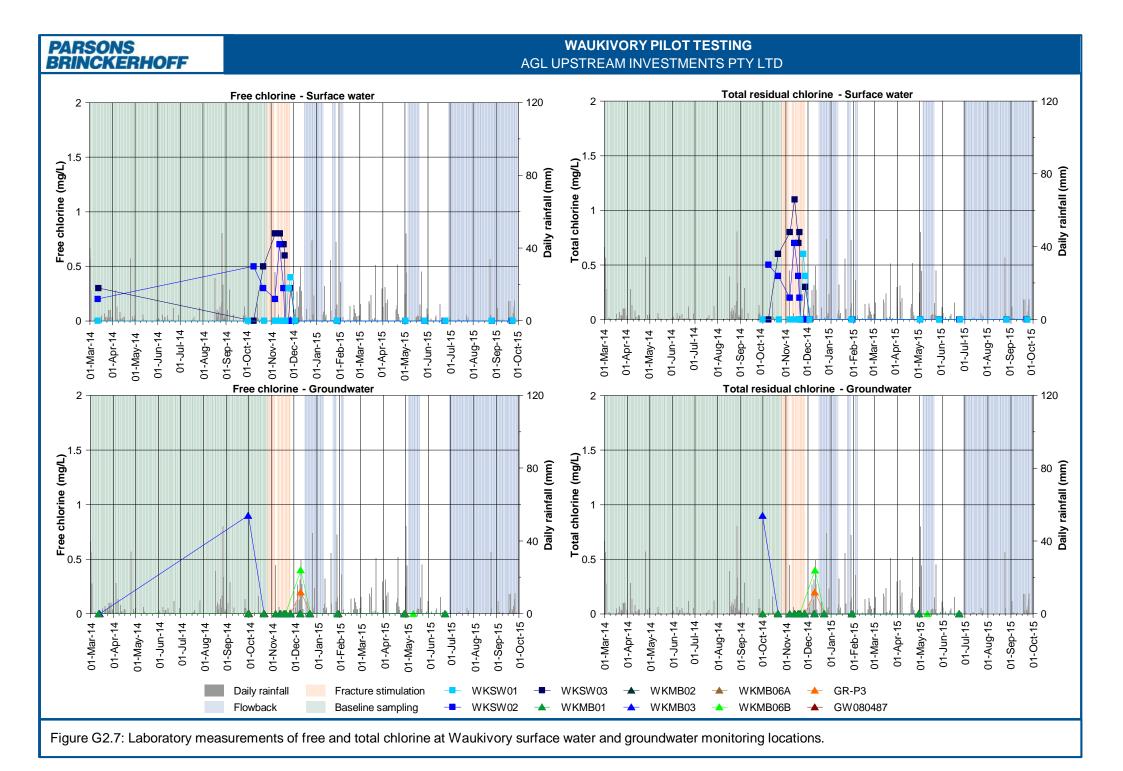
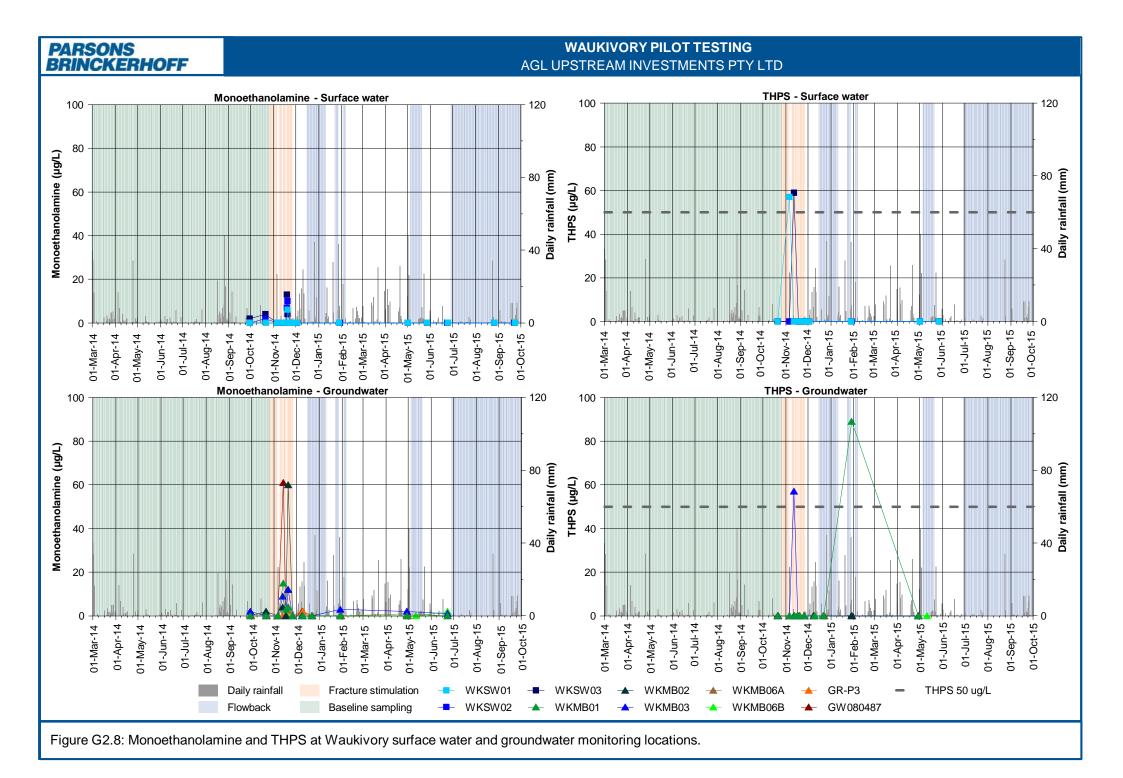
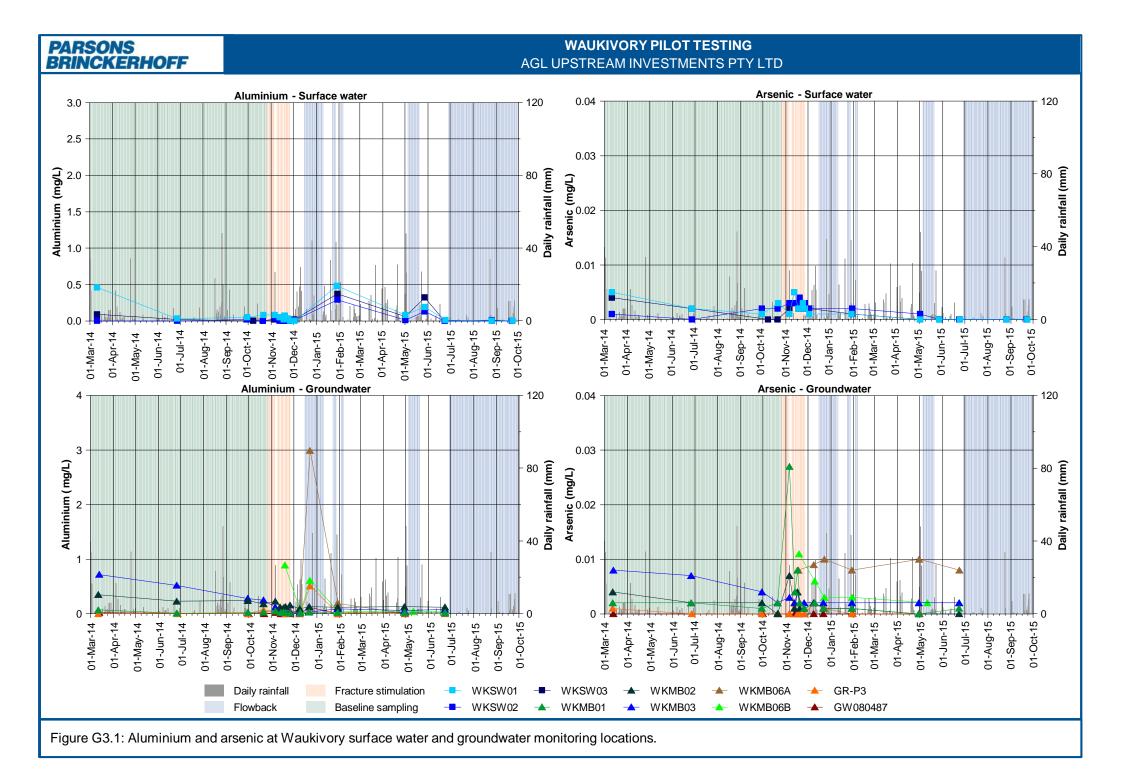
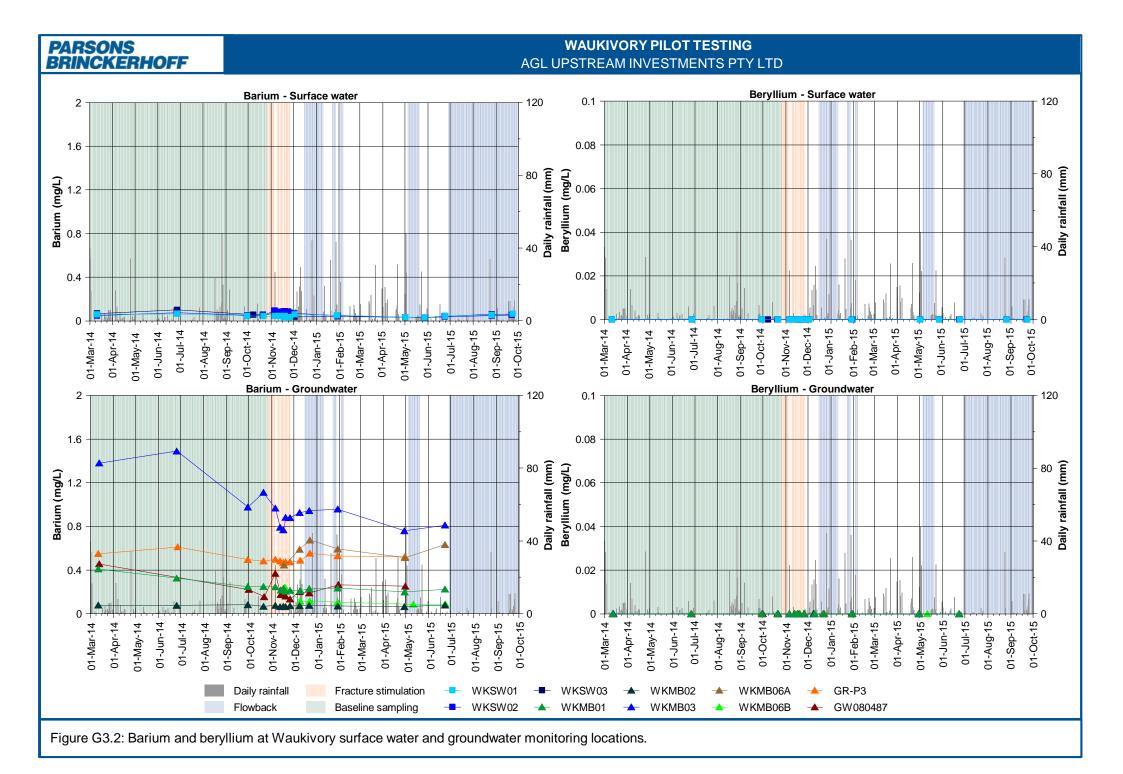
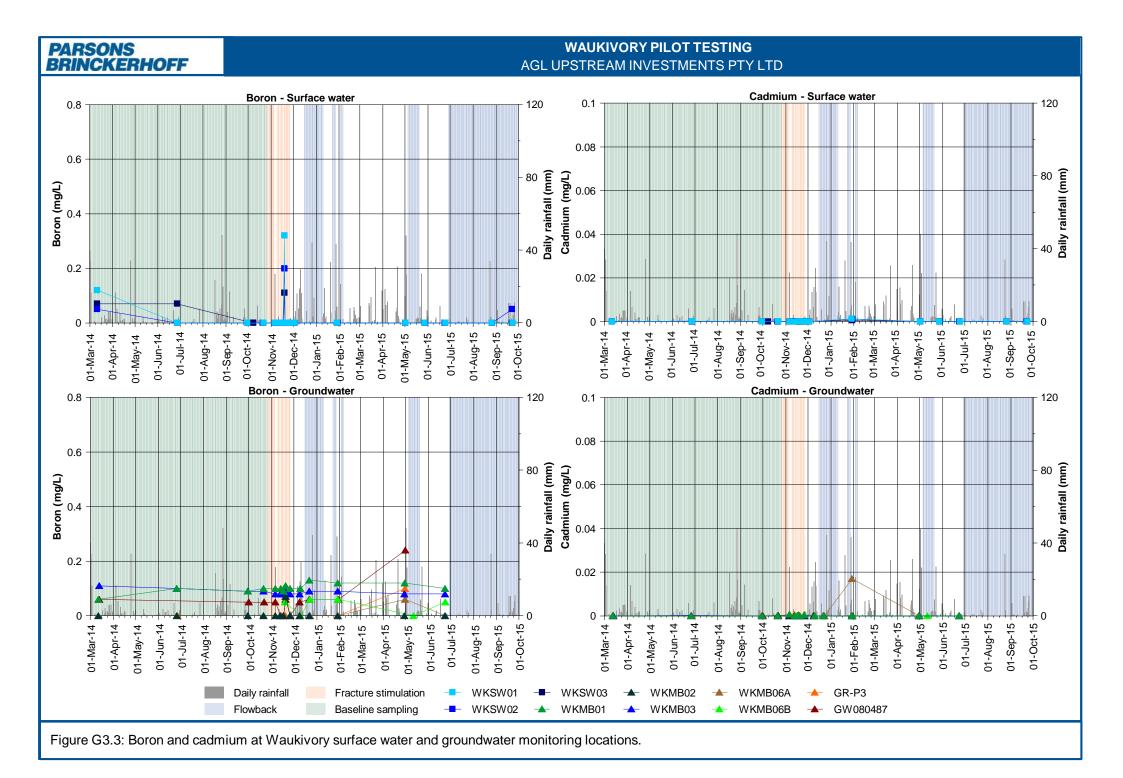
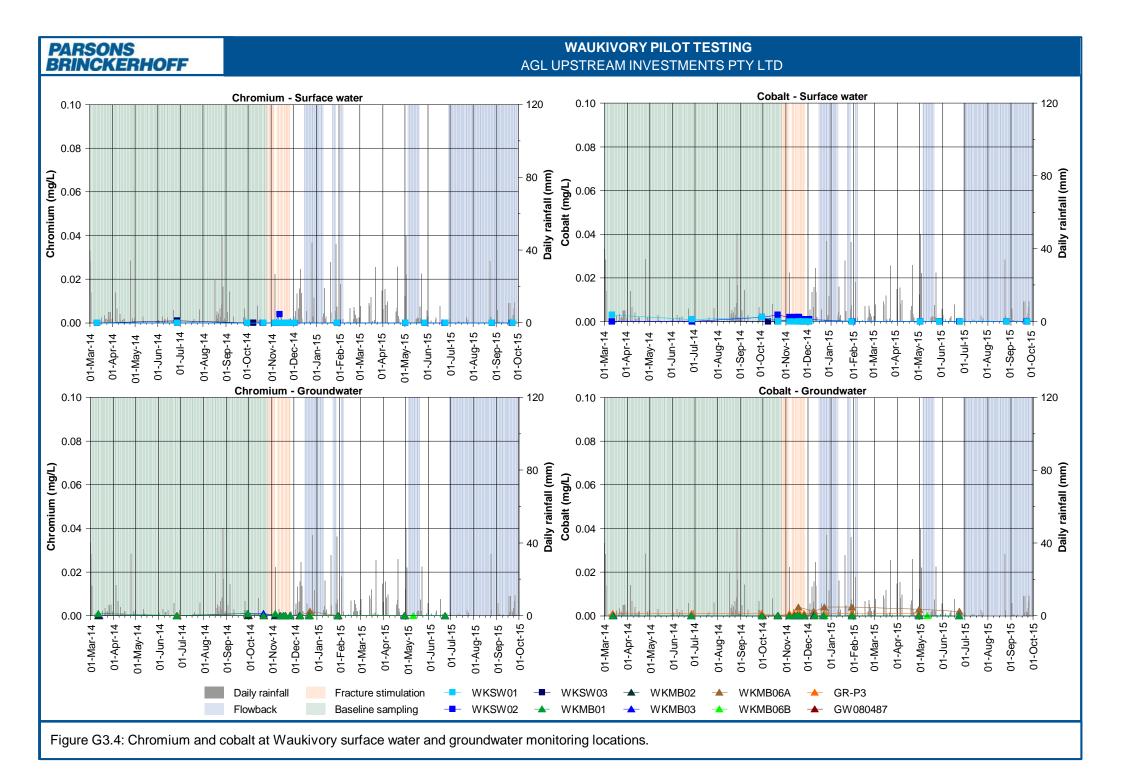
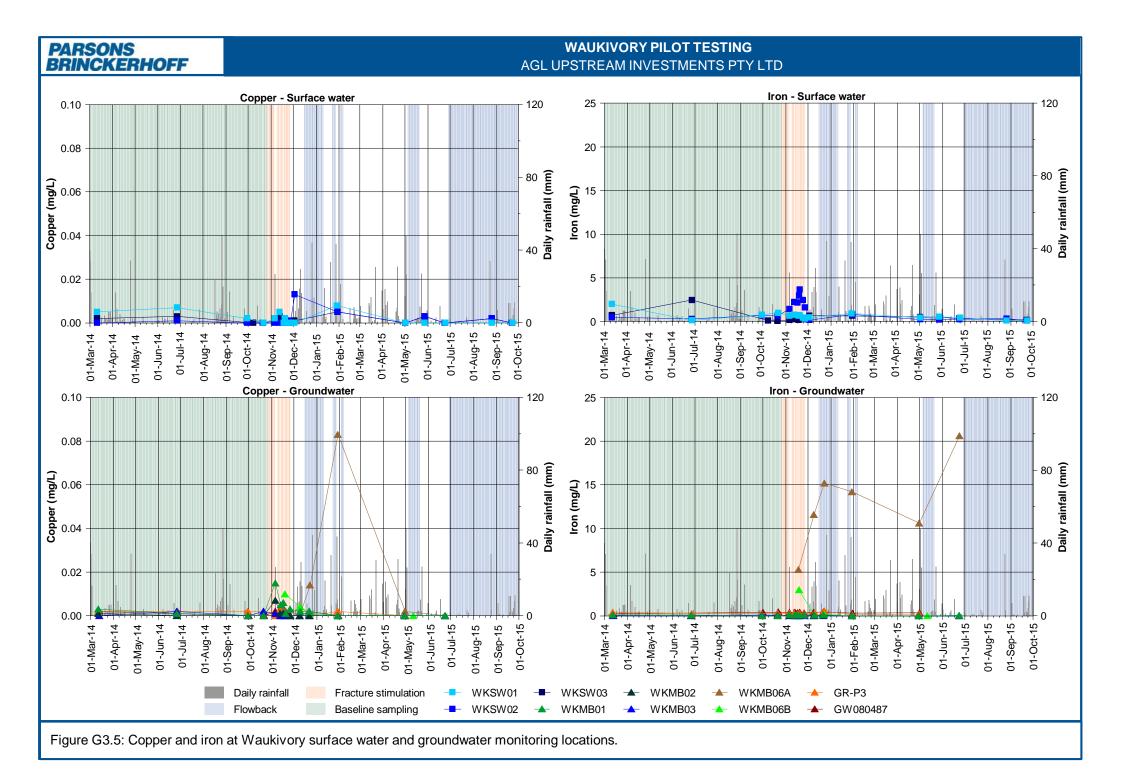


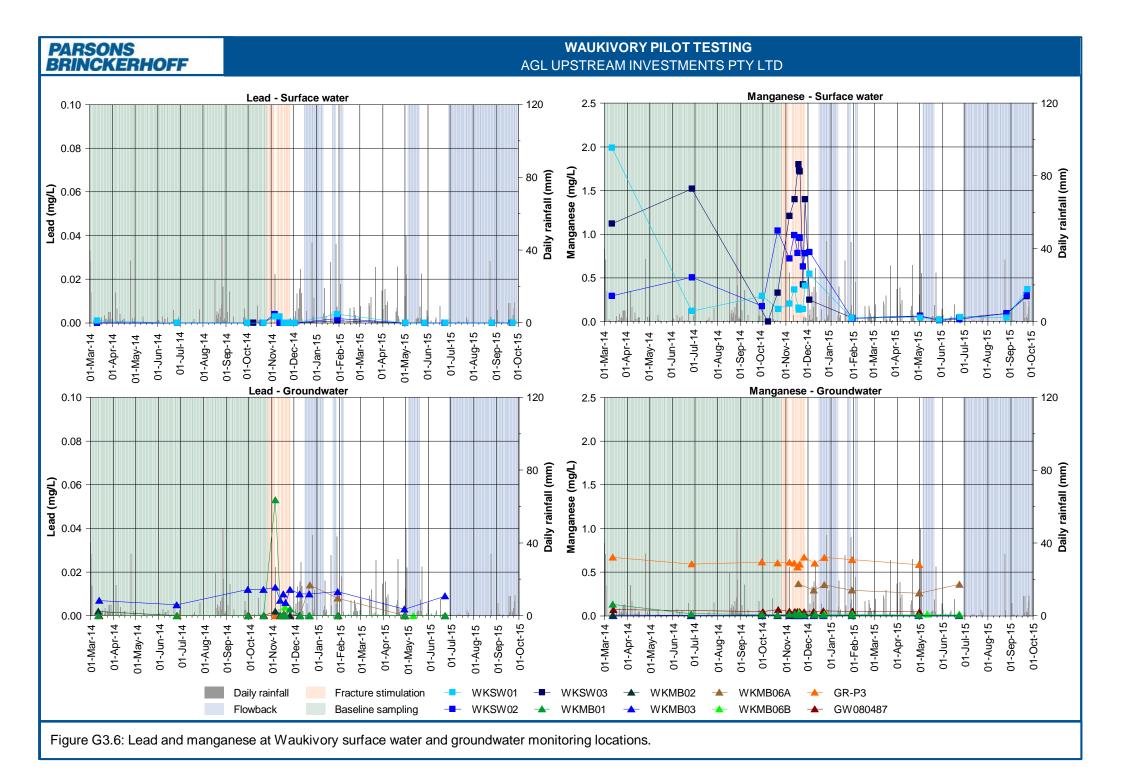

Figure G2.5: Fluoride and reactive silica at Waukivory surface water and groundwater monitoring locations.

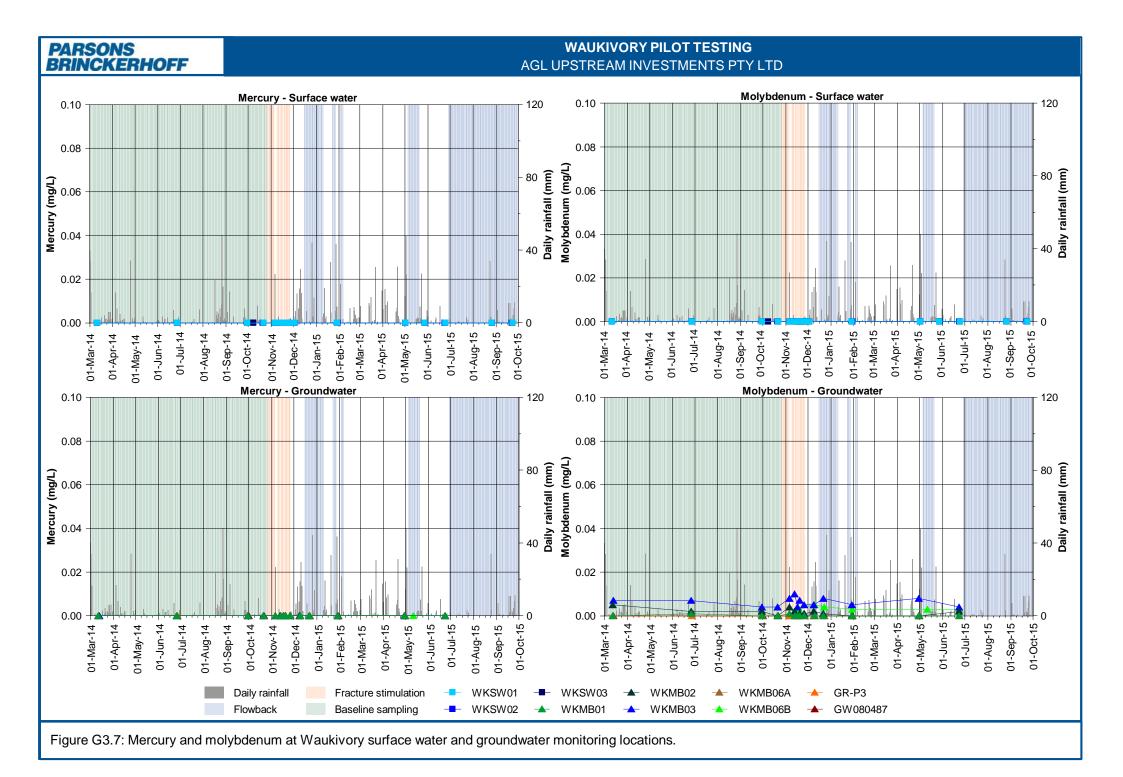






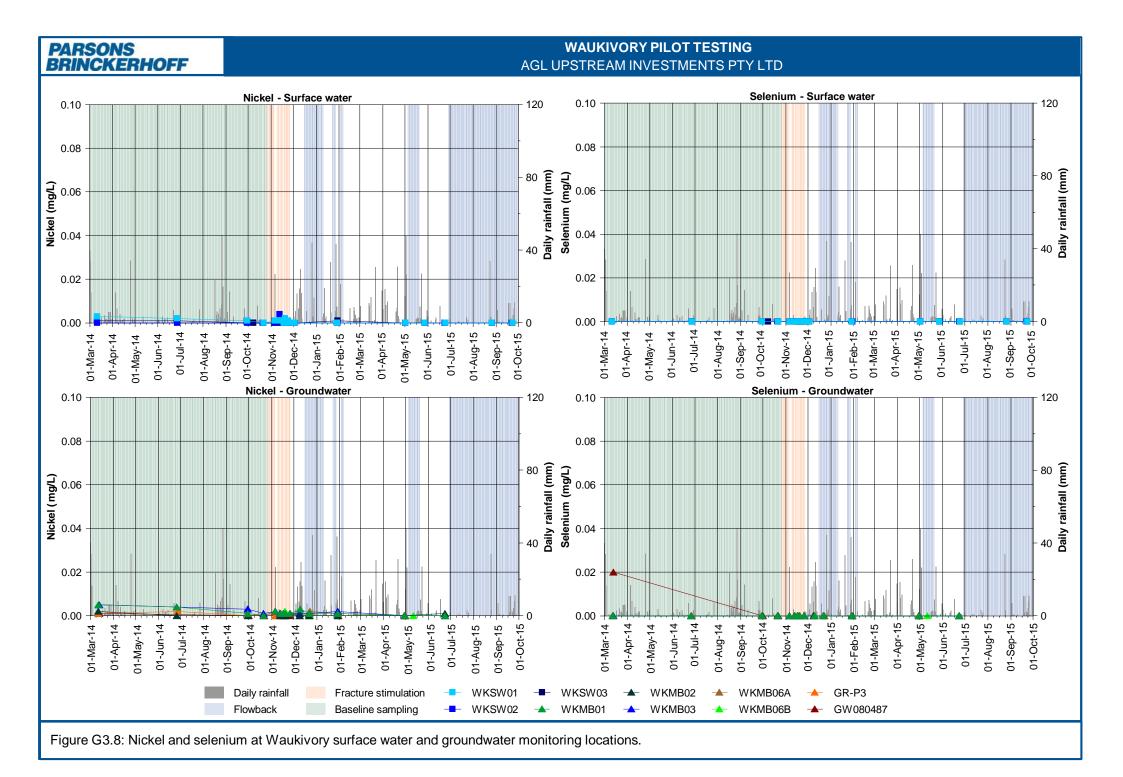


Figure G2.6: Total organic carbon (TOC) and total suspended solids (TSS) at Waukivory surface water and groundwater monitoring locations.

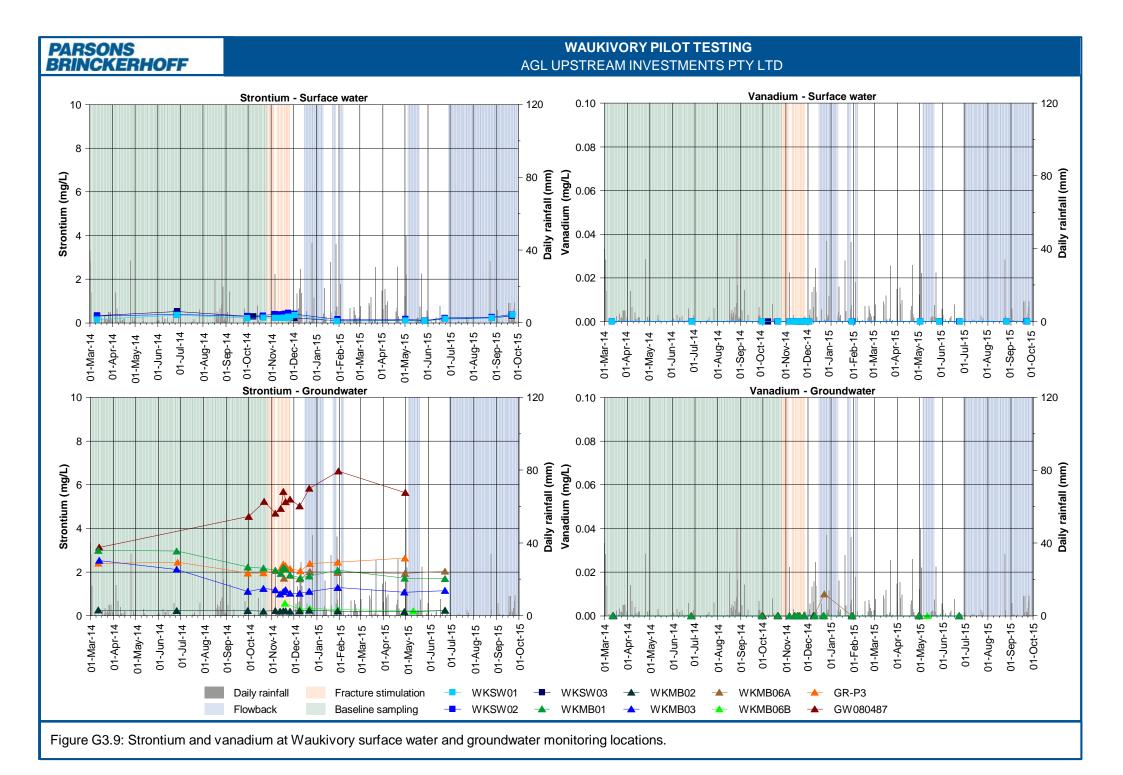















## **WAUKIVORY PILOT TESTING**AGL UPSTREAM INVESTMENTS PTY LTD

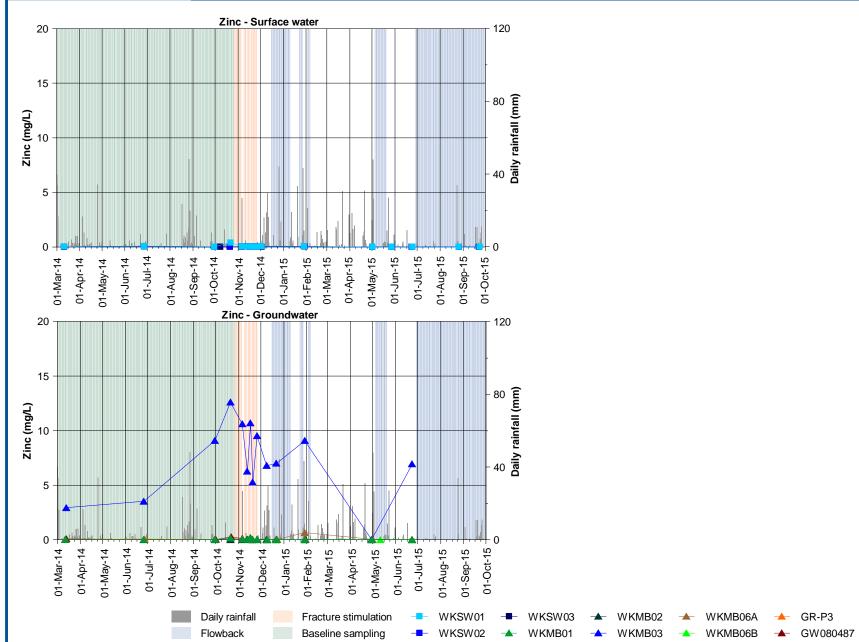
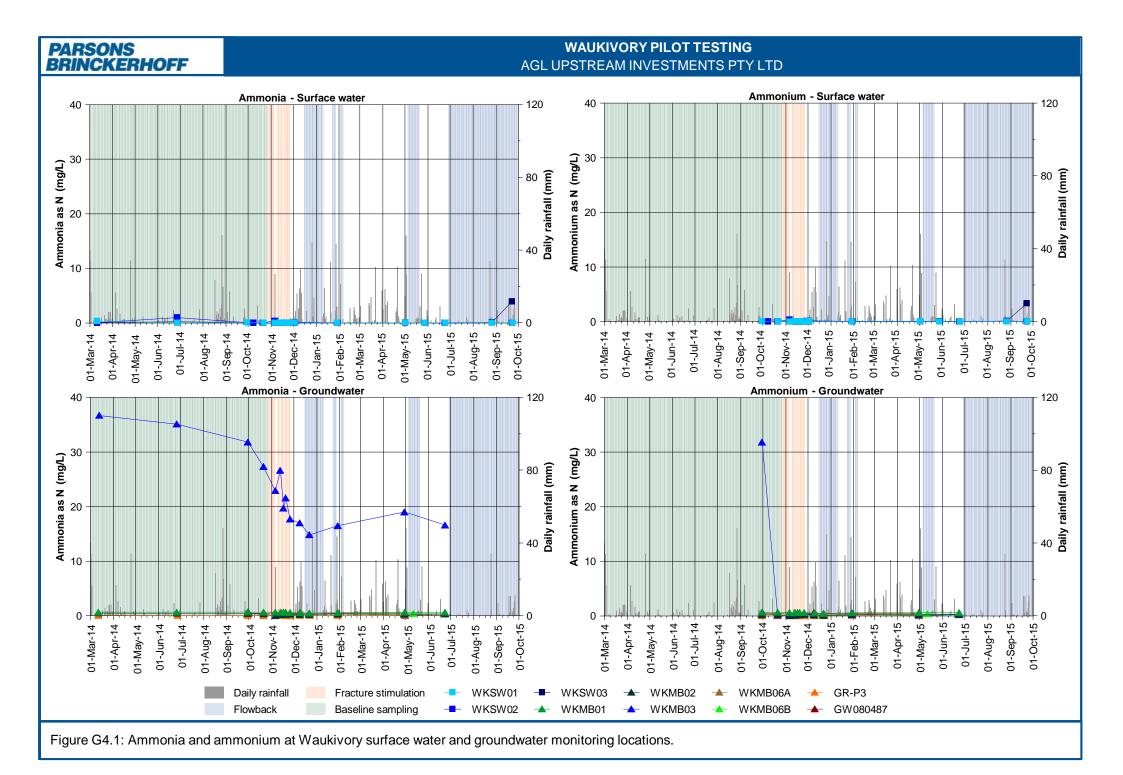
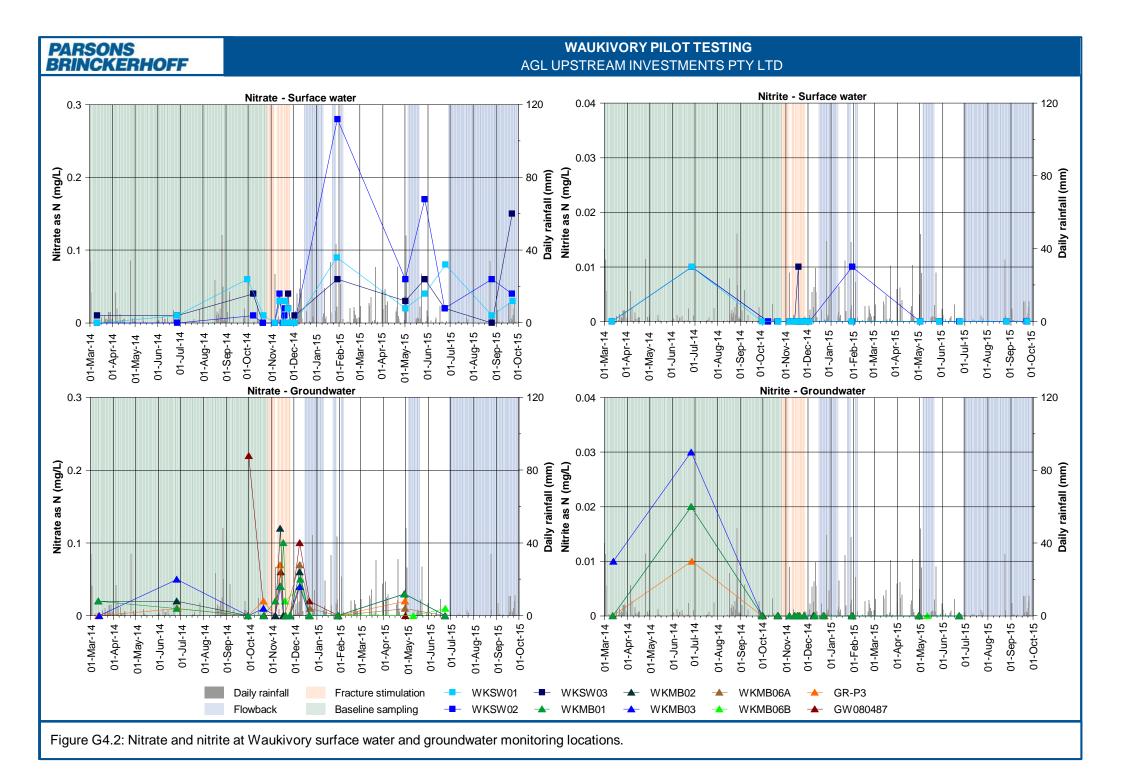
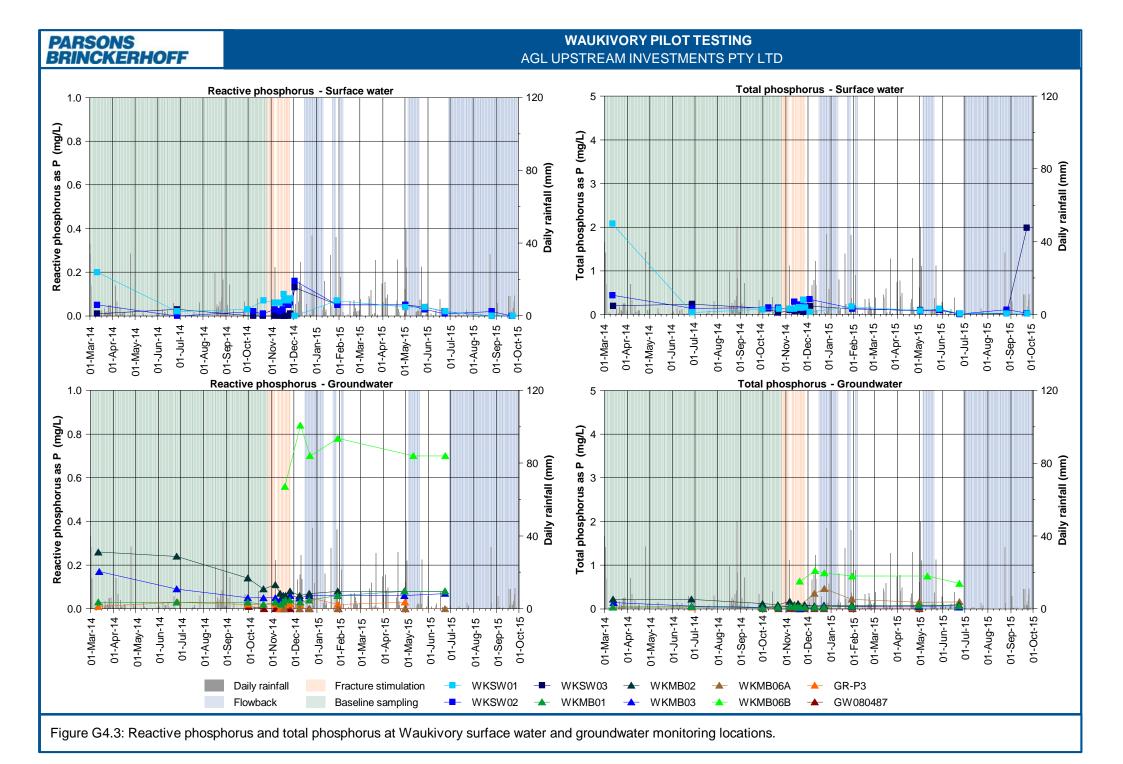






Figure G3.10: Zinc at Waukivory surface water and groundwater monitoring locations.







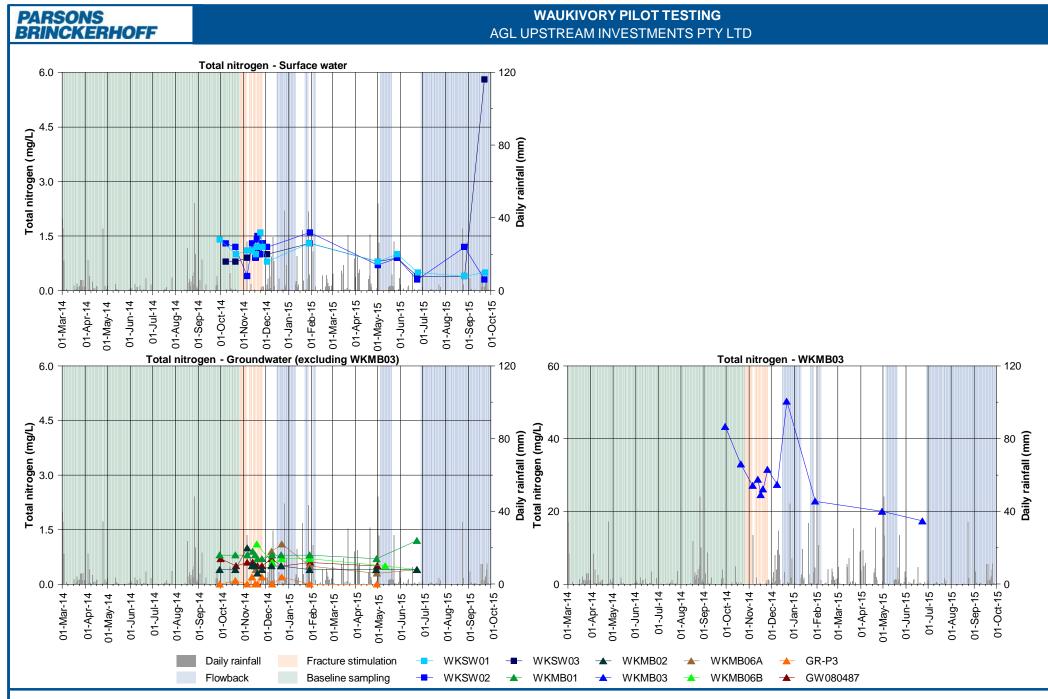



Figure G4.4: Total nitrogen at Waukivory surface water and groundwater monitoring locations.



## **WAUKIVORY PILOT TESTING**AGL UPSTREAM INVESTMENTS PTY LTD

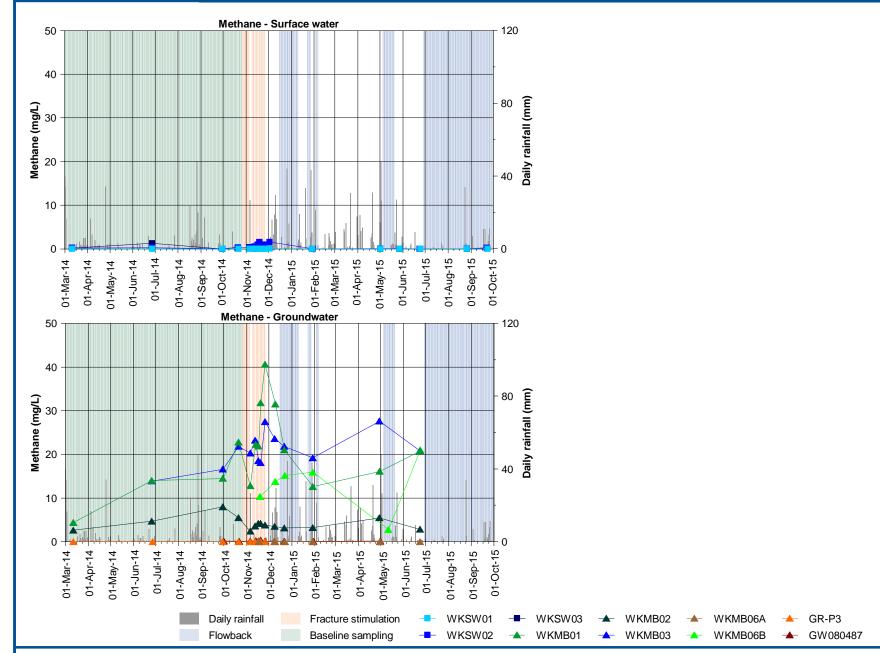
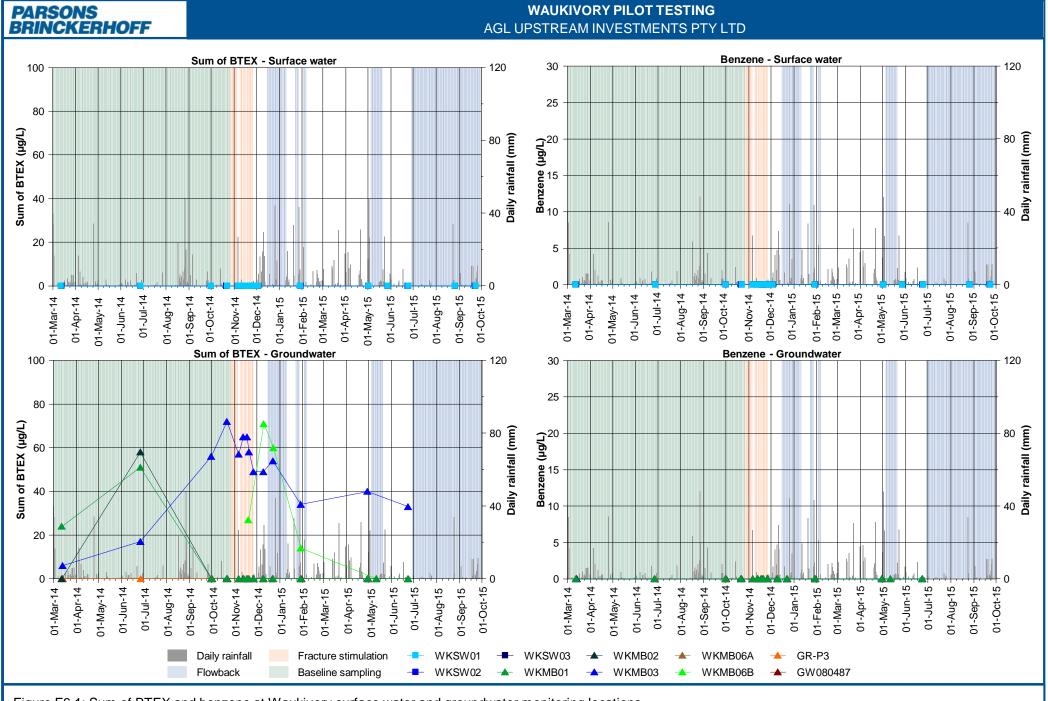
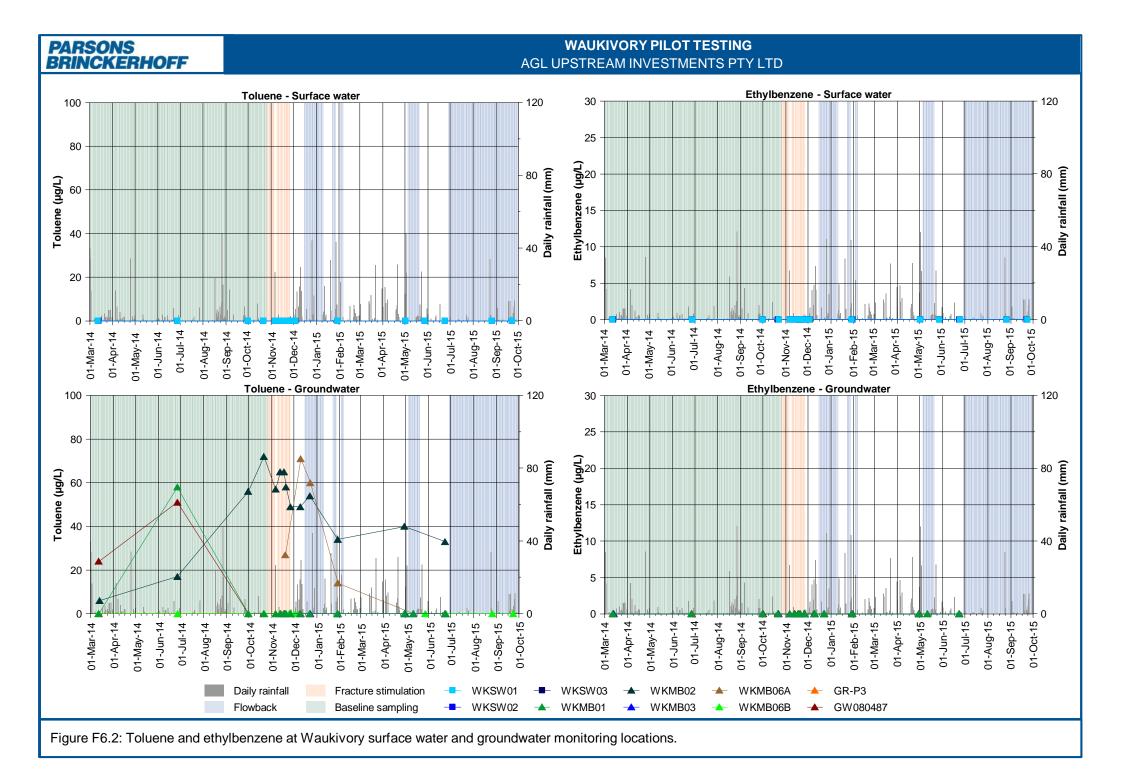
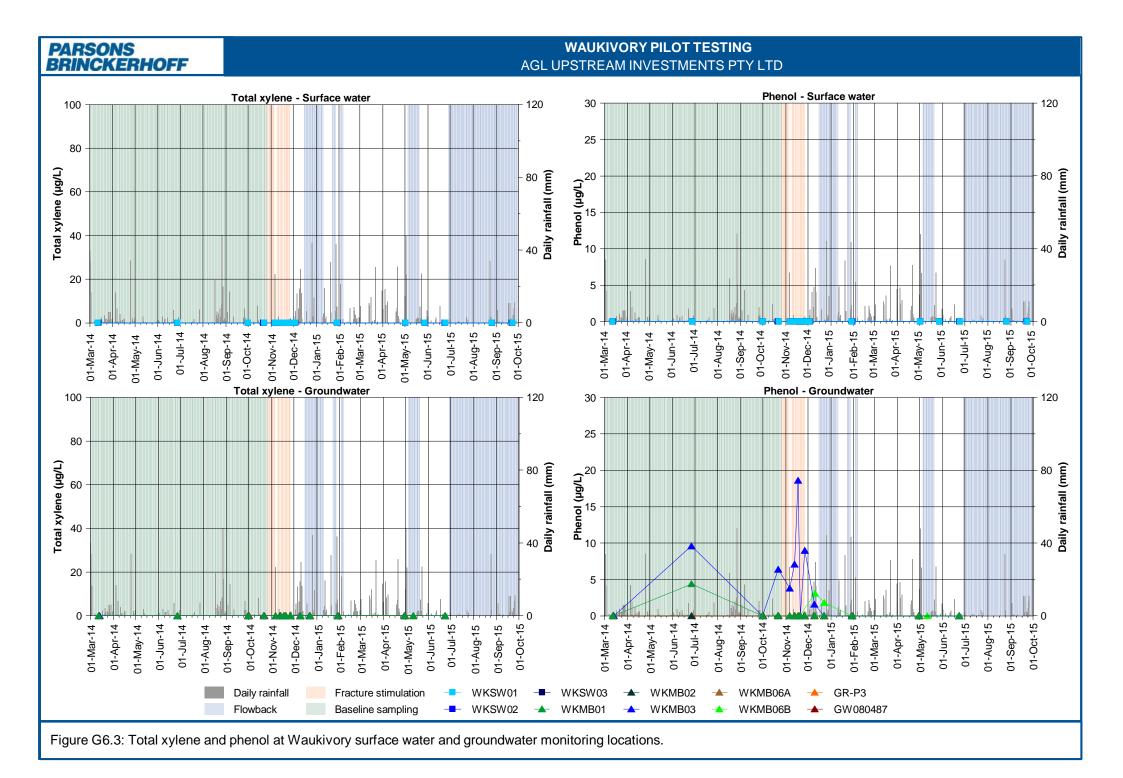
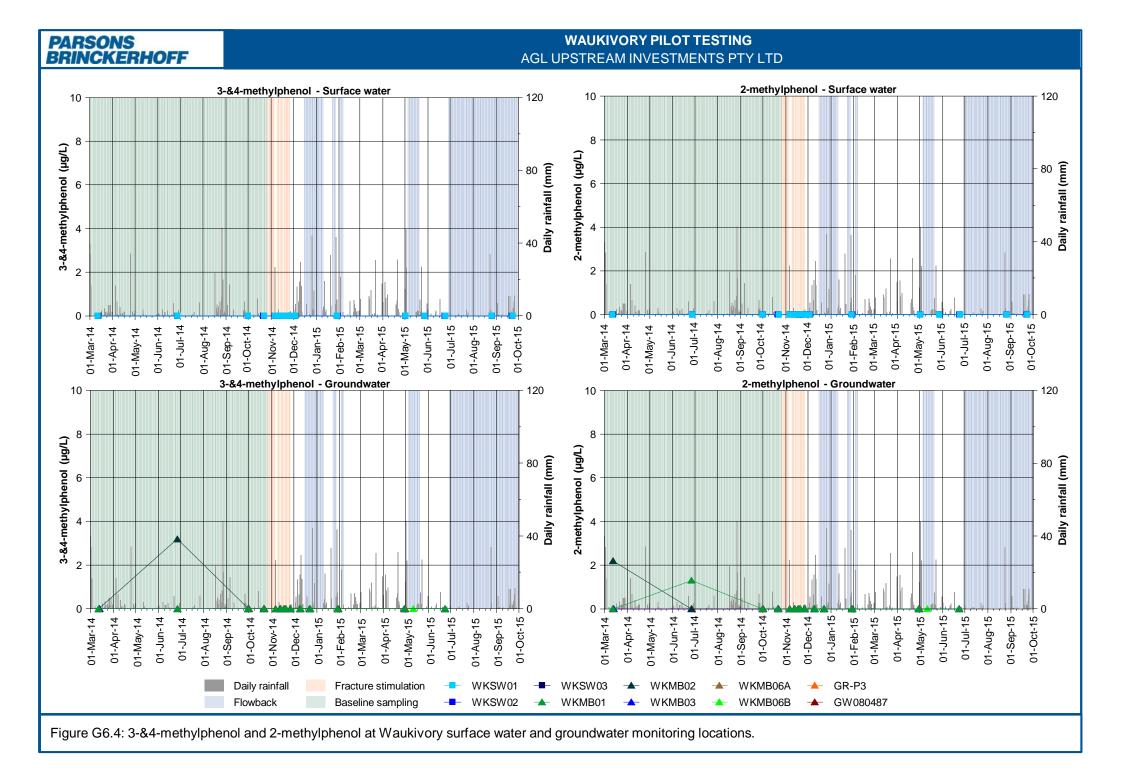
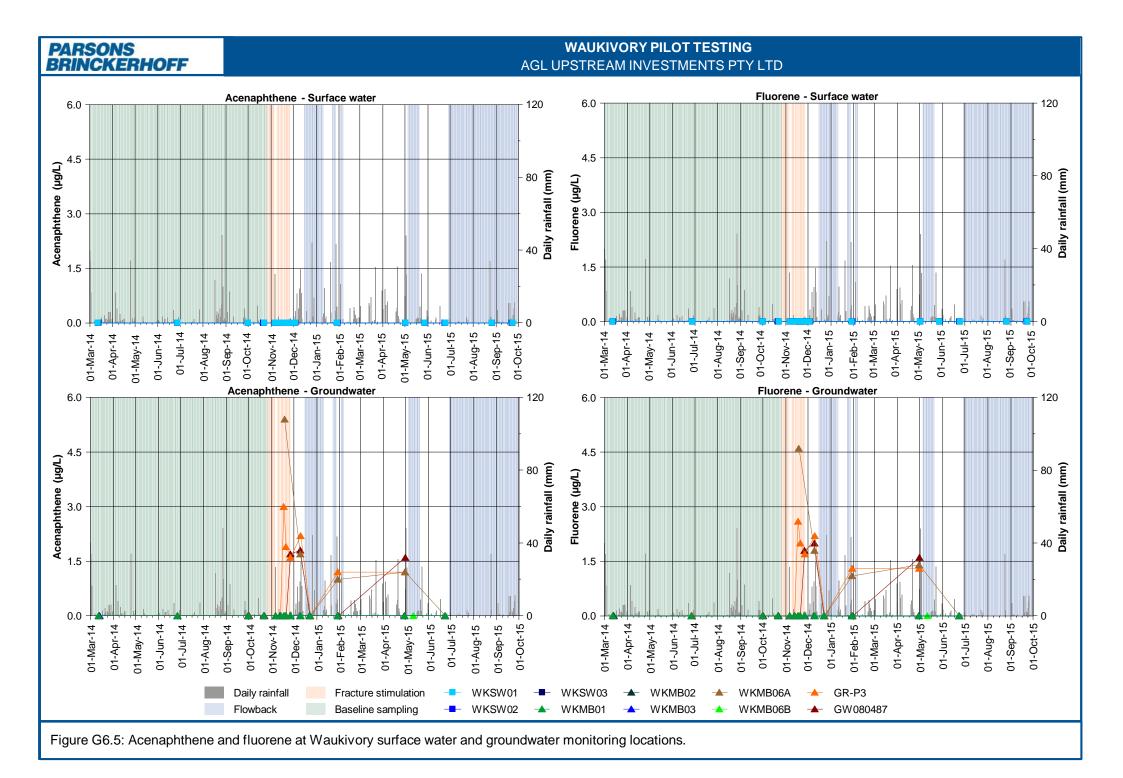
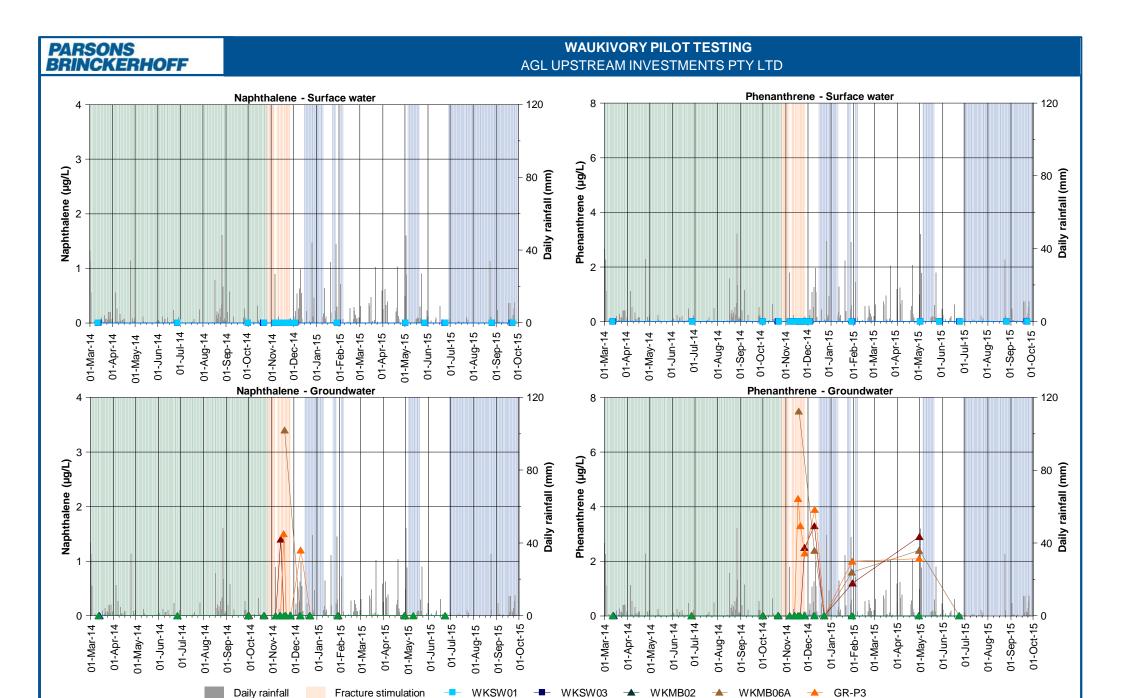



Figure G5.1: Methane at Waukivory surface water and groundwater monitoring locations.



Figure F6.1: Sum of BTEX and benzene at Waukivory surface water and groundwater monitoring locations.





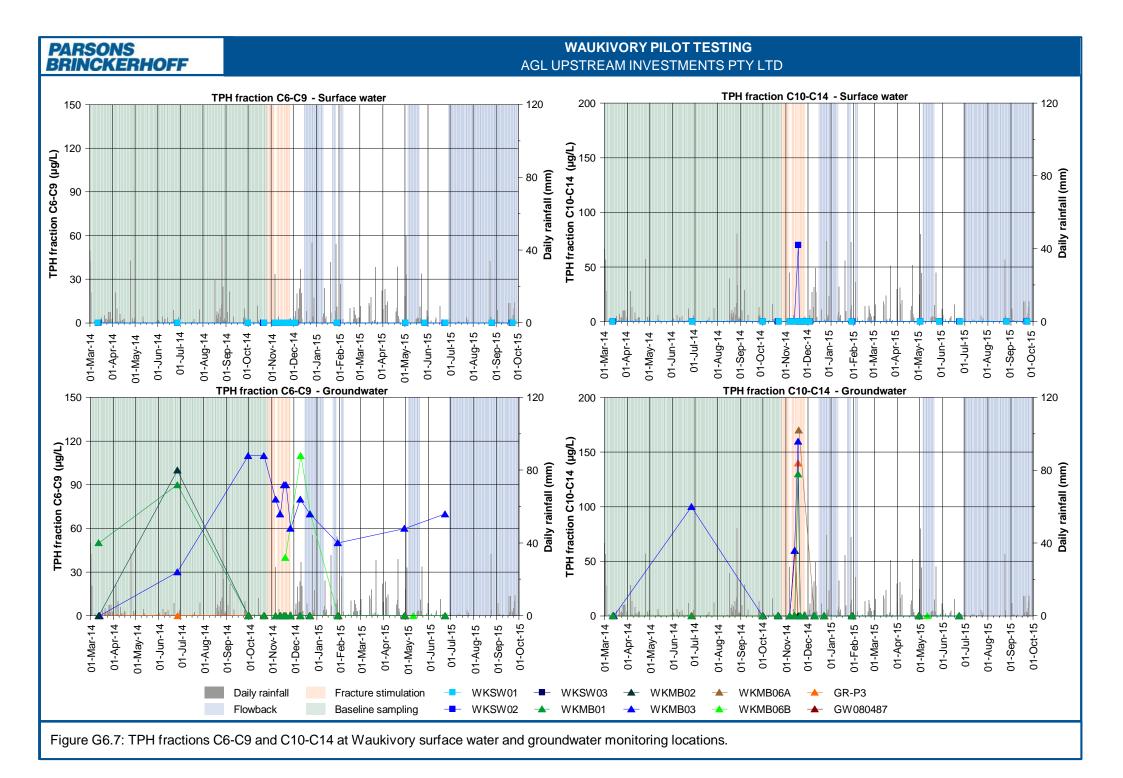


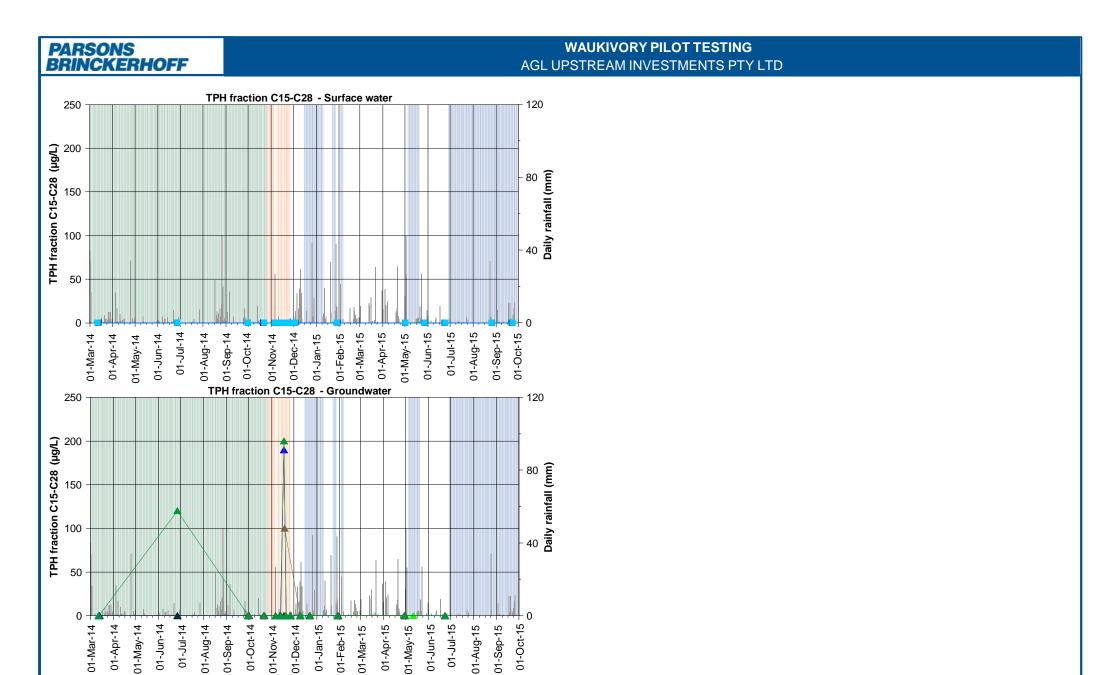




WKMB01

WKMB03


→ WKMB06B


**→** GW080487

Baseline sampling

■ WKSW02

Flowback





■ WKSW03

→ WKMB01

── WKSW02

→ WKMB02

→ WKMB03

→ GR-P3

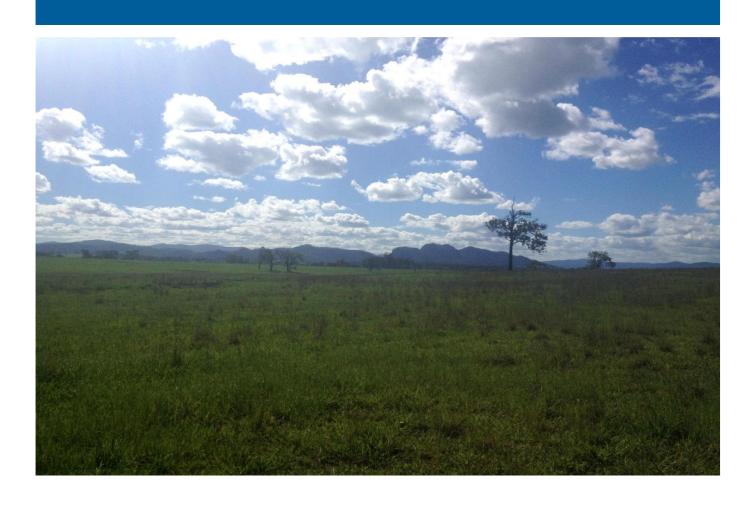
**→** GW080487

→ WKMB06A

→ WKMB06B

Figure G6.8: TPH fraction C15-C28 at Waukivory surface water and groundwater monitoring locations.

Fracture stimulation


Baseline sampling

Daily rainfall

Flowback

### **Appendix H**

ALS and Envirolab Services laboratory reports



### Appendix H

### Laboratory results summary table

| Report number | Date samples received | Lab Name   |
|---------------|-----------------------|------------|
| ES1525055     | 01-July-2015          | ALS        |
| ES1525247     | 02-July-2016          | ALS        |
| ES1525354     | 03-July-2016          | ALS        |
| ES1525375     | 04-July-2016          | ALS        |
| ES1525544     | 07-July-2015          | ALS        |
| ES1525652     | 08-July-2015          | ALS        |
| ES1525654     | 08-July-2015          | ALS        |
| ES1525742     | 09-July-2015          | ALS        |
| ES1525865     | 10-July-2015          | ALS        |
| ES1525880     | 13-July-2015          | ALS        |
| ES1526014     | 14-July-2015          | ALS        |
| ES1526117     | 15-July-2015          | ALS        |
| ES1526118     | 15-July-2015          | ALS        |
| ES1526216     | 16-July-2015          | ALS        |
| ES1526322     | 17-July-2015          | ALS        |
| ES1526325     | 18-July-2015          | ALS        |
| ES1526478     | 21-July-2015          | ALS        |
| ES1526602     | 22-July-2015          | ALS        |
| ES1526604     | 22-July-2015          | ALS        |
| ES1526718     | 23-July-2015          | ALS        |
| ES1526833     | 24-July-2015          | ALS        |
| ES1526838     | 24-July-2015          | ALS        |
| ES1527015     | 28-July-2015          | ALS        |
| ES1527133     | 29-July-2015          | ALS        |
| ES1527135     | 29-July-2015          | ALS        |
| ES1528258     | 13-August-2015        | ALS        |
| ES1528259     | 13-August-2015        | ALS        |
| ES1529385     | 27-August-2015        | ALS        |
| ES1529387     | 27-August-2015        | ALS        |
| ES1529589     | 28-August-2015        | ALS        |
| ES1530616     | 09-September-2015     | ALS        |
| ES1530625     | 09-September-2015     | ALS        |
| ES1531965     | 23-September-2015     | ALS        |
| ES1532002     | 23-September-2015     | ALS        |
| ES1532008     | 23-September-2015     | ALS        |
| 130805        | 08-July-2015          | Envirolab* |
| 131168        | 15-July-2015          | Envirolab* |
| 131627        | 23-July-2015          | Envirolab* |
| 131883        | 29-July-2015          | Envirolab* |
| 132658        | 13-August-2015        | Envirolab* |
| 133320        | 27-August-2015        | Envirolab* |
| 134039        | 09-September-2015     | Envirolab* |

<sup>\*</sup>For Envirolab results see Appendix D



#### **CERTIFICATE OF ANALYSIS**

Work Order : ES1525055 Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ---- Date Samples Received : 01-Jul-2015 12:49

C-O-C number : ---- Date Analysis Commenced : 01-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 01-Jul-2015 16:31

Site ----

No. of samples received : 6

Quote number : ---- No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

Continuate of Analysis contains the following informatio

General Comments

Analytical Results



E-mail

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Phalak Inthakesone Laboratory Manager - Organics Sydney Organics

Page : 2 of 4
Work Order : ES1525055

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

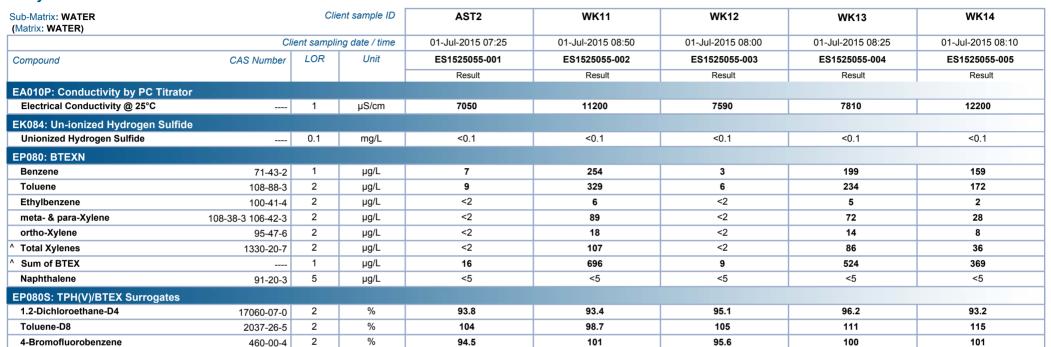
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

Page : 3 of 4
Work Order : ES1525055

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

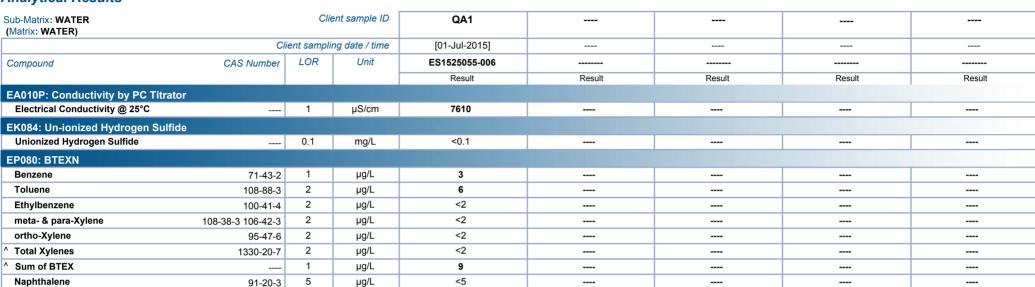




Page : 4 of 4 Work Order : ES1525055

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B


EP080S: TPH(V)/BTEX Surrogates

1.2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

#### Analytical Results



97.3

104

95.2

%

%

%

2

2

2

17060-07-0

2037-26-5

460-00-4





#### **CERTIFICATE OF ANALYSIS**

**Work Order** : ES1525247 Page : 1 of 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SFAN DAYKIN Contact : Loren Schiavon Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : GPO BOX 5394

SYDNEY NSW. AUSTRALIA 2001

E-mail : SDaykin@pb.com.au E-mail : loren.schiavon@alsglobal.com

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503 Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

: 2268523B QC Level **Project** : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number **Date Samples Received** : 02-Jul-2015 12:00 C-O-C number Date Analysis Commenced : 02-Jul-2015

: CAROLINA SARDELLA Sampler Issue Date : 02-Jul-2015 16:01

Site

No. of samples received : 5 Quote number No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics Edwandy Fadjar Organic Coordinator **Sydney Organics** 

Page : 2 of 2 Work Order : ES1525247

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

| Sub-Matrix: WATER (Matrix: WATER)   |                   | Clie        | ent sample ID  | AST2              | WK11              | WK12              | WK13              | WK14              |
|-------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Cli               | ient sampli | ng date / time | 02-Jul-2015 07:15 | 02-Jul-2015 08:55 | 02-Jul-2015 07:45 | 02-Jul-2015 08:30 | 02-Jul-2015 08:10 |
| Compound                            | CAS Number        | LOR         | Unit           | ES1525247-001     | ES1525247-002     | ES1525247-003     | ES1525247-004     | ES1525247-005     |
|                                     |                   |             |                | Result            | Result            | Result            | Result            | Result            |
| EA010P: Conductivity by PC Titrator |                   |             |                |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C      |                   | 1           | μS/cm          | 7020              | 11400             | 7690              | 7850              | 11200             |
| EK084: Un-ionized Hydrogen Sulfide  |                   |             |                |                   |                   |                   |                   |                   |
| Unionized Hydrogen Sulfide          |                   | 0.1         | mg/L           | <0.1              | <0.1              | 0.1               | <0.1              | <0.1              |
| EP080: BTEXN                        |                   |             |                |                   |                   |                   |                   |                   |
| Benzene                             | 71-43-2           | 1           | μg/L           | 7                 | 290               | 3                 | 215               | 142               |
| Toluene                             | 108-88-3          | 2           | μg/L           | 9                 | 351               | 5                 | 254               | 180               |
| Ethylbenzene                        | 100-41-4          | 2           | μg/L           | <2                | 8                 | <2                | 6                 | 4                 |
| meta- & para-Xylene                 | 108-38-3 106-42-3 | 2           | μg/L           | <2                | 113               | <2                | 76                | 44                |
| ortho-Xylene                        | 95-47-6           | 2           | μg/L           | <2                | 24                | <2                | 16                | 11                |
| ^ Total Xylenes                     | 1330-20-7         | 2           | μg/L           | <2                | 137               | <2                | 92                | 55                |
| ^ Sum of BTEX                       |                   | 1           | μg/L           | 16                | 786               | 8                 | 567               | 381               |
| Naphthalene                         | 91-20-3           | 5           | μg/L           | <5                | <5                | <5                | <5                | <5                |
| EP080S: TPH(V)/BTEX Surrogates      |                   |             |                |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4               | 17060-07-0        | 2           | %              | 95.2              | 102               | 97.6              | 103               | 99.8              |
| Toluene-D8                          | 2037-26-5         | 2           | %              | 103               | 113               | 104               | 111               | 112               |
| 4-Bromofluorobenzene                | 460-00-4          | 2           | %              | 98.9              | 106               | 100               | 106               | 104               |





: SFAN DAYKIN

#### **CERTIFICATE OF ANALYSIS**

Contact

**Work Order** : ES1525354 Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

: Loren Schiavon Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : GPO BOX 5394

SYDNEY NSW. AUSTRALIA 2001

E-mail : SDaykin@pb.com.au E-mail : loren.schiavon@alsglobal.com

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503 Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

: 2268523B QC Level **Project** : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number **Date Samples Received** : 03-Jul-2015 12:20 C-O-C number Date Analysis Commenced : 03-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 03-Jul-2015 16:33

Site

No. of samples received : 6 Quote number No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results



Contact

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics Pabi Subba Senior Organic Chemist **Sydney Organics** 

Page : 2 of 4
Work Order : ES1525354

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

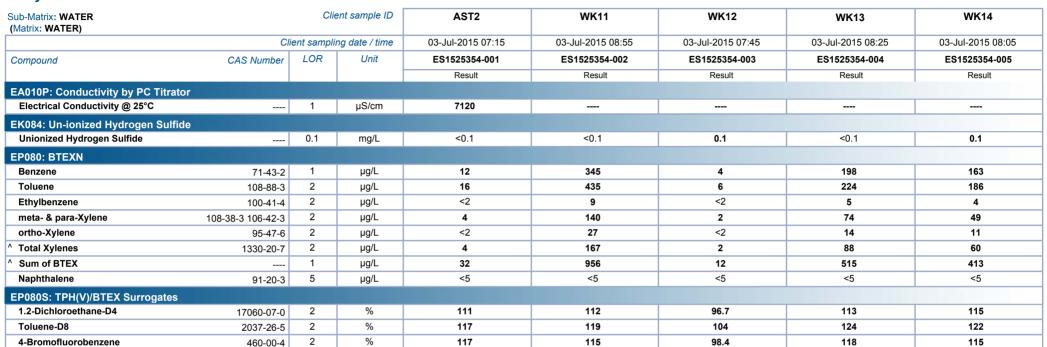
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

Page : 3 of 4
Work Order : ES1525354

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





Page : 4 of 4
Work Order : ES1525354

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Sub-Matrix: WATER (Matrix: WATER)  |                   | Cli         | ent sample ID  | QA2           |        |        |        |        |
|------------------------------------|-------------------|-------------|----------------|---------------|--------|--------|--------|--------|
|                                    | CI                | ient sampli | ng date / time | [03-Jul-2015] |        |        |        |        |
| Compound                           | CAS Number        | LOR         | Unit           | ES1525354-006 |        |        |        |        |
|                                    |                   |             |                | Result        | Result | Result | Result | Result |
| EA010P: Conductivity by PC Titrate | or                |             |                |               |        |        |        |        |
| Electrical Conductivity @ 25°C     |                   | 1           | μS/cm          |               |        |        |        |        |
| EK084: Un-ionized Hydrogen Sulfic  | le                |             |                |               |        |        |        |        |
| Unionized Hydrogen Sulfide         |                   | 0.1         | mg/L           | <0.1          |        |        |        |        |
| EP080: BTEXN                       |                   |             |                |               |        |        |        |        |
| Benzene                            | 71-43-2           | 1           | μg/L           | 328           |        |        |        |        |
| Toluene                            | 108-88-3          | 2           | μg/L           | 419           |        |        |        |        |
| Ethylbenzene                       | 100-41-4          | 2           | μg/L           | 8             |        |        |        |        |
| meta- & para-Xylene                | 108-38-3 106-42-3 | 2           | μg/L           | 131           |        |        |        |        |
| ortho-Xylene                       | 95-47-6           | 2           | μg/L           | 26            |        |        |        |        |
| ^ Total Xylenes                    | 1330-20-7         | 2           | μg/L           | 157           |        |        |        |        |
| ^ Sum of BTEX                      |                   | 1           | μg/L           | 912           |        |        |        |        |
| Naphthalene                        | 91-20-3           | 5           | μg/L           | <5            |        |        |        |        |
| EP080S: TPH(V)/BTEX Surrogates     |                   |             |                |               |        |        |        |        |
| 1.2-Dichloroethane-D4              | 17060-07-0        | 2           | %              | 113           |        |        |        |        |
| Toluene-D8                         | 2037-26-5         | 2           | %              | 118           |        |        |        |        |
| 4-Bromofluorobenzene               | 460-00-4          | 2           | %              | 116           |        |        |        |        |



#### **CERTIFICATE OF ANALYSIS**

**Work Order** : **ES1525375** Page : 1 of 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : CPO ROX 5394 Address : 277-289 Woodpark Road S

SS : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 SYDNEY NSW. AUSTRALIA 2001

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : -- Date Samples Received
 : 04-Jul-2015 08:00

 C-O-C number
 : 04-Jul-2015 08:00
 Date Analysis Commenced
 : 06-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 06-Jul-2015 14:27

Site ----

Quote number : ---- No. of samples received : 5

Quote number : ---- No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

Octimodic of Analysis contains the following information.

General Comments

Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Phalak Inthakesone Laboratory Manager - Organics Sydney Organics

Page : 2 of 2 Work Order : ES1525375

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

| Sub-Matrix: WATER (Matrix: WATER)   |                   | Cli         | ent sample ID  | AST2              | WK11              | WK12              | WK13              | WK14              |
|-------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Cli               | ient sampli | ng date / time | 04-Jul-2015 07:15 | 04-Jul-2015 08:55 | 04-Jul-2015 07:45 | 04-Jul-2015 08:25 | 04-Jul-2015 08:05 |
| Compound                            | CAS Number        | LOR         | Unit           | ES1525375-001     | ES1525375-002     | ES1525375-003     | ES1525375-004     | ES1525375-005     |
|                                     |                   |             |                | Result            | Result            | Result            | Result            | Result            |
| EA010P: Conductivity by PC Titrator |                   |             |                |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C      |                   | 1           | μS/cm          | 7000              |                   |                   |                   |                   |
| EK084: Un-ionized Hydrogen Sulfide  |                   |             |                |                   |                   |                   |                   |                   |
| Unionized Hydrogen Sulfide          |                   | 0.1         | mg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| EP080: BTEXN                        |                   |             |                |                   |                   |                   |                   |                   |
| Benzene                             | 71-43-2           | 1           | μg/L           | 14                | 296               | 4                 | 176               | 165               |
| Toluene                             | 108-88-3          | 2           | μg/L           | 17                | 378               | 6                 | 210               | 177               |
| Ethylbenzene                        | 100-41-4          | 2           | μg/L           | <2                | 7                 | <2                | 4                 | 3                 |
| meta- & para-Xylene                 | 108-38-3 106-42-3 | 2           | μg/L           | 4                 | 118               | 2                 | 61                | 46                |
| ortho-Xylene                        | 95-47-6           | 2           | μg/L           | <2                | 22                | <2                | 12                | 10                |
| ^ Total Xylenes                     | 1330-20-7         | 2           | μg/L           | 4                 | 140               | 2                 | 73                | 56                |
| ^ Sum of BTEX                       |                   | 1           | μg/L           | 35                | 821               | 12                | 463               | 401               |
| Naphthalene                         | 91-20-3           | 5           | μg/L           | <5                | <5                | <5                | <5                | <5                |
| EP080S: TPH(V)/BTEX Surrogates      |                   |             |                |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4               | 17060-07-0        | 2           | %              | 124               | 121               | 123               | 117               | 116               |
| Toluene-D8                          | 2037-26-5         | 2           | %              | 119               | 121               | 116               | 124               | 122               |
| 4-Bromofluorobenzene                | 460-00-4          | 2           | %              | 124               | 120               | 122               | 121               | 120               |





: SFAN DAYKIN

#### **CERTIFICATE OF ANALYSIS**

Contact

**Work Order** : ES1525544 Page : 1 of 5

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

: Loren Schiavon Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : GPO BOX 5394

SYDNEY NSW. AUSTRALIA 2001

E-mail : SDaykin@pb.com.au E-mail : loren.schiavon@alsglobal.com

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503 Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

: 2268523B QC Level **Project** : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number **Date Samples Received** : 07-Jul-2015 12:30 C-O-C number Date Analysis Commenced : 07-Jul-2015

Sampler Issue Date : DAVID WATSON : 07-Jul-2015 17:06

Site

No. of samples received · 11 Quote number No. of samples analysed : 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results



Contact

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics Phalak Inthakesone Laboratory Manager - Organics **Sydney Organics** 

Page : 2 of 5 Work Order : ES1525544

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

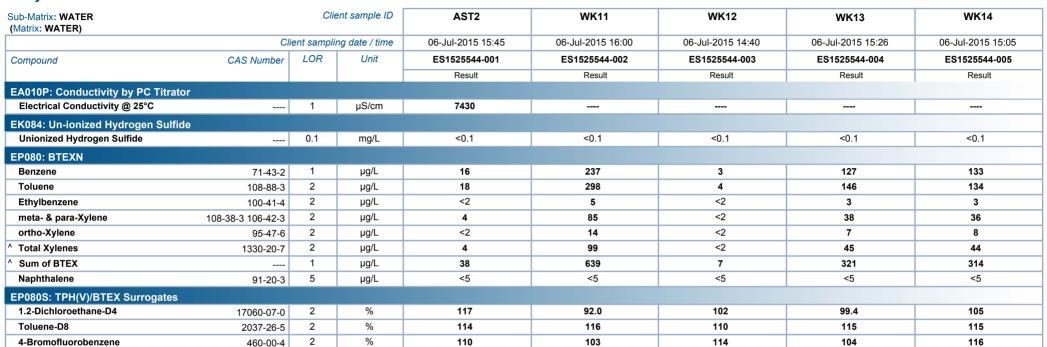
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

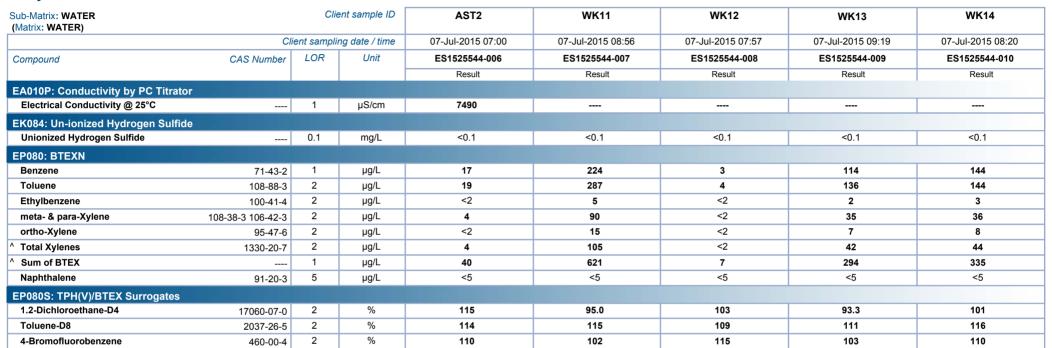

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

Page : 3 of 5 Work Order : ES1525544

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B






Page : 4 of 5 Work Order : ES1525544

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





Page : 5 of 5
Work Order : ES1525544

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Sub-Matrix: WATER (Matrix: WATER)  |                   | Cli        | ent sample ID   | QA3           |        |        |        |        |
|------------------------------------|-------------------|------------|-----------------|---------------|--------|--------|--------|--------|
|                                    | Cli               | ent sampli | ing date / time | [07-Jul-2015] |        |        |        |        |
| Compound                           | CAS Number        | LOR        | Unit            | ES1525544-011 |        |        |        |        |
|                                    |                   |            |                 | Result        | Result | Result | Result | Result |
| EA010P: Conductivity by PC Titrato | or                |            |                 |               |        |        |        |        |
| Electrical Conductivity @ 25°C     |                   | 1          | μS/cm           |               |        |        |        |        |
| EK084: Un-ionized Hydrogen Sulfid  | le                |            |                 |               |        |        |        |        |
| Unionized Hydrogen Sulfide         |                   | 0.1        | mg/L            | <0.1          |        |        |        |        |
| EP080: BTEXN                       |                   |            |                 |               |        |        |        |        |
| Benzene                            | 71-43-2           | 1          | μg/L            | 122           |        |        |        |        |
| Toluene                            | 108-88-3          | 2          | μg/L            | 148           |        |        |        |        |
| Ethylbenzene                       | 100-41-4          | 2          | μg/L            | 3             |        |        |        |        |
| meta- & para-Xylene                | 108-38-3 106-42-3 | 2          | μg/L            | 38            |        |        |        |        |
| ortho-Xylene                       | 95-47-6           | 2          | μg/L            | 7             |        |        |        |        |
| ^ Total Xylenes                    | 1330-20-7         | 2          | μg/L            | 45            |        |        |        |        |
| ^ Sum of BTEX                      |                   | 1          | μg/L            | 318           |        |        |        |        |
| Naphthalene                        | 91-20-3           | 5          | μg/L            | <5            |        |        |        |        |
| EP080S: TPH(V)/BTEX Surrogates     |                   |            |                 |               |        |        |        |        |
| 1.2-Dichloroethane-D4              | 17060-07-0        | 2          | %               | 96.0          |        |        |        |        |
| Toluene-D8                         | 2037-26-5         | 2          | %               | 114           |        |        |        |        |
| 4-Bromofluorobenzene               | 460-00-4          | 2          | %               | 104           |        |        |        |        |



#### **CERTIFICATE OF ANALYSIS**

**Work Order** : **ES1525652** Page : 1 of 16

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: ---Date Samples Received: 08-Jul-2015 12:45C-O-C number: 08-Jul-2015: 08-Jul-2015

Sampler : DAVID WATSON Issue Date : 02-Sep-2015 12:52

Site : ----

Quote number : --- No. of samples received : 6

Quote number : --- No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position               | Accreditation Category |
|------------------|------------------------|------------------------|
| Alex Rossi       | Organic Chemist        | Sydney Organics        |
| Ankit Joshi      | Inorganic Chemist      | Sydney Inorganics      |
| Celine Conceicao | Senior Spectroscopist  | Sydney Inorganics      |
| Pabi Subba       | Senior Organic Chemist | Sydney Organics        |
| Shobhna Chandra  | Metals Coordinator     | Sydney Inorganics      |

Page : 2 of 16

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

- EP071: Possitive results for samples ES1525652 001, 002 & 004 had been confirmed by re-extraction and re-analysis.
- EG020: LOR's have been raised due to matrix interference (High Total Dissolved Solids)
- EP005: NPOC analysis was carried out for various samples due to high inorganic carbon content.
- EK055G: LOR raised for Ammonia on sample ID (ES1525652-1) due to sample matrix.
- EG020: 'Bromine/Iodine' quantification may be unreliable due to its low solubility in acid, leading to variable volatility during measurement by ICPMS.
- It has been noted that Nitrite is greater than NOx for sample ID (ES1525562-5,6), however this difference is within the limits of experimental variation.
- This report has been amended following the removal of BTEX from all samples and EC from AST2
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.



Page : 3 of 16

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

Cadmium

Cobalt

Uranium

Chromium

7440-43-9

7440-48-4

7440-61-1

7440-47-3

0.0001

0.001

0.001

0.001

mg/L

mg/L

mg/L

mg/L

< 0.0001

< 0.001

< 0.001

0.002

< 0.0010

< 0.010

< 0.010

0.049

< 0.0010

< 0.010

< 0.010

0.032

< 0.0010

< 0.010


< 0.010

<0.010

<0.0010

< 0.010

<0.010





Page : 4 of 16

Work Order ES1525652 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

EK061G: Total Kjeldahl Nitrogen By Discrete Analyser

0.1

mg/L

7.9

8.5

3.3

Total Kjeldahl Nitrogen as N

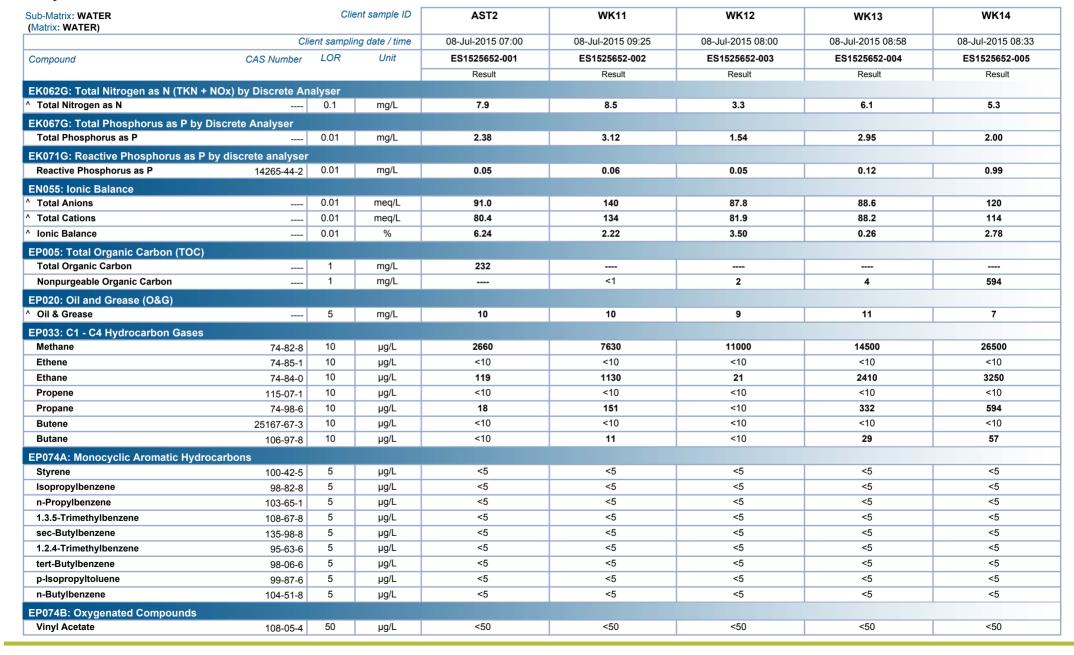
2268523B **Project** 

#### Analytical Results





5.3


6.1

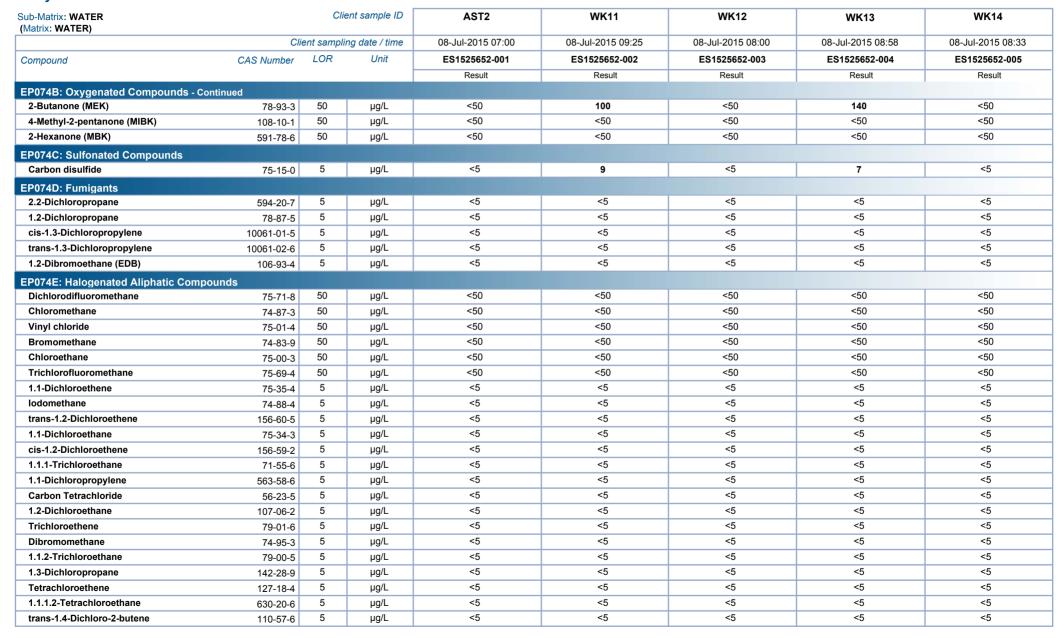
Page : 5 of 16

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





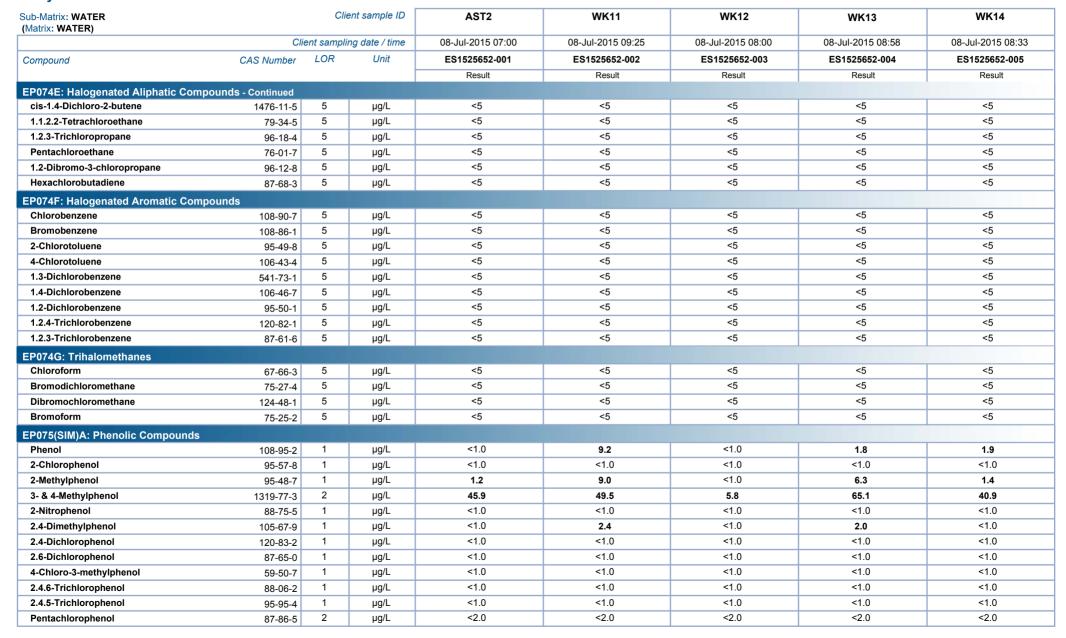

Page : 6 of 16

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





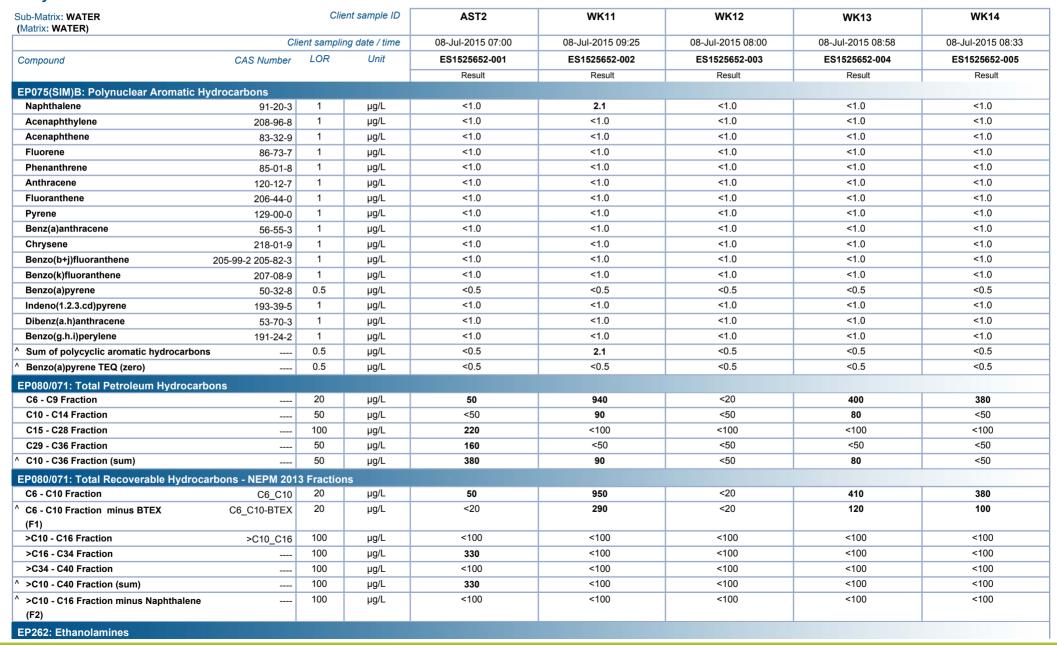

Page : 7 of 16

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B






Page : 8 of 16

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



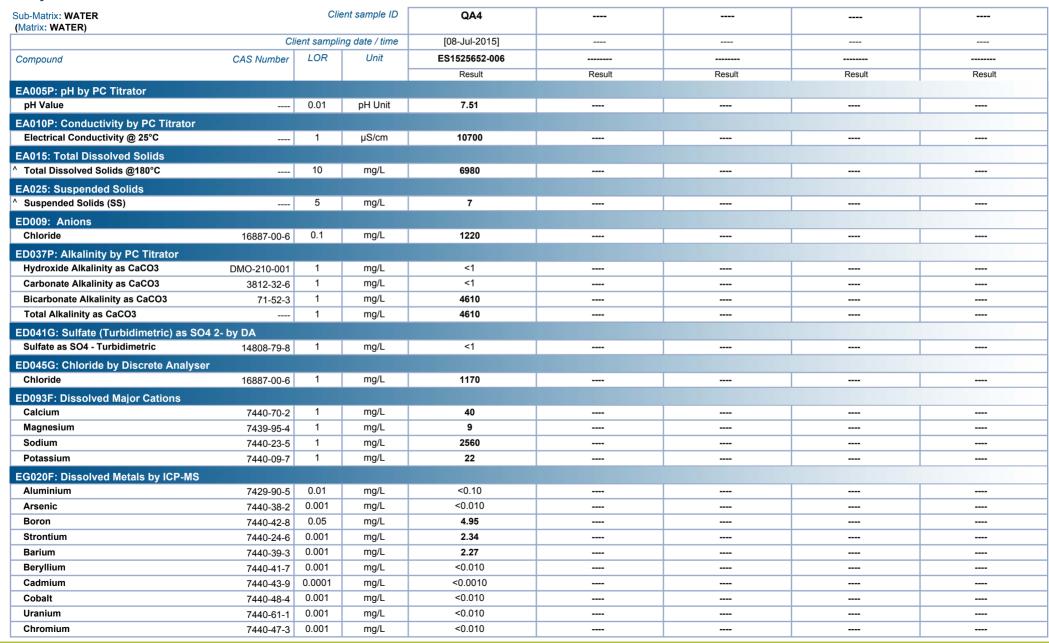
Page : 9 of 16

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B






Page : 10 of 16

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





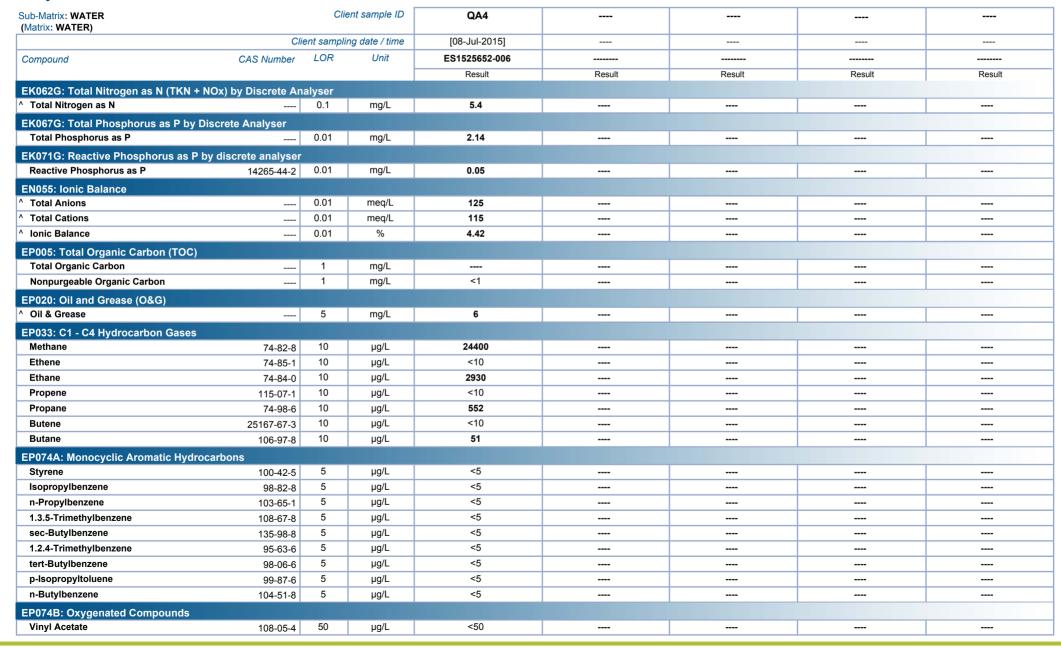
Page

: 11 of 16 : ES1525652 Amendment 1 Work Order

: PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project




| Sub-Matrix: WATER (Matrix: WATER)              |                      | Clie        | ent sample ID  | QA4           |         |         |         |          |
|------------------------------------------------|----------------------|-------------|----------------|---------------|---------|---------|---------|----------|
| (Many)                                         | CI                   | ient sampli | ng date / time | [08-Jul-2015] |         |         |         |          |
| Compound                                       | CAS Number           | LOR         | Unit           | ES1525652-006 |         |         |         |          |
| Compound                                       | OAO Namber           |             | -              | Result        | Result  | Result  | Result  | Result   |
| EG020F: Dissolved Metals by ICP                | -MS - Continued      |             |                | T TOOLIN      | . roour | T TOOLS | 1.000.1 | . toodit |
| Copper                                         | 7440-50-8            | 0.001       | mg/L           | <0.010        |         |         |         |          |
| Manganese                                      | 7439-96-5            | 0.001       | mg/L           | 0.018         |         |         |         |          |
| Molybdenum                                     | 7439-98-7            | 0.001       | mg/L           | <0.010        |         |         |         |          |
| Nickel                                         | 7440-02-0            | 0.001       | mg/L           | <0.010        |         |         |         |          |
| Lead                                           | 7439-92-1            | 0.001       | mg/L           | <0.010        |         |         |         |          |
| Antimony                                       | 7440-36-0            | 0.001       | mg/L           | <0.010        |         |         |         |          |
| Selenium                                       | 7782-49-2            | 0.01        | mg/L           | <0.10         |         |         |         |          |
| Tin                                            | 7440-31-5            | 0.001       | mg/L           | <0.010        |         |         |         |          |
| Vanadium                                       | 7440-62-2            | 0.01        | mg/L           | <0.10         |         |         |         |          |
| Zinc                                           | 7440-66-6            | 0.005       | mg/L           | <0.050        |         |         |         |          |
| Iron                                           | 7439-89-6            | 0.05        | mg/L           | <0.50         |         |         |         |          |
| Bromine                                        | 7726-95-6            | 0.1         | mg/L           | <1.0          |         |         |         |          |
| EG035F: Dissolved Mercury by FI                | MS                   |             |                |               |         |         |         |          |
| Mercury                                        | 7439-97-6            | 0.0001      | mg/L           | <0.0001       |         |         |         |          |
| EG052G: Silica by Discrete Analys              | ser                  |             |                |               |         |         |         |          |
| Reactive Silica                                |                      | 0.05        | mg/L           | 32.5          |         |         |         |          |
| EK010/011: Chlorine                            |                      |             |                |               |         |         |         |          |
| Chlorine - Free                                |                      | 0.2         | mg/L           | <0.2          |         |         |         |          |
| Chlorine - Total Residual                      |                      | 0.2         | mg/L           | <0.2          |         |         |         |          |
| EK040P: Fluoride by PC Titrator                |                      |             |                |               |         |         |         |          |
| Fluoride                                       | 16984-48-8           | 0.1         | mg/L           | 0.9           |         |         |         |          |
| EK055G: Ammonia as N by Discre                 |                      |             |                |               |         |         |         |          |
| Ammonia as N                                   | 7664-41-7            | 0.01        | mg/L           | 4.37          |         |         |         |          |
| EK055G-NH4: Ammonium as N by                   |                      |             | g              |               |         |         |         |          |
| ^ Ammonium as N                                | , DA<br>             | 0.01        | mg/L           | 4.35          |         |         |         |          |
|                                                |                      | 0.01        | mg/L           | 1100          |         |         |         |          |
| EK057G: Nitrite as N by Discrete Nitrite as N  | 14797-65-0           | 0.01        | mg/L           | 0.03          |         |         |         |          |
|                                                |                      | 0.01        | mg/L           | 0.03          |         |         |         |          |
| EK058G: Nitrate as N by Discrete  Nitrate as N |                      | 0.01        | mg/l           | <0.01         |         |         | I       | I        |
|                                                | 14797-55-8           |             | mg/L           | <b>~</b> 0.01 |         |         |         |          |
| EK059G: Nitrite plus Nitrate as N              |                      |             |                | 10.01         |         |         |         | I        |
| Nitrite + Nitrate as N                         |                      | 0.01        | mg/L           | <0.01         |         |         |         |          |
| EK061G: Total Kjeldahl Nitrogen I              | By Discrete Analyser |             |                |               |         |         |         |          |
| Total Kjeldahl Nitrogen as N                   |                      | 0.1         | mg/L           | 5.4           |         |         |         |          |

Page : 12 of 16

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





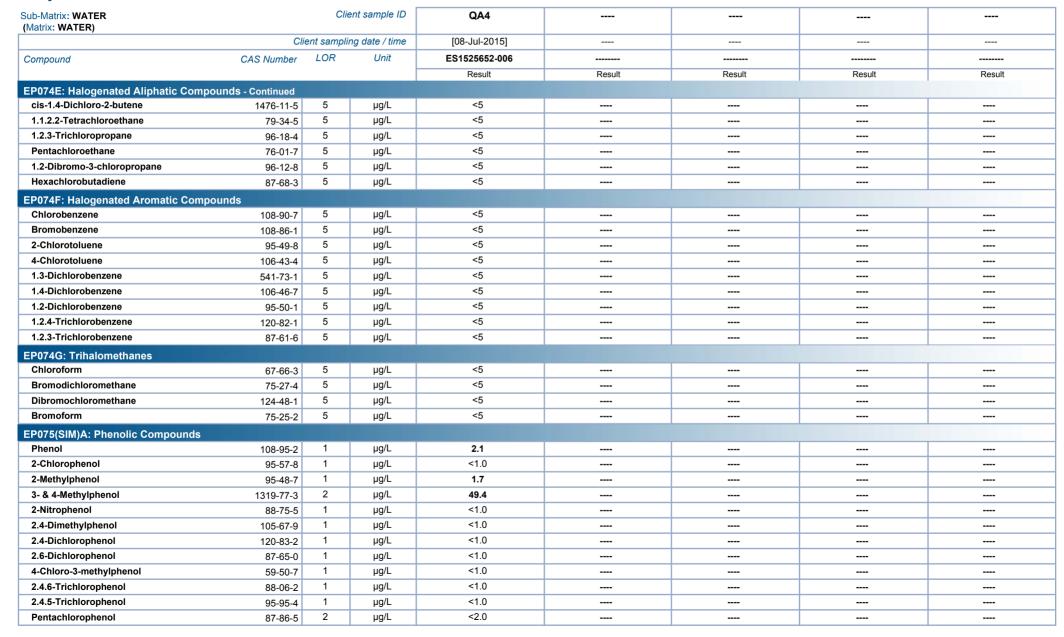
Page

: 13 of 16 : ES1525652 Amendment 1 Work Order

: PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project




| Sub-Matrix: WATER<br>Matrix: WATER) |            | Cli        | ent sample ID  | QA4           |        |        |        |        |
|-------------------------------------|------------|------------|----------------|---------------|--------|--------|--------|--------|
|                                     | Cli        | ent sampli | ng date / time | [08-Jul-2015] |        |        |        |        |
| Compound                            | CAS Number | LOR        | Unit           | ES1525652-006 |        |        |        |        |
|                                     |            |            |                | Result        | Result | Result | Result | Result |
| EP074B: Oxygenated Compounds -      | Continued  |            |                |               |        |        |        |        |
| 2-Butanone (MEK)                    | 78-93-3    | 50         | μg/L           | <50           |        |        |        |        |
| 4-Methyl-2-pentanone (MIBK)         | 108-10-1   | 50         | μg/L           | <50           |        |        |        |        |
| 2-Hexanone (MBK)                    | 591-78-6   | 50         | μg/L           | <50           |        |        |        |        |
| P074C: Sulfonated Compounds         |            |            |                |               |        |        |        |        |
| Carbon disulfide                    | 75-15-0    | 5          | μg/L           | <5            |        |        |        |        |
| P074D: Fumigants                    |            |            |                |               |        |        |        |        |
| 2.2-Dichloropropane                 | 594-20-7   | 5          | μg/L           | <5            |        |        |        |        |
| 1.2-Dichloropropane                 | 78-87-5    | 5          | μg/L           | <5            |        |        |        |        |
| cis-1.3-Dichloropropylene           | 10061-01-5 | 5          | μg/L           | <5            |        |        |        |        |
| trans-1.3-Dichloropropylene         | 10061-02-6 | 5          | μg/L           | <5            |        |        |        |        |
| 1.2-Dibromoethane (EDB)             | 106-93-4   | 5          | μg/L           | <5            |        |        |        |        |
| P074E: Halogenated Aliphatic Con    |            |            | 10             |               |        |        |        |        |
| Dichlorodifluoromethane             | 75-71-8    | 50         | μg/L           | <50           |        |        |        |        |
| Chloromethane                       | 74-87-3    | 50         | μg/L           | <50           |        |        |        |        |
| Vinyl chloride                      | 75-01-4    | 50         | μg/L           | <50           |        |        |        |        |
| Bromomethane                        | 74-83-9    | 50         | μg/L           | <50           |        |        |        |        |
| Chloroethane                        | 75-00-3    | 50         | μg/L           | <50           |        |        |        |        |
| Trichlorofluoromethane              | 75-69-4    | 50         | μg/L           | <50           |        |        |        |        |
| 1.1-Dichloroethene                  | 75-35-4    | 5          | μg/L           | <5            |        |        |        |        |
| Iodomethane                         | 74-88-4    | 5          | μg/L           | <5            |        |        |        |        |
| trans-1.2-Dichloroethene            | 156-60-5   | 5          | μg/L           | <5            |        |        |        |        |
| 1.1-Dichloroethane                  | 75-34-3    | 5          | μg/L           | <5            |        |        |        |        |
| cis-1.2-Dichloroethene              | 156-59-2   | 5          | μg/L           | <5            |        |        |        |        |
| 1.1.1-Trichloroethane               | 71-55-6    | 5          | μg/L           | <5            |        |        |        |        |
| 1.1-Dichloropropylene               | 563-58-6   | 5          | μg/L           | <5            |        |        |        |        |
| Carbon Tetrachloride                | 56-23-5    | 5          | μg/L           | <5            |        |        |        |        |
| 1.2-Dichloroethane                  | 107-06-2   | 5          | μg/L           | <5            |        |        |        |        |
| Trichloroethene                     | 79-01-6    | 5          | μg/L           | <5            |        |        |        |        |
| Dibromomethane                      | 74-95-3    | 5          | µg/L           | <5            |        |        |        |        |
| 1.1.2-Trichloroethane               | 79-00-5    | 5          | μg/L           | <5            |        |        |        |        |
| 1.3-Dichloropropane                 | 142-28-9   | 5          | μg/L           | <5            |        |        |        |        |
| Tetrachloroethene                   | 127-18-4   | 5          | μg/L           | <5            |        |        |        |        |
| 1.1.1.2-Tetrachloroethane           | 630-20-6   | 5          | μg/L           | <5            |        |        |        |        |
| trans-1.4-Dichloro-2-butene         | 110-57-6   | 5          | μg/L           | <5            |        |        |        |        |

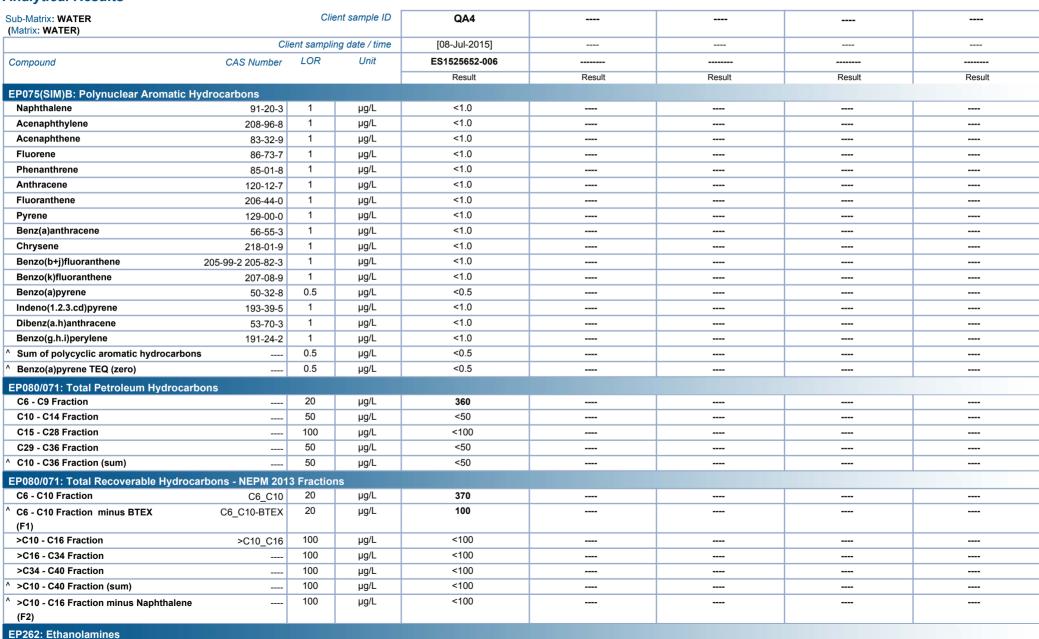
Page : 14 of 16

Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B






Page : 15 of 16

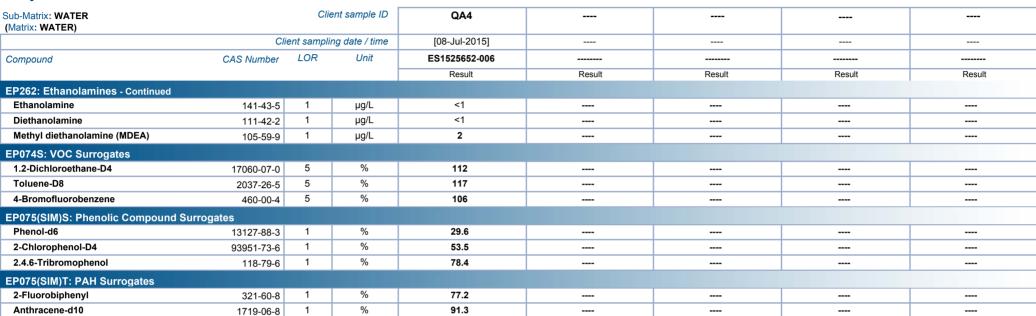
Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



Page : 16 of 16


Work Order : ES1525652 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### Analytical Results

4-Terphenyl-d14



106

%

1718-51-0

1





#### **CERTIFICATE OF ANALYSIS**

**Work Order** : **ES1525654** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW. AUSTRALIA 2001

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ---- Date Samples Received : 08-Jul-2015 12:45

C-O-C number : ---- Date Analysis Commenced : 08-Jul-2015

Sampler : DAVID WATSON Issue Date : 08-Jul-2015 16:49
Site : ----

Quote number : --- No. of samples received : 6

Quote number : --- No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

Certificate of 7 tharyon contains the following information.

- General Comments
- Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Pabi Subba Senior Organic Chemist Sydney Organics

Page : 2 of 4
Work Order : ES1525654

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

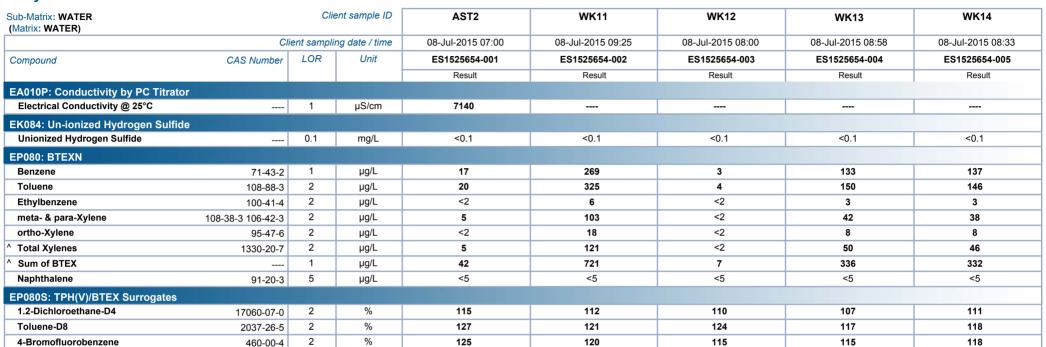
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

Page : 3 of 4
Work Order : ES1525654

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





Page : 4 of 4
Work Order : ES1525654

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Sub-Matrix: WATER (Matrix: WATER)  |                   | Cli        | ent sample ID   | QA4           |        |        |        |        |
|------------------------------------|-------------------|------------|-----------------|---------------|--------|--------|--------|--------|
|                                    | Cli               | ent sampli | ing date / time | [08-Jul-2015] |        |        |        |        |
| Compound                           | CAS Number        | LOR        | Unit            | ES1525654-006 |        |        |        |        |
|                                    |                   |            |                 | Result        | Result | Result | Result | Result |
| EA010P: Conductivity by PC Titrato | or                |            |                 |               |        |        |        |        |
| Electrical Conductivity @ 25°C     |                   | 1          | μS/cm           |               |        |        |        |        |
| EK084: Un-ionized Hydrogen Sulfid  | le                |            |                 |               |        |        |        |        |
| Unionized Hydrogen Sulfide         |                   | 0.1        | mg/L            | <0.1          |        |        |        |        |
| EP080: BTEXN                       |                   |            |                 |               |        |        |        |        |
| Benzene                            | 71-43-2           | 1          | μg/L            | 144           |        |        |        |        |
| Toluene                            | 108-88-3          | 2          | μg/L            | 152           |        |        |        |        |
| Ethylbenzene                       | 100-41-4          | 2          | μg/L            | 3             |        |        |        |        |
| meta- & para-Xylene                | 108-38-3 106-42-3 | 2          | μg/L            | 38            |        |        |        |        |
| ortho-Xylene                       | 95-47-6           | 2          | μg/L            | 8             |        |        |        |        |
| ^ Total Xylenes                    | 1330-20-7         | 2          | μg/L            | 46            |        |        |        |        |
| ^ Sum of BTEX                      |                   | 1          | μg/L            | 345           |        |        |        |        |
| Naphthalene                        | 91-20-3           | 5          | μg/L            | <5            |        |        |        |        |
| EP080S: TPH(V)/BTEX Surrogates     |                   |            |                 |               |        |        |        |        |
| 1.2-Dichloroethane-D4              | 17060-07-0        | 2          | %               | 119           |        |        |        |        |
| Toluene-D8                         | 2037-26-5         | 2          | %               | 124           |        |        |        |        |
| 4-Bromofluorobenzene               | 460-00-4          | 2          | %               | 122           |        |        |        |        |



Work Order : **ES1525742** Page : 1 of 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : -- Date Samples Received
 : 09-Jul-2015 12:20

 C-O-C number
 : -- Date Analysis Commenced
 : 09-Jul-2015

Sampler : ---- Issue Date : 09-Jul-2015 16:18

No. of samples received : 5

Quote number : ---- No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results



E-mail

Site

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics Edwandy Fadjar Organic Coordinator Sydney Organics Page : 2 of 2 Work Order : ES1525742

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.

| Sub-Matrix: WATER (Matrix: WATER)  |                   | Clie       | ent sample ID  | AST2              | WK11              | WK12              | WK13              | WK14              |
|------------------------------------|-------------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cli               | ent sampli | ng date / time | 09-Jul-2015 07:15 | 09-Jul-2015 09:00 | 09-Jul-2015 08:00 | 09-Jul-2015 08:40 | 09-Jul-2015 08:25 |
| Compound                           | CAS Number        | LOR        | Unit           | ES1525742-001     | ES1525742-002     | ES1525742-003     | ES1525742-004     | ES1525742-005     |
|                                    |                   |            |                | Result            | Result            | Result            | Result            | Result            |
| EA010P: Conductivity by PC Titrato | r                 |            |                |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C     |                   | 1          | μS/cm          | 7350              |                   |                   |                   |                   |
| EK084: Un-ionized Hydrogen Sulfide | e                 |            |                |                   |                   |                   |                   |                   |
| Unionized Hydrogen Sulfide         |                   | 0.1        | mg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| EP080: BTEXN                       |                   |            |                |                   |                   |                   |                   |                   |
| Benzene                            | 71-43-2           | 1          | μg/L           | 10                | 181               | 2                 | 94                | 75                |
| Toluene                            | 108-88-3          | 2          | μg/L           | 11                | 269               | 2                 | 102               | 89                |
| Ethylbenzene                       | 100-41-4          | 2          | μg/L           | <2                | 5                 | <2                | 2                 | 2                 |
| meta- & para-Xylene                | 108-38-3 106-42-3 | 2          | μg/L           | 3                 | 80                | <2                | 27                | 24                |
| ortho-Xylene                       | 95-47-6           | 2          | μg/L           | <2                | 14                | <2                | 6                 | 6                 |
| ^ Total Xylenes                    | 1330-20-7         | 2          | μg/L           | 3                 | 94                | <2                | 33                | 30                |
| ^ Sum of BTEX                      |                   | 1          | μg/L           | 24                | 549               | 4                 | 231               | 196               |
| Naphthalene                        | 91-20-3           | 5          | μg/L           | <5                | <5                | <5                | <5                | <5                |
| EP080S: TPH(V)/BTEX Surrogates     |                   |            |                |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4              | 17060-07-0        | 2          | %              | 77.2              | 98.4              | 78.8              | 82.4              | 78.2              |
| Toluene-D8                         | 2037-26-5         | 2          | %              | 90.8              | 111               | 94.5              | 94.6              | 93.0              |
| 4-Bromofluorobenzene               | 460-00-4          | 2          | %              | 83.5              | 99.9              | 83.4              | 84.8              | 83.0              |





**Work Order** : **ES1525865** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : --- Date Samples Received : 10-Jul-2015 12:10

C-O-C number : --- Date Analysis Commenced : 10-Jul-2015

Sampler : ---- Issue Date : 10-Jul-2015 18:25

Site :----

Quote number : --- No. of samples received : 6

Quote number : --- No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

SYDNEY NSW. AUSTRALIA 2001

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Pabi Subba Senior Organic Chemist Sydney Organics

Page : 2 of 4
Work Order : ES1525865

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

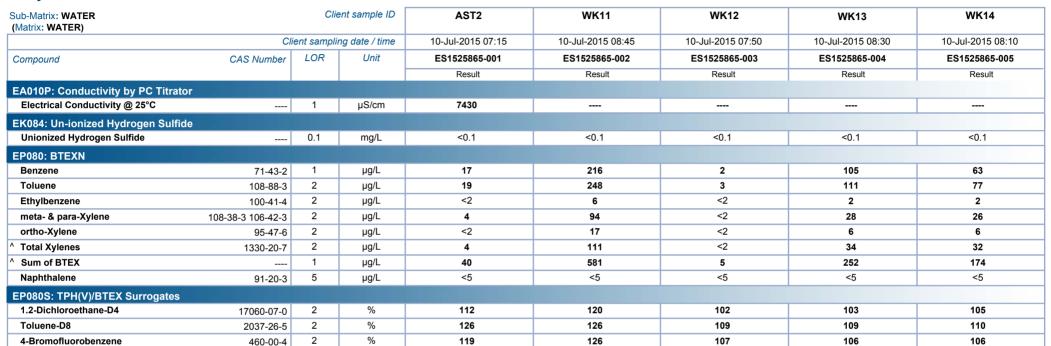
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

Page : 3 of 4
Work Order : ES1525865

Client : PARSONS BRINCKERHOFF AUST P/L

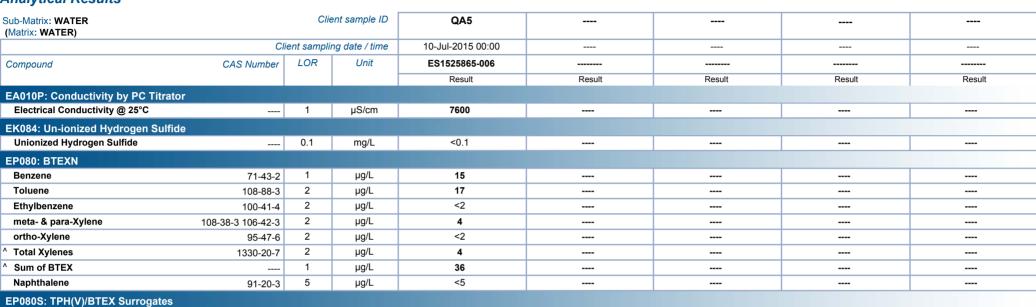
Project : 2268523B





Page : 4 of 4 Work Order : ES1525865

Client : PARSONS BRINCKERHOFF AUST P/L


Project : 2268523B

### Analytical Results

1.2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8



111

110

106

%

%

%

2

2

2

17060-07-0

2037-26-5

460-00-4





**Work Order** : **ES1525880** Page : 1 of 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

: GPO BOX 5394 Address : SYDNEY NSW. AUSTRALIA 2001

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ---- Date Samples Received : 13-Jul-2015 11:30 C-O-C number : ---- Date Analysis Commenced : 12-Jul-2015

Sampler : --- Issue Date : 13-Jul-2015 17:29

Site : ---No. of samples received

Quote number : --- No. of samples received : 5

Quote number : --- No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Phalak Inthakesone Laboratory Manager - Organics Sydney Organics

Page : 2 of 2 Work Order : ES1525880

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

| Sub-Matrix: WATER (Matrix: WATER)   |                   | Cli         | ent sample ID  | AST2              | WK11              | WK12              | WK13              |        |
|-------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|--------|
|                                     | Cli               | ient sampli | ng date / time | 11-Jul-2015 07:15 | 11-Jul-2015 08:50 | 11-Jul-2015 08:20 | 11-Jul-2015 08:00 |        |
| Compound                            | CAS Number        | LOR         | Unit           | ES1525880-001     | ES1525880-002     | ES1525880-003     | ES1525880-004     |        |
|                                     |                   |             |                | Result            | Result            | Result            | Result            | Result |
| EA010P: Conductivity by PC Titrator |                   |             |                |                   |                   |                   |                   |        |
| Electrical Conductivity @ 25°C      |                   | 1           | μS/cm          | 7660              |                   |                   |                   |        |
| EK084: Un-ionized Hydrogen Sulfide  |                   |             |                |                   |                   |                   |                   |        |
| Unionized Hydrogen Sulfide          |                   | 0.1         | mg/L           | <0.1              | <0.1              | <0.1              | <0.1              |        |
| EP080: BTEXN                        |                   |             |                |                   |                   |                   |                   |        |
| Benzene                             | 71-43-2           | 1           | μg/L           | 10                | 161               | 2                 | 78                |        |
| Toluene                             | 108-88-3          | 2           | μg/L           | 12                | 194               | 3                 | 90                |        |
| Ethylbenzene                        | 100-41-4          | 2           | μg/L           | <2                | 4                 | <2                | <2                |        |
| meta- & para-Xylene                 | 108-38-3 106-42-3 | 2           | μg/L           | 3                 | 59                | <2                | 23                |        |
| ortho-Xylene                        | 95-47-6           | 2           | μg/L           | <2                | 10                | <2                | 4                 |        |
| ^ Total Xylenes                     | 1330-20-7         | 2           | μg/L           | 3                 | 69                | <2                | 27                |        |
| ^ Sum of BTEX                       |                   | 1           | μg/L           | 25                | 428               | 5                 | 195               |        |
| Naphthalene                         | 91-20-3           | 5           | μg/L           | <5                | <5                | <5                | <5                |        |
| EP080S: TPH(V)/BTEX Surrogates      |                   |             |                |                   |                   |                   |                   |        |
| 1.2-Dichloroethane-D4               | 17060-07-0        | 2           | %              | 82.0              | 82.6              | 81.6              | 83.7              |        |
| Toluene-D8                          | 2037-26-5         | 2           | %              | 103               | 108               | 99.8              | 106               |        |
| 4-Bromofluorobenzene                | 460-00-4          | 2           | %              | 97.7              | 100               | 94.8              | 101               |        |





**Work Order** : **ES1526014** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ---- Date Samples Received : 14-Jul-2015 13:20

C-O-C number : ---- Date Analysis Commenced : 14-Jul-2015

Sampler : DAVID WATSON Issue Date : 14-Jul-2015 16:36

Site :---

Quote number Suppose No. of samples received 8

Quote number Suppose No. of samples analysed 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Sanjeshni Jyoti Senior Chemist Volatiles Sydney Organics

Page : 2 of 4
Work Order : ES1526014

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

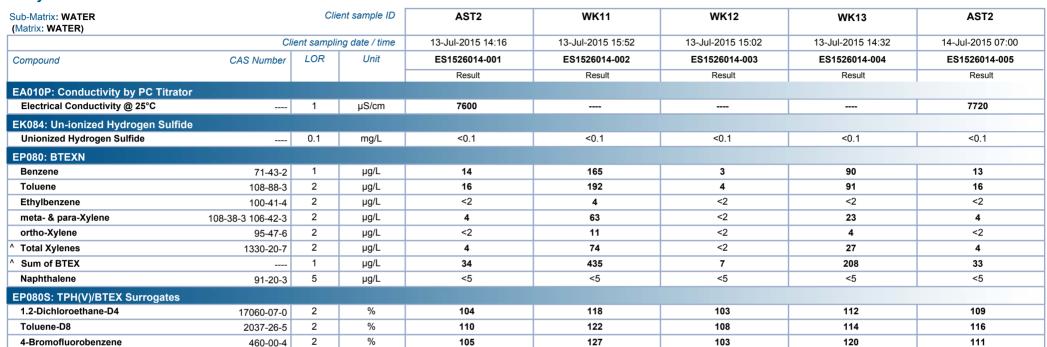
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

Page : 3 of 4
Work Order : ES1526014

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





Page : 4 of 4
Work Order : ES1526014

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Sub-Matrix: WATER (Matrix: WATER)         |                   | Cli        | ent sample ID   | WK11              | WK13              | QA6           |        |        |
|-------------------------------------------|-------------------|------------|-----------------|-------------------|-------------------|---------------|--------|--------|
|                                           | Cli               | ent sampli | ing date / time | 14-Jul-2015 08:45 | 14-Jul-2015 08:10 | [13-Jul-2015] |        |        |
| Compound                                  | CAS Number        | LOR        | Unit            | ES1526014-006     | ES1526014-007     | ES1526014-008 |        |        |
|                                           |                   |            |                 | Result            | Result            | Result        | Result | Result |
| <b>EA010P: Conductivity by PC Titrate</b> | or                |            |                 |                   |                   |               |        |        |
| Electrical Conductivity @ 25°C            |                   | 1          | μS/cm           |                   |                   |               |        |        |
| EK084: Un-ionized Hydrogen Sulfic         | de                |            |                 |                   |                   |               |        |        |
| Unionized Hydrogen Sulfide                |                   | 0.1        | mg/L            | <0.1              | <0.1              | <0.1          |        |        |
| EP080: BTEXN                              |                   |            |                 |                   |                   |               |        |        |
| Benzene                                   | 71-43-2           | 1          | μg/L            | 152               | 86                | 171           |        |        |
| Toluene                                   | 108-88-3          | 2          | μg/L            | 175               | 85                | 194           |        |        |
| Ethylbenzene                              | 100-41-4          | 2          | μg/L            | 3                 | <2                | 3             |        |        |
| meta- & para-Xylene                       | 108-38-3 106-42-3 | 2          | μg/L            | 58                | 21                | 63            |        |        |
| ortho-Xylene                              | 95-47-6           | 2          | μg/L            | 10                | 4                 | 10            |        |        |
| ^ Total Xylenes                           | 1330-20-7         | 2          | μg/L            | 68                | 25                | 73            |        |        |
| ^ Sum of BTEX                             |                   | 1          | μg/L            | 398               | 196               | 441           |        |        |
| Naphthalene                               | 91-20-3           | 5          | μg/L            | <5                | <5                | <5            |        |        |
| EP080S: TPH(V)/BTEX Surrogates            |                   |            |                 |                   |                   |               |        |        |
| 1.2-Dichloroethane-D4                     | 17060-07-0        | 2          | %               | 97.0              | 107               | 120           |        |        |
| Toluene-D8                                | 2037-26-5         | 2          | %               | 100               | 106               | 118           |        |        |
| 4-Bromofluorobenzene                      | 460-00-4          | 2          | %               | 104               | 108               | 123           |        |        |



**Work Order** : **ES1526117** Page : 1 of 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523A QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ---- Date Samples Received : 15-Jul-2015 12:50

C-O-C number : ---- Date Analysis Commenced : 15-Jul-2015

Sampler : DAVID WATSON Issue Date : 15-Jul-2015 16:43

Site · ----

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

General Comments

Analytical Results

NATA
WORLD RECOGNISED
ACCREDITATION

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryAnkit JoshiInorganic ChemistSydney InorganicsPabi SubbaSenior Organic ChemistSydney Organics

Page : 2 of 2 Work Order : ES1526117

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

| Sub-Matrix: WATER (Matrix: WATER)   |                   | Clie        | ent sample ID  | AST2              | WK11              | WK13              | WK14              | QA7               |
|-------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Cli               | ient sampli | ng date / time | 15-Jul-2015 07:15 | 15-Jul-2015 09:30 | 15-Jul-2015 08:35 | 15-Jul-2015 09:00 | 15-Jul-2015 08:35 |
| Compound                            | CAS Number        | LOR         | Unit           | ES1526117-001     | ES1526117-002     | ES1526117-003     | ES1526117-004     | ES1526117-005     |
|                                     |                   |             |                | Result            | Result            | Result            | Result            | Result            |
| EA010P: Conductivity by PC Titrator |                   |             |                |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C      |                   | 1           | μS/cm          | 7490              |                   |                   |                   |                   |
| EK084: Un-ionized Hydrogen Sulfide  |                   |             |                |                   |                   |                   |                   |                   |
| Unionized Hydrogen Sulfide          |                   | 0.1         | mg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| EP080: BTEXN                        |                   |             |                |                   |                   |                   |                   |                   |
| Benzene                             | 71-43-2           | 1           | μg/L           | 10                | 103               | 73                | 42                | 62                |
| Toluene                             | 108-88-3          | 2           | μg/L           | 13                | 114               | 69                | 49                | 57                |
| Ethylbenzene                        | 100-41-4          | 2           | μg/L           | <2                | 2                 | <2                | <2                | <2                |
| meta- & para-Xylene                 | 108-38-3 106-42-3 | 2           | μg/L           | 4                 | 40                | 18                | 19                | 14                |
| ortho-Xylene                        | 95-47-6           | 2           | μg/L           | <2                | 7                 | 3                 | 4                 | 3                 |
| ^ Total Xylenes                     | 1330-20-7         | 2           | μg/L           | 4                 | 47                | 21                | 23                | 17                |
| ^ Sum of BTEX                       |                   | 1           | μg/L           | 27                | 266               | 163               | 114               | 136               |
| Naphthalene                         | 91-20-3           | 5           | μg/L           | <5                | <5                | <5                | <5                | <5                |
| EP080S: TPH(V)/BTEX Surrogates      |                   |             |                |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4               | 17060-07-0        | 2           | %              | 89.8              | 107               | 119               | 109               | 102               |
| Toluene-D8                          | 2037-26-5         | 2           | %              | 103               | 92.7              | 99.2              | 94.0              | 88.6              |
| 4-Bromofluorobenzene                | 460-00-4          | 2           | %              | 96.9              | 89.1              | 94.6              | 89.8              | 84.0              |





**Work Order** : **ES1526118** Page : 1 of 9

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : --- Date Samples Received
 : 15-Jul-2015 12:50

 C-O-C number
 : --- Date Analysis Commenced
 : 15-Jul-2015

Sampler : DAVID WATSON Issue Date : 02-Sep-2015 12:45

Site : ----

No. of samples received : 5
; ---No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results



Quote number

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position               | Accreditation Category |
|------------------|------------------------|------------------------|
| Alex Rossi       | Organic Chemist        | Sydney Organics        |
| Ankit Joshi      | Inorganic Chemist      | Sydney Inorganics      |
| Ashesh Patel     | Inorganic Chemist      | Sydney Inorganics      |
| Celine Conceicao | Senior Spectroscopist  | Sydney Inorganics      |
| Pabi Subba       | Senior Organic Chemist | Sydney Organics        |

Page : 2 of 9

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

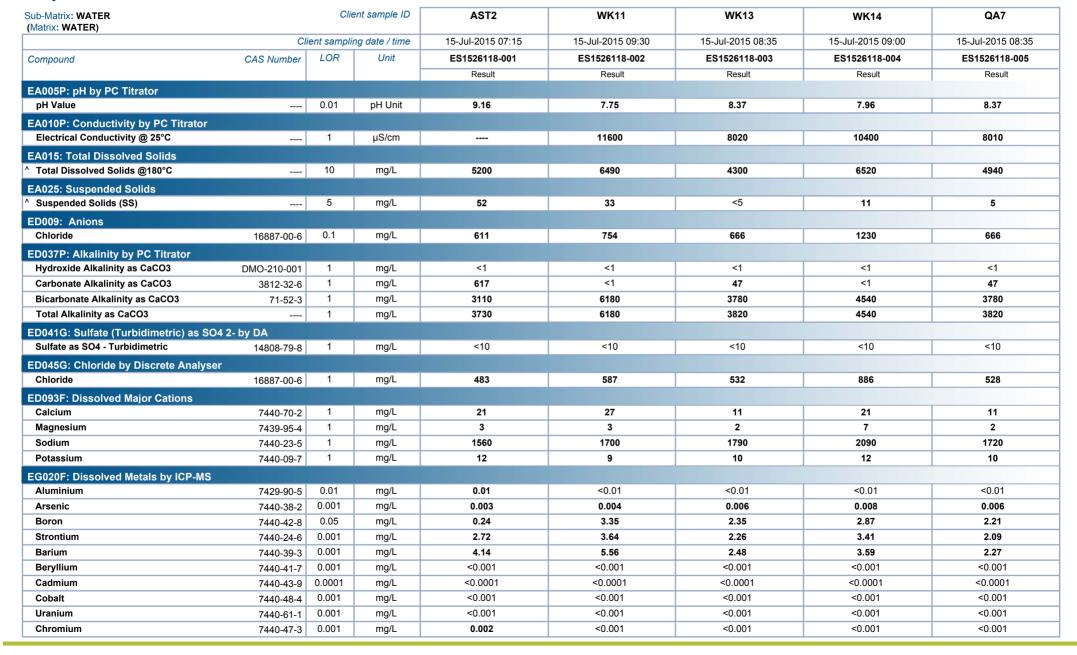
Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

- EG020: Bromine quantification may be unreliable due to its low solubility in acid, leading to variable volatility during measurement by ICPMS.
- EK059G-EK058G: LOR raised for NOx- Nitrate on sample ID ( ES1526118-2) due to sample matrix.
- EP005 : NPOC analysis was carried out for various samples due to high inorganic carbon content.
- ED041G: LOR raised for Sulfate analysis on a few samples due to matrix interferences.
- EK057G:LOR raised for Nitrite analysis on sample ID(WK11) due to sample matrix.
- This report has been amended following the removal of BTEX from all samples and EC for AST2
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.



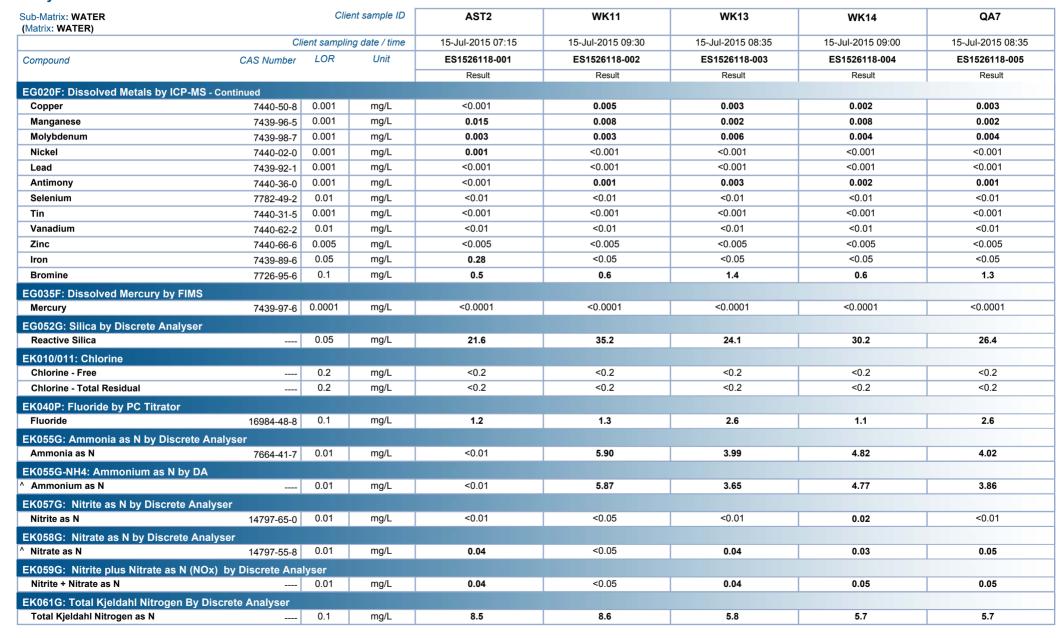

Page : 3 of 9

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





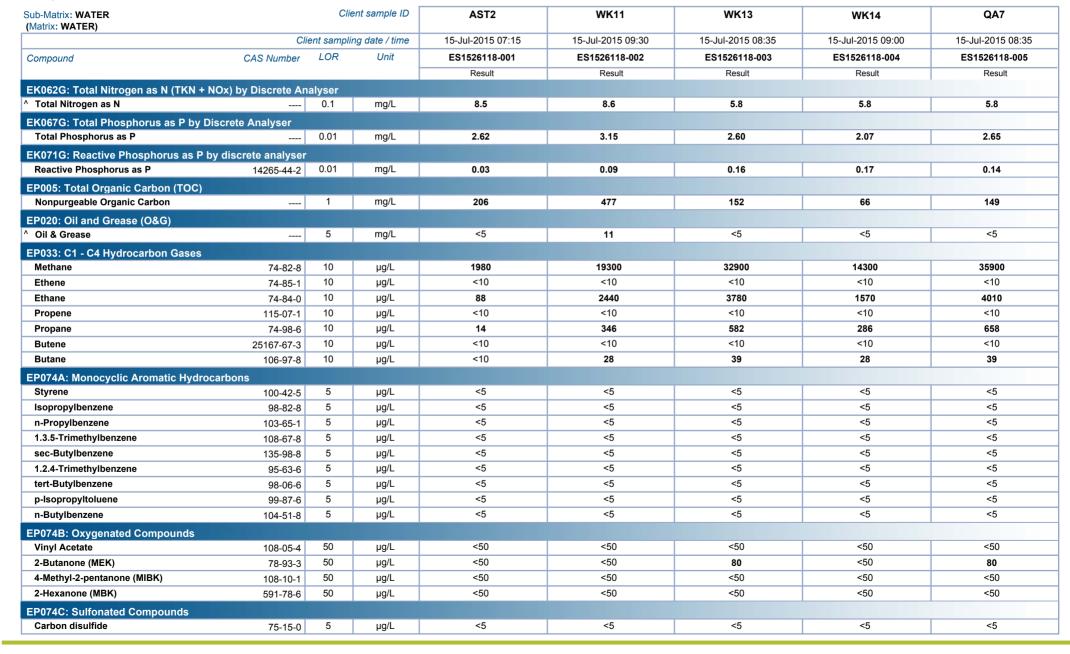

Page : 4 of 9

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





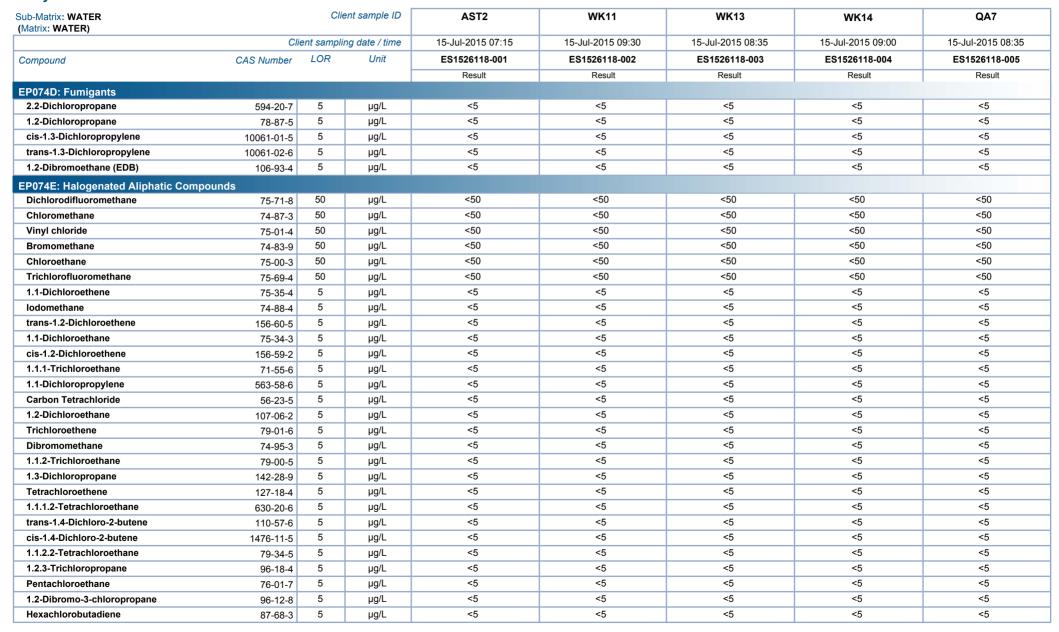

Page : 5 of 9

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





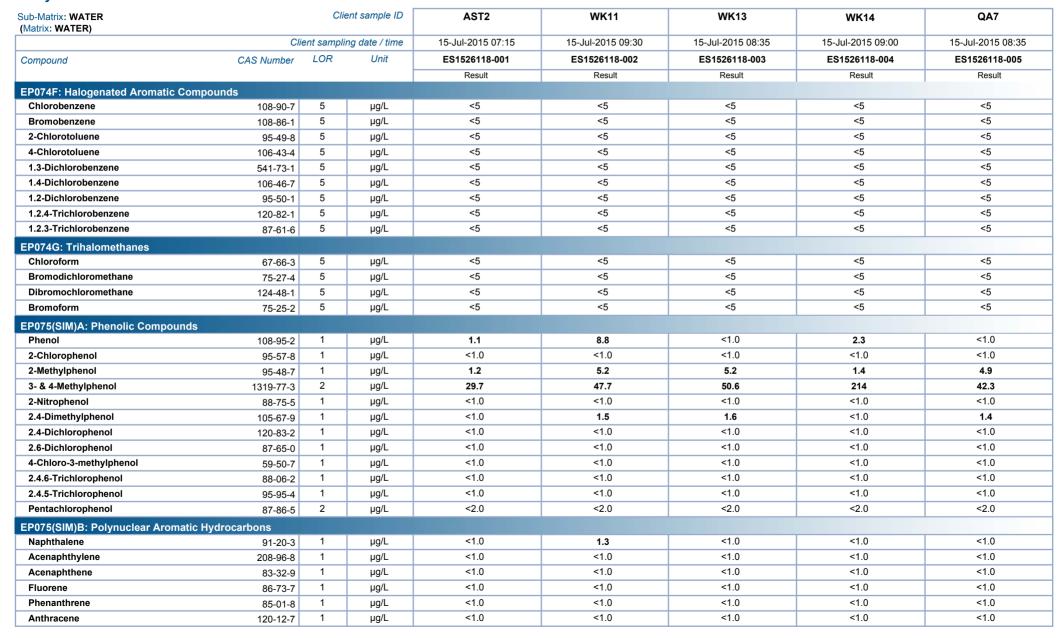

Page : 6 of 9

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





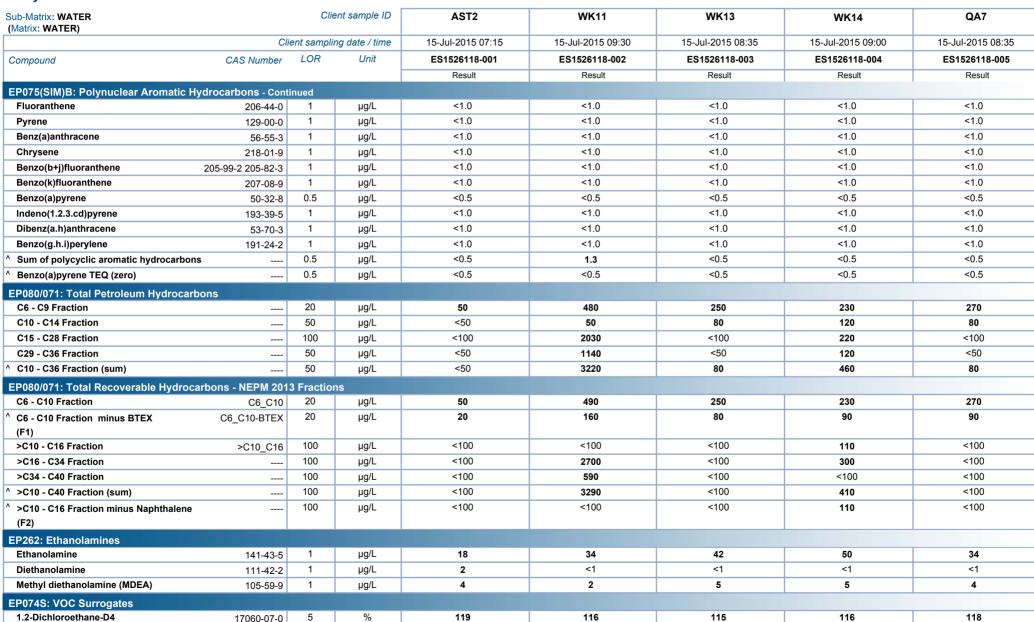

Page : 7 of 9

Work Order · ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





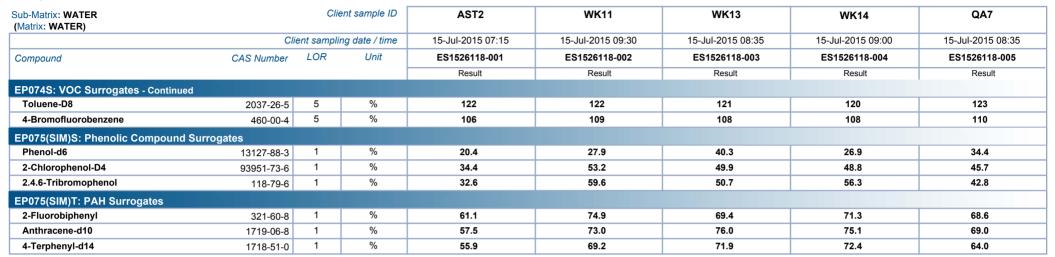

Page : 8 of 9

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B






Page : 9 of 9

Work Order : ES1526118 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B







**Work Order** : **ES1526216** Page : 1 of 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : --- Date Samples Received : 16-Jul-2015 12:30

C-O-C number : --- Date Analysis Commenced : 16-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 16-Jul-2015 17:35

Site : ----

Quote number Suppose No. of samples received 5

Quote number Suppose S

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

the relative and the relative to the relative

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryAnkit JoshiInorganic ChemistSydney InorganicsPabi SubbaSenior Organic ChemistSydney Organics

Page : 2 of 2 Work Order : ES1526216

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.

| Sub-Matrix: WATER (Matrix: WATER)  |                   | Clie        | ent sample ID  | AST2              | WK11              | WK12              | WK13              | WK14              |
|------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cli               | ient sampli | ng date / time | 16-Jul-2015 07:15 | 16-Jul-2015 08:50 | 16-Jul-2015 08:30 | 16-Jul-2015 07:55 | 16-Jul-2015 08:15 |
| Compound                           | CAS Number        | LOR         | Unit           | ES1526216-001     | ES1526216-002     | ES1526216-003     | ES1526216-004     | ES1526216-005     |
|                                    |                   |             |                | Result            | Result            | Result            | Result            | Result            |
| EA010P: Conductivity by PC Titrato | r                 |             |                |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C     |                   | 1           | μS/cm          | 7780              |                   |                   |                   |                   |
| EK084: Un-ionized Hydrogen Sulfide | е                 |             |                |                   |                   |                   |                   |                   |
| Unionized Hydrogen Sulfide         |                   | 0.1         | mg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| EP080: BTEXN                       |                   |             |                |                   |                   |                   |                   |                   |
| Benzene                            | 71-43-2           | 1           | μg/L           | 10                | 104               | 2                 | 64                | 113               |
| Toluene                            | 108-88-3          | 2           | μg/L           | 12                | 121               | 3                 | 60                | 90                |
| Ethylbenzene                       | 100-41-4          | 2           | μg/L           | <2                | 2                 | <2                | <2                | <2                |
| meta- & para-Xylene                | 108-38-3 106-42-3 | 2           | μg/L           | 3                 | 36                | <2                | 13                | 15                |
| ortho-Xylene                       | 95-47-6           | 2           | μg/L           | <2                | 8                 | <2                | 3                 | 4                 |
| ^ Total Xylenes                    | 1330-20-7         | 2           | μg/L           | 3                 | 44                | <2                | 16                | 19                |
| ^ Sum of BTEX                      |                   | 1           | μg/L           | 25                | 271               | 5                 | 140               | 222               |
| Naphthalene                        | 91-20-3           | 5           | μg/L           | <5                | <5                | <5                | <5                | <5                |
| EP080S: TPH(V)/BTEX Surrogates     |                   |             |                |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4              | 17060-07-0        | 2           | %              | 102               | 106               | 96.5              | 104               | 100               |
| Toluene-D8                         | 2037-26-5         | 2           | %              | 111               | 116               | 118               | 116               | 114               |
| 4-Bromofluorobenzene               | 460-00-4          | 2           | %              | 102               | 104               | 104               | 106               | 103               |





**Work Order** : **ES1526322** Page : 1 of 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : --- Date Samples Received : 17-Jul-2015 12:20

C-O-C number : --- Date Analysis Commenced : 17-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 17-Jul-2015 16:06

Site :---

Quote number Suppose No. of samples received 5

Quote number Suppose S

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- 0

- General Comments
- Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryAnkit JoshiInorganic ChemistSydney InorganicsPabi SubbaSenior Organic ChemistSydney Organics

Page : 2 of 2 Work Order : ES1526322

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

| Sub-Matrix: WATER (Matrix: WATER)   |                   | Clie        | ent sample ID  | AST2              | WK11              | WK12              | WK13              | QA8           |
|-------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|---------------|
|                                     | Cli               | ient sampli | ng date / time | 17-Jul-2015 07:15 | 17-Jul-2015 08:55 | 17-Jul-2015 08:15 | 17-Jul-2015 08:30 | [17-Jul-2015] |
| Compound                            | CAS Number        | LOR         | Unit           | ES1526322-001     | ES1526322-002     | ES1526322-003     | ES1526322-004     | ES1526322-005 |
|                                     |                   |             |                | Result            | Result            | Result            | Result            | Result        |
| EA010P: Conductivity by PC Titrator |                   |             |                |                   |                   |                   |                   |               |
| Electrical Conductivity @ 25°C      |                   | 1           | μS/cm          | 7430              |                   |                   |                   |               |
| EK084: Un-ionized Hydrogen Sulfide  |                   |             |                |                   |                   |                   |                   |               |
| Unionized Hydrogen Sulfide          |                   | 0.1         | mg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1          |
| EP080: BTEXN                        |                   |             |                |                   |                   |                   |                   |               |
| Benzene                             | 71-43-2           | 1           | μg/L           | 12                | 91                | 2                 | 67                | 2             |
| Toluene                             | 108-88-3          | 2           | μg/L           | 14                | 95                | 2                 | 61                | 2             |
| Ethylbenzene                        | 100-41-4          | 2           | μg/L           | <2                | <2                | <2                | <2                | <2            |
| meta- & para-Xylene                 | 108-38-3 106-42-3 | 2           | μg/L           | 3                 | 32                | <2                | 14                | <2            |
| ortho-Xylene                        | 95-47-6           | 2           | μg/L           | <2                | 5                 | <2                | 3                 | <2            |
| ^ Total Xylenes                     | 1330-20-7         | 2           | μg/L           | 3                 | 37                | <2                | 17                | <2            |
| ^ Sum of BTEX                       |                   | 1           | μg/L           | 29                | 223               | 4                 | 145               | 4             |
| Naphthalene                         | 91-20-3           | 5           | μg/L           | <5                | <5                | <5                | <5                | <5            |
| EP080S: TPH(V)/BTEX Surrogates      |                   |             |                |                   |                   |                   |                   |               |
| 1.2-Dichloroethane-D4               | 17060-07-0        | 2           | %              | 111               | 120               | 105               | 115               | 121           |
| Toluene-D8                          | 2037-26-5         | 2           | %              | 113               | 117               | 106               | 117               | 121           |
| 4-Bromofluorobenzene                | 460-00-4          | 2           | %              | 114               | 122               | 105               | 122               | 122           |





**Work Order** : **ES1526325** Page : 1 of 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ---- Date Samples Received : 18-Jul-2015 12:35

C-O-C number : ---- Date Analysis Commenced : 20-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 20-Jul-2015 14:11

Site · · ---

Quote number No. of samples received : 3

Quote number No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryAnkit JoshiInorganic ChemistSydney InorganicsPabi SubbaSenior Organic ChemistSydney Organics

Page : 2 of 2 Work Order : ES1526325

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

| Sub-Matrix: WATER (Matrix: WATER)   |                   | Cli         | ent sample ID  | AST2              | WK13              | WK14              |        |        |
|-------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|--------|--------|
|                                     | Cli               | ient sampli | ng date / time | 18-Jul-2015 07:00 | 18-Jul-2015 07:45 | 18-Jul-2015 08:05 |        |        |
| Compound                            | CAS Number        | LOR         | Unit           | ES1526325-001     | ES1526325-002     | ES1526325-003     |        |        |
|                                     |                   |             |                | Result            | Result            | Result            | Result | Result |
| EA010P: Conductivity by PC Titrator |                   |             |                |                   |                   |                   |        |        |
| Electrical Conductivity @ 25°C      |                   | 1           | μS/cm          | 7910              |                   |                   |        |        |
| EK084: Un-ionized Hydrogen Sulfide  |                   |             |                |                   |                   |                   |        |        |
| Unionized Hydrogen Sulfide          |                   | 0.1         | mg/L           | <0.1              | <0.1              | <0.1              |        |        |
| EP080: BTEXN                        |                   |             |                |                   |                   |                   |        |        |
| Benzene                             | 71-43-2           | 1           | μg/L           | 11                | 65                | 94                |        |        |
| Toluene                             | 108-88-3          | 2           | μg/L           | 12                | 58                | 102               |        |        |
| Ethylbenzene                        | 100-41-4          | 2           | μg/L           | <2                | <2                | <2                |        |        |
| meta- & para-Xylene                 | 108-38-3 106-42-3 | 2           | μg/L           | 4                 | 14                | 20                |        |        |
| ortho-Xylene                        | 95-47-6           | 2           | μg/L           | <2                | 3                 | 5                 |        |        |
| ^ Total Xylenes                     | 1330-20-7         | 2           | μg/L           | 4                 | 17                | 25                |        |        |
| ^ Sum of BTEX                       |                   | 1           | μg/L           | 27                | 140               | 221               |        |        |
| Naphthalene                         | 91-20-3           | 5           | μg/L           | <5                | <5                | <5                |        |        |
| EP080S: TPH(V)/BTEX Surrogates      |                   |             |                |                   |                   |                   |        |        |
| 1.2-Dichloroethane-D4               | 17060-07-0        | 2           | %              | 118               | 114               | 109               |        |        |
| Toluene-D8                          | 2037-26-5         | 2           | %              | 106               | 109               | 106               |        |        |
| 4-Bromofluorobenzene                | 460-00-4          | 2           | %              | 122               | 118               | 114               |        |        |





**Work Order** : **ES1526478** Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ---- Date Samples Received : 21-Jul-2015 11:50

C-O-C number : ---- Date Analysis Commenced : 21-Jul-2015

Sampler : PAUL WATSON Issue Date : 21-Jul-2015 16:49

Site : ---No. of samples received : 6

Quote number : --- No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryAnkit JoshiInorganic ChemistSydney InorganicsPabi SubbaSenior Organic ChemistSydney Organics

Page : 2 of 4
Work Order : ES1526478

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

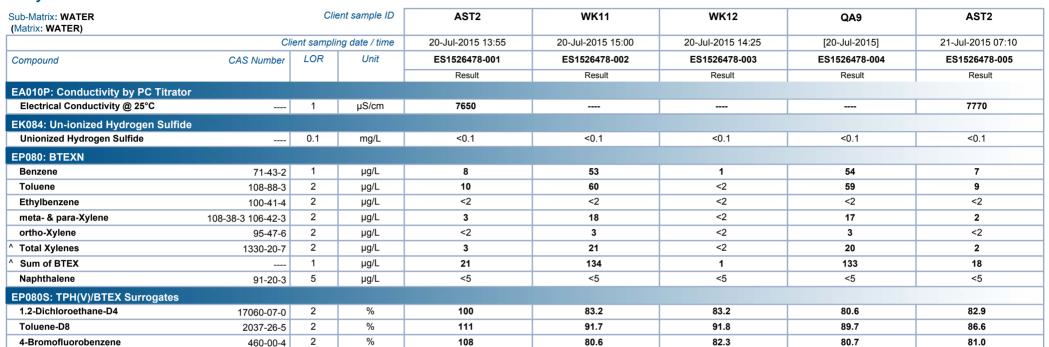
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

Page : 3 of 4
Work Order : ES1526478

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





Page : 4 of 4
Work Order : ES1526478

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Sub-Matrix: WATER (Matrix: WATER)  |                   | Cli        | ent sample ID   | WK12              |        |        |        |        |
|------------------------------------|-------------------|------------|-----------------|-------------------|--------|--------|--------|--------|
|                                    | Cli               | ent sampli | ing date / time | 21-Jul-2015 08:15 |        |        |        |        |
| Compound                           | CAS Number        | LOR        | Unit            | ES1526478-006     |        |        |        |        |
|                                    |                   |            |                 | Result            | Result | Result | Result | Result |
| EA010P: Conductivity by PC Titrato | or                |            |                 |                   |        |        |        |        |
| Electrical Conductivity @ 25°C     |                   | 1          | μS/cm           |                   |        |        |        |        |
| EK084: Un-ionized Hydrogen Sulfid  | le                |            |                 |                   |        |        |        |        |
| Unionized Hydrogen Sulfide         |                   | 0.1        | mg/L            | <0.1              |        |        |        |        |
| EP080: BTEXN                       |                   |            |                 |                   |        |        |        |        |
| Benzene                            | 71-43-2           | 1          | μg/L            | 1                 |        |        |        |        |
| Toluene                            | 108-88-3          | 2          | μg/L            | <2                |        |        |        |        |
| Ethylbenzene                       | 100-41-4          | 2          | μg/L            | <2                |        |        |        |        |
| meta- & para-Xylene                | 108-38-3 106-42-3 | 2          | μg/L            | <2                |        |        |        |        |
| ortho-Xylene                       | 95-47-6           | 2          | μg/L            | <2                |        |        |        |        |
| ^ Total Xylenes                    | 1330-20-7         | 2          | μg/L            | <2                |        |        |        |        |
| ^ Sum of BTEX                      |                   | 1          | μg/L            | 1                 |        |        |        |        |
| Naphthalene                        | 91-20-3           | 5          | μg/L            | <5                |        |        |        |        |
| EP080S: TPH(V)/BTEX Surrogates     |                   |            |                 |                   |        |        |        |        |
| 1.2-Dichloroethane-D4              | 17060-07-0        | 2          | %               | 84.6              |        |        |        |        |
| Toluene-D8                         | 2037-26-5         | 2          | %               | 92.0              |        |        |        |        |
| 4-Bromofluorobenzene               | 460-00-4          | 2          | %               | 81.7              |        |        |        |        |



**Work Order** : **ES1526602** Page : 1 of 9

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : --- Date Samples Received
 : 22-Jul-2015 11:55

 C-O-C number
 : --- Date Analysis Commenced
 : 22-Jul-2015

Sampler : DAVID WATSON, S DAYKIN Issue Date : 04-Sep-2015 11:29

Site : ----

Quote number : --- No. of samples received : 2

Quote number : --- No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position               | Accreditation Category |
|------------------|------------------------|------------------------|
| Alex Rossi       | Organic Chemist        | Sydney Organics        |
| Ankit Joshi      | Inorganic Chemist      | Sydney Inorganics      |
| Ashesh Patel     | Inorganic Chemist      | Sydney Inorganics      |
| Celine Conceicao | Senior Spectroscopist  | Sydney Inorganics      |
| Pabi Subba       | Senior Organic Chemist | Sydney Organics        |

Page : 2 of 9

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project · 2268523B

## General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

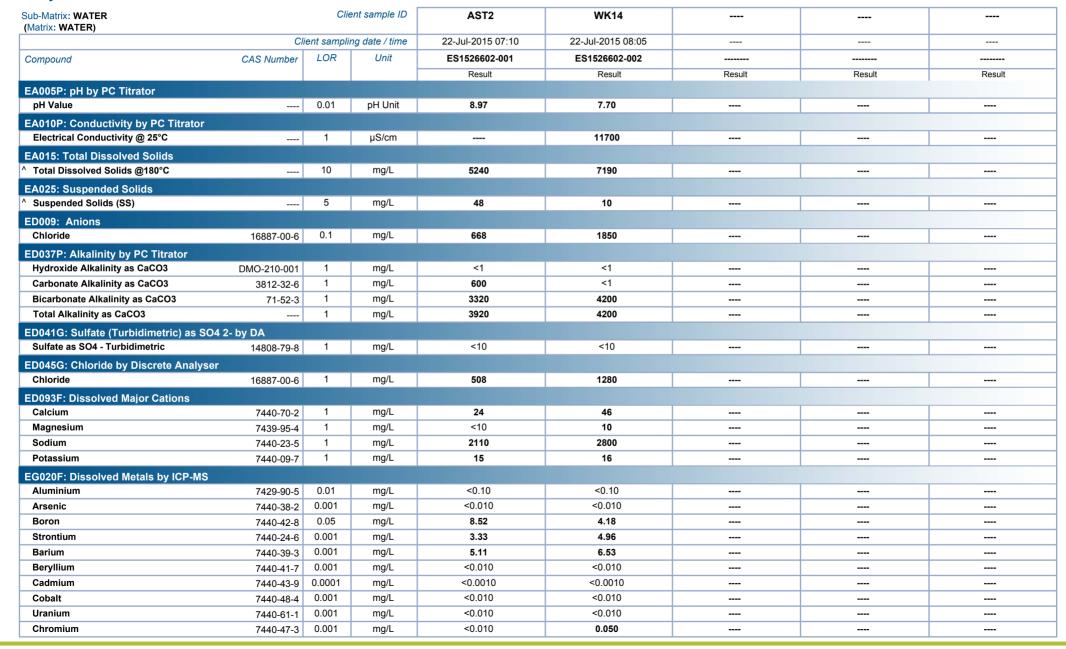
Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

- EG020: Bromine quantification may be unreliable due to its low solubility in acid, leading to variable volatility during measurement by ICPMS.
- EG020: LOR's have been raised due to matrix interference (High Total Dissolved Solids)
- ED041G: LOR raised for Sulfate analysis on a few samples due to matrix interferences.
- This report has been amended following the removal of BTEX from all samples and EC form AST2.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.




Page : 3 of 9

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





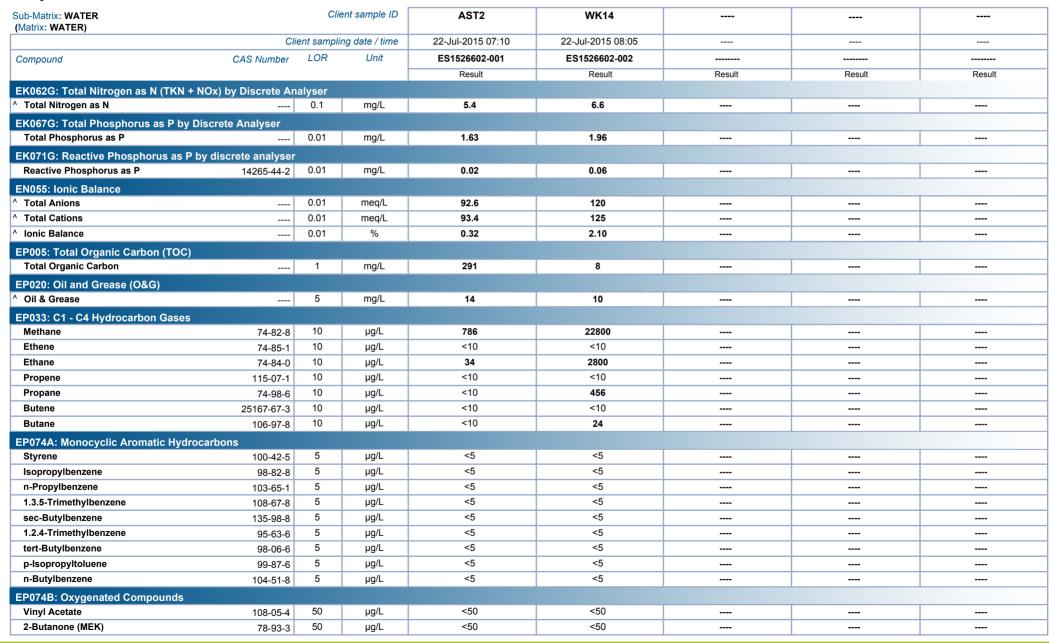
Page

: 4 of 9 : ES1526602 Amendment 1 Work Order

: PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project




| ub-Matrix: WATER<br>Matrix: WATER)          |                              | Clie        | ent sample ID  | AST2              | WK14              |        |        |        |
|---------------------------------------------|------------------------------|-------------|----------------|-------------------|-------------------|--------|--------|--------|
| ,                                           | CI                           | ient sampli | ng date / time | 22-Jul-2015 07:10 | 22-Jul-2015 08:05 |        |        |        |
| ompound                                     | CAS Number                   | LOR         | Unit           | ES1526602-001     | ES1526602-002     |        |        |        |
|                                             |                              |             |                | Result            | Result            | Result | Result | Result |
| G020F: Dissolved Metals by ICP-             | MS - Continued               |             |                |                   |                   |        |        |        |
| Copper                                      | 7440-50-8                    | 0.001       | mg/L           | <0.010            | <0.010            |        |        |        |
| Manganese                                   | 7439-96-5                    | 0.001       | mg/L           | 0.021             | 0.048             |        |        |        |
| Molybdenum                                  | 7439-98-7                    | 0.001       | mg/L           | <0.010            | <0.010            |        |        |        |
| Nickel                                      | 7440-02-0                    | 0.001       | mg/L           | <0.010            | <0.010            |        |        |        |
| Lead                                        | 7439-92-1                    | 0.001       | mg/L           | <0.010            | <0.010            |        |        |        |
| Antimony                                    | 7440-36-0                    | 0.001       | mg/L           | <0.010            | <0.010            |        |        |        |
| Selenium                                    | 7782-49-2                    | 0.01        | mg/L           | <0.10             | <0.10             |        |        |        |
| Tin                                         | 7440-31-5                    | 0.001       | mg/L           | <0.010            | <0.010            |        |        |        |
| Vanadium                                    | 7440-62-2                    | 0.01        | mg/L           | <0.10             | <0.10             |        |        |        |
| Zinc                                        | 7440-66-6                    | 0.005       | mg/L           | <0.050            | <0.050            |        |        |        |
| Iron                                        | 7439-89-6                    | 0.05        | mg/L           | 0.55              | 5.04              |        |        |        |
| Bromine                                     | 7726-95-6                    | 0.1         | mg/L           | 3.3               | 4.2               |        |        |        |
| EG035F: Dissolved Mercury by FIM            | MS                           |             |                |                   |                   |        |        |        |
| Mercury                                     | 7439-97-6                    | 0.0001      | mg/L           | <0.0001           | <0.0001           |        |        |        |
| EG052G: Silica by Discrete Analys           | ser                          |             |                |                   |                   |        |        |        |
| Reactive Silica                             |                              | 0.05        | mg/L           | 22.7              | 39.2              |        |        |        |
| EK010/011: Chlorine                         |                              |             |                |                   |                   |        |        |        |
| Chlorine - Free                             |                              | 0.2         | mg/L           | <0.2              | <0.2              |        |        |        |
| Chlorine - Total Residual                   |                              | 0.2         | mg/L           | <0.2              | <0.2              |        |        |        |
| EK040P: Fluoride by PC Titrator             |                              |             | 3              |                   |                   |        |        |        |
| Fluoride                                    | 16984-48-8                   | 0.1         | mg/L           | 1.2               | 1.0               |        |        |        |
|                                             |                              | <b>V.</b> 1 | 9, =           |                   | 1.0               |        |        |        |
| EK055G: Ammonia as N by Discre Ammonia as N |                              | 0.01        | ma/l           | 0.03              | 4.57              |        |        |        |
|                                             | 7664-41-7                    | 0.01        | mg/L           | 0.03              | 4.0/              |        |        |        |
| EK055G-NH4: Ammonium as N by                |                              | 0.01        |                | 0.00              | 4.50              |        |        |        |
| Ammonium as N                               |                              | 0.01        | mg/L           | 0.02              | 4.54              |        |        |        |
| EK057G: Nitrite as N by Discrete            |                              |             |                |                   |                   |        |        |        |
| Nitrite as N                                | 14797-65-0                   | 0.01        | mg/L           | <0.01             | <0.01             |        |        |        |
| K058G: Nitrate as N by Discrete             | Analyser                     |             |                |                   |                   |        |        |        |
| Nitrate as N                                | 14797-55-8                   | 0.01        | mg/L           | 0.02              | <0.01             |        |        |        |
| K059G: Nitrite plus Nitrate as N            | (NOx) by Discrete Ana        | lyser       |                |                   |                   |        |        |        |
| Nitrite + Nitrate as N                      |                              | 0.01        | mg/L           | 0.02              | <0.01             |        |        |        |
| EK061G: Total Kjeldahl Nitrogen B           | By Discrete Analy <u>ser</u> |             |                |                   |                   |        |        |        |
| Total Kjeldahl Nitrogen as N                |                              | 0.1         | mg/L           | 5.4               | 6.6               |        |        |        |

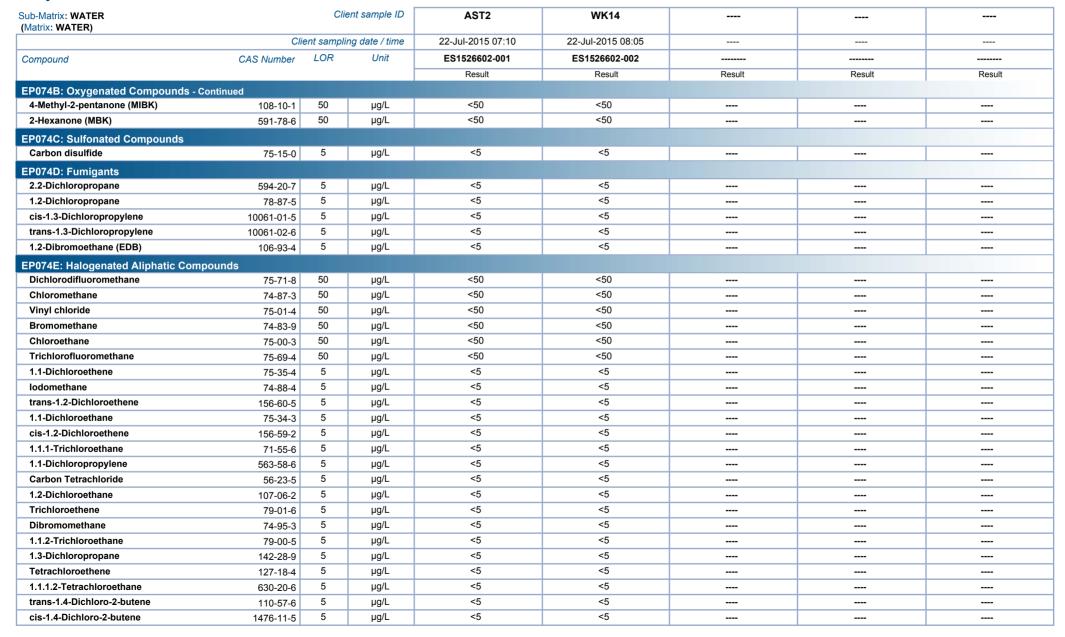
Page : 5 of 9

Work Order : ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





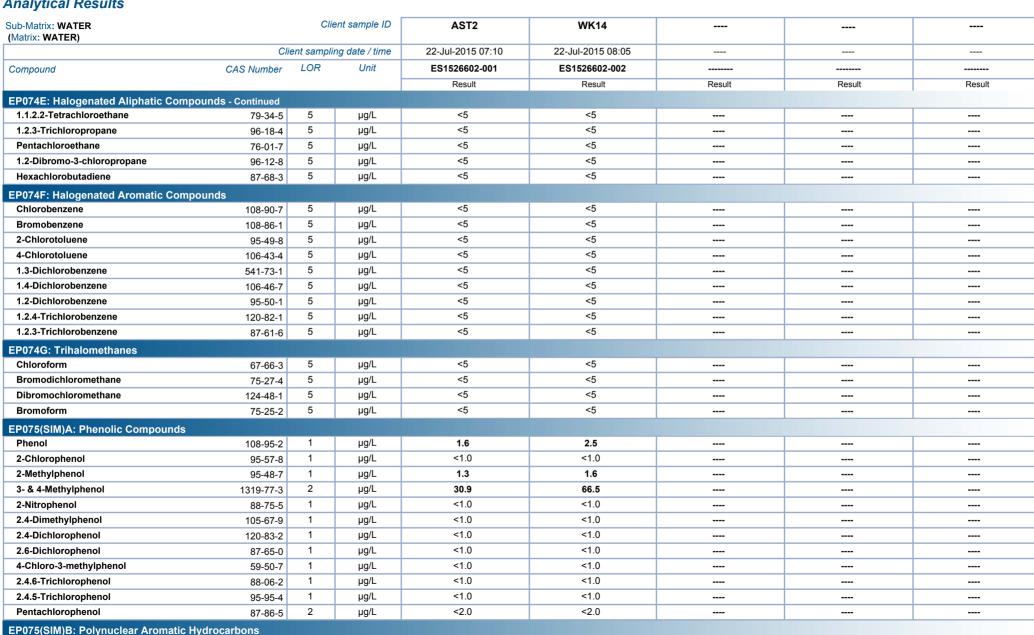

Page : 6 of 9

Work Order · ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B






Page : 7 of 9

Work Order ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

2268523B **Project** 



Page

: 8 of 9 : ES1526602 Amendment 1 Work Order

: PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



| Sub-Matrix: WATER<br>(Matrix: WATER)    |                   | Clie         | ent sample ID  | AST2              | WK14              |        |        |        |
|-----------------------------------------|-------------------|--------------|----------------|-------------------|-------------------|--------|--------|--------|
|                                         | Cli               | ient samplii | ng date / time | 22-Jul-2015 07:10 | 22-Jul-2015 08:05 |        |        |        |
| Compound                                | CAS Number        | LOR          | Unit           | ES1526602-001     | ES1526602-002     |        |        |        |
| •                                       |                   |              |                | Result            | Result            | Result | Result | Result |
| P075(SIM)B: Polynuclear Aromatic Hy     | drocarbons - Cont | inued        |                |                   |                   |        |        |        |
| Naphthalene                             | 91-20-3           | 1            | μg/L           | <1.0              | <1.0              |        |        |        |
| Acenaphthylene                          | 208-96-8          | 1            | μg/L           | <1.0              | <1.0              |        |        |        |
| Acenaphthene                            | 83-32-9           | 1            | μg/L           | <1.0              | <1.0              |        |        |        |
| Fluorene                                | 86-73-7           | 1            | μg/L           | <1.0              | <1.0              |        |        |        |
| Phenanthrene                            | 85-01-8           | 1            | μg/L           | <1.0              | <1.0              |        |        |        |
| Anthracene                              | 120-12-7          | 1            | μg/L           | <1.0              | <1.0              |        |        |        |
| Fluoranthene                            | 206-44-0          | 1            | μg/L           | <1.0              | <1.0              |        |        |        |
| Pyrene                                  | 129-00-0          | 1            | μg/L           | <1.0              | <1.0              |        |        |        |
| Benz(a)anthracene                       | 56-55-3           | 1            | μg/L           | <1.0              | <1.0              |        |        |        |
| Chrysene                                | 218-01-9          | 1            | μg/L           | <1.0              | <1.0              |        |        |        |
| Benzo(b+j)fluoranthene                  | 205-99-2 205-82-3 | 1            | μg/L           | <1.0              | <1.0              |        |        |        |
| Benzo(k)fluoranthene                    | 207-08-9          | 1            | μg/L           | <1.0              | <1.0              |        |        |        |
| Benzo(a)pyrene                          | 50-32-8           | 0.5          | μg/L           | <0.5              | <0.5              |        |        |        |
| Indeno(1.2.3.cd)pyrene                  | 193-39-5          | 1            | μg/L           | <1.0              | <1.0              |        |        |        |
| Dibenz(a.h)anthracene                   | 53-70-3           | 1            | μg/L           | <1.0              | <1.0              |        |        |        |
| Benzo(g.h.i)perylene                    | 191-24-2          | 1            | μg/L           | <1.0              | <1.0              |        |        |        |
| Sum of polycyclic aromatic hydrocarbons |                   | 0.5          | μg/L           | <0.5              | <0.5              |        |        |        |
| Benzo(a)pyrene TEQ (zero)               |                   | 0.5          | μg/L           | <0.5              | <0.5              |        |        |        |
| EP080/071: Total Petroleum Hydrocarb    | ons               |              |                |                   |                   |        |        |        |
| C6 - C9 Fraction                        |                   | 20           | μg/L           | 40                | 220               |        |        |        |
| C10 - C14 Fraction                      |                   | 50           | μg/L           | 200               | <50               |        |        |        |
| C15 - C28 Fraction                      |                   | 100          | μg/L           | 200               | <100              |        |        |        |
| C29 - C36 Fraction                      |                   | 50           | μg/L           | 60                | <50               |        |        |        |
| C10 - C36 Fraction (sum)                |                   | 50           | μg/L           | 460               | <50               |        |        |        |
| EP080/071: Total Recoverable Hydroca    | rbons - NEPM 201  | 3 Fraction   | าร             |                   |                   |        |        |        |
| C6 - C10 Fraction                       | C6_C10            | 20           | μg/L           | 40                | 220               |        |        |        |
| C6 - C10 Fraction minus BTEX            | C6_C10-BTEX       | 20           | μg/L           | <20               | 60                |        |        |        |
| (F1)                                    |                   |              |                |                   |                   |        |        |        |
| >C10 - C16 Fraction                     | >C10_C16          | 100          | μg/L           | 240               | <100              |        |        |        |
| >C16 - C34 Fraction                     |                   | 100          | μg/L           | 210               | <100              |        |        |        |
| >C34 - C40 Fraction                     |                   | 100          | μg/L           | <100              | <100              |        |        |        |
| >C10 - C40 Fraction (sum)               |                   | 100          | μg/L           | 450               | <100              |        |        |        |
| >C10 - C16 Fraction minus Naphthalene   |                   | 100          | μg/L           | 240               | <100              |        |        |        |
| (F2)                                    |                   |              |                |                   |                   |        |        |        |
| EP262: Ethanolamines                    |                   |              |                |                   |                   |        |        |        |

Page : 9 of 9

Work Order ES1526602 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

13127-88-3

93951-73-6

118-79-6

321-60-8

1719-06-8

1718-51-0

1

1

1

1

1

%

%

%

%

%

%

34.0

45.1

38.7

70.6

74.2

72.8

Project 2268523B

EP262: Ethanolamines - Continued

Methyl diethanolamine (MDEA)

EP074S: VOC Surrogates

1.2-Dichloroethane-D4

4-Bromofluorobenzene

2-Chlorophenol-D4

2-Fluorobiphenyl

Anthracene-d10

4-Terphenyl-d14

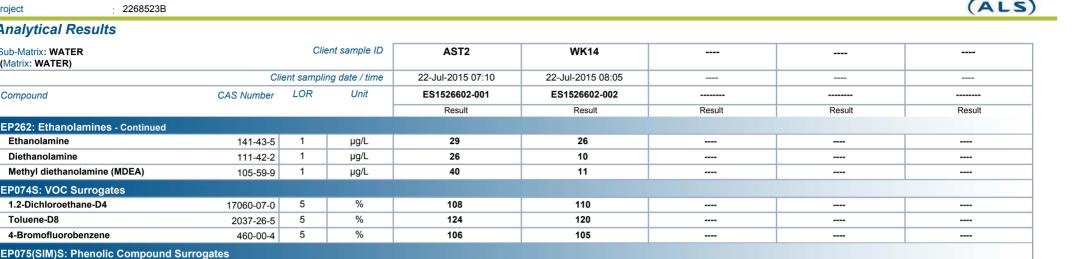
2.4.6-Tribromophenol

EP075(SIM)T: PAH Surrogates

### Analytical Results

Sub-Matrix: WATER

(Matrix: WATER)


Ethanolamine

Toluene-D8

Phenol-d6

Diethanolamine

Compound



----

29.1

55.4

53.8

69.6

74.4

71.8



**Work Order** : **ES1526604** Page : 1 of 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ---- Date Samples Received : 22-Jul-2015 11:55

C-O-C number : ---- Date Analysis Commenced : 22-Jul-2015

Sampler : DAVID WATSON Issue Date : 22-Jul-2015 16:05

Site :----

Quote number Suppose S

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- 0 - 10

General Comments

Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryAnkit JoshiInorganic ChemistSydney InorganicsSanjeshni JyotiSenior Chemist VolatilesSydney Organics

Page : 2 of 2 Work Order : ES1526604

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

| Sub-Matrix: WATER (Matrix: WATER)   |                   | Clie        | ent sample ID  | AST2              | WK14              |        |        |        |
|-------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|--------|--------|--------|
|                                     | Cli               | ient sampli | ng date / time | 22-Jul-2015 07:10 | 22-Jul-2015 08:05 |        |        |        |
| Compound                            | CAS Number        | LOR         | Unit           | ES1526604-001     | ES1526604-002     |        |        |        |
|                                     |                   |             |                | Result            | Result            | Result | Result | Result |
| EA010P: Conductivity by PC Titrator |                   |             |                |                   |                   |        |        |        |
| Electrical Conductivity @ 25°C      |                   | 1           | μS/cm          | 7950              |                   |        |        |        |
| EK084: Un-ionized Hydrogen Sulfide  |                   |             |                |                   |                   |        |        |        |
| Unionized Hydrogen Sulfide          |                   | 0.1         | mg/L           | <0.1              | <0.1              |        |        |        |
| EP080: BTEXN                        |                   |             |                |                   |                   |        |        |        |
| Benzene                             | 71-43-2           | 1           | μg/L           | 8                 | 85                |        |        |        |
| Toluene                             | 108-88-3          | 2           | μg/L           | 9                 | 80                |        |        |        |
| Ethylbenzene                        | 100-41-4          | 2           | μg/L           | <2                | <2                |        |        |        |
| meta- & para-Xylene                 | 108-38-3 106-42-3 | 2           | μg/L           | 2                 | 18                |        |        |        |
| ortho-Xylene                        | 95-47-6           | 2           | μg/L           | <2                | 5                 |        |        |        |
| ^ Total Xylenes                     | 1330-20-7         | 2           | μg/L           | 2                 | 23                |        |        |        |
| ^ Sum of BTEX                       |                   | 1           | μg/L           | 19                | 188               |        |        |        |
| Naphthalene                         | 91-20-3           | 5           | μg/L           | <5                | <5                |        |        |        |
| EP080S: TPH(V)/BTEX Surrogates      |                   |             |                |                   |                   |        |        |        |
| 1.2-Dichloroethane-D4               | 17060-07-0        | 2           | %              | 119               | 116               |        |        |        |
| Toluene-D8                          | 2037-26-5         | 2           | %              | 115               | 116               |        |        |        |
| 4-Bromofluorobenzene                | 460-00-4          | 2           | %              | 117               | 116               |        |        |        |





Work Order : **ES1526718** Page : 1 of 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ---- Date Samples Received : 23-Jul-2015 12:15
C-O-C number : ---- Date Analysis Commenced : 23-Jul-2015

Sampler : DAVID WATSON Issue Date : 23-Jul-2015 17:26

Site : ---

Quote number No. of samples received : 3

Quote number No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ashesh Patel Inorganic Chemist Sydney Inorganics
Sanjeshni Jyoti Senior Chemist Volatiles Sydney Organics

Page : 2 of 2 Work Order : ES1526718

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.

| Sub-Matrix: WATER (Matrix: WATER)   |                   | Clie       | ent sample ID  | AST2              | WK12              | WK13              |        |        |
|-------------------------------------|-------------------|------------|----------------|-------------------|-------------------|-------------------|--------|--------|
|                                     | Cli               | ent sampli | ng date / time | 23-Jul-2015 07:10 | 23-Jul-2015 08:25 | 23-Jul-2015 08:00 |        |        |
| Compound                            | CAS Number        | LOR        | Unit           | ES1526718-001     | ES1526718-002     | ES1526718-003     |        |        |
|                                     |                   |            |                | Result            | Result            | Result            | Result | Result |
| EA010P: Conductivity by PC Titrator |                   |            |                |                   |                   |                   |        |        |
| Electrical Conductivity @ 25°C      |                   | 1          | μS/cm          | 8000              |                   |                   |        |        |
| EK084: Un-ionized Hydrogen Sulfide  |                   |            |                |                   |                   |                   |        |        |
| Unionized Hydrogen Sulfide          |                   | 0.1        | mg/L           | <0.1              | <0.1              | <0.1              |        |        |
| EP080: BTEXN                        |                   |            |                |                   |                   |                   |        |        |
| Benzene                             | 71-43-2           | 1          | μg/L           | 5                 | 1                 | 71                |        |        |
| Toluene                             | 108-88-3          | 2          | μg/L           | 6                 | <2                | 72                |        |        |
| Ethylbenzene                        | 100-41-4          | 2          | μg/L           | <2                | <2                | <2                |        |        |
| meta- & para-Xylene                 | 108-38-3 106-42-3 | 2          | μg/L           | <2                | <2                | 12                |        |        |
| ortho-Xylene                        | 95-47-6           | 2          | μg/L           | <2                | <2                | 3                 |        |        |
| ^ Total Xylenes                     | 1330-20-7         | 2          | μg/L           | <2                | <2                | 15                |        |        |
| ^ Sum of BTEX                       |                   | 1          | μg/L           | 11                | 1                 | 158               |        |        |
| Naphthalene                         | 91-20-3           | 5          | μg/L           | <5                | <5                | <5                |        |        |
| EP080S: TPH(V)/BTEX Surrogates      |                   |            |                |                   |                   |                   |        |        |
| 1.2-Dichloroethane-D4               | 17060-07-0        | 2          | %              | 93.3              | 97.1              | 93.5              |        |        |
| Toluene-D8                          | 2037-26-5         | 2          | %              | 108               | 109               | 101               |        |        |
| 4-Bromofluorobenzene                | 460-00-4          | 2          | %              | 94.1              | 97.7              | 96.8              |        |        |



**Work Order** : **ES1526833** Page : 1 of 2

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : --- Date Samples Received
 : 24-Jul-2015 23:50

 C-O-C number
 : --- Date Analysis Commenced
 : 24-Jul-2015

Sampler : DAVID WATSON Issue Date : 03-Aug-2015 10:12

Site : ----

Quote number : --- No. of samples received : 3

No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryAnkit JoshiInorganic ChemistSydney InorganicsPabi SubbaSenior Organic ChemistSydney Organics

Page : 2 of 2

Work Order : ES1526833 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- This report has been amended as a result of misinterpretation of sample identification numbers (IDs). All analysis results are as per the previous report

| Sub-Matrix: WATER (Matrix: WATER)   |                   | Clie       | ent sample ID  | AST2              | WK14              | QA10              |        |        |
|-------------------------------------|-------------------|------------|----------------|-------------------|-------------------|-------------------|--------|--------|
|                                     | Cli               | ent sampli | ng date / time | 24-Jul-2015 07:15 | 24-Jul-2015 07:50 | 24-Jul-2015 07:15 |        |        |
| Compound                            | CAS Number        | LOR        | Unit           | ES1526833-001     | ES1526833-002     | ES1526833-003     |        |        |
|                                     |                   |            |                | Result            | Result            | Result            | Result | Result |
| EA010P: Conductivity by PC Titrator |                   |            |                |                   |                   |                   |        |        |
| Electrical Conductivity @ 25°C      |                   | 1          | μS/cm          | 7720              |                   | 8060              |        |        |
| EK084: Un-ionized Hydrogen Sulfide  |                   |            |                |                   |                   |                   |        |        |
| Unionized Hydrogen Sulfide          |                   | 0.1        | mg/L           | <0.1              | <0.1              | <0.1              |        |        |
| EP080: BTEXN                        |                   |            |                |                   |                   |                   |        |        |
| Benzene                             | 71-43-2           | 1          | μg/L           | 6                 | 59                | 6                 |        |        |
| Toluene                             | 108-88-3          | 2          | μg/L           | 7                 | 55                | 8                 |        |        |
| Ethylbenzene                        | 100-41-4          | 2          | μg/L           | <2                | <2                | <2                |        |        |
| meta- & para-Xylene                 | 108-38-3 106-42-3 | 2          | μg/L           | 2                 | 14                | 2                 |        |        |
| ortho-Xylene                        | 95-47-6           | 2          | μg/L           | <2                | 3                 | <2                |        |        |
| ^ Total Xylenes                     | 1330-20-7         | 2          | μg/L           | 2                 | 17                | 2                 |        |        |
| ^ Sum of BTEX                       |                   | 1          | μg/L           | 15                | 131               | 16                |        |        |
| Naphthalene                         | 91-20-3           | 5          | μg/L           | <5                | <5                | <5                |        |        |
| EP080S: TPH(V)/BTEX Surrogates      |                   |            |                |                   |                   |                   |        |        |
| 1.2-Dichloroethane-D4               | 17060-07-0        | 2          | %              | 97.3              | 105               | 100               |        |        |
| Toluene-D8                          | 2037-26-5         | 2          | %              | 99.2              | 100               | 101               |        |        |
| 4-Bromofluorobenzene                | 460-00-4          | 2          | %              | 105               | 105               | 104               |        |        |



**Work Order** : **ES1526838** Page : 1 of 2

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW. AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : --- Date Samples Received
 : 24-Jul-2015 12:00

 C-O-C number
 : --- Date Analysis Commenced
 : 27-Jul-2015

Sampler : DAVID WATSON Issue Date : 03-Aug-2015 10:14

Site : ----

No. of samples received 2

No. of samples analysed 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

: ----

- General Comments
- Analytical Results



Quote number

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryAnkit JoshiInorganic ChemistSydney InorganicsPabi SubbaSenior Organic ChemistSydney Organics

Page : 2 of 2

Work Order : ES1526838 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- This report has been amended as a result of misinterpretation of sample identification numbers (IDs). All analysis results are as per the previous report

| Sub-Matrix: WATER (Matrix: WATER)   |                   | Clie       | ent sample ID  | AST2              | WK12              |        |        |        |
|-------------------------------------|-------------------|------------|----------------|-------------------|-------------------|--------|--------|--------|
|                                     | Cli               | ent sampli | ng date / time | 25-Jul-2015 08:25 | 25-Jul-2015 08:00 |        |        |        |
| Compound                            | CAS Number        | LOR        | Unit           | ES1526838-001     | ES1526838-002     |        |        |        |
|                                     |                   |            |                | Result            | Result            | Result | Result | Result |
| EA010P: Conductivity by PC Titrator |                   |            |                |                   |                   |        |        |        |
| Electrical Conductivity @ 25°C      |                   | 1          | μS/cm          | 8460              |                   |        |        |        |
| EK084: Un-ionized Hydrogen Sulfide  |                   |            |                |                   |                   |        |        |        |
| Unionized Hydrogen Sulfide          |                   | 0.1        | mg/L           | <0.1              | <0.1              |        |        |        |
| EP080: BTEXN                        |                   |            |                |                   |                   |        |        |        |
| Benzene                             | 71-43-2           | 1          | μg/L           | 6                 | 1                 |        |        |        |
| Toluene                             | 108-88-3          | 2          | μg/L           | 8                 | <2                |        |        |        |
| Ethylbenzene                        | 100-41-4          | 2          | μg/L           | <2                | <2                |        |        |        |
| meta- & para-Xylene                 | 108-38-3 106-42-3 | 2          | μg/L           | <2                | <2                |        |        |        |
| ortho-Xylene                        | 95-47-6           | 2          | μg/L           | <2                | <2                |        |        |        |
| ^ Total Xylenes                     | 1330-20-7         | 2          | μg/L           | <2                | <2                |        |        |        |
| ^ Sum of BTEX                       |                   | 1          | μg/L           | 14                | 1                 |        |        |        |
| Naphthalene                         | 91-20-3           | 5          | μg/L           | <5                | <5                |        |        |        |
| EP080S: TPH(V)/BTEX Surrogates      |                   |            |                |                   |                   |        |        |        |
| 1.2-Dichloroethane-D4               | 17060-07-0        | 2          | %              | 123               | 117               |        |        |        |
| Toluene-D8                          | 2037-26-5         | 2          | %              | 118               | 116               |        |        |        |
| 4-Bromofluorobenzene                | 460-00-4          | 2          | %              | 124               | 121               |        |        |        |



Work Order : ES1527015 Page : 1 of 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : -- Date Samples Received
 : 28-Jul-2015 12:00

 C-O-C number
 : -- Date Analysis Commenced
 : 28-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 28-Jul-2015 16:22

Site · ----

Quote number No. of samples received : 6

Quote number No. of samples analysed · 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- 0 10

- General Comments
- Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Sanjeshni Jyoti Senior Chemist Volatiles Sydney Organics

Page : 2 of 4
Work Order : ES1527015

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

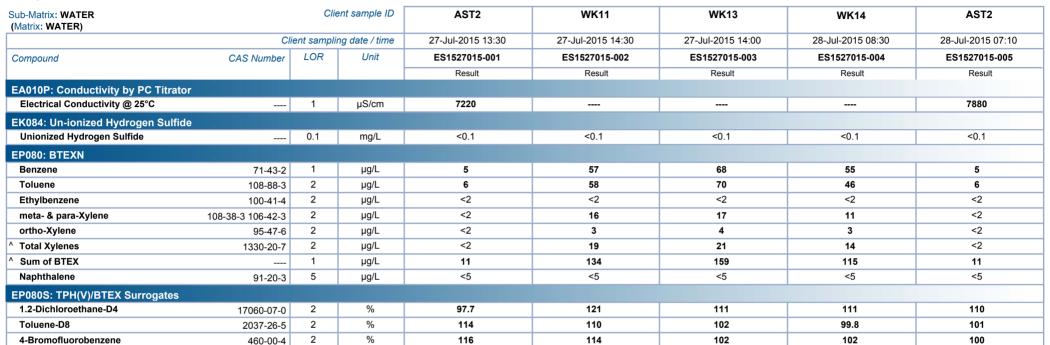
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

Page : 3 of 4
Work Order : ES1527015

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





Page : 4 of 4
Work Order : ES1527015

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B



| Sub-Matrix: WATER (Matrix: WATER)  |                   | Clie       | ent sample ID   | WK13              |        |        |        |        |
|------------------------------------|-------------------|------------|-----------------|-------------------|--------|--------|--------|--------|
|                                    | Cli               | ent sampli | ing date / time | 28-Jul-2015 08:10 |        |        |        |        |
| Compound                           | CAS Number        | LOR        | Unit            | ES1527015-006     |        |        |        |        |
|                                    |                   |            |                 | Result            | Result | Result | Result | Result |
| EA010P: Conductivity by PC Titrate | or                |            |                 |                   |        |        |        |        |
| Electrical Conductivity @ 25°C     |                   | 1          | μS/cm           |                   |        |        |        |        |
| EK084: Un-ionized Hydrogen Sulfic  | de                |            |                 |                   |        |        |        |        |
| Unionized Hydrogen Sulfide         |                   | 0.1        | mg/L            | <0.1              |        |        |        |        |
| EP080: BTEXN                       |                   |            |                 |                   |        |        |        |        |
| Benzene                            | 71-43-2           | 1          | μg/L            | 65                |        |        |        |        |
| Toluene                            | 108-88-3          | 2          | μg/L            | 63                |        |        |        |        |
| Ethylbenzene                       | 100-41-4          | 2          | μg/L            | <2                |        |        |        |        |
| meta- & para-Xylene                | 108-38-3 106-42-3 | 2          | μg/L            | 16                |        |        |        |        |
| ortho-Xylene                       | 95-47-6           | 2          | μg/L            | 3                 |        |        |        |        |
| ^ Total Xylenes                    | 1330-20-7         | 2          | μg/L            | 19                |        |        |        |        |
| ^ Sum of BTEX                      |                   | 1          | μg/L            | 147               |        |        |        |        |
| Naphthalene                        | 91-20-3           | 5          | μg/L            | <5                |        |        |        |        |
| EP080S: TPH(V)/BTEX Surrogates     |                   |            |                 |                   |        |        |        |        |
| 1.2-Dichloroethane-D4              | 17060-07-0        | 2          | %               | 112               |        |        |        |        |
| Toluene-D8                         | 2037-26-5         | 2          | %               | 101               |        |        |        |        |
| 4-Bromofluorobenzene               | 460-00-4          | 2          | %               | 105               |        |        |        |        |



**Work Order** : **ES1527133** Page : 1 of 9

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : --- Date Samples Received
 : 29-Jul-2015 11:50

 C-O-C number
 : --- Date Analysis Commenced
 : 29-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 02-Sep-2015 12:47

Site : ----

No. of samples received : 3

You of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results



Quote number

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position               | Accreditation Category |
|------------------|------------------------|------------------------|
| Ankit Joshi      | Inorganic Chemist      | Sydney Inorganics      |
| Celine Conceicao | Senior Spectroscopist  | Sydney Inorganics      |
| Lana Nguyen      | Senior LCMS Chemist    | Sydney Organics        |
| Pabi Subba       | Senior Organic Chemist | Sydney Organics        |
| Shobhna Chandra  | Metals Coordinator     | Sydney Inorganics      |

Page : 2 of 9

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

- EG020: Bromine quantification may be unreliable due to its low solubility in acid, leading to variable volatility during measurement by ICPMS.
- EP005 : NPOC analysis was carried out for sample ID WK12 due to high inorganic carbon content.
- This report has been amended following the removal of BTEX from all samples and EC from sample AST2
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.



Page

: 3 of 9 : ES1527133 Amendment 1 Work Order

: PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



| Sub-Matrix: WATER<br>(Matrix: WATER)                                |             | Clie        | ent sample ID  | AST2              | WK12              | WK13              |        |        |
|---------------------------------------------------------------------|-------------|-------------|----------------|-------------------|-------------------|-------------------|--------|--------|
|                                                                     | CI          | ient sampli | ng date / time | 29-Jul-2015 07:15 | 29-Jul-2015 08:30 | 29-Jul-2015 07:45 |        |        |
| Compound                                                            | CAS Number  | LOR         | Unit           | ES1527133-001     | ES1527133-002     | ES1527133-003     |        |        |
|                                                                     |             |             |                | Result            | Result            | Result            | Result | Result |
| EA005P: pH by PC Titrator                                           |             |             |                |                   |                   |                   |        |        |
| pH Value                                                            |             | 0.01        | pH Unit        | 9.18              | 7.85              | 8.47              |        |        |
| EA010P: Conductivity by PC Titrator                                 |             |             |                |                   |                   |                   |        |        |
| Electrical Conductivity @ 25°C                                      |             | 1           | μS/cm          |                   | 7860              | 7670              |        |        |
| EA015: Total Dissolved Solids                                       |             |             |                |                   |                   |                   |        |        |
| Total Dissolved Solids @180°C                                       |             | 10          | mg/L           | 5330              | 4570              | 4610              |        |        |
| EA025: Suspended Solids                                             |             |             |                |                   |                   |                   |        |        |
| Suspended Solids (SS)                                               |             | 5           | mg/L           | 42                | 13                | 22                |        |        |
| ED009: Anions                                                       |             |             |                |                   |                   |                   |        |        |
| Chloride                                                            | 16887-00-6  | 0.1         | mg/L           | 658               | 721               | 696               |        |        |
|                                                                     | 10007-00-0  |             | g, =           |                   |                   |                   |        | 1      |
| ED037P: Alkalinity by PC Titrator  Hydroxide Alkalinity as CaCO3    | DMO-210-001 | 1           | mg/L           | <1                | <1                | <1                |        |        |
| Carbonate Alkalinity as CaCO3                                       | 3812-32-6   | 1           | mg/L           | 750               | <1                | 150               |        |        |
| Bicarbonate Alkalinity as CaCO3                                     | 71-52-3     | 1           | mg/L           | 3180              | 3720              | 3380              |        |        |
| Total Alkalinity as CaCO3                                           | 71-52-3     | 1           | mg/L           | 3920              | 3720              | 3520              |        |        |
|                                                                     |             | ,           | mg/L           |                   | 0120              | 0020              |        |        |
| D041G: Sulfate (Turbidimetric) as So Sulfate as SO4 - Turbidimetric |             | 1           | ma/l           | <1                | <1                | <1                |        |        |
|                                                                     | 14808-79-8  | ı           | mg/L           |                   |                   | ~1                |        |        |
| D045G: Chloride by Discrete Analys                                  |             | 4           |                | 40=               | 400               |                   |        |        |
| Chloride                                                            | 16887-00-6  | 1           | mg/L           | 487               | 499               | 504               |        |        |
| D093F: Dissolved Major Cations                                      |             |             |                |                   |                   |                   |        |        |
| Calcium                                                             | 7440-70-2   | 1           | mg/L           | 17                | 22                | 11                |        |        |
| Magnesium                                                           | 7439-95-4   | 1           | mg/L           | 4                 | 4                 | 2                 |        |        |
| Sodium                                                              | 7440-23-5   | 1           | mg/L           | 2140              | 1920              | 1880              |        |        |
| Potassium                                                           | 7440-09-7   | 1           | mg/L           | 15                | 10                | 11                |        |        |
| G020F: Dissolved Metals by ICP-MS                                   |             |             |                |                   |                   |                   |        |        |
| Aluminium                                                           | 7429-90-5   | 0.01        | mg/L           | <0.01             | <0.01             | <0.01             |        |        |
| Arsenic                                                             | 7440-38-2   | 0.001       | mg/L           | 0.006             | 0.004             | 0.004             |        |        |
| Boron                                                               | 7440-42-8   | 0.05        | mg/L           | 6.93              | 3.18              | 2.81              |        |        |
| Strontium                                                           | 7440-24-6   | 0.001       | mg/L           | 3.74              | 3.05              | 2.47              |        |        |
| Barium                                                              | 7440-39-3   | 0.001       | mg/L           | 5.91              | 2.74              | 2.64              |        |        |
| Beryllium                                                           | 7440-41-7   | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Cadmium                                                             | 7440-43-9   | 0.0001      | mg/L           | <0.0001           | <0.0001           | <0.0001           |        |        |
| Cobalt                                                              | 7440-48-4   | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Uranium                                                             | 7440-61-1   | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Chromium                                                            | 7440-47-3   | 0.001       | mg/L           | 0.003             | 0.005             | 0.001             |        |        |

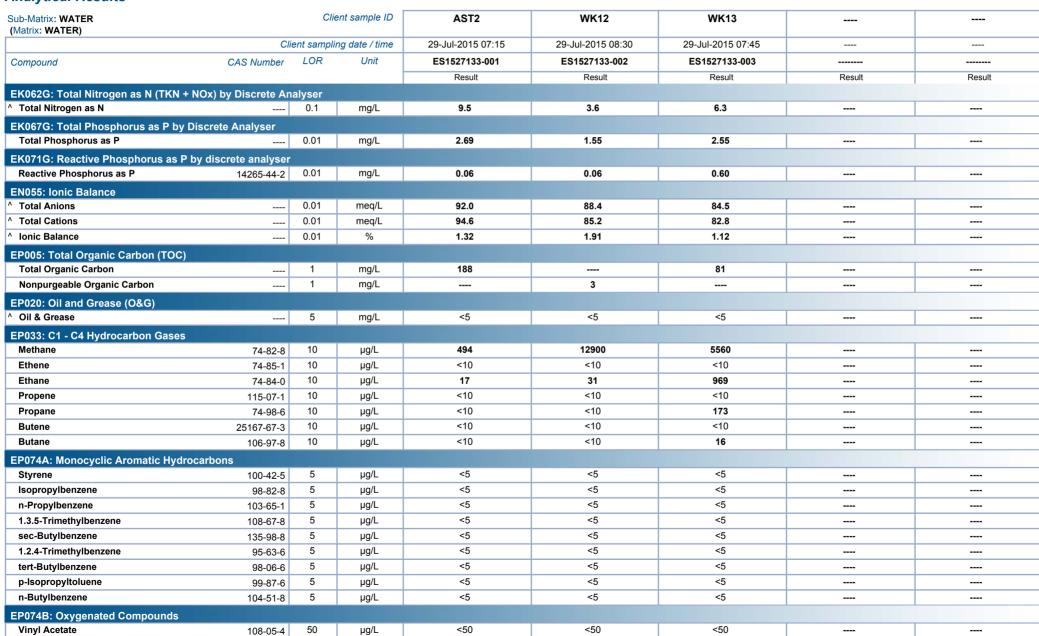
Page

: 4 of 9 : ES1527133 Amendment 1 Work Order

: PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project




| ub-Matrix: WATER<br>Matrix: WATER)             |                       | Clie        | ent sample ID  | AST2              | WK12              | WK13              |        |        |
|------------------------------------------------|-----------------------|-------------|----------------|-------------------|-------------------|-------------------|--------|--------|
| ,                                              | CI                    | ient sampli | ng date / time | 29-Jul-2015 07:15 | 29-Jul-2015 08:30 | 29-Jul-2015 07:45 |        |        |
| compound                                       | CAS Number            | LOR         | Unit           | ES1527133-001     | ES1527133-002     | ES1527133-003     |        |        |
| •                                              |                       |             |                | Result            | Result            | Result            | Result | Result |
| G020F: Dissolved Metals by ICP-                | MS - Continued        |             |                |                   |                   |                   |        |        |
| Copper                                         | 7440-50-8             | 0.001       | mg/L           | <0.001            | <0.001            | 0.003             |        |        |
| Manganese                                      | 7439-96-5             | 0.001       | mg/L           | 0.009             | 0.021             | 0.006             |        |        |
| Molybdenum                                     | 7439-98-7             | 0.001       | mg/L           | 0.009             | 0.004             | 0.009             |        |        |
| Nickel                                         | 7440-02-0             | 0.001       | mg/L           | 0.002             | 0.001             | 0.002             |        |        |
| Lead                                           | 7439-92-1             | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Antimony                                       | 7440-36-0             | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Selenium                                       | 7782-49-2             | 0.01        | mg/L           | <0.01             | <0.01             | <0.01             |        |        |
| Tin                                            | 7440-31-5             | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Vanadium                                       | 7440-62-2             | 0.01        | mg/L           | <0.01             | <0.01             | <0.01             |        |        |
| Zinc                                           | 7440-66-6             | 0.005       | mg/L           | <0.005            | <0.005            | <0.005            |        |        |
| Iron                                           | 7439-89-6             | 0.05        | mg/L           | 0.30              | 0.06              | 0.12              |        |        |
| Bromine                                        | 7726-95-6             | 0.1         | mg/L           | 1.4               | 1.0               | 1.9               |        |        |
| G035F: Dissolved Mercury by FIM                | MS                    |             |                |                   |                   |                   |        |        |
| Mercury                                        | 7439-97-6             | 0.0001      | mg/L           | <0.0001           | <0.0001           | <0.0001           |        |        |
| EG052G: Silica by Discrete Analys              | ser                   |             |                |                   |                   |                   |        |        |
| Reactive Silica                                |                       | 0.05        | mg/L           | 24.6              | 29.7              | 29.0              |        |        |
| EK010/011: Chlorine                            |                       |             |                |                   |                   |                   |        |        |
| Chlorine - Free                                |                       | 0.2         | mg/L           | <0.2              | <0.2              | <0.2              |        |        |
| Chlorine - Total Residual                      |                       | 0.2         | mg/L           | <0.2              | <0.2              | <0.2              |        |        |
| K040P: Fluoride by PC Titrator                 |                       |             |                |                   |                   |                   |        |        |
| Fluoride                                       | 16984-48-8            | 0.1         | mg/L           | 1.2               | 1,1               | 2.2               |        |        |
| EK055G: Ammonia as N by Discre                 |                       |             |                | <u>.</u>          |                   |                   |        |        |
| -KU55G: Ammonia as N by Discre<br>Ammonia as N | 7664-41-7             | 0.01        | mg/L           | 0.01              | 2.70              | 4.00              |        |        |
|                                                |                       | 0.01        | mg/L           | 0.01              | Z./ V             | 7.00              |        |        |
| EK055G-NH4: Ammonium as N by<br>Ammonium as N  |                       | 0.01        | ma/l           | <0.01             | 2.00              | 204               |        | I      |
|                                                |                       | 0.01        | mg/L           | <b>\U.U1</b>      | 2.69              | 3.84              |        |        |
| EK057G: Nitrite as N by Discrete               |                       | 0.04        |                | .0.04             |                   | .0.04             |        |        |
| Nitrite as N                                   | 14797-65-0            | 0.01        | mg/L           | <0.01             | <0.01             | <0.01             |        |        |
| K058G: Nitrate as N by Discrete                |                       |             |                |                   |                   |                   |        |        |
| Nitrate as N                                   | 14797-55-8            | 0.01        | mg/L           | <0.01             | 0.03              | 0.01              |        |        |
| K059G: Nitrite plus Nitrate as N               | (NOx) by Discrete Ana |             |                |                   |                   |                   |        |        |
| Nitrite + Nitrate as N                         |                       | 0.01        | mg/L           | <0.01             | 0.03              | 0.01              |        |        |
| EK061G: Total Kjeldahl Nitrogen E              | By Discrete Analyser  |             |                |                   |                   |                   |        |        |
| Total Kjeldahl Nitrogen as N                   |                       | 0.1         | mg/L           | 9.5               | 3.6               | 6.3               |        |        |

Page : 5 of 9

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





Page

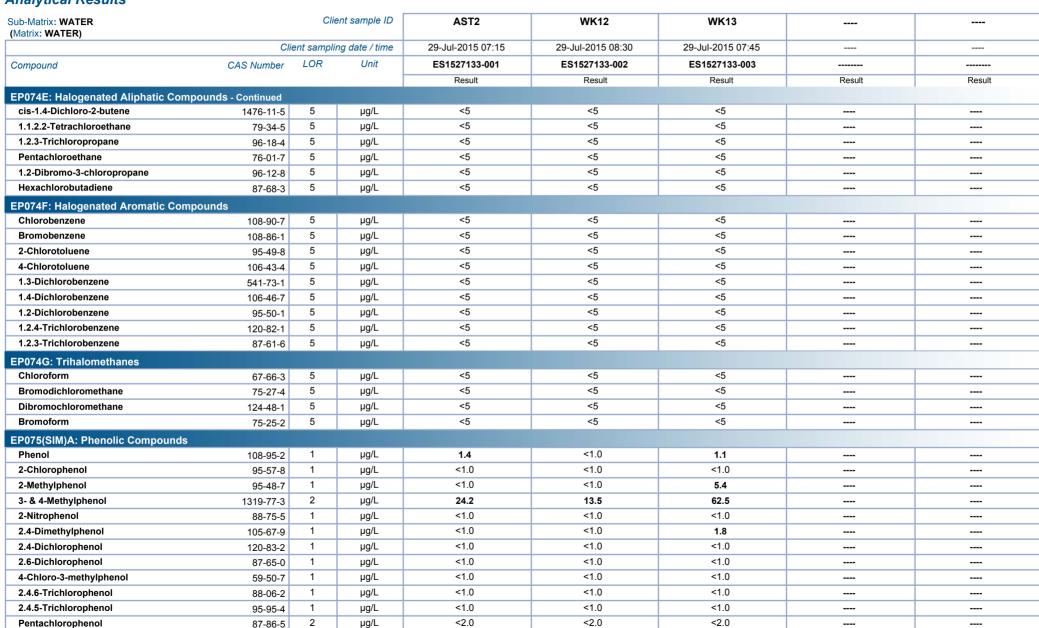
: 6 of 9 : ES1527133 Amendment 1 Work Order

: PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



| Sub-Matrix: WATER<br>(Matrix: WATER) |            | Clie        | ent sample ID  | AST2              | WK12              | WK13              |        |        |
|--------------------------------------|------------|-------------|----------------|-------------------|-------------------|-------------------|--------|--------|
| ·                                    | Clie       | ent samplii | ng date / time | 29-Jul-2015 07:15 | 29-Jul-2015 08:30 | 29-Jul-2015 07:45 |        |        |
| Compound                             | CAS Number | LOR         | Unit           | ES1527133-001     | ES1527133-002     | ES1527133-003     |        |        |
| •                                    |            |             | -              | Result            | Result            | Result            | Result | Result |
| P074B: Oxygenated Compounds -        | Continued  |             |                |                   |                   |                   |        |        |
| 2-Butanone (MEK)                     | 78-93-3    | 50          | μg/L           | <50               | <50               | <50               |        |        |
| 4-Methyl-2-pentanone (MIBK)          | 108-10-1   | 50          | μg/L           | <50               | <50               | <50               |        |        |
| 2-Hexanone (MBK)                     | 591-78-6   | 50          | μg/L           | <50               | <50               | <50               |        |        |
| P074C: Sulfonated Compounds          |            |             |                |                   |                   |                   |        |        |
| Carbon disulfide                     | 75-15-0    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| EP074D: Fumigants                    |            |             |                |                   |                   |                   |        |        |
| 2.2-Dichloropropane                  | 594-20-7   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.2-Dichloropropane                  | 78-87-5    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| cis-1.3-Dichloropropylene            | 10061-01-5 | 5           | μg/L           | <5                | <5                | <5                |        |        |
| trans-1.3-Dichloropropylene          | 10061-02-6 | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.2-Dibromoethane (EDB)              | 106-93-4   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| EP074E: Halogenated Aliphatic Con    |            |             |                |                   |                   |                   |        |        |
| Dichlorodifluoromethane              | 75-71-8    | 50          | μg/L           | <50               | <50               | <50               |        |        |
| Chloromethane                        | 74-87-3    | 50          | μg/L           | <50               | <50               | <50               |        |        |
| Vinyl chloride                       | 75-01-4    | 50          | μg/L           | <50               | <50               | <50               |        |        |
| Bromomethane                         | 74-83-9    | 50          | μg/L           | <50               | <50               | <50               |        |        |
| Chloroethane                         | 75-00-3    | 50          | μg/L           | <50               | <50               | <50               |        |        |
| Trichlorofluoromethane               | 75-69-4    | 50          | μg/L           | <50               | <50               | <50               |        |        |
| 1.1-Dichloroethene                   | 75-35-4    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| lodomethane                          | 74-88-4    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| trans-1.2-Dichloroethene             | 156-60-5   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.1-Dichloroethane                   | 75-34-3    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| cis-1.2-Dichloroethene               | 156-59-2   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.1.1-Trichloroethane                | 71-55-6    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.1-Dichloropropylene                | 563-58-6   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| Carbon Tetrachloride                 | 56-23-5    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.2-Dichloroethane                   | 107-06-2   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| Trichloroethene                      | 79-01-6    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| Dibromomethane                       | 74-95-3    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.1.2-Trichloroethane                | 79-00-5    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.3-Dichloropropane                  | 142-28-9   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| Tetrachloroethene                    | 127-18-4   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.1.1.2-Tetrachloroethane            | 630-20-6   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| trans-1.4-Dichloro-2-butene          | 110-57-6   | 5           | μg/L           | <5                | <5                | <5                |        |        |


Page : 7 of 9

Work Order ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

87-86-5

2268523B **Project** 





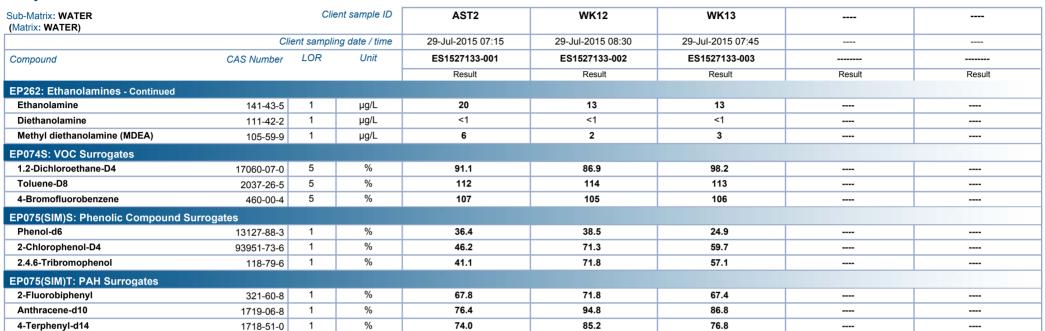
Page

: 8 of 9 : ES1527133 Amendment 1 Work Order

: PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project




| oub-Matrix: WATER<br>Matrix: WATER)     |                             | Client sample ID |                   | AST2              | WK12              | WK13          |        |        |
|-----------------------------------------|-----------------------------|------------------|-------------------|-------------------|-------------------|---------------|--------|--------|
|                                         | Client sampling date / time |                  | 29-Jul-2015 07:15 | 29-Jul-2015 08:30 | 29-Jul-2015 07:45 |               |        |        |
| Compound                                | CAS Number                  | LOR              | Unit              | ES1527133-001     | ES1527133-002     | ES1527133-003 |        |        |
| ·                                       |                             |                  |                   | Result            | Result            | Result        | Result | Result |
| EP075(SIM)B: Polynuclear Aromatic Hy    | drocarbons                  |                  |                   |                   |                   |               |        |        |
| Naphthalene                             | 91-20-3                     | 1                | μg/L              | <1.0              | <1.0              | <1.0          |        |        |
| Acenaphthylene                          | 208-96-8                    | 1                | μg/L              | <1.0              | <1.0              | <1.0          |        |        |
| Acenaphthene                            | 83-32-9                     | 1                | μg/L              | <1.0              | <1.0              | <1.0          |        |        |
| Fluorene                                | 86-73-7                     | 1                | μg/L              | <1.0              | <1.0              | <1.0          |        |        |
| Phenanthrene                            | 85-01-8                     | 1                | μg/L              | <1.0              | <1.0              | <1.0          |        |        |
| Anthracene                              | 120-12-7                    | 1                | μg/L              | <1.0              | <1.0              | <1.0          |        |        |
| Fluoranthene                            | 206-44-0                    | 1                | μg/L              | <1.0              | <1.0              | <1.0          |        |        |
| Pyrene                                  | 129-00-0                    | 1                | μg/L              | <1.0              | <1.0              | <1.0          |        |        |
| Benz(a)anthracene                       | 56-55-3                     | 1                | μg/L              | <1.0              | <1.0              | <1.0          |        |        |
| Chrysene                                | 218-01-9                    | 1                | μg/L              | <1.0              | <1.0              | <1.0          |        |        |
| Benzo(b+j)fluoranthene                  | 205-99-2 205-82-3           | 1                | μg/L              | <1.0              | <1.0              | <1.0          |        |        |
| Benzo(k)fluoranthene                    | 207-08-9                    | 1                | μg/L              | <1.0              | <1.0              | <1.0          |        |        |
| Benzo(a)pyrene                          | 50-32-8                     | 0.5              | μg/L              | <0.5              | <0.5              | <0.5          |        |        |
| Indeno(1.2.3.cd)pyrene                  | 193-39-5                    | 1                | μg/L              | <1.0              | <1.0              | <1.0          |        |        |
| Dibenz(a.h)anthracene                   | 53-70-3                     | 1                | μg/L              | <1.0              | <1.0              | <1.0          |        |        |
| Benzo(g.h.i)perylene                    | 191-24-2                    | 1                | μg/L              | <1.0              | <1.0              | <1.0          |        |        |
| Sum of polycyclic aromatic hydrocarbons |                             | 0.5              | μg/L              | <0.5              | <0.5              | <0.5          |        |        |
| ^ Benzo(a)pyrene TEQ (zero)             |                             | 0.5              | μg/L              | <0.5              | <0.5              | <0.5          |        |        |
| EP080/071: Total Petroleum Hydrocarb    | ons                         |                  |                   |                   |                   |               |        |        |
| C6 - C9 Fraction                        |                             | 20               | μg/L              | <20               | <20               | 200           |        |        |
| C10 - C14 Fraction                      |                             | 50               | μg/L              | <50               | <50               | <50           |        |        |
| C15 - C28 Fraction                      |                             | 100              | μg/L              | <100              | <100              | <100          |        |        |
| C29 - C36 Fraction                      |                             | 50               | μg/L              | <50               | <50               | <50           |        |        |
| ^ C10 - C36 Fraction (sum)              |                             | 50               | μg/L              | <50               | <50               | <50           |        |        |
| EP080/071: Total Recoverable Hydroca    | rbons - NEPM 201            | 3 Fraction       | าร                |                   |                   |               |        |        |
| C6 - C10 Fraction                       | C6 C10                      | 20               | μg/L              | <20               | <20               | 200           |        |        |
| ^ C6 - C10 Fraction minus BTEX          | C6_C10-BTEX                 | 20               | μg/L              | <20               | <20               | 70            |        |        |
| (F1)                                    |                             |                  |                   |                   |                   |               |        |        |
| >C10 - C16 Fraction                     | >C10_C16                    | 100              | μg/L              | <100              | <100              | <100          |        |        |
| >C16 - C34 Fraction                     |                             | 100              | μg/L              | <100              | <100              | <100          |        |        |
| >C34 - C40 Fraction                     |                             | 100              | μg/L              | <100              | <100              | <100          |        |        |
| ^ >C10 - C40 Fraction (sum)             |                             | 100              | μg/L              | <100              | <100              | <100          |        |        |
| ^ >C10 - C16 Fraction minus Naphthalene |                             | 100              | μg/L              | <100              | <100              | <100          |        |        |
| (F2)                                    |                             |                  |                   |                   |                   |               |        |        |
| EP262: Ethanolamines                    |                             |                  |                   |                   |                   |               |        |        |

Page : 9 of 9

Work Order : ES1527133 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B







**Work Order** : **ES1527135** Page : 1 of 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ---- Date Samples Received : 29-Jul-2015 11:50

C-O-C number : ---- Date Analysis Commenced : 29-Jul-2015

Sampler : CAROLINA SARDELLA Issue Date : 29-Jul-2015 15:28

Site :---

Quote number No. of samples received : 4

Quote number No. of samples analysed · 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Sanjeshni Jyoti Senior Chemist Volatiles Sydney Organics

Page : 2 of 2 Work Order : ES1527135

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

| Sub-Matrix: WATER (Matrix: WATER)   | Client sample ID            |     |       | AST2              | WK12              | WK13              | QA11          |        |
|-------------------------------------|-----------------------------|-----|-------|-------------------|-------------------|-------------------|---------------|--------|
|                                     | Client sampling date / time |     |       | 29-Jul-2015 07:15 | 29-Jul-2015 08:30 | 29-Jul-2015 07:45 | [29-Jul-2015] |        |
| Compound                            | CAS Number                  | LOR | Unit  | ES1527135-001     | ES1527135-002     | ES1527135-003     | ES1527135-004 |        |
|                                     |                             |     |       | Result            | Result            | Result            | Result        | Result |
| EA010P: Conductivity by PC Titrator |                             |     |       |                   |                   |                   |               |        |
| Electrical Conductivity @ 25°C      |                             | 1   | μS/cm | 7150              |                   |                   |               |        |
| EK084: Un-ionized Hydrogen Sulfide  |                             |     |       |                   |                   |                   |               |        |
| Unionized Hydrogen Sulfide          |                             | 0.1 | mg/L  | <0.1              | <0.1              | <0.1              | <0.1          |        |
| EP080: BTEXN                        |                             |     |       |                   |                   |                   |               |        |
| Benzene                             | 71-43-2                     | 1   | μg/L  | 5                 | <1                | 68                | <1            |        |
| Toluene                             | 108-88-3                    | 2   | μg/L  | 5                 | <2                | 62                | <2            |        |
| Ethylbenzene                        | 100-41-4                    | 2   | μg/L  | <2                | <2                | <2                | <2            |        |
| meta- & para-Xylene                 | 108-38-3 106-42-3           | 2   | μg/L  | <2                | <2                | 15                | <2            |        |
| ortho-Xylene                        | 95-47-6                     | 2   | μg/L  | <2                | <2                | 4                 | <2            |        |
| ^ Total Xylenes                     | 1330-20-7                   | 2   | μg/L  | <2                | <2                | 19                | <2            |        |
| ^ Sum of BTEX                       |                             | 1   | μg/L  | 10                | <1                | 149               | <1            |        |
| Naphthalene                         | 91-20-3                     | 5   | μg/L  | <5                | <5                | <5                | <5            |        |
| EP080S: TPH(V)/BTEX Surrogates      |                             |     |       |                   |                   |                   |               |        |
| 1.2-Dichloroethane-D4               | 17060-07-0                  | 2   | %     | 107               | 105               | 112               | 104           |        |
| Toluene-D8                          | 2037-26-5                   | 2   | %     | 113               | 111               | 119               | 114           |        |
| 4-Bromofluorobenzene                | 460-00-4                    | 2   | %     | 101               | 99.3              | 106               | 99.0          |        |





**Work Order** : ES1528258 Page : 1 of 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : GPO BOX 5394

SYDNEY NSW. AUSTRALIA 2001

E-mail E-mail : SDaykin@pb.com.au : loren.schiavon@alsglobal.com

: +61 2 8784 8503 Telephone : +61 02 92725100 Telephone : +61 02 92725101 Facsimile Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number ٠ ----**Date Samples Received** : 13-Aug-2015 10:30 C-O-C number **Date Analysis Commenced** : 13-Aug-2015

Sampler : CAROLINA SARDELLA Issue Date : 14-Aug-2015 14:37

Site

No. of samples received : 3 Quote number No. of samples analysed . 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results

NATA Accredited Laboratory 825



Accredited for compliance with ISO/IEC 17025.

### **Signatories**

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category Ankit Joshi Inorganic Chemist Sydney Inorganics Pabi Subba Senior Organic Chemist Sydney Organics

Page : 2 of 2 Work Order : ES1528258

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

# ALS

### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

| Sub-Matrix: WATER (Matrix: WATER)  | Client sample ID            |     |       | AST2              | WK12              | WK13              |        |        |
|------------------------------------|-----------------------------|-----|-------|-------------------|-------------------|-------------------|--------|--------|
|                                    | Client sampling date / time |     |       | 12-Aug-2015 10:10 | 12-Aug-2015 08:30 | 12-Aug-2015 08:00 |        |        |
| Compound                           | CAS Number                  | LOR | Unit  | ES1528258-001     | ES1528258-002     | ES1528258-003     |        |        |
|                                    |                             |     |       | Result            | Result            | Result            | Result | Result |
| EA010P: Conductivity by PC Titrato | or                          |     |       |                   |                   |                   |        |        |
| Electrical Conductivity @ 25°C     |                             | 1   | μS/cm | 9020              |                   |                   |        |        |
| EK084: Un-ionized Hydrogen Sulfid  | е                           |     |       |                   |                   |                   |        |        |
| Unionized Hydrogen Sulfide         |                             | 0.1 | mg/L  | <0.1              | <0.1              | <0.1              |        |        |
| EP080: BTEXN                       |                             |     |       |                   |                   |                   |        |        |
| Benzene                            | 71-43-2                     | 1   | μg/L  | 2                 | <1                | 37                |        |        |
| Toluene                            | 108-88-3                    | 2   | μg/L  | 3                 | <2                | 32                |        |        |
| Ethylbenzene                       | 100-41-4                    | 2   | μg/L  | <2                | <2                | <2                |        |        |
| meta- & para-Xylene                | 108-38-3 106-42-3           | 2   | μg/L  | <2                | <2                | 7                 |        |        |
| ortho-Xylene                       | 95-47-6                     | 2   | μg/L  | <2                | <2                | <2                |        |        |
| ^ Total Xylenes                    | 1330-20-7                   | 2   | μg/L  | <2                | <2                | 7                 |        |        |
| ^ Sum of BTEX                      |                             | 1   | μg/L  | 5                 | <1                | 76                |        |        |
| Naphthalene                        | 91-20-3                     | 5   | μg/L  | <5                | <5                | <5                |        |        |
| EP080S: TPH(V)/BTEX Surrogates     |                             |     |       |                   |                   |                   |        |        |
| 1.2-Dichloroethane-D4              | 17060-07-0                  | 2   | %     | 92.0              | 85.1              | 90.8              |        |        |
| Toluene-D8                         | 2037-26-5                   | 2   | %     | 108               | 102               | 111               |        |        |
| 4-Bromofluorobenzene               | 460-00-4                    | 2   | %     | 103               | 103               | 102               |        |        |



**Work Order** : **ES1528259** Page : 1 of 10

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : -- Date Samples Received
 : 13-Aug-2015 10:30

 C-O-C number
 : -- Date Analysis Commenced
 : 13-Aug-2015

 Sampler
 : -- Issue Date
 : 02-Sep-2015 12:55

Site · ----

No. of samples received : 3

Quote number : ---- No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Page : 2 of 10

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories       | Position                 | Accreditation Category |  |
|-------------------|--------------------------|------------------------|--|
| Ankit Joshi       | Inorganic Chemist        | Sydney Inorganics      |  |
| Ashesh Patel      | Inorganic Chemist        | Sydney Inorganics      |  |
| Lana Nguyen       | Senior LCMS Chemist      | Sydney Organics        |  |
| Pabi Subba        | Senior Organic Chemist   | Sydney Organics        |  |
| Raymond Commodore | Instrument Chemist       | Sydney Inorganics      |  |
| Sanjeshni Jyoti   | Senior Chemist Volatiles | Sydney Organics        |  |

Page : 3 of 10

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

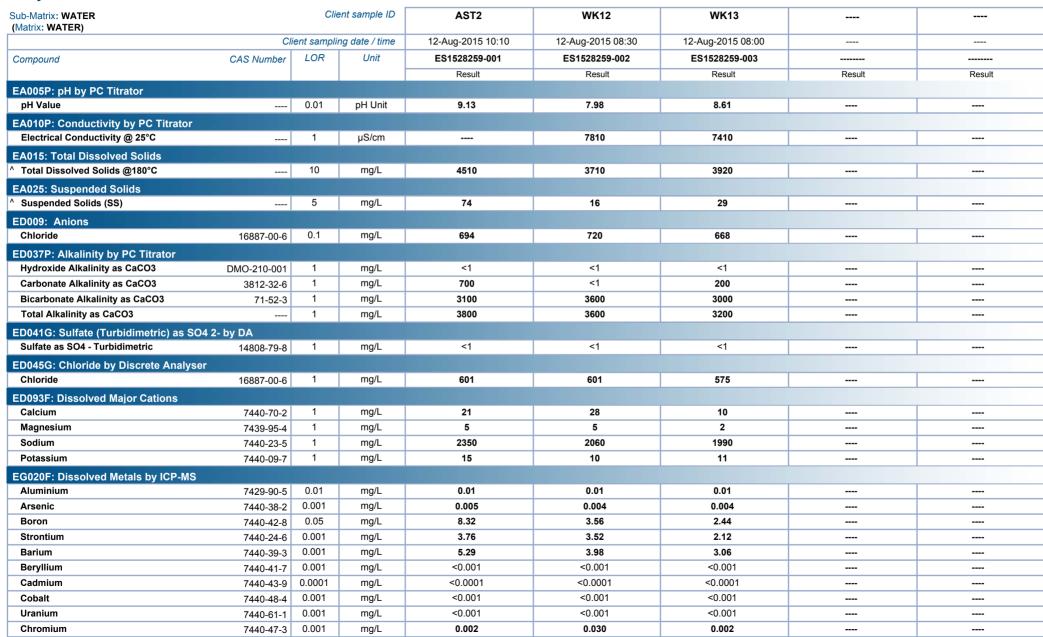
Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

- EG020: Bromine quantification may be unreliable due to its low solubility in acid, leading to variable volatility during measurement by ICPMS.
- EP005 : NPOC analysis was carried out due to high inorganic carbon content.
- This report has been amended following the removal of BTEX from all samples and EC from samples AST2.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.




Page : 4 of 10

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





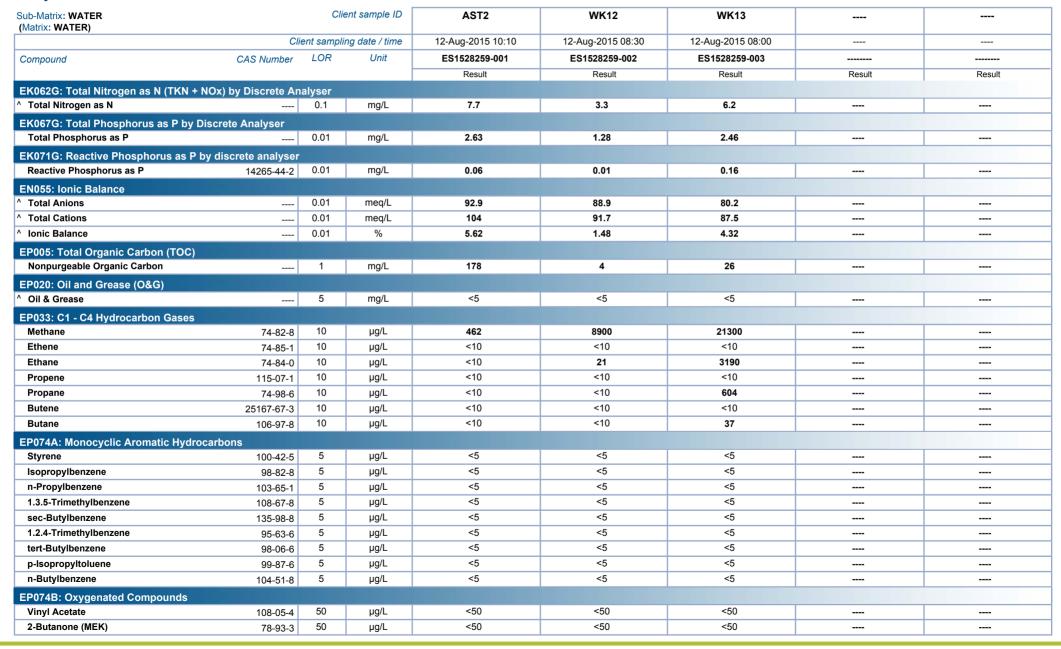
Page

: 5 of 10 : ES1528259 Amendment 1 Work Order

: PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project




| Sub-Matrix: WATER<br>Matrix: WATER)              |                      | Clie        | ent sample ID  | AST2              | WK12              | WK13              |             |        |
|--------------------------------------------------|----------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------|--------|
|                                                  | CI                   | ient sampli | ng date / time | 12-Aug-2015 10:10 | 12-Aug-2015 08:30 | 12-Aug-2015 08:00 |             |        |
| Compound                                         | CAS Number           | LOR         | Unit           | ES1528259-001     | ES1528259-002     | ES1528259-003     |             |        |
|                                                  |                      |             |                | Result            | Result            | Result            | Result      | Result |
| G020F: Dissolved Metals by ICP-N                 | IS - Continued       |             |                |                   |                   |                   |             |        |
| Copper                                           | 7440-50-8            | 0.001       | mg/L           | <0.001            | <0.001            | 0.001             |             |        |
| Manganese                                        | 7439-96-5            | 0.001       | mg/L           | 0.016             | 0.051             | 0.010             |             |        |
| Molybdenum                                       | 7439-98-7            | 0.001       | mg/L           | 0.007             | 0.002             | 0.008             |             |        |
| Nickel                                           | 7440-02-0            | 0.001       | mg/L           | 0.002             | <0.001            | 0.001             |             |        |
| Lead                                             | 7439-92-1            | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |             |        |
| Antimony                                         | 7440-36-0            | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |             |        |
| Selenium                                         | 7782-49-2            | 0.01        | mg/L           | <0.01             | <0.01             | <0.01             |             |        |
| Tin                                              | 7440-31-5            | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |             |        |
| Vanadium                                         | 7440-62-2            | 0.01        | mg/L           | <0.01             | <0.01             | <0.01             |             |        |
| Zinc                                             | 7440-66-6            | 0.005       | mg/L           | <0.005            | <0.005            | <0.005            |             |        |
| Iron                                             | 7439-89-6            | 0.05        | mg/L           | 0.33              | 5.30              | 1.40              |             |        |
| Bromine                                          | 7726-95-6            | 0.1         | mg/L           | 1.1               | 0.6               | 1.6               |             |        |
| G035F: Dissolved Mercury by FIM                  | S                    |             |                |                   |                   |                   |             |        |
| Mercury                                          | 7439-97-6            | 0.0001      | mg/L           | <0.0001           | <0.0001           | <0.0001           |             |        |
| G052G: Silica by Discrete Analyse                | er                   |             |                |                   |                   |                   |             |        |
| Reactive Silica                                  |                      | 0.05        | mg/L           | 24.2              | 27.3              | 25.0              |             |        |
| EK010/011: Chlorine                              |                      |             |                |                   |                   |                   |             |        |
| Chlorine - Free                                  |                      | 0.2         | mg/L           | <0.2              | <0.2              | <0.2              |             |        |
| Chlorine - Total Residual                        |                      | 0.2         | mg/L           | <0.2              | <0.2              | <0.2              |             |        |
| K040P: Fluoride by PC Titrator                   |                      |             | 3              |                   |                   |                   |             |        |
| Fluoride                                         | 16984-48-8           | 0.1         | mg/L           | 1.7               | 1.5               | 3.0               |             |        |
|                                                  |                      | 0.1         | mg/L           | 111               | 1.0               | 3.0               | <del></del> |        |
| EK055G: Ammonia as N by Discrete<br>Ammonia as N |                      | 0.01        | ma/l           | 0.04              | 2.46              | 4.00              |             | I      |
|                                                  | 7664-41-7            | 0.01        | mg/L           | 0.04              | 2.46              | 4.28              |             |        |
| EK055G-NH4: Ammonium as N by I                   |                      | 0.01        |                |                   |                   |                   |             |        |
| Ammonium as N                                    |                      | 0.01        | mg/L           | 0.03              | 2.44              | 3.97              |             |        |
| EK057G: Nitrite as N by Discrete A               |                      |             |                |                   |                   |                   |             |        |
| Nitrite as N                                     | 14797-65-0           | 0.01        | mg/L           | <0.01             | <0.01             | <0.01             |             |        |
| EK058G: Nitrate as N by Discrete A               | Analyser             |             |                |                   |                   |                   |             |        |
| Nitrate as N                                     | 14797-55-8           | 0.01        | mg/L           | <0.01             | <0.01             | 0.02              |             |        |
| :K059G: Nitrite plus Nitrate as N (l             | NOx) by Discrete Ana | lyser       |                |                   |                   |                   |             |        |
| Nitrite + Nitrate as N                           |                      | 0.01        | mg/L           | <0.01             | <0.01             | 0.02              |             |        |
| EK061G: Total Kjeldahl Nitrogen By               | / Discrete Analyser  |             |                |                   |                   |                   |             |        |
| Total Kjeldahl Nitrogen as N                     |                      | 0.1         | mg/L           | 7.7               | 3.3               | 6.2               |             |        |

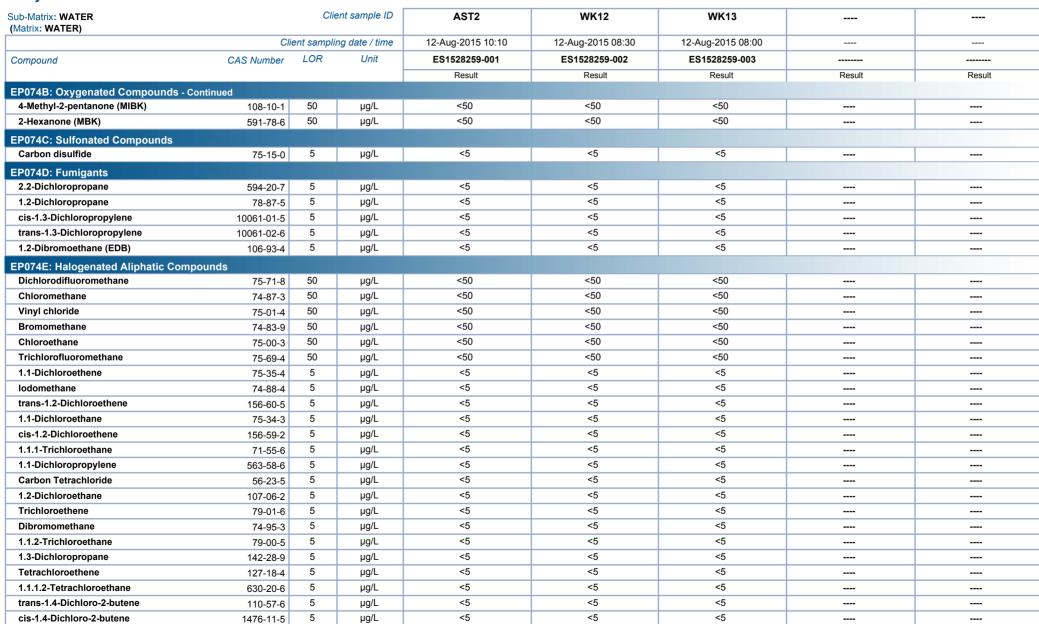
Page : 6 of 10

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B






Page : 7 of 10

Work Order : ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





Page

: 8 of 10 : ES1528259 Amendment 1 Work Order

: PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



| Sub-Matrix: WATER<br>(Matrix: WATER) |                    | Clie       | ent sample ID  | AST2              | WK12              | WK13              |        |        |
|--------------------------------------|--------------------|------------|----------------|-------------------|-------------------|-------------------|--------|--------|
|                                      | Cli                | ent sampli | ng date / time | 12-Aug-2015 10:10 | 12-Aug-2015 08:30 | 12-Aug-2015 08:00 |        |        |
| Compound                             | CAS Number         | LOR        | Unit           | ES1528259-001     | ES1528259-002     | ES1528259-003     |        |        |
| •                                    |                    |            | ŀ              | Result            | Result            | Result            | Result | Result |
| P074E: Halogenated Aliphatic Com     | pounds - Continued |            |                |                   |                   |                   |        |        |
| 1.1.2.2-Tetrachloroethane            | 79-34-5            | 5          | μg/L           | <5                | <5                | <5                |        |        |
| 1.2.3-Trichloropropane               | 96-18-4            | 5          | μg/L           | <5                | <5                | <5                |        |        |
| Pentachloroethane                    | 76-01-7            | 5          | μg/L           | <5                | <5                | <5                |        |        |
| 1.2-Dibromo-3-chloropropane          | 96-12-8            | 5          | μg/L           | <5                | <5                | <5                |        |        |
| Hexachlorobutadiene                  | 87-68-3            | 5          | μg/L           | <5                | <5                | <5                |        |        |
| P074F: Halogenated Aromatic Con      | npounds            |            |                |                   |                   |                   |        |        |
| Chlorobenzene                        | 108-90-7           | 5          | μg/L           | <5                | <5                | <5                |        |        |
| Bromobenzene                         | 108-86-1           | 5          | μg/L           | <5                | <5                | <5                |        |        |
| 2-Chlorotoluene                      | 95-49-8            | 5          | μg/L           | <5                | <5                | <5                |        |        |
| 4-Chlorotoluene                      | 106-43-4           | 5          | μg/L           | <5                | <5                | <5                |        |        |
| 1.3-Dichlorobenzene                  | 541-73-1           | 5          | μg/L           | <5                | <5                | <5                |        |        |
| 1.4-Dichlorobenzene                  | 106-46-7           | 5          | μg/L           | <5                | <5                | <5                |        |        |
| 1.2-Dichlorobenzene                  | 95-50-1            | 5          | μg/L           | <5                | <5                | <5                |        |        |
| 1.2.4-Trichlorobenzene               | 120-82-1           | 5          | μg/L           | <5                | <5                | <5                |        |        |
| 1.2.3-Trichlorobenzene               | 87-61-6            | 5          | μg/L           | <5                | <5                | <5                |        |        |
| P074G: Trihalomethanes               |                    |            |                |                   |                   |                   |        |        |
| Chloroform                           | 67-66-3            | 5          | μg/L           | <5                | <5                | <5                |        |        |
| Bromodichloromethane                 | 75-27-4            | 5          | μg/L           | <5                | <5                | <5                |        |        |
| Dibromochloromethane                 | 124-48-1           | 5          | μg/L           | <5                | <5                | <5                |        |        |
| Bromoform                            | 75-25-2            | 5          | μg/L           | <5                | <5                | <5                |        |        |
| P075(SIM)A: Phenolic Compounds       |                    |            |                |                   |                   |                   |        |        |
| Phenol                               | 108-95-2           | 1          | μg/L           | 1.3               | <1.0              | <1.0              |        |        |
| 2-Chlorophenol                       | 95-57-8            | 1          | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| 2-Methylphenol                       | 95-48-7            | 1          | μg/L           | <1.0              | <1.0              | 4.7               |        |        |
| 3- & 4-Methylphenol                  | 1319-77-3          | 2          | μg/L           | 7.9               | 10.8              | 72.6              |        |        |
| 2-Nitrophenol                        | 88-75-5            | 1          | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| 2.4-Dimethylphenol                   | 105-67-9           | 1          | μg/L           | <1.0              | <1.0              | 1.3               |        |        |
| 2.4-Dichlorophenol                   | 120-83-2           | 1          | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| 2.6-Dichlorophenol                   | 87-65-0            | 1          | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| 4-Chloro-3-methylphenol              | 59-50-7            | 1          | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| 2.4.6-Trichlorophenol                | 88-06-2            | 1          | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| 2.4.5-Trichlorophenol                | 95-95-4            | 1          | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| Pentachlorophenol                    | 87-86-5            | 2          | μg/L           | <2.0              | <2.0              | <2.0              |        |        |

Page

9 of 10 ES1528259 Amendment 1 Work Order

: PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



| Sub-Matrix: WATER (Matrix: WATER)       |                           | Clie        | nt sample ID   | AST2              | WK12              | WK13              |        |        |
|-----------------------------------------|---------------------------|-------------|----------------|-------------------|-------------------|-------------------|--------|--------|
| ,                                       | Clie                      | ent samplin | ng date / time | 12-Aug-2015 10:10 | 12-Aug-2015 08:30 | 12-Aug-2015 08:00 |        |        |
| Compound                                | CAS Number                | LOR         | Unit           | ES1528259-001     | ES1528259-002     | ES1528259-003     |        |        |
|                                         |                           |             |                | Result            | Result            | Result            | Result | Result |
| EP075(SIM)B: Polynuclear Aromatic Hy    | drocarbons - Conti        | nued        |                |                   |                   |                   |        |        |
| Naphthalene                             | 91-20-3                   | 1           | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| Acenaphthylene                          | 208-96-8                  | 1           | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| Acenaphthene                            | 83-32-9                   | 1           | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| Fluorene                                | 86-73-7                   | 1           | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| Phenanthrene                            | 85-01-8                   | 1           | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| Anthracene                              | 120-12-7                  | 1           | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| Fluoranthene                            | 206-44-0                  | 1           | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| Pyrene                                  | 129-00-0                  | 1           | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| Benz(a)anthracene                       | 56-55-3                   | 1           | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| Chrysene                                | 218-01-9                  | 1           | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| Benzo(b+j)fluoranthene                  | 205-99-2 205-82-3         | 1           | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| Benzo(k)fluoranthene                    | 207-08-9                  | 1           | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| Benzo(a)pyrene                          | 50-32-8                   | 0.5         | μg/L           | <0.5              | <0.5              | <0.5              |        |        |
| Indeno(1.2.3.cd)pyrene                  | 193-39-5                  | 1           | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| Dibenz(a.h)anthracene                   | 53-70-3                   | 1           | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| Benzo(g.h.i)perylene                    | 191-24-2                  | 1           | μg/L           | <1.0              | <1.0              | <1.0              |        |        |
| Sum of polycyclic aromatic hydrocarbons |                           | 0.5         | μg/L           | <0.5              | <0.5              | <0.5              |        |        |
| Benzo(a)pyrene TEQ (zero)               |                           | 0.5         | μg/L           | <0.5              | <0.5              | <0.5              |        |        |
| EP080/071: Total Petroleum Hydrocarbo   | ons                       |             |                |                   |                   |                   |        |        |
| C6 - C9 Fraction                        |                           | 20          | μg/L           | <20               | <20               | 140               |        |        |
| C10 - C14 Fraction                      |                           | 50          | μg/L           | 190               | 60                | 110               |        |        |
| C15 - C28 Fraction                      |                           | 100         | μg/L           | <100              | <100              | <100              |        |        |
| C29 - C36 Fraction                      |                           | 50          | μg/L           | <50               | <50               | <50               |        |        |
| C10 - C36 Fraction (sum)                |                           | 50          | μg/L           | 190               | 60                | 110               |        |        |
| EP080/071: Total Recoverable Hydroca    | bons - NEPM 2013          | 3 Fraction  | ıs             |                   |                   |                   |        |        |
| C6 - C10 Fraction                       | C6 C10                    | 20          | μg/L           | <20               | <20               | 140               |        |        |
| C6 - C10 Fraction minus BTEX            | C6_C10-BTEX               | 20          | μg/L           | <20               | <20               | 60                |        |        |
| (F1)                                    | 3.5_2.10 = 1. <b>2</b> /1 |             | . 5            |                   |                   |                   |        |        |
| >C10 - C16 Fraction                     | >C10_C16                  | 100         | μg/L           | 170               | <100              | <100              |        |        |
| >C16 - C34 Fraction                     |                           | 100         | μg/L           | <100              | <100              | <100              |        |        |
| >C34 - C40 Fraction                     |                           | 100         | μg/L           | <100              | <100              | <100              |        |        |
| >C10 - C40 Fraction (sum)               |                           | 100         | μg/L           | 170               | <100              | <100              |        |        |
| >C10 - C16 Fraction minus Naphthalene   |                           | 100         | μg/L           | 170               | <100              | <100              |        |        |
| (F2)                                    |                           |             | -              |                   |                   |                   |        |        |
| EP262: Ethanolamines                    |                           |             |                |                   |                   |                   |        |        |

Page : 10 of 10

Work Order ES1528259 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

118-79-6

321-60-8

1719-06-8

1718-51-0

1

1

1

%

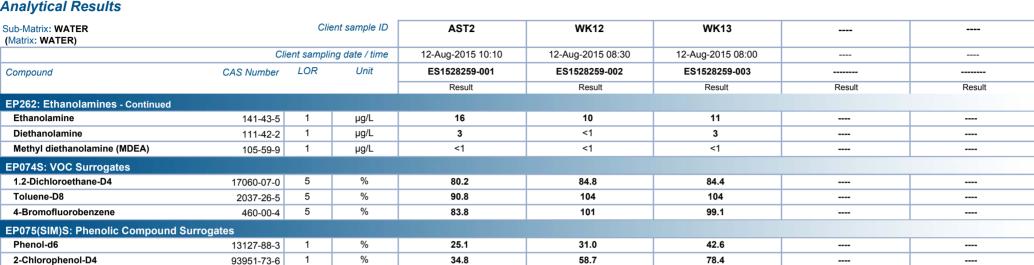
%

%

%

Project 2268523B

## Analytical Results


2.4.6-Tribromophenol

2-Fluorobiphenyl

Anthracene-d10

4-Terphenyl-d14

EP075(SIM)T: PAH Surrogates



50.3

55.1

56.1

75.4

67.2

68.4

85.4

88.0

28.8

57.7

38.1

67.3



----



# **CERTIFICATE OF ANALYSIS**

**Work Order** : **ES1529385** Page : 1 of 10

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : -- Date Samples Received
 : 27-Aug-2015 10:00

 C-O-C number
 : -- Date Analysis Commenced
 : 28-Aug-2015

 Sampler
 : -- Issue Date
 : 14-Oct-2015 17:45

Site : ----

Quote number : --- No. of samples received : 3

Quote number : --- No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Page : 2 of 10

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

## Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories       | Position               | Accreditation Category |  |
|-------------------|------------------------|------------------------|--|
| Ankit Joshi       | Inorganic Chemist      | Sydney Inorganics      |  |
| Ashesh Patel      | Inorganic Chemist      | Sydney Inorganics      |  |
| Lana Nguyen       | Senior LCMS Chemist    | Sydney Organics        |  |
| Pabi Subba        | Senior Organic Chemist | Sydney Organics        |  |
| Raymond Commodore | Instrument Chemist     | Sydney Inorganics      |  |
| Shobhna Chandra   | Metals Coordinator     | Sydney Inorganics      |  |

Page : 3 of 10

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

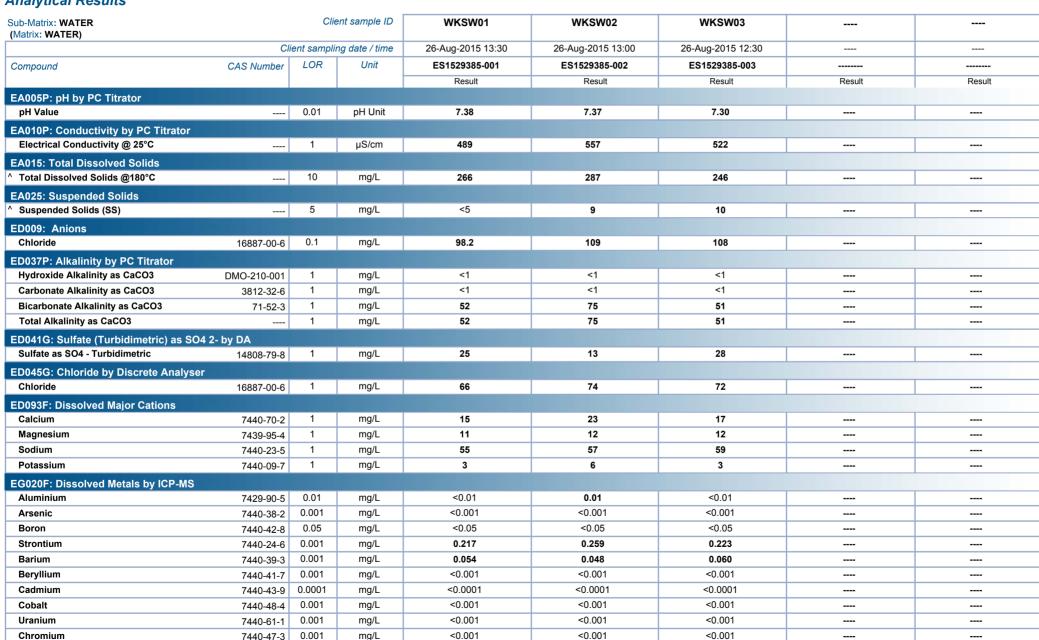
Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

- EG020: Bromine & lodine quantification may be unreliable due to its low solubility in acid, leading to variable volatility during measurement by ICPMS.
- Ionic Balance out of acceptable limits due to analytes not quantified in this report.
- This report has been amended and re-released to allow the reporting of additional analytical data, specifically Antimony via EG020 analysis.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.




Page : 4 of 10

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





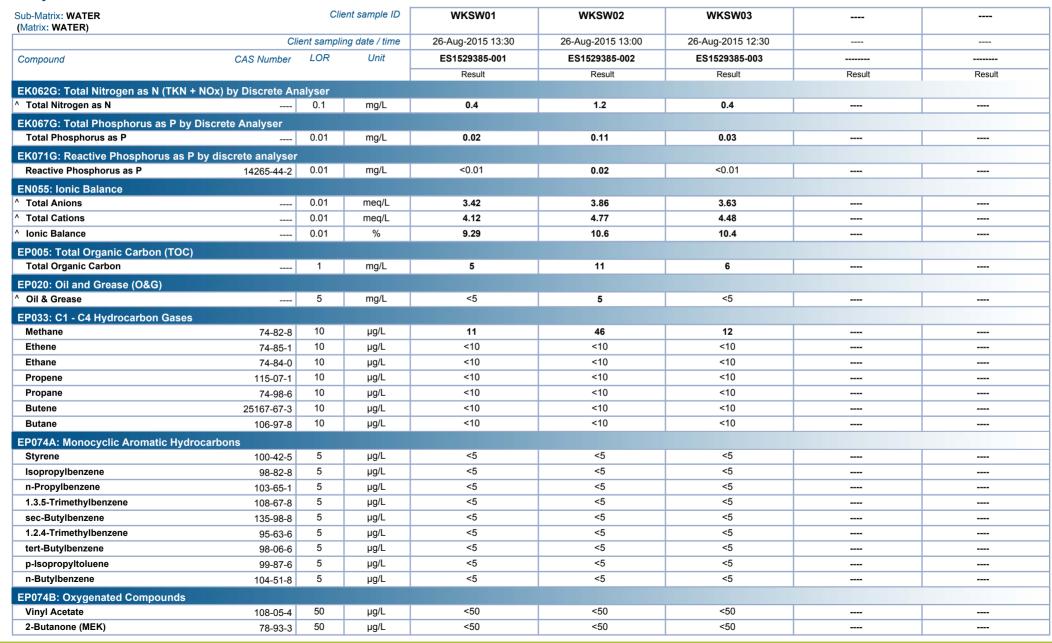
Page

5 of 10 ES1529385 Amendment 1 Work Order

: PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project




| ub-Matrix: WATER<br>Matrix: WATER)            |                       | Clie        | ent sample ID  | WKSW01            | WKSW02            | WKSW03            |        |        |
|-----------------------------------------------|-----------------------|-------------|----------------|-------------------|-------------------|-------------------|--------|--------|
| <u> </u>                                      | CI                    | ient sampli | ng date / time | 26-Aug-2015 13:30 | 26-Aug-2015 13:00 | 26-Aug-2015 12:30 |        |        |
| Compound                                      | CAS Number            | LOR         | Unit           | ES1529385-001     | ES1529385-002     | ES1529385-003     |        |        |
|                                               |                       |             |                | Result            | Result            | Result            | Result | Result |
| EG020F: Dissolved Metals by ICP-              | MS - Continued        |             |                |                   |                   |                   |        |        |
| Copper                                        | 7440-50-8             | 0.001       | mg/L           | <0.001            | 0.002             | 0.002             |        |        |
| Manganese                                     | 7439-96-5             | 0.001       | mg/L           | 0.045             | 0.093             | 0.094             |        |        |
| Molybdenum                                    | 7439-98-7             | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Nickel                                        | 7440-02-0             | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Lead                                          | 7439-92-1             | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Antimony                                      | 7440-36-0             | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Selenium                                      | 7782-49-2             | 0.01        | mg/L           | <0.01             | <0.01             | <0.01             |        |        |
| Tin                                           | 7440-31-5             | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Vanadium                                      | 7440-62-2             | 0.01        | mg/L           | <0.01             | <0.01             | <0.01             |        |        |
| Zinc                                          | 7440-66-6             | 0.005       | mg/L           | <0.005            | 0.006             | 0.006             |        |        |
| Iron                                          | 7439-89-6             | 0.05        | mg/L           | 0.10              | 0.33              | 0.18              |        |        |
| Bromine                                       | 7726-95-6             | 0.1         | mg/L           | 0.3               | 0.3               | 0.3               |        |        |
| EG035F: Dissolved Mercury by FIN              | MS                    |             |                |                   |                   |                   |        |        |
| Mercury                                       | 7439-97-6             | 0.0001      | mg/L           | <0.0001           | <0.0001           | <0.0001           |        |        |
| EG052G: Silica by Discrete Analys             | er                    |             |                |                   |                   |                   |        |        |
| Reactive Silica                               |                       | 0.05        | mg/L           | 6.11              | 3.28              | 4.13              |        |        |
| EK010/011: Chlorine                           |                       |             |                |                   |                   |                   |        |        |
| Chlorine - Free                               |                       | 0.2         | mg/L           | <0.2              | <0.2              | <0.2              |        |        |
| Chlorine - Total Residual                     |                       | 0.2         | mg/L           | <0.2              | <0.2              | <0.2              |        |        |
| EK040P: Fluoride by PC Titrator               |                       |             |                |                   |                   |                   |        |        |
| Fluoride                                      | 16984-48-8            | 0.1         | mg/L           | 0.1               | 0.2               | 0.1               |        |        |
| EK055G: Ammonia as N by Discre                |                       |             |                |                   |                   |                   |        |        |
| Ammonia as N                                  | 7664-41-7             | 0.01        | mg/L           | 0.01              | 0.06              | 0.10              |        |        |
|                                               |                       | 0.01        | 9, _           |                   |                   | 0.10              |        |        |
| EK055G-NH4: Ammonium as N by<br>Ammonium as N | 14798-03-9_N          | 0.01        | mg/L           | <0.01             | 0.06              | 0.10              |        |        |
|                                               |                       | 0.01        | mg/L           | ~U.U I            | 0.00              | 0.10              |        |        |
| EK057G: Nitrite as N by Discrete A            |                       | 0.01        | ma/l           | <0.01             | <0.01             | <0.01             |        | I      |
|                                               | 14797-65-0            | 0.01        | mg/L           | <b>\U.U1</b>      | <b>~</b> 0.01     | <0.01             |        |        |
| EK058G: Nitrate as N by Discrete              |                       | 0.61        |                |                   |                   | 10.01             |        |        |
| Nitrate as N                                  | 14797-55-8            |             | mg/L           | 0.01              | 0.06              | <0.01             |        |        |
| EK059G: Nitrite plus Nitrate as N             | (NOx) by Discrete Ana |             |                |                   |                   |                   |        |        |
| Nitrite + Nitrate as N                        |                       | 0.01        | mg/L           | 0.01              | 0.06              | <0.01             |        |        |
| EK061G: Total Kjeldahl Nitrogen E             | By Discrete Analyser  |             |                |                   |                   |                   |        |        |
| Total Kjeldahl Nitrogen as N                  |                       | 0.1         | mg/L           | 0.4               | 1.1               | 0.4               |        |        |

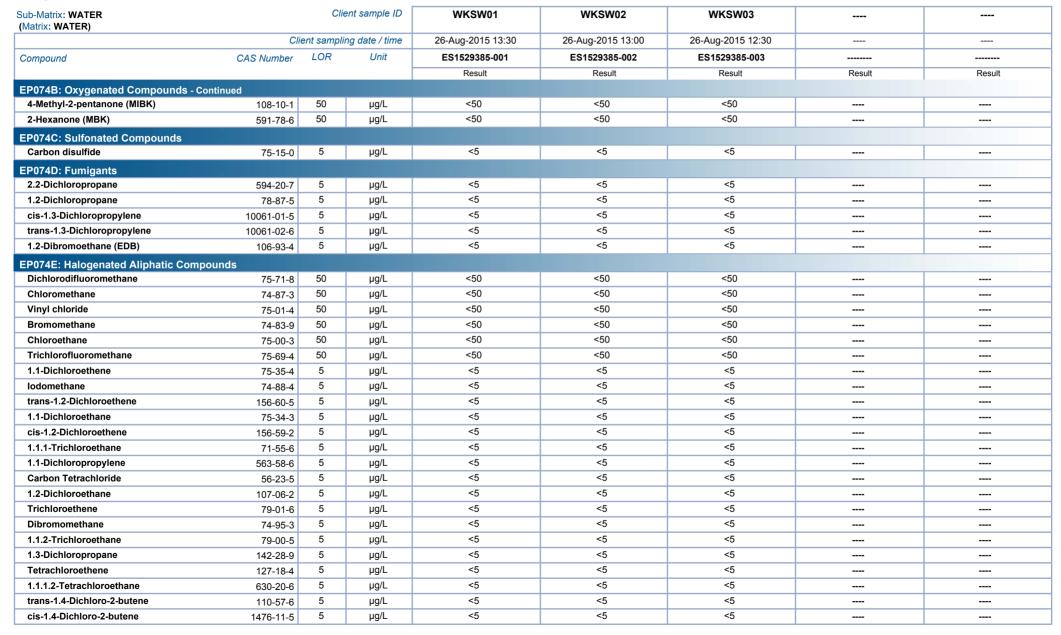
Page : 6 of 10

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





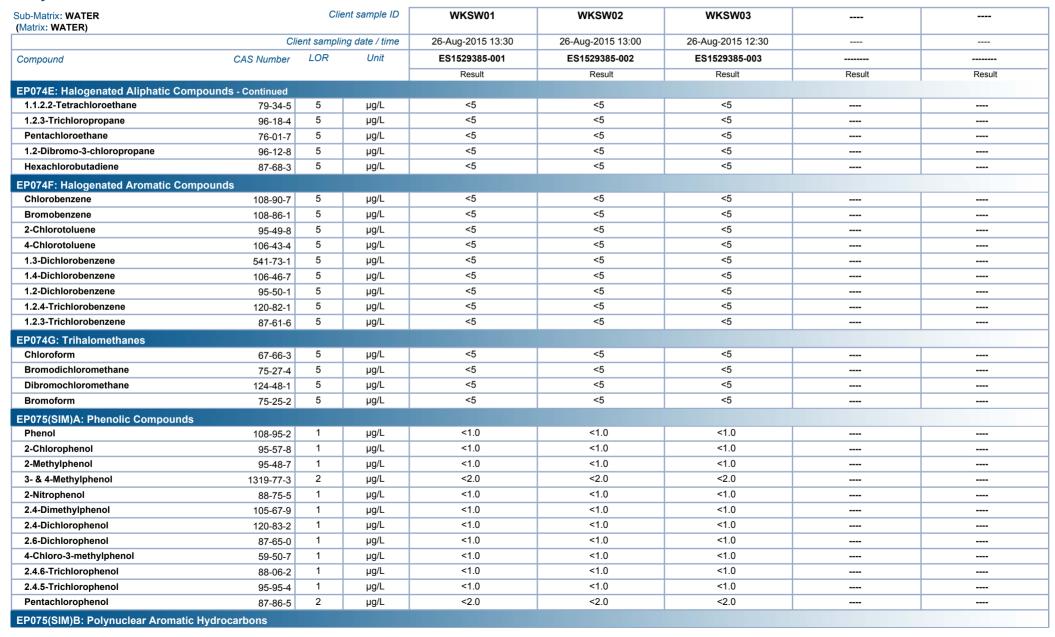

Page : 7 of 10

Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B






Page : 8 of 10

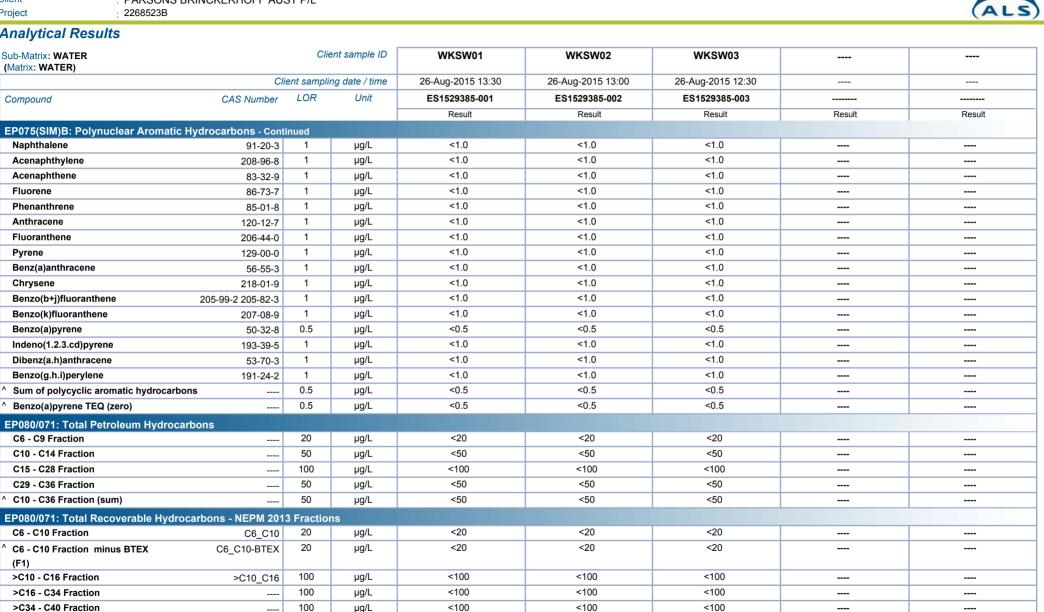
Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B






Page : 9 of 10

Work Order ES1529385 Amendment 1

Client PARSONS BRINCKERHOFF AUST P/L

Project

#### Analytical Results



<100

<100

<100

<100

----

----

**EP080: BTEXN** 

(F2)

>C10 - C40 Fraction (sum)

>C10 - C16 Fraction minus Naphthalene

100

100

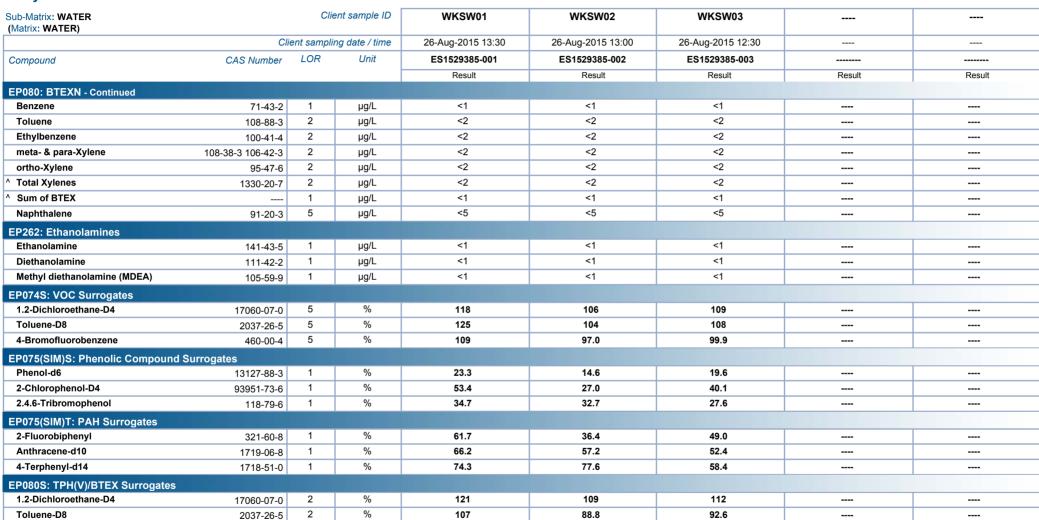
μg/L

μg/L

<100

<100

Page : 10 of 10


Work Order : ES1529385 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## **Analytical Results**

4-Bromofluorobenzene



104

106

----

----

2

460-00-4

%

116





# **CERTIFICATE OF ANALYSIS**

**Work Order** : **ES1529387** Page : 1 of 10

Amendment : 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : -- Date Samples Received
 : 27-Aug-2015 09:15

 C-O-C number
 : -- Date Analysis Commenced
 : 28-Aug-2015

Sampler : DAVID WATSON, SEAN DAYKIN Issue Date : 29-Sep-2015 12:07

Site : ----

Quote number : --- No. of samples received : 5

Quote number : --- No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Page : 2 of 10

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

## Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories        | Position                      | Accreditation Category |
|--------------------|-------------------------------|------------------------|
| Ankit Joshi        | Inorganic Chemist             | Sydney Inorganics      |
| Celine Conceicao   | Senior Spectroscopist         | Sydney Inorganics      |
| Lana Nguyen        | Senior LCMS Chemist           | Sydney Organics        |
| Pabi Subba         | Senior Organic Chemist        | Sydney Organics        |
| Phalak Inthakesone | Laboratory Manager - Organics | Sydney Organics        |
| Raymond Commodore  | Instrument Chemist            | Sydney Inorganics      |

Page : 3 of 10

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

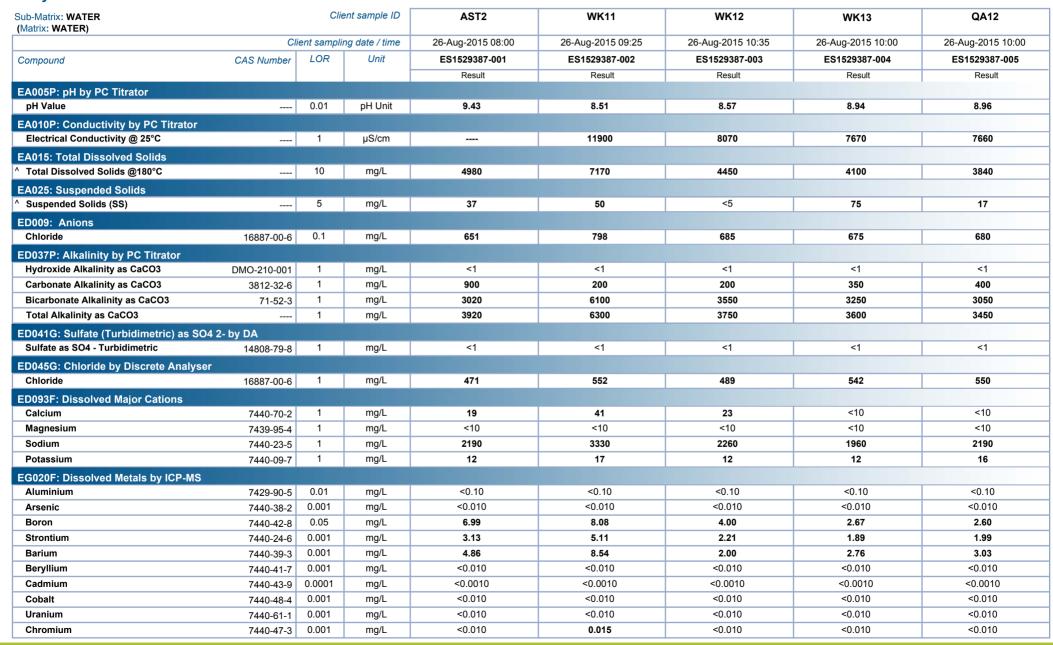
Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

- EG020: Bromine & lodine quantification may be unreliable due to its low solubility in acid, leading to variable volatility during measurement by ICPMS.
- EG020: LOR's have been raised due to matrix interference
- EP005: NPOC analysis was carried out due to high inorganic carbon content.
- This report has been amended and re-released to allow the reporting of additional analytical data.
- This report has been amended following the removal of BTEX from all samples and EC from AST2.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.



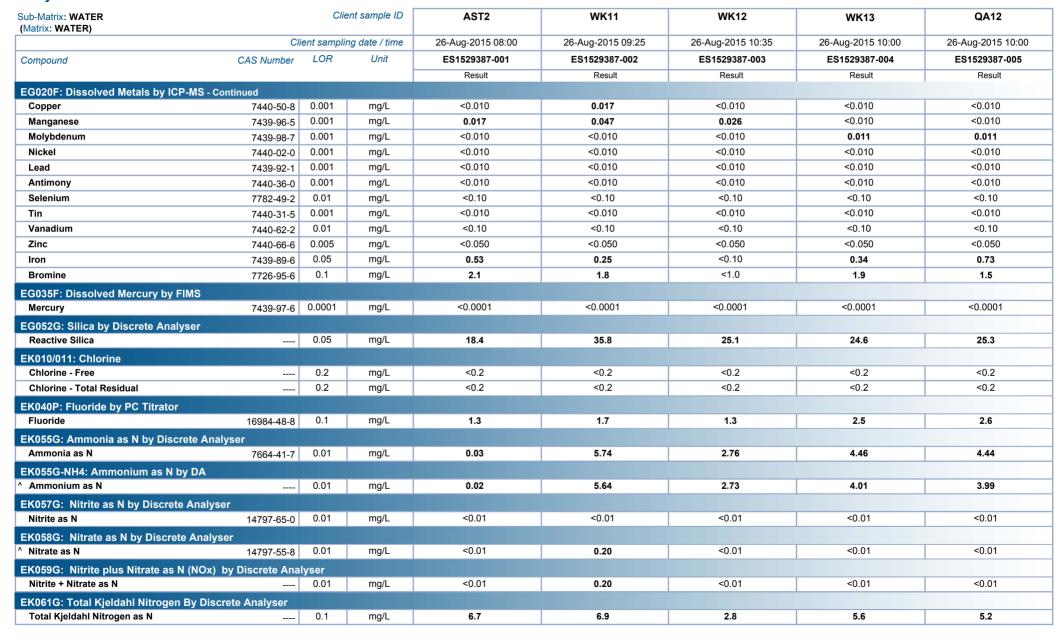

Page : 4 of 10

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





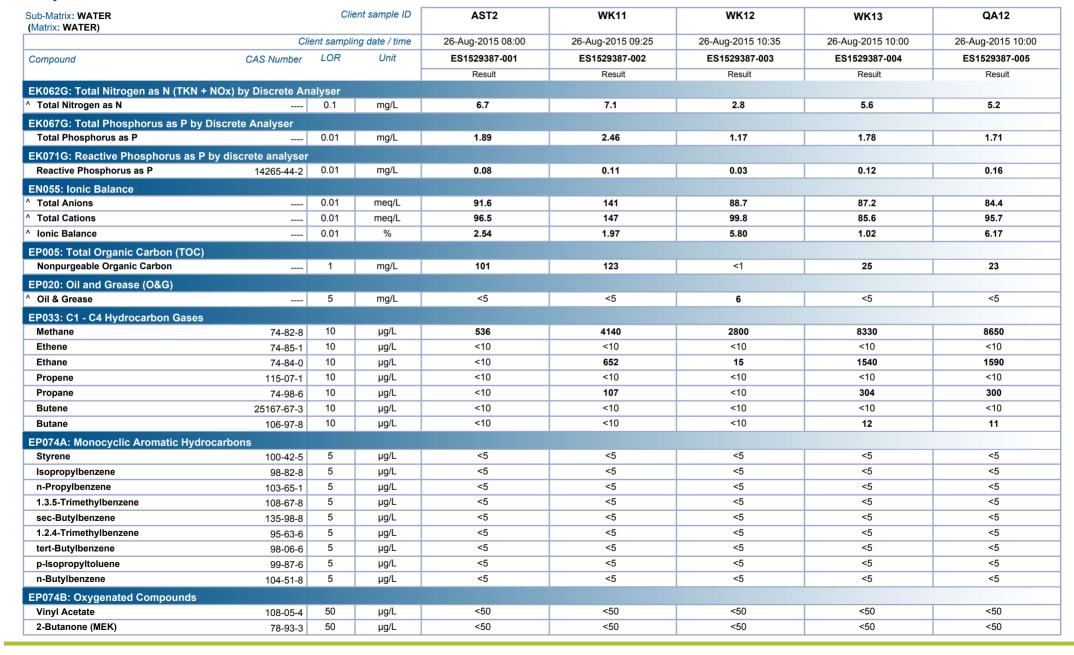

Page : 5 of 10

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





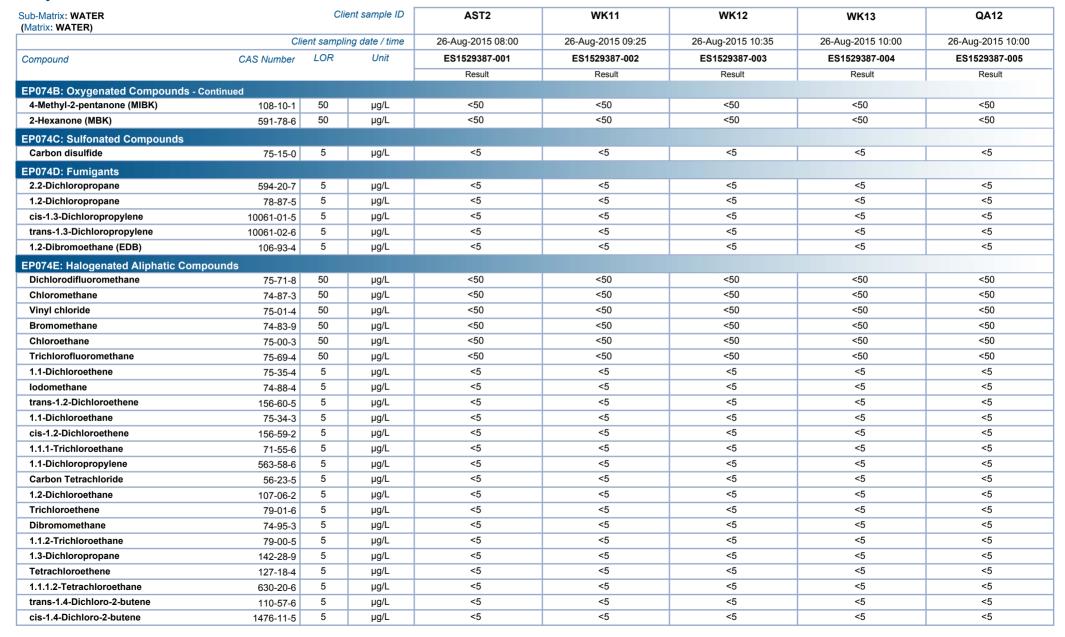

Page : 6 of 10

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





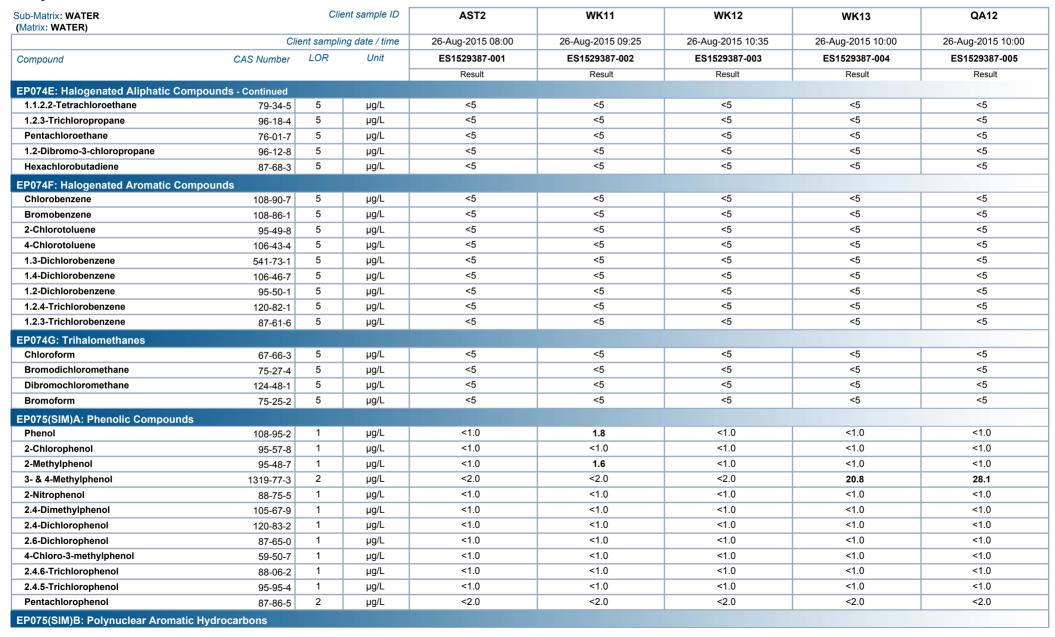

Page : 7 of 10

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B






Page : 8 of 10

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





Page : 9 of 10

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B




Page : 10 of 10

Work Order : ES1529387 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B







## **CERTIFICATE OF ANALYSIS**

**Work Order** : **ES1529589** Page : 1 of 2

Amendment : 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : -- Date Samples Received
 : 28-Aug-2015 13:12

 C-O-C number
 : -- Date Analysis Commenced
 : 28-Aug-2015

Sampler : SEAN DAYKIN Issue Date : 02-Sep-2015 16:20

Site : ----

Quote number : --- No. of samples received : 5

Quote number : --- No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Pabi Subba Senior Organic Chemist Sydney Organics

Page : 2 of 2

Work Order : ES1529589 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

• This report has been amended to adjust the method for UHS to EK084.

| Sub-Matrix: WATER (Matrix: WATER)   | Client sample ID  |             |                | AST2              | WK11              | WK12              | WK13              | QA12              |
|-------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Cli               | ient sampli | ng date / time | 26-Aug-2015 08:00 | 26-Aug-2015 09:25 | 26-Aug-2015 10:35 | 26-Aug-2015 10:00 | 26-Aug-2015 10:00 |
| Compound                            | CAS Number        | LOR         | Unit           | ES1529589-001     | ES1529589-002     | ES1529589-003     | ES1529589-004     | ES1529589-005     |
|                                     |                   |             |                | Result            | Result            | Result            | Result            | Result            |
| EA010P: Conductivity by PC Titrator |                   |             |                |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C      |                   | 1           | μS/cm          | 8490              |                   |                   |                   |                   |
| EK084: Un-ionized Hydrogen Sulfide  |                   |             |                |                   |                   |                   |                   |                   |
| Unionized Hydrogen Sulfide          |                   | 0.1         | mg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| EP080: BTEXN                        |                   |             |                |                   |                   |                   |                   |                   |
| Benzene                             | 71-43-2           | 1           | μg/L           | 1                 | 72                | 1                 | 40                | 39                |
| Toluene                             | 108-88-3          | 2           | μg/L           | <2                | 63                | <2                | 34                | 34                |
| Ethylbenzene                        | 100-41-4          | 2           | μg/L           | <2                | <2                | <2                | <2                | <2                |
| meta- & para-Xylene                 | 108-38-3 106-42-3 | 2           | μg/L           | <2                | 13                | <2                | 5                 | 6                 |
| ortho-Xylene                        | 95-47-6           | 2           | μg/L           | <2                | 3                 | <2                | <2                | <2                |
| ^ Total Xylenes                     | 1330-20-7         | 2           | μg/L           | <2                | 16                | <2                | 5                 | 6                 |
| ^ Sum of BTEX                       |                   | 1           | μg/L           | 1                 | 151               | 1                 | 79                | 79                |
| Naphthalene                         | 91-20-3           | 5           | μg/L           | <5                | <5                | <5                | <5                | <5                |
| EP080S: TPH(V)/BTEX Surrogates      |                   |             |                |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4               | 17060-07-0        | 2           | %              | 98.8              | 98.1              | 95.8              | 99.3              | 94.3              |
| Toluene-D8                          | 2037-26-5         | 2           | %              | 117               | 108               | 107               | 108               | 103               |
| 4-Bromofluorobenzene                | 460-00-4          | 2           | %              | 112               | 112               | 105               | 108               | 106               |





## **CERTIFICATE OF ANALYSIS**

**Work Order** : **ES1530616** Page : 1 of 2

Amendment : 1

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

 Telephone
 : +61 02 92725100
 Telephone
 : +61 2 8784 8503

 Facsimile
 : +61 02 92725101
 Facsimile
 : +61-2-8784 8500

Project : 2268523A QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : -- Date Samples Received
 : 09-Sep-2015 15:22

 C-O-C number
 : -- Date Analysis Commenced
 : 09-Sep-2015

 Sampler
 : -- Issue Date
 : 29-Sep-2015 12:09

Site · ----

Quote number : --- No. of samples received : 5

Quote number : --- No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics
Phalak Inthakesone Laboratory Manager - Organics Sydney Organics

Page : 2 of 2

Work Order : ES1530616 Amendment 1

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A

# ALS

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

• This report has been amended and re-released to allow the reporting of additional analytical data.

| Sub-Matrix: WATER (Matrix: WATER)  |                   | Client sample ID |                 |                   | WK11              | WK12              | WK13              | WK14              |
|------------------------------------|-------------------|------------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cli               | ent sampli       | ing date / time | 09-Sep-2015 07:45 | 09-Sep-2015 09:50 | 09-Sep-2015 09:15 | 09-Sep-2015 08:00 | 09-Sep-2015 08:50 |
| Compound                           | CAS Number        | LOR              | Unit            | ES1530616-001     | ES1530616-002     | ES1530616-003     | ES1530616-004     | ES1530616-005     |
|                                    |                   |                  |                 | Result            | Result            | Result            | Result            | Result            |
| EA010P: Conductivity by PC Titrato | or                |                  |                 |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C     |                   | 1                | μS/cm           | 7880              |                   |                   |                   |                   |
| EK084: Un-ionized Hydrogen Sulfid  | le                |                  |                 |                   |                   |                   |                   |                   |
| Unionized Hydrogen Sulfide         |                   | 0.1              | mg/L            | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| EP080: BTEXN                       |                   |                  |                 |                   |                   |                   |                   |                   |
| Benzene                            | 71-43-2           | 1                | μg/L            | <1                | 46                | <1                | 26                | 23                |
| Toluene                            | 108-88-3          | 2                | μg/L            | <2                | 51                | <2                | 25                | 27                |
| Ethylbenzene                       | 100-41-4          | 2                | μg/L            | <2                | <2                | <2                | <2                | <2                |
| meta- & para-Xylene                | 108-38-3 106-42-3 | 2                | μg/L            | <2                | 14                | <2                | 5                 | 6                 |
| ortho-Xylene                       | 95-47-6           | 2                | μg/L            | <2                | 3                 | <2                | <2                | <2                |
| ^ Total Xylenes                    | 1330-20-7         | 2                | μg/L            | <2                | 17                | <2                | 5                 | 6                 |
| ^ Sum of BTEX                      |                   | 1                | μg/L            | <1                | 114               | <1                | 56                | 56                |
| Naphthalene                        | 91-20-3           | 5                | μg/L            | <5                | <5                | <5                | <5                | <5                |
| EP080S: TPH(V)/BTEX Surrogates     |                   |                  |                 |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4              | 17060-07-0        | 2                | %               | 82.5              | 79.7              | 84.2              | 82.3              | 80.8              |
| Toluene-D8                         | 2037-26-5         | 2                | %               | 105               | 103               | 104               | 101               | 107               |
| 4-Bromofluorobenzene               | 460-00-4          | 2                | %               | 108               | 108               | 108               | 107               | 108               |



# **CERTIFICATE OF ANALYSIS**

**Work Order** : **ES1530625** Page : 1 of 17

Amendment : 4

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523A QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

: 10

 Order number
 : -- Date Samples Received
 : 09-Sep-2015 15:22

 C-O-C number
 : -- Date Analysis Commenced
 : 09-Sep-2015

Sampler : ---- Issue Date : 15-Oct-2015 13:35

Site : ---No. of samples received

Quote number : ---- No. of samples analysed : 10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Page : 2 of 17

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

## Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position                 | Accreditation Category |  |
|------------------|--------------------------|------------------------|--|
| Alex Rossi       | Organic Chemist          | Sydney Organics        |  |
| Andrew Epps      | Senior Inorganic Chemist | Brisbane Organics      |  |
| Ankit Joshi      | Inorganic Chemist        | Sydney Inorganics      |  |
| Celine Conceicao | Senior Spectroscopist    | Sydney Inorganics      |  |
| Matt Frost       | Senior Organic Chemist   | Brisbane Organics      |  |
| Merrin Avery     | Supervisor - Inorganic   | Newcastle - Inorganics |  |
| Pabi Subba       | Senior Organic Chemist   | Sydney Organics        |  |

Page : 3 of 17

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

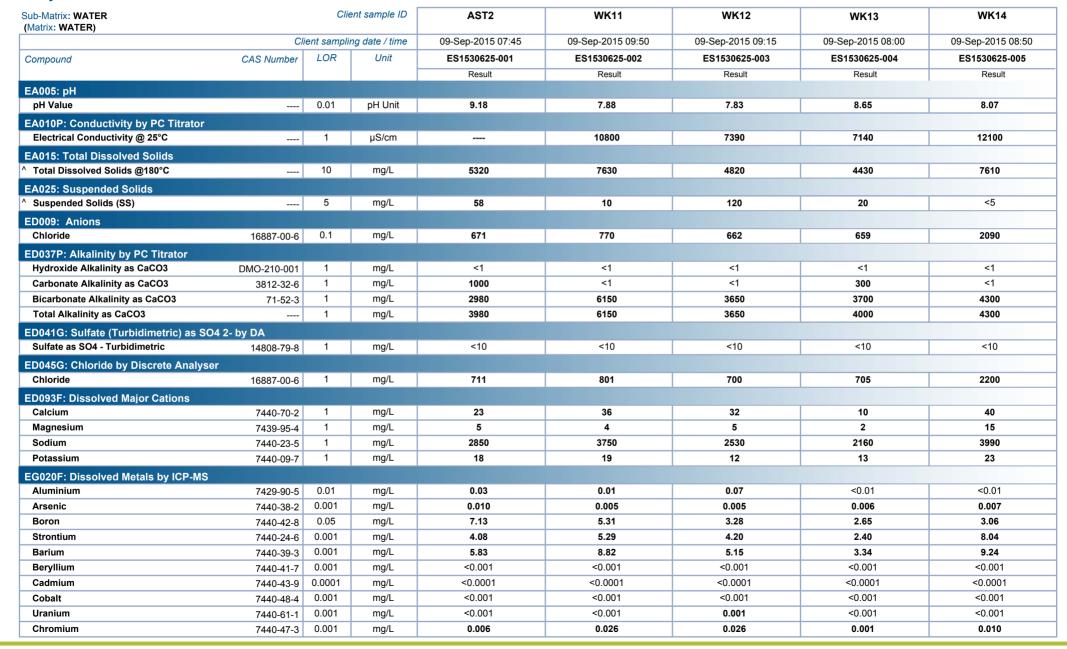
Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

- EG020: Bromine quantification may be unreliable due to its low solubility in acid, leading to variable volatility during measurement by ICPMS.
- EG020: Poor matrix spike recovery was obtained for Manganese on sample ES1530609 #008 due to matrix interference. Confirmed by reanalysis.
- Sampling date not provided. For operational reasons an assumed date/time (3pm on date of receipt) is used. Sample results may be affected if the analysis falls outside of actual holding time.
- ED041G: LOR raised for Sulfate analysis on a few samples, due to matrix interferences.
- EK055G: LOR raised for Ammonia on sample ID (ES1530625-1) due to sample matrix.
- lonic Balance out of acceptable limits due to analytes not quantified in this report.
- This report has been amended and re-released to allow the reporting of additional analytical data.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.



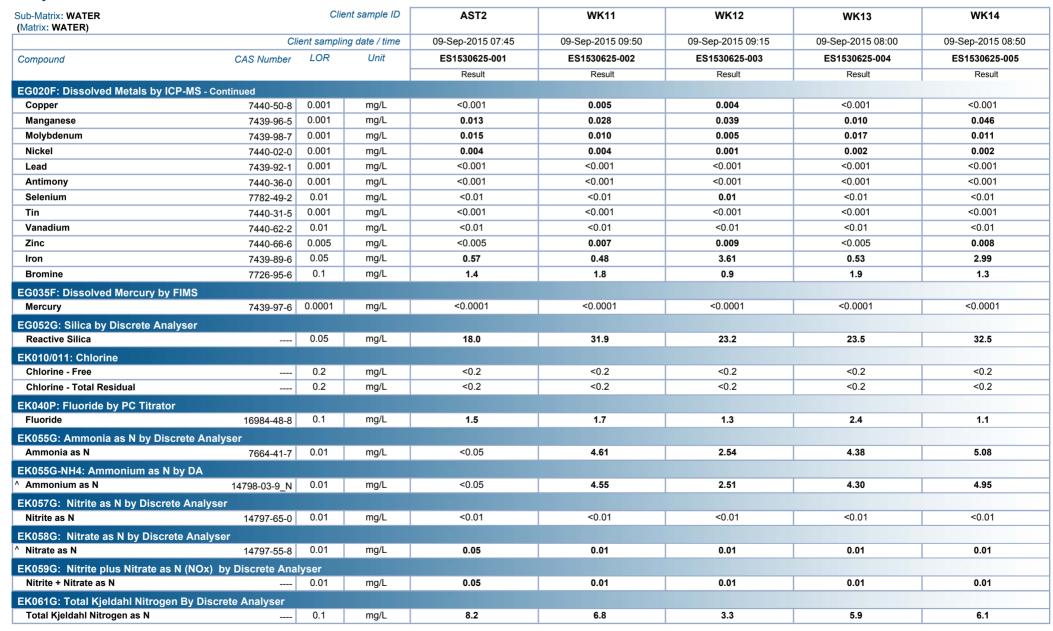

Page : 4 of 17

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





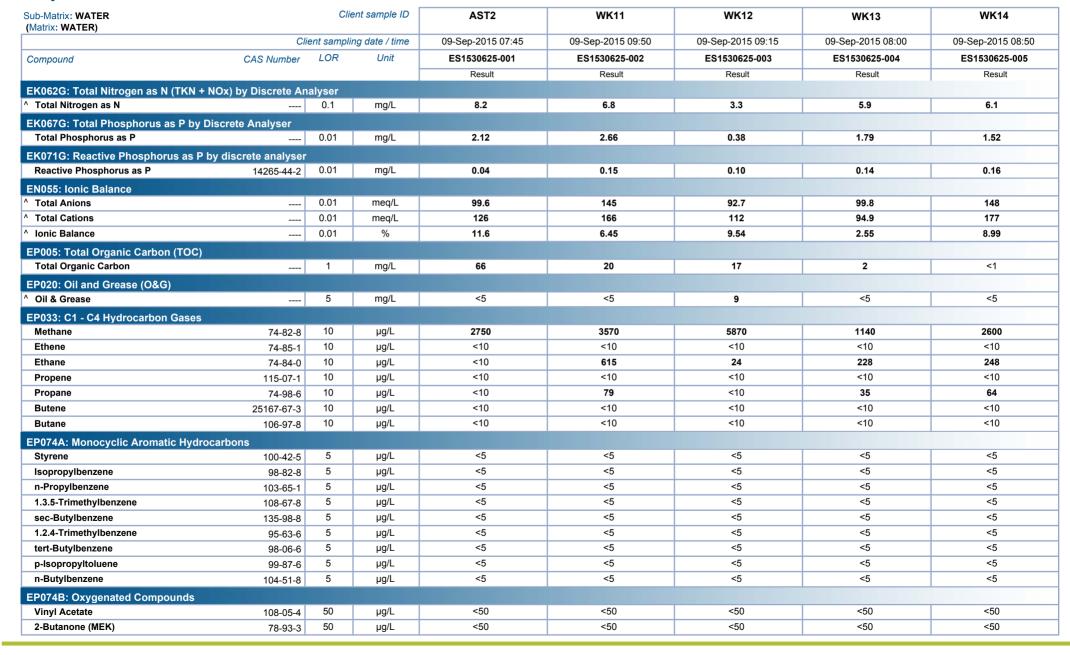

Page : 5 of 17

Work Order · ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





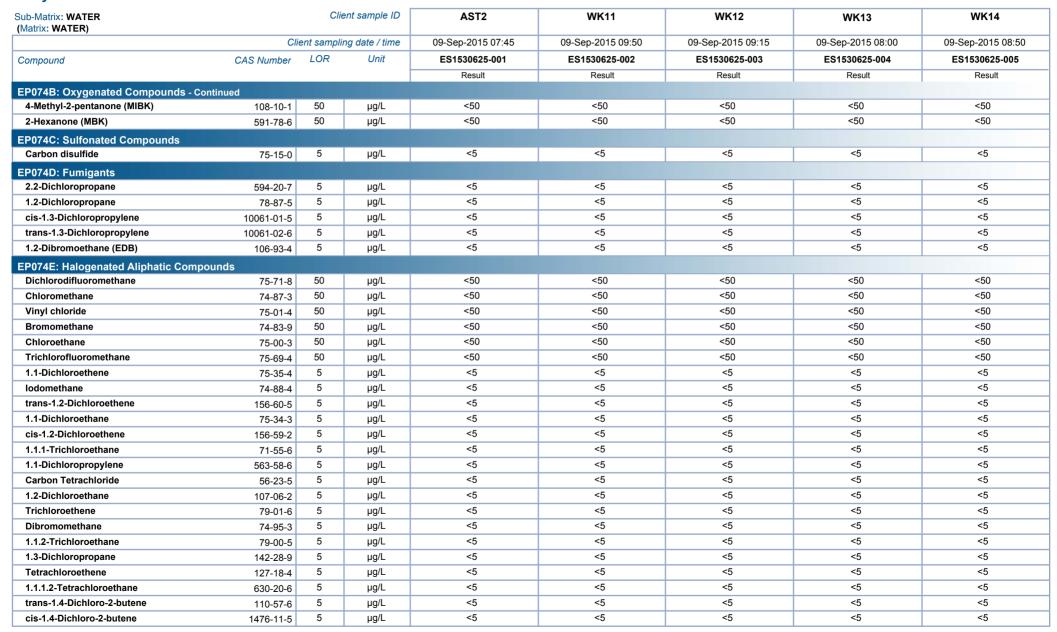

Page : 6 of 17

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





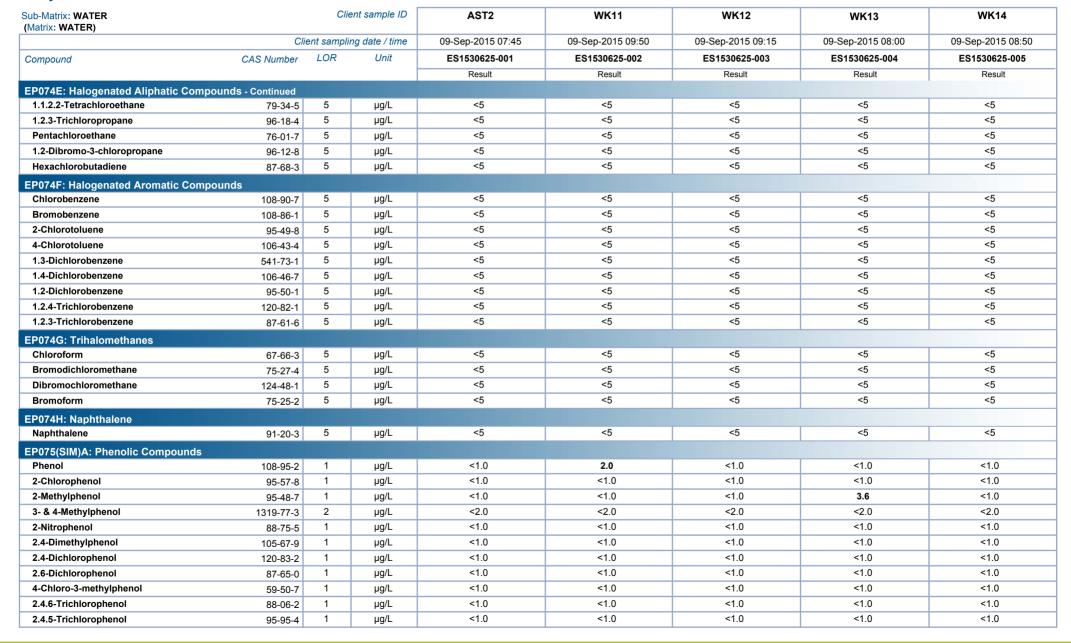

Page : 7 of 17

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





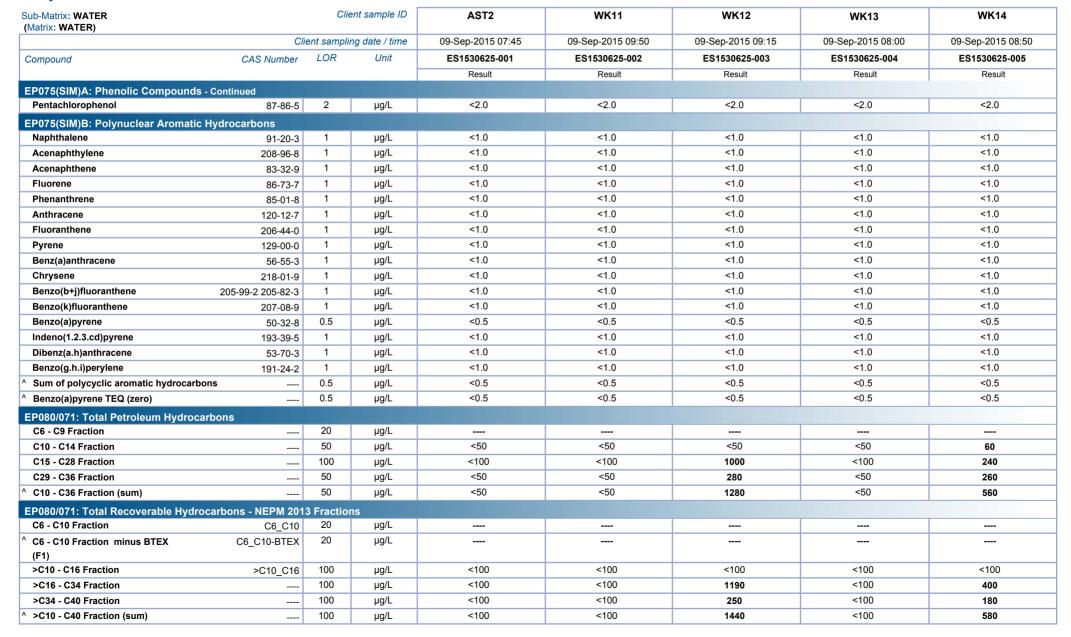

Page : 8 of 17

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





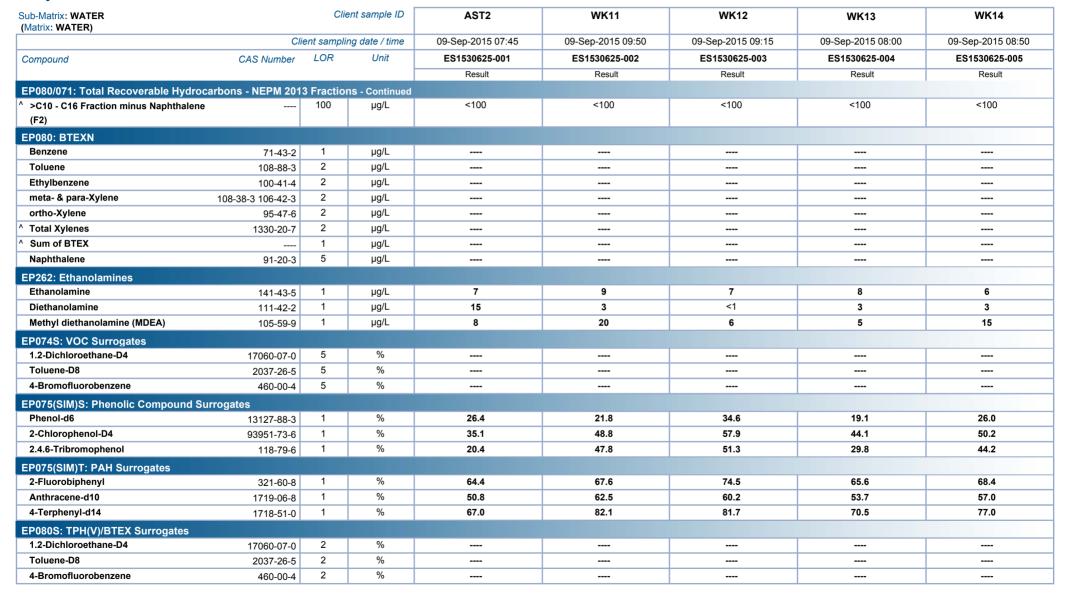

Page : 9 of 17

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





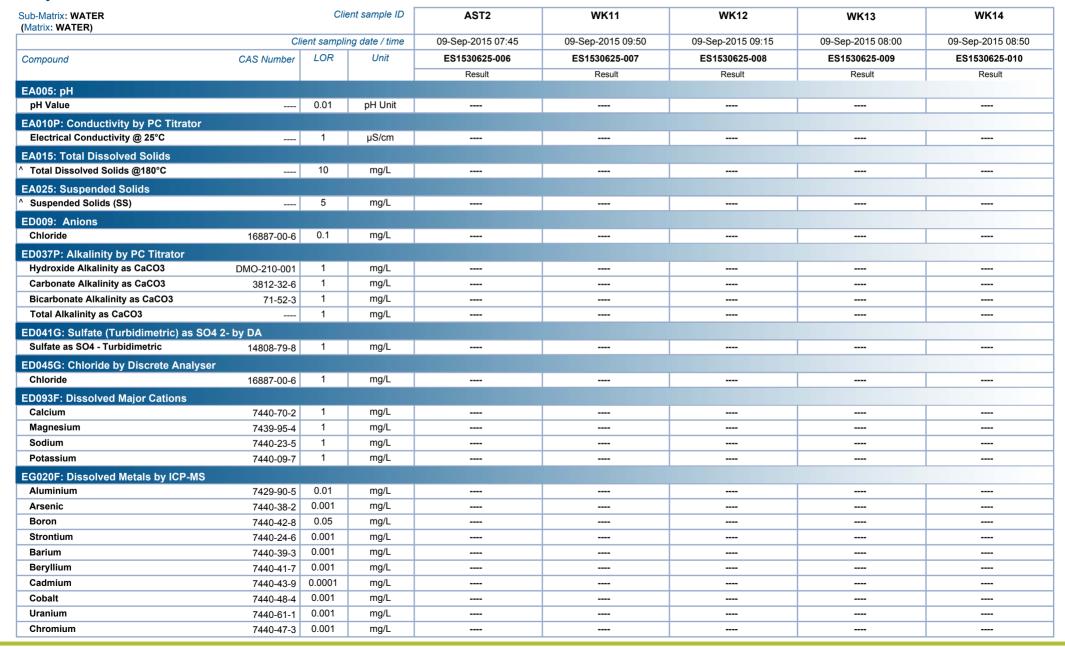

Page : 10 of 17

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





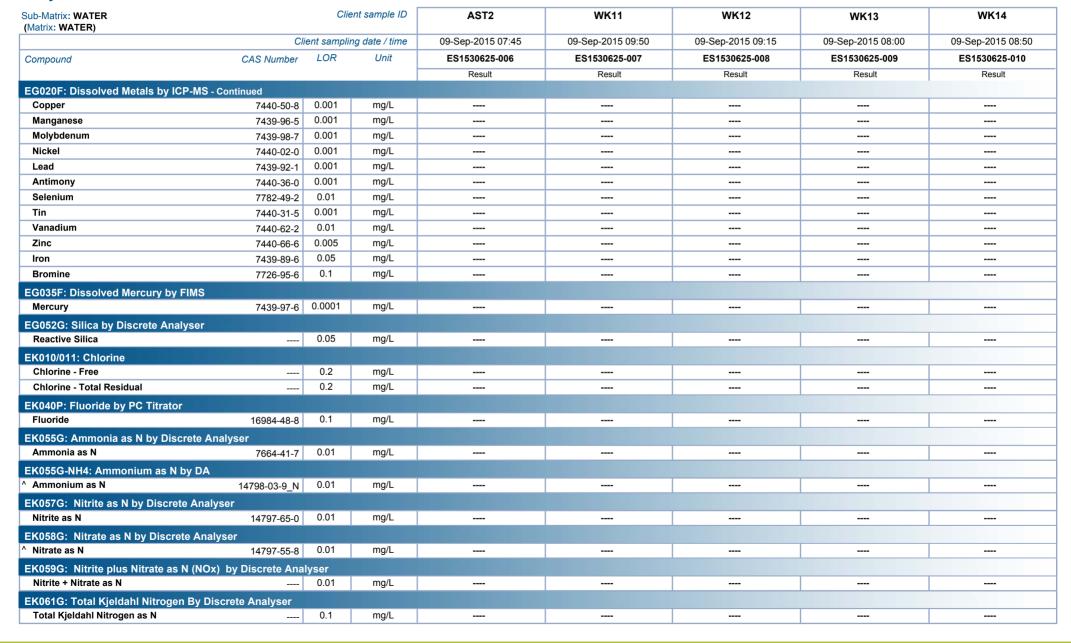

Page : 11 of 17

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





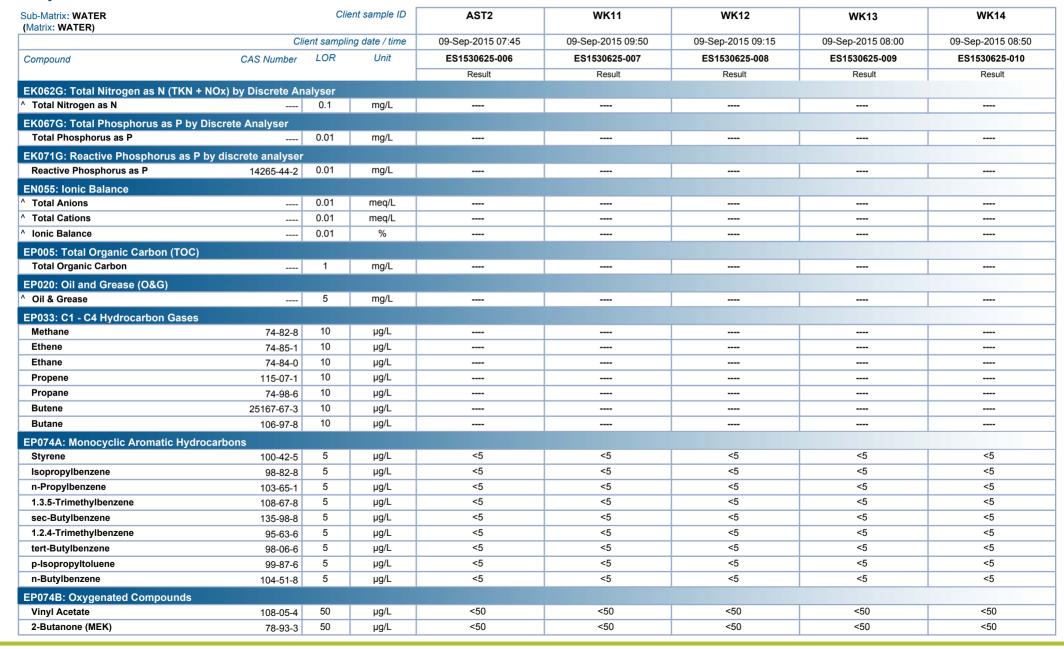

Page : 12 of 17

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





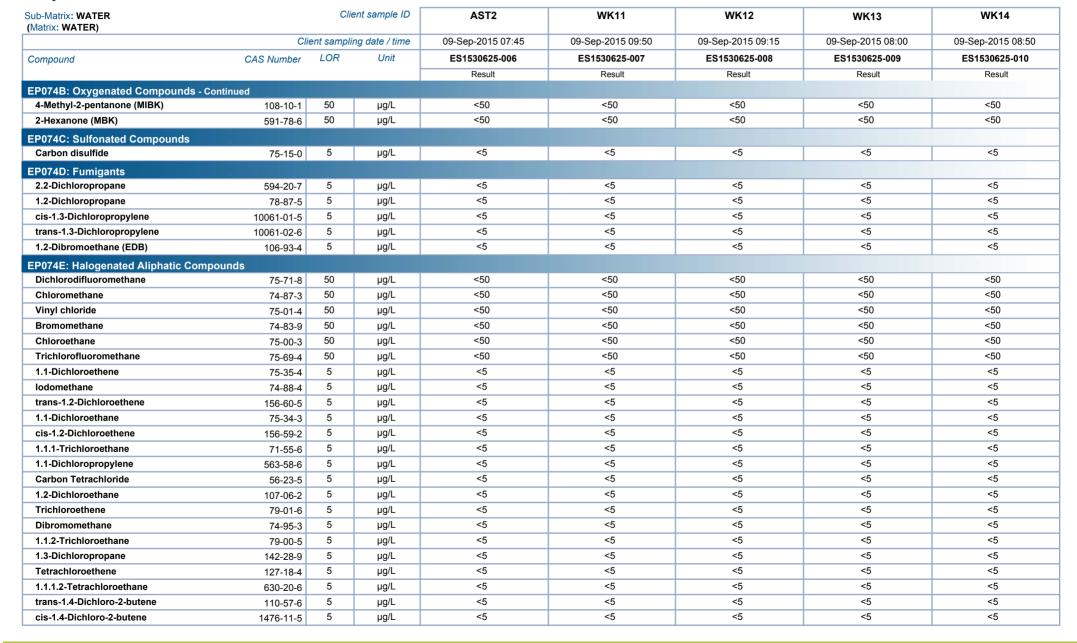

Page : 13 of 17

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





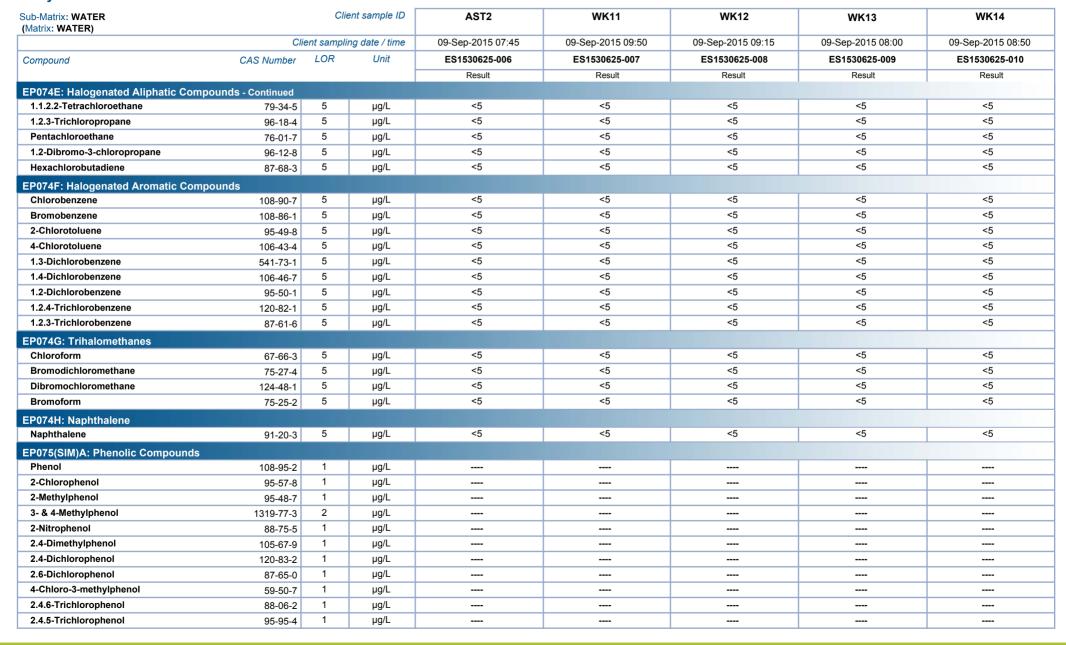

Page : 14 of 17

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





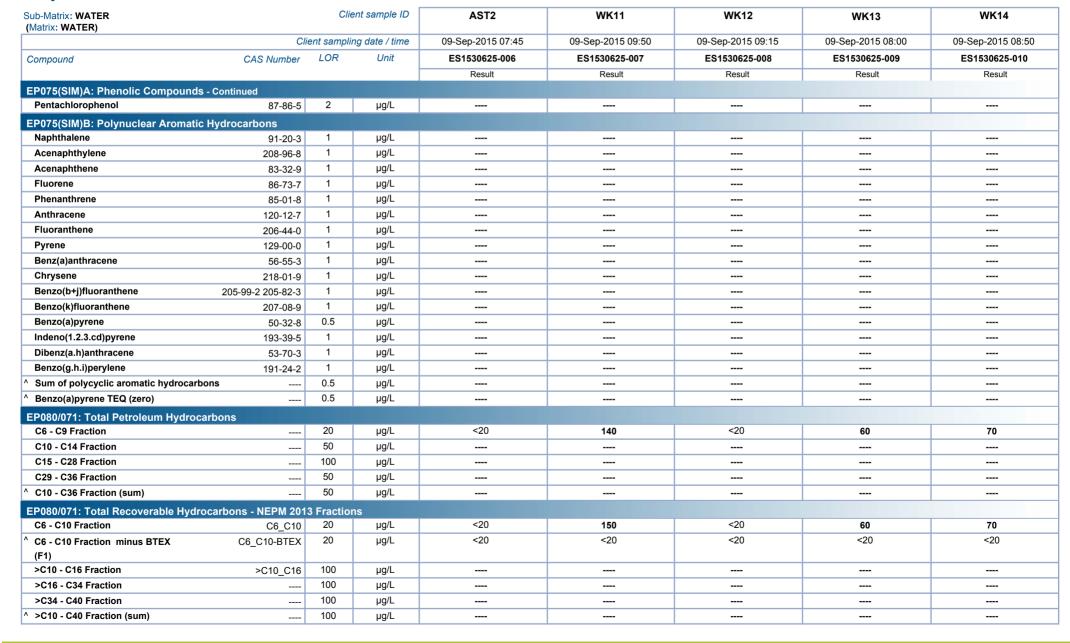

Page : 15 of 17

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





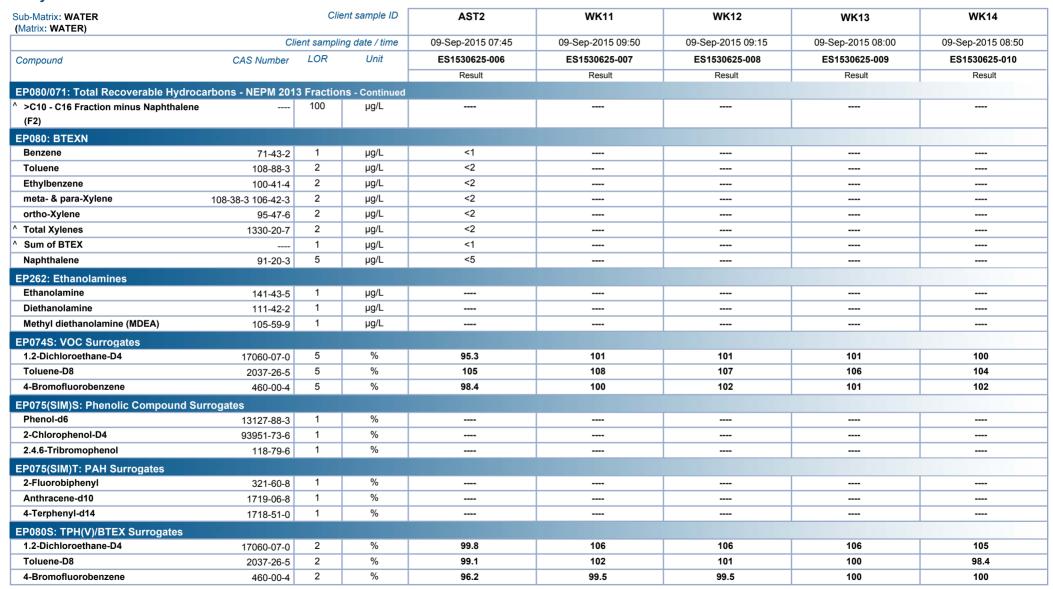

Page : 16 of 17

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A






Page : 17 of 17

Work Order : ES1530625 Amendment 4

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A







# **CERTIFICATE OF ANALYSIS**

Work Order : ES1531965 Page : 1 of 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : -- Date Samples Received
 : 23-Sep-2015 15:03

 C-O-C number
 : -- Date Analysis Commenced
 : 23-Sep-2015

Sampler : CAROLINA SARDELLA Issue Date : 24-Sep-2015 13:34

Site :----

Quote number No. of samples received : 5

Quote number No. of samples analysed · 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

#### **Signatories**

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryAnkit JoshiInorganic ChemistSydney InorganicsPabi SubbaSenior Organic ChemistSydney Organics

Page : 2 of 2 Work Order : ES1531965

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

| Sub-Matrix: WATER (Matrix: WATER)   |                   | Clie        | ent sample ID  | AST2              | WK11              | WK13              | WK14              | QA13              |
|-------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Cli               | ient sampli | ng date / time | 23-Sep-2015 07:30 | 23-Sep-2015 09:40 | 23-Sep-2015 08:15 | 23-Sep-2015 08:45 | 23-Sep-2015 08:45 |
| Compound                            | CAS Number        | LOR         | Unit           | ES1531965-001     | ES1531965-002     | ES1531965-003     | ES1531965-004     | ES1531965-005     |
|                                     |                   |             |                | Result            | Result            | Result            | Result            | Result            |
| EA010P: Conductivity by PC Titrator |                   |             |                |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C      |                   | 1           | μS/cm          | 8350              |                   |                   |                   |                   |
| EK084: Un-ionized Hydrogen Sulfide  |                   |             |                |                   |                   |                   |                   |                   |
| Unionized Hydrogen Sulfide          |                   | 0.1         | mg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| EP080: BTEXN                        |                   |             |                |                   |                   |                   |                   |                   |
| Benzene                             | 71-43-2           | 1           | μg/L           | <1                | 48                | 48                | 31                | 31                |
| Toluene                             | 108-88-3          | 2           | μg/L           | <2                | 54                | 49                | 28                | 28                |
| Ethylbenzene                        | 100-41-4          | 2           | μg/L           | <2                | <2                | <2                | <2                | <2                |
| meta- & para-Xylene                 | 108-38-3 106-42-3 | 2           | μg/L           | <2                | 13                | 9                 | 6                 | 6                 |
| ortho-Xylene                        | 95-47-6           | 2           | μg/L           | <2                | 3                 | <2                | <2                | <2                |
| ^ Total Xylenes                     | 1330-20-7         | 2           | μg/L           | <2                | 16                | 9                 | 6                 | 6                 |
| ^ Sum of BTEX                       |                   | 1           | μg/L           | <1                | 118               | 106               | 65                | 65                |
| Naphthalene                         | 91-20-3           | 5           | μg/L           | <5                | <5                | <5                | <5                | <5                |
| EP080S: TPH(V)/BTEX Surrogates      |                   |             |                |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4               | 17060-07-0        | 2           | %              | 91.4              | 93.1              | 99.2              | 98.0              | 92.3              |
| Toluene-D8                          | 2037-26-5         | 2           | %              | 125               | 117               | 114               | 118               | 113               |
| 4-Bromofluorobenzene                | 460-00-4          | 2           | %              | 108               | 107               | 108               | 108               | 102               |





# **CERTIFICATE OF ANALYSIS**

**Work Order** : **ES1532002** Page : 1 of 10

Amendment : 2

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523A QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : -- Date Samples Received
 : 23-Sep-2015 15:03

 C-O-C number
 : -- Date Analysis Commenced
 : 23-Sep-2015

 Sampler
 : -- Issue Date
 : 09-Oct-2015 10:14

Site · ----

Quote number ; ---- No. of samples received : 5

Quote number ; ---- No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Page : 2 of 10

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

## Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories        | Position                      | Accreditation Category |  |
|--------------------|-------------------------------|------------------------|--|
| Alison Graham      | Supervisor - Inorganic        | Newcastle - Inorganics |  |
| Ankit Joshi        | Inorganic Chemist             | Sydney Inorganics      |  |
| Ashesh Patel       | Inorganic Chemist             | Sydney Inorganics      |  |
| Celine Conceicao   | Senior Spectroscopist         | Sydney Inorganics      |  |
| Lana Nguyen        | Senior LCMS Chemist           | Sydney Organics        |  |
| Phalak Inthakesone | Laboratory Manager - Organics | Sydney Organics        |  |
| Shobhna Chandra    | Metals Coordinator            | Sydney Inorganics      |  |

Page : 3 of 10

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

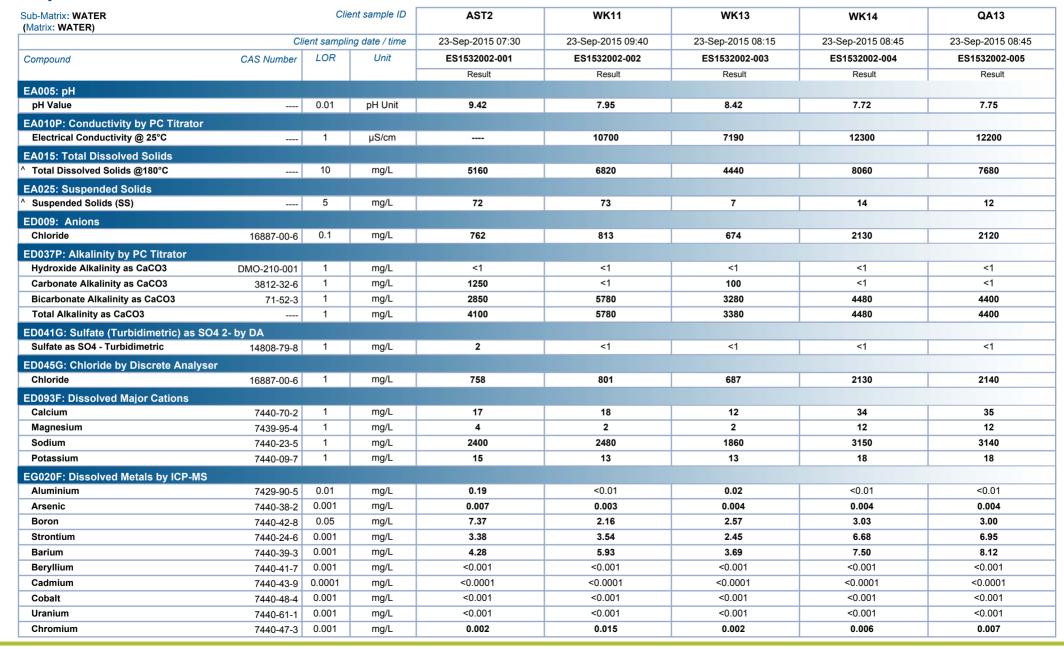
Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

- EG020: Bromine quantification may be unreliable due to its low solubility in acid, leading to variable volatility during measurement by ICPMS
- EP005: NPOC analysis was carried out due to high inorganic carbon content.
- EK059G-EK058G-EK057G: LOR raised for NOx-Nitrate-Nitrite on sample 4 & 5 due to sample matrix
- TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- Samples not received in a suitable time frame to conduct the analysis EA005 within the recommended holding time.
- This report has been amended and re-released to allow the reporting of additional analytical data.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.



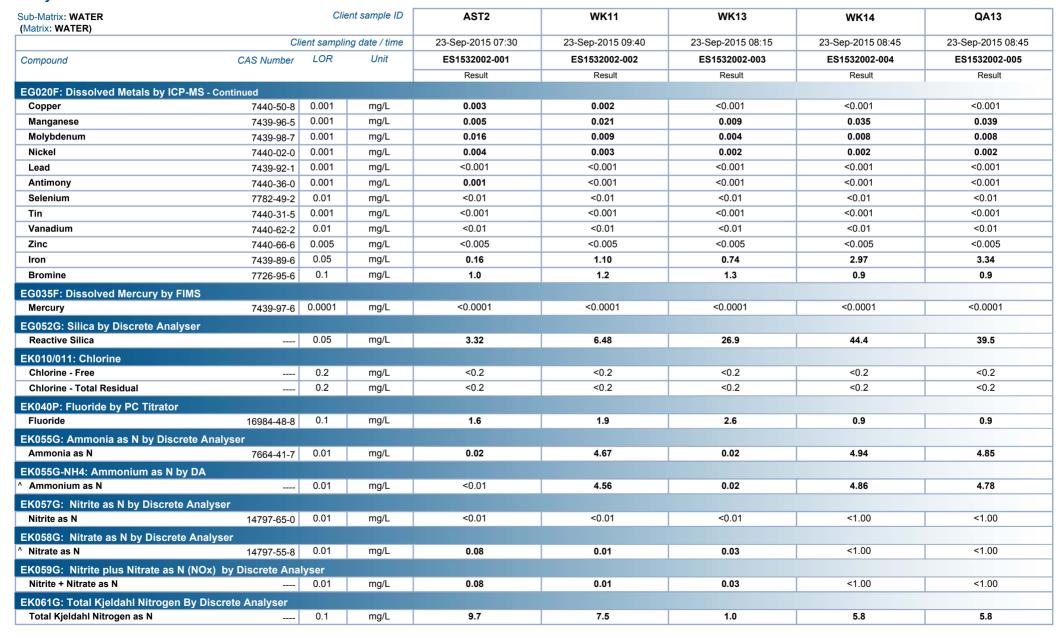

Page : 4 of 10

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A






Page : 5 of 10

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





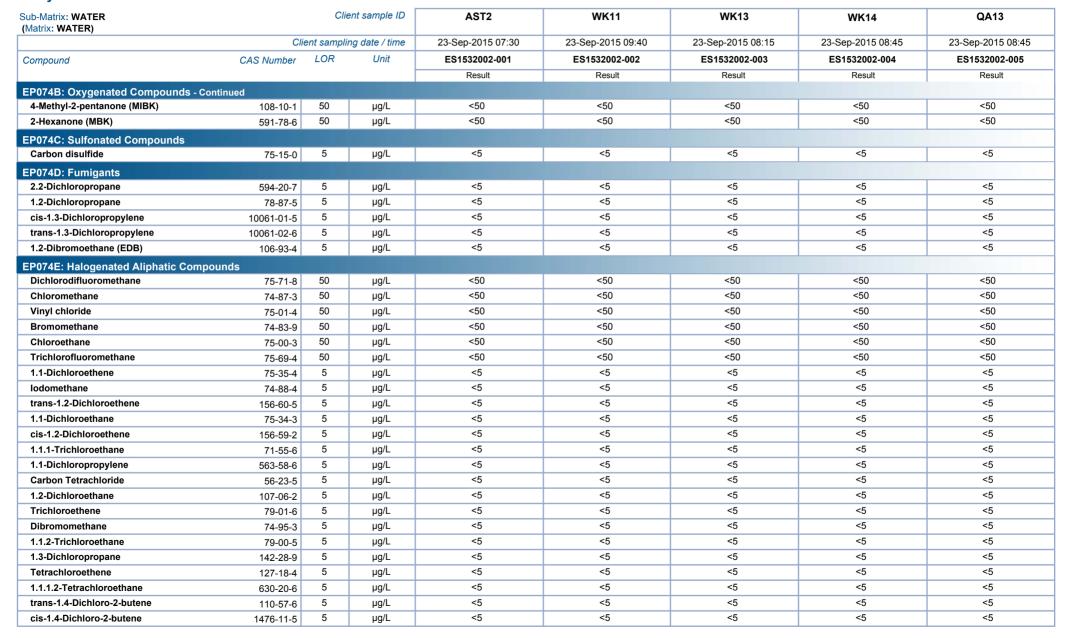

Page : 6 of 10

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





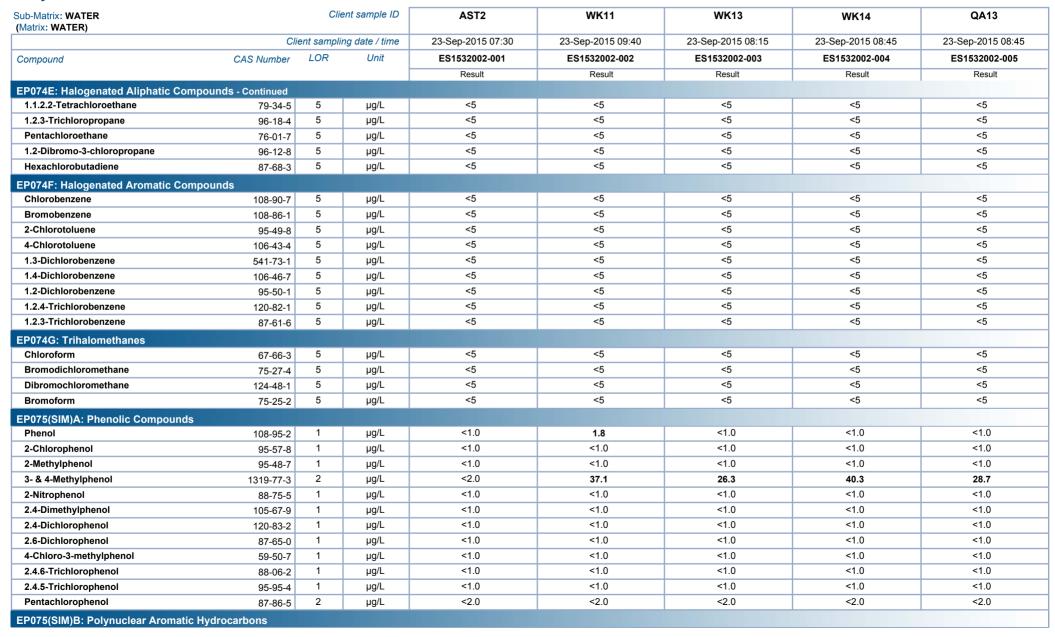

Page : 7 of 10

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A





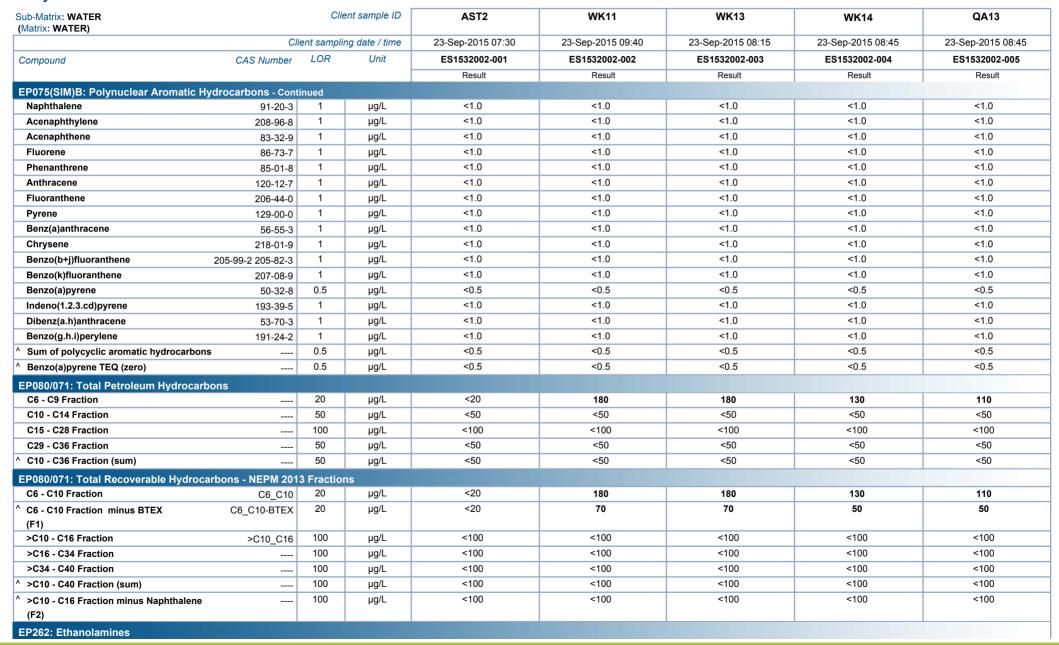

Page : 8 of 10

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A



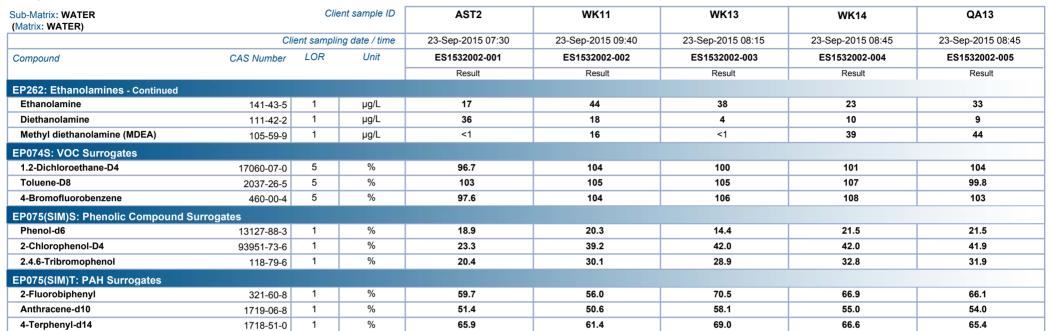



Page : 9 of 10

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A




Page : 10 of 10

Work Order : ES1532002 Amendment 2

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523A







# **CERTIFICATE OF ANALYSIS**

**Work Order** : **ES1532008** Page : 1 of 10

Amendment : 3

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : SEAN DAYKIN Contact : Loren Schiavon

Address : GPO BOX 5394 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61 2 8784 8503
Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

Project : 2268523B QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : -- Date Samples Received
 : 23-Sep-2015 15:03

 C-O-C number
 : -- Date Analysis Commenced
 : 23-Sep-2015

Sampler : ANDREW FARINA, SEAN DAYKIN Issue Date : 28-Oct-2015 10:20

Site : ----

Quote number

No. of samples received : 3

You samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Page : 2 of 10

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B





NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

## Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories        | Position                      | Accreditation Category |
|--------------------|-------------------------------|------------------------|
| Alison Graham      | Supervisor - Inorganic        | Newcastle - Inorganics |
| Ankit Joshi        | Inorganic Chemist             | Sydney Inorganics      |
| Ashesh Patel       | Inorganic Chemist             | Sydney Inorganics      |
| Celine Conceicao   | Senior Spectroscopist         | Sydney Inorganics      |
| Phalak Inthakesone | Laboratory Manager - Organics | Sydney Organics        |
| Shobhna Chandra    | Metals Coordinator            | Sydney Inorganics      |

Page : 3 of 10

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

- EG020: Bromine quantification may be unreliable due to its low solubility in acid, leading to variable volatility during measurement by ICPMS
- Samples #2 and #3 not received in a suitable time frame to conduct the analysis EA005 within the recommended holding time.
- This report has been amended and re-released to allow the reporting of additional analytical data, specifically Tin via EG020 analysis.
- This report has been amended and re-released to allow the reporting of additional analytical data (tin on all three samples)
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.



Page : 4 of 10

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

Cadmium

Cobalt

Uranium

Chromium

7440-43-9

7440-48-4

7440-61-1

7440-47-3

0.0001

0.001

0.001

0.001

mg/L

mg/L

mg/L

mg/L

< 0.0001

< 0.001

< 0.001

< 0.001

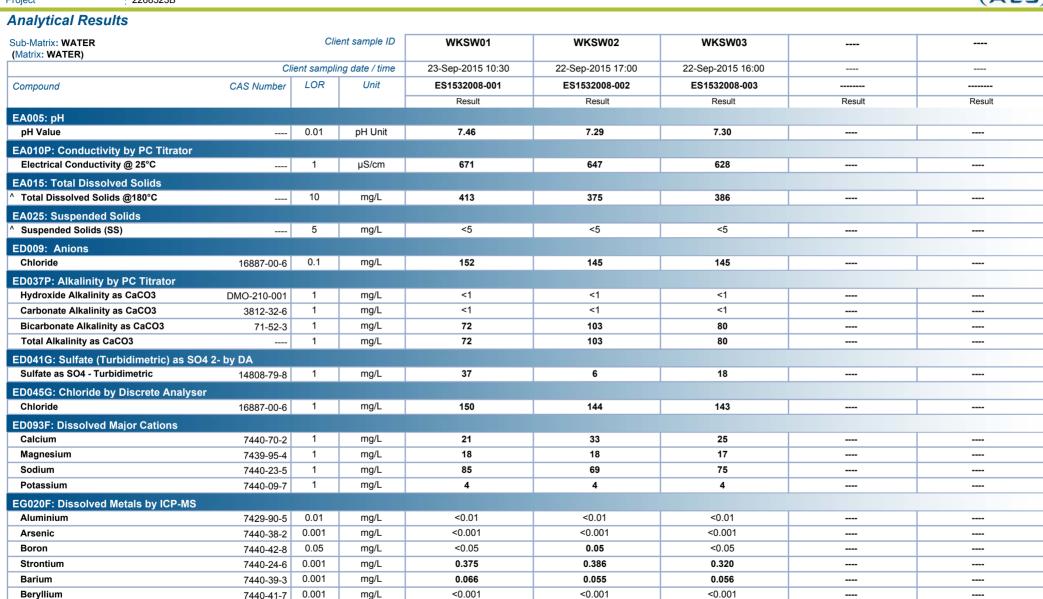
< 0.0001

< 0.001

< 0.001

< 0.001

< 0.0001


< 0.001

< 0.001

< 0.001

----

----





: 5 of 10 : ES1532008 Amendment 3 Work Order

: PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



| Sub-Matrix: WATER<br>(Matrix: WATER)                        |                      | Clie        | ent sample ID  | WKSW01            | WKSW02            | WKSW03            |        |        |
|-------------------------------------------------------------|----------------------|-------------|----------------|-------------------|-------------------|-------------------|--------|--------|
| ·                                                           | Cl                   | ient sampli | ng date / time | 23-Sep-2015 10:30 | 22-Sep-2015 17:00 | 22-Sep-2015 16:00 |        |        |
| Compound                                                    | CAS Number           | LOR         | Unit           | ES1532008-001     | ES1532008-002     | ES1532008-003     |        |        |
|                                                             |                      |             |                | Result            | Result            | Result            | Result | Result |
| EG020F: Dissolved Metals by ICP-                            | MS - Continued       |             |                |                   |                   |                   |        |        |
| Copper                                                      | 7440-50-8            | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Manganese                                                   | 7439-96-5            | 0.001       | mg/L           | 0.371             | 0.305             | 0.288             |        |        |
| Molybdenum                                                  | 7439-98-7            | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Nickel                                                      | 7440-02-0            | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Lead                                                        | 7439-92-1            | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Antimony                                                    | 7440-36-0            | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Selenium                                                    | 7782-49-2            | 0.01        | mg/L           | <0.01             | <0.01             | <0.01             |        |        |
| Tin                                                         | 7440-31-5            | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            |        |        |
| Vanadium                                                    | 7440-62-2            | 0.01        | mg/L           | <0.01             | <0.01             | <0.01             |        |        |
| Zinc                                                        | 7440-66-6            | 0.005       | mg/L           | <0.005            | <0.005            | <0.005            |        |        |
| Iron                                                        | 7439-89-6            | 0.05        | mg/L           | 0.11              | 0.10              | 0.18              |        |        |
| Bromine                                                     | 7726-95-6            | 0.1         | mg/L           | 0.3               | 0.2               | 0.2               |        |        |
| G035F: Dissolved Mercury by FIN                             | MS                   |             |                |                   |                   |                   |        |        |
| Mercury                                                     | 7439-97-6            | 0.0001      | mg/L           | <0.0001           | <0.0001           | <0.0001           |        |        |
| EG052G: Silica by Discrete Analys                           | er                   |             |                |                   |                   |                   |        |        |
| Reactive Silica                                             |                      | 0.05        | mg/L           | 3.08              | 3.66              | 2.65              |        |        |
|                                                             |                      |             |                |                   |                   |                   |        |        |
| Chlorine - Free                                             |                      | 0.2         | mg/L           | <0.2              | <0.2              | <0.2              |        |        |
| Chlorine - Total Residual                                   |                      | 0.2         | mg/L           | <0.2              | <0.2              | <0.2              |        |        |
| K040P: Fluoride by PC Titrator                              |                      |             |                |                   |                   |                   |        |        |
| Fluoride                                                    | 16984-48-8           | 0.1         | mg/L           | <0.1              | 0.2               | 0.1               |        |        |
| K055G: Ammonia as N by Discre                               |                      |             |                |                   |                   |                   |        |        |
| Ammonia as N                                                | 7664-41-7            | 0.01        | mg/L           | 0.03              | 0.01              | 3.95              |        |        |
| EK055G-NH4: Ammonium as N by                                |                      |             | J              |                   |                   |                   |        |        |
| Ammonium as N                                               | 14798-03-9_N         | 0.01        | mg/L           | 0.03              | <0.01             | 3.34              |        |        |
| EK057G: Nitrite as N by Discrete                            |                      |             | J              |                   |                   |                   |        |        |
| Nitrite as N                                                | 14797-65-0           | 0.01        | mg/L           | <0.01             | <0.01             | <0.01             |        |        |
|                                                             |                      | 0.01        | 9, =           | .0.01             | -0.01             | -0.01             |        |        |
| EK058G: Nitrate as N by Discrete Nitrate as N               | 14797-55-8           | 0.01        | mg/L           | 0.03              | 0.04              | 0,15              |        |        |
|                                                             |                      |             | IIIg/L         | 0.03              | U.U4              | 0.15              |        |        |
| EK059G: Nitrite plus Nitrate as N<br>Nitrite + Nitrate as N |                      |             | ma"            | 0.00              | 0.04              | 0.45              |        | I      |
|                                                             |                      | 0.01        | mg/L           | 0.03              | 0.04              | 0.15              |        |        |
| EK061G: Total Kjeldahl Nitrogen E                           | By Discrete Analyser |             |                |                   |                   |                   |        |        |
| Total Kjeldahl Nitrogen as N                                |                      | 0.1         | mg/L           | 0.5               | 0.3               | 5.7               |        |        |

Page : 6 of 10

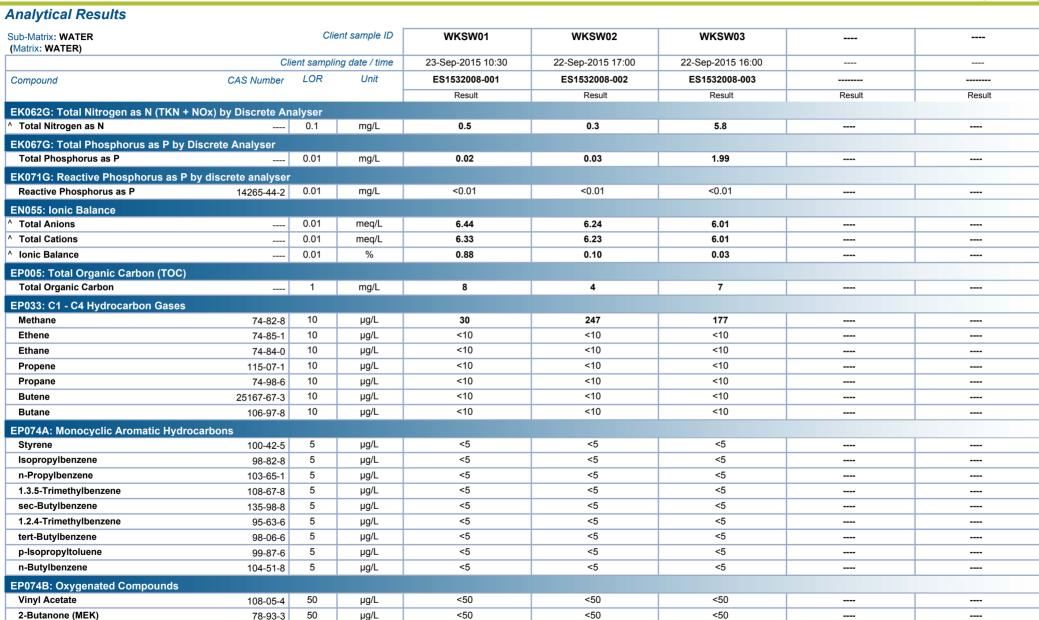
Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

4-Methyl-2-pentanone (MIBK)

2-Hexanone (MBK)


50

μg/L

μg/L

108-10-1

591-78-6



<50

<50

<50

<50

<50

<50

----

----



: 7 of 10 : ES1532008 Amendment 3 Work Order

: PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



| Sub-Matrix: WATER<br>(Matrix: WATER) |            | Clie        | ent sample ID  | WKSW01            | WKSW02            | WKSW03            |        |        |
|--------------------------------------|------------|-------------|----------------|-------------------|-------------------|-------------------|--------|--------|
|                                      | Cli        | ent samplii | ng date / time | 23-Sep-2015 10:30 | 22-Sep-2015 17:00 | 22-Sep-2015 16:00 |        |        |
| Compound                             | CAS Number | LOR         | Unit           | ES1532008-001     | ES1532008-002     | ES1532008-003     |        |        |
| •                                    |            |             |                | Result            | Result            | Result            | Result | Result |
| EP074C: Sulfonated Compounds         |            |             |                |                   |                   |                   |        |        |
| Carbon disulfide                     | 75-15-0    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| EP074D: Fumigants                    |            |             |                |                   |                   |                   |        |        |
| 2.2-Dichloropropane                  | 594-20-7   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.2-Dichloropropane                  | 78-87-5    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| cis-1.3-Dichloropropylene            | 10061-01-5 | 5           | μg/L           | <5                | <5                | <5                |        |        |
| trans-1.3-Dichloropropylene          | 10061-02-6 | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.2-Dibromoethane (EDB)              | 106-93-4   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| EP074E: Halogenated Aliphatic Compo  |            |             |                |                   |                   |                   |        |        |
| Dichlorodifluoromethane              | 75-71-8    | 50          | μg/L           | <50               | <50               | <50               |        |        |
| Chloromethane                        | 74-87-3    | 50          | μg/L           | <50               | <50               | <50               |        |        |
| Vinyl chloride                       | 75-01-4    | 50          | μg/L           | <50               | <50               | <50               |        |        |
| Bromomethane                         | 74-83-9    | 50          | μg/L           | <50               | <50               | <50               |        |        |
| Chloroethane                         | 75-00-3    | 50          | μg/L           | <50               | <50               | <50               |        |        |
| Trichlorofluoromethane               | 75-69-4    | 50          | μg/L           | <50               | <50               | <50               |        |        |
| 1.1-Dichloroethene                   | 75-35-4    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| lodomethane                          | 74-88-4    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| trans-1.2-Dichloroethene             | 156-60-5   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.1-Dichloroethane                   | 75-34-3    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| cis-1.2-Dichloroethene               | 156-59-2   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.1.1-Trichloroethane                | 71-55-6    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.1-Dichloropropylene                | 563-58-6   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| Carbon Tetrachloride                 | 56-23-5    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.2-Dichloroethane                   | 107-06-2   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| Trichloroethene                      | 79-01-6    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| Dibromomethane                       | 74-95-3    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.1.2-Trichloroethane                | 79-00-5    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.3-Dichloropropane                  | 142-28-9   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| Tetrachloroethene                    | 127-18-4   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.1.1.2-Tetrachloroethane            | 630-20-6   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| trans-1.4-Dichloro-2-butene          | 110-57-6   | 5           | μg/L           | <5                | <5                | <5                |        |        |
| cis-1.4-Dichloro-2-butene            | 1476-11-5  | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.1.2.2-Tetrachloroethane            | 79-34-5    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| 1.2.3-Trichloropropane               | 96-18-4    | 5           | μg/L           | <5                | <5                | <5                |        |        |
| Pentachloroethane                    | 76-01-7    | 5           | μg/L           | <5                | <5                | <5                |        |        |

: 8 of 10 : ES1532008 Amendment 3 Work Order

: PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



| Sub-Matrix: WATER<br>(Matrix: WATER) |                    | Clie                        | ent sample ID | WKSW01        | WKSW02            | WKSW03            |        |        |
|--------------------------------------|--------------------|-----------------------------|---------------|---------------|-------------------|-------------------|--------|--------|
|                                      | Clie               | Client sampling date / time |               |               | 22-Sep-2015 17:00 | 22-Sep-2015 16:00 |        |        |
| Compound                             | CAS Number         | LOR                         | Unit          | ES1532008-001 | ES1532008-002     | ES1532008-003     |        |        |
|                                      |                    |                             |               | Result        | Result            | Result            | Result | Result |
| EP074E: Halogenated Aliphatic Com    | pounds - Continued |                             |               |               |                   |                   |        |        |
| 1.2-Dibromo-3-chloropropane          | 96-12-8            | 5                           | μg/L          | <5            | <5                | <5                |        |        |
| Hexachlorobutadiene                  | 87-68-3            | 5                           | μg/L          | <5            | <5                | <5                |        |        |
| EP074F: Halogenated Aromatic Com     | pounds             |                             |               |               |                   |                   |        |        |
| Chlorobenzene                        | 108-90-7           | 5                           | μg/L          | <5            | <5                | <5                |        |        |
| Bromobenzene                         | 108-86-1           | 5                           | μg/L          | <5            | <5                | <5                |        |        |
| 2-Chlorotoluene                      | 95-49-8            | 5                           | μg/L          | <5            | <5                | <5                |        |        |
| 4-Chlorotoluene                      | 106-43-4           | 5                           | μg/L          | <5            | <5                | <5                |        |        |
| 1.3-Dichlorobenzene                  | 541-73-1           | 5                           | μg/L          | <5            | <5                | <5                |        |        |
| 1.4-Dichlorobenzene                  | 106-46-7           | 5                           | μg/L          | <5            | <5                | <5                |        |        |
| 1.2-Dichlorobenzene                  | 95-50-1            | 5                           | μg/L          | <5            | <5                | <5                |        |        |
| 1.2.4-Trichlorobenzene               | 120-82-1           | 5                           | μg/L          | <5            | <5                | <5                |        |        |
| 1.2.3-Trichlorobenzene               | 87-61-6            | 5                           | μg/L          | <5            | <5                | <5                |        |        |
| EP074G: Trihalomethanes              |                    |                             |               |               |                   |                   |        |        |
| Chloroform                           | 67-66-3            | 5                           | μg/L          | <5            | <5                | <5                |        |        |
| Bromodichloromethane                 | 75-27-4            | 5                           | μg/L          | <5            | <5                | <5                |        |        |
| Dibromochloromethane                 | 124-48-1           | 5                           | μg/L          | <5            | <5                | <5                |        |        |
| Bromoform                            | 75-25-2            | 5                           | μg/L          | <5            | <5                | <5                |        |        |
| EP075(SIM)A: Phenolic Compounds      |                    |                             |               |               |                   |                   |        |        |
| Phenol                               | 108-95-2           | 1                           | μg/L          | <1.0          | <1.0              | <1.0              |        |        |
| 2-Chlorophenol                       | 95-57-8            | 1                           | μg/L          | <1.0          | <1.0              | <1.0              |        |        |
| 2-Methylphenol                       | 95-48-7            | 1                           | μg/L          | <1.0          | <1.0              | <1.0              |        |        |
| 3- & 4-Methylphenol                  | 1319-77-3          | 2                           | μg/L          | <2.0          | <2.0              | <2.0              |        |        |
| 2-Nitrophenol                        | 88-75-5            | 1                           | μg/L          | <1.0          | <1.0              | <1.0              |        |        |
| 2.4-Dimethylphenol                   | 105-67-9           | 1                           | μg/L          | <1.0          | <1.0              | <1.0              |        |        |
| 2.4-Dichlorophenol                   | 120-83-2           | 1                           | μg/L          | <1.0          | <1.0              | <1.0              |        |        |
| 2.6-Dichlorophenol                   | 87-65-0            | 1                           | μg/L          | <1.0          | <1.0              | <1.0              |        |        |
| 4-Chloro-3-methylphenol              | 59-50-7            | 1                           | μg/L          | <1.0          | <1.0              | <1.0              |        |        |
| 2.4.6-Trichlorophenol                | 88-06-2            | 1                           | μg/L          | <1.0          | <1.0              | <1.0              |        |        |
| 2.4.5-Trichlorophenol                | 95-95-4            | 1                           | μg/L          | <1.0          | <1.0              | <1.0              |        |        |
| Pentachlorophenol                    | 87-86-5            | 2                           | μg/L          | <2.0          | <2.0              | <2.0              |        |        |
| EP075(SIM)B: Polynuclear Aromatic    | Hydrocarbons       |                             |               |               |                   |                   |        |        |
| Naphthalene                          | 91-20-3            | 1                           | μg/L          | <1.0          | <1.0              | <1.0              |        |        |
| Acenaphthylene                       | 208-96-8           | 1                           | μg/L          | <1.0          | <1.0              | <1.0              |        |        |
| Acenaphthene                         | 83-32-9            | 1                           | μg/L          | <1.0          | <1.0              | <1.0              |        |        |

9 of 10 ES1532008 Amendment 3 Work Order

: PARSONS BRINCKERHOFF AUST P/L Client

2268523B Project



| Sub-Matrix: WATER<br>(Matrix: WATER)   | Client sample ID   |                             | WKSW01 | WKSW02            | WKSW03            |                   |        |        |
|----------------------------------------|--------------------|-----------------------------|--------|-------------------|-------------------|-------------------|--------|--------|
| ·                                      | Cli                | Client sampling date / time |        | 23-Sep-2015 10:30 | 22-Sep-2015 17:00 | 22-Sep-2015 16:00 |        |        |
| ompound                                | CAS Number         | LOR                         | Unit   | ES1532008-001     | ES1532008-002     | ES1532008-003     |        |        |
| ·                                      |                    |                             | ŀ      | Result            | Result            | Result            | Result | Result |
| P075(SIM)B: Polynuclear Aromatic H     | ydrocarbons - Cont | inued                       |        |                   |                   |                   |        |        |
| Fluorene                               | 86-73-7            | 1                           | μg/L   | <1.0              | <1.0              | <1.0              |        |        |
| Phenanthrene                           | 85-01-8            | 1                           | μg/L   | <1.0              | <1.0              | <1.0              |        |        |
| Anthracene                             | 120-12-7           | 1                           | μg/L   | <1.0              | <1.0              | <1.0              |        |        |
| Fluoranthene                           | 206-44-0           | 1                           | μg/L   | <1.0              | <1.0              | <1.0              |        |        |
| Pyrene                                 | 129-00-0           | 1                           | μg/L   | <1.0              | <1.0              | <1.0              |        |        |
| Benz(a)anthracene                      | 56-55-3            | 1                           | μg/L   | <1.0              | <1.0              | <1.0              |        |        |
| Chrysene                               | 218-01-9           | 1                           | μg/L   | <1.0              | <1.0              | <1.0              |        |        |
| Benzo(b+j)fluoranthene                 | 205-99-2 205-82-3  | 1                           | μg/L   | <1.0              | <1.0              | <1.0              |        |        |
| Benzo(k)fluoranthene                   | 207-08-9           | 1                           | μg/L   | <1.0              | <1.0              | <1.0              |        |        |
| Benzo(a)pyrene                         | 50-32-8            | 0.5                         | μg/L   | <0.5              | <0.5              | <0.5              |        |        |
| Indeno(1.2.3.cd)pyrene                 | 193-39-5           | 1                           | μg/L   | <1.0              | <1.0              | <1.0              |        |        |
| Dibenz(a.h)anthracene                  | 53-70-3            | 1                           | μg/L   | <1.0              | <1.0              | <1.0              |        |        |
| Benzo(g.h.i)perylene                   | 191-24-2           | 1                           | μg/L   | <1.0              | <1.0              | <1.0              |        |        |
| Sum of polycyclic aromatic hydrocarbon | s                  | 0.5                         | μg/L   | <0.5              | <0.5              | <0.5              |        |        |
| Benzo(a)pyrene TEQ (zero)              |                    | 0.5                         | μg/L   | <0.5              | <0.5              | <0.5              |        |        |
| P080/071: Total Petroleum Hydrocark    | oons               |                             |        |                   |                   |                   |        |        |
| C6 - C9 Fraction                       |                    | 20                          | μg/L   | <20               | <20               | <20               |        |        |
| C10 - C14 Fraction                     |                    | 50                          | μg/L   | <50               | <50               | <50               |        |        |
| C15 - C28 Fraction                     |                    | 100                         | μg/L   | <100              | <100              | <100              |        |        |
| C29 - C36 Fraction                     |                    | 50                          | μg/L   | <50               | <50               | <50               |        |        |
| C10 - C36 Fraction (sum)               |                    | 50                          | μg/L   | <50               | <50               | <50               |        |        |
| P080/071: Total Recoverable Hydroca    | arbons - NEPM 201  | 3 Fraction                  |        |                   |                   |                   |        |        |
| C6 - C10 Fraction                      | C6 C10             | 20                          | μg/L   | <20               | <20               | <20               |        |        |
| C6 - C10 Fraction minus BTEX (F1)      | C6_C10-BTEX        | 20                          | μg/L   | <20               | <20               | <20               |        |        |
| >C10 - C16 Fraction                    | >C10_C16           | 100                         | μg/L   | <100              | <100              | <100              |        |        |
| >C16 - C34 Fraction                    |                    | 100                         | μg/L   | <100              | <100              | <100              |        |        |
| >C34 - C40 Fraction                    |                    | 100                         | μg/L   | <100              | <100              | <100              |        |        |
| >C10 - C40 Fraction (sum)              |                    | 100                         | μg/L   | <100              | <100              | <100              |        |        |
| >C10 - C16 Fraction minus Naphthalene  |                    | 100                         | μg/L   | <100              | <100              | <100              |        |        |
| (F2)                                   |                    |                             |        |                   |                   |                   |        |        |
| P080: BTEXN                            |                    |                             |        |                   |                   |                   |        |        |
| Benzene                                | 71-43-2            | 1                           | μg/L   | <1                | <1                | <1                |        |        |
| Toluene                                | 108-88-3           | 2                           | μg/L   | <2                | <2                | <2                |        |        |
| Ethylbenzene                           | 100-41-4           | 2                           | μg/L   | <2                | <2                | <2                |        |        |

Page : 10 of 10

Work Order : ES1532008 Amendment 3

Client : PARSONS BRINCKERHOFF AUST P/L

Project : 2268523B

## **Analytical Results**

1.2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

2

2

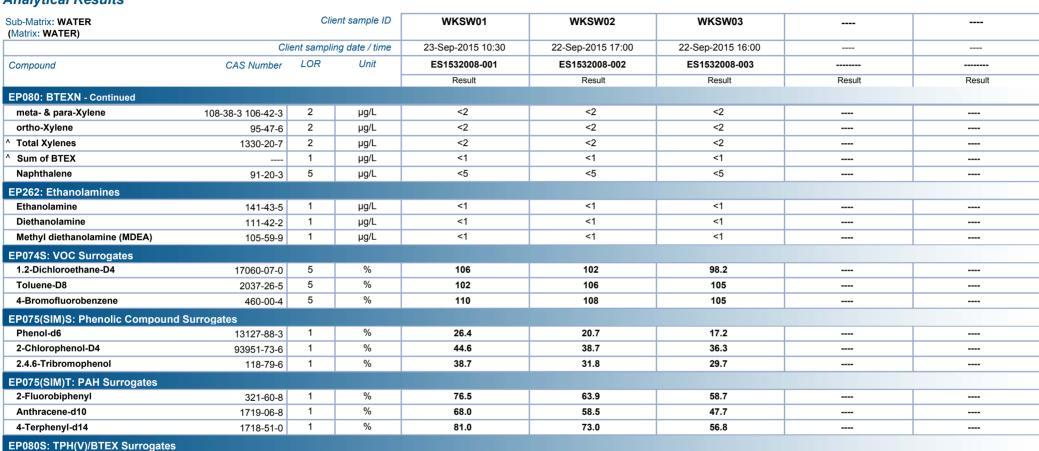
2

17060-07-0

2037-26-5

460-00-4

%


%

%

100

104

115

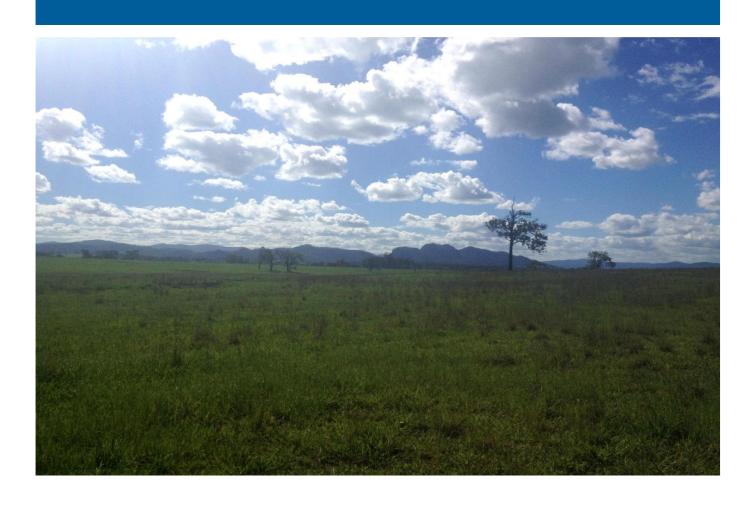


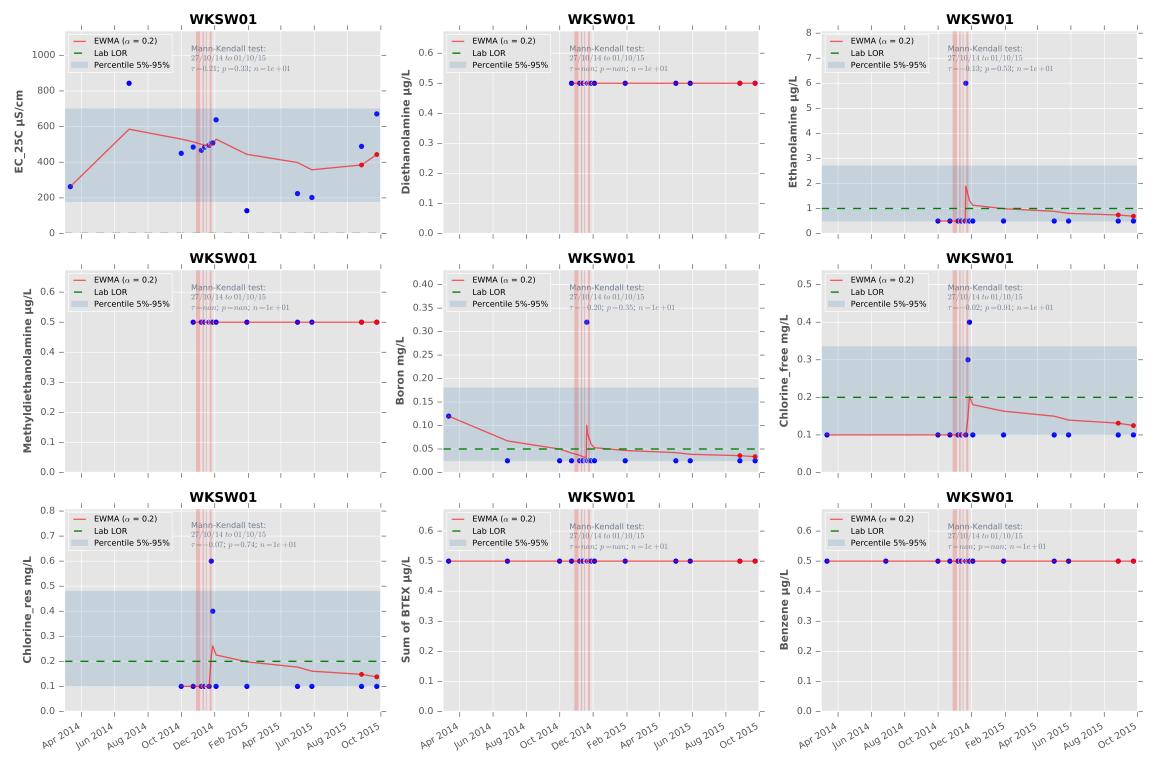
95.2

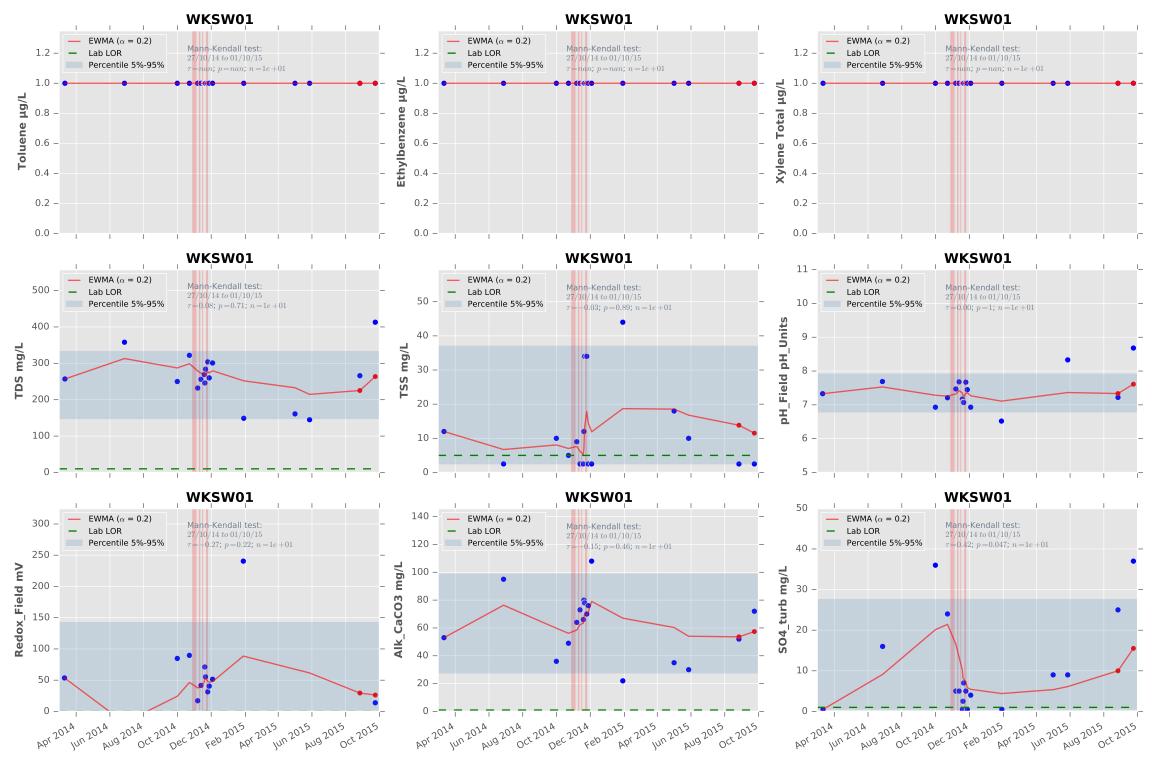
108

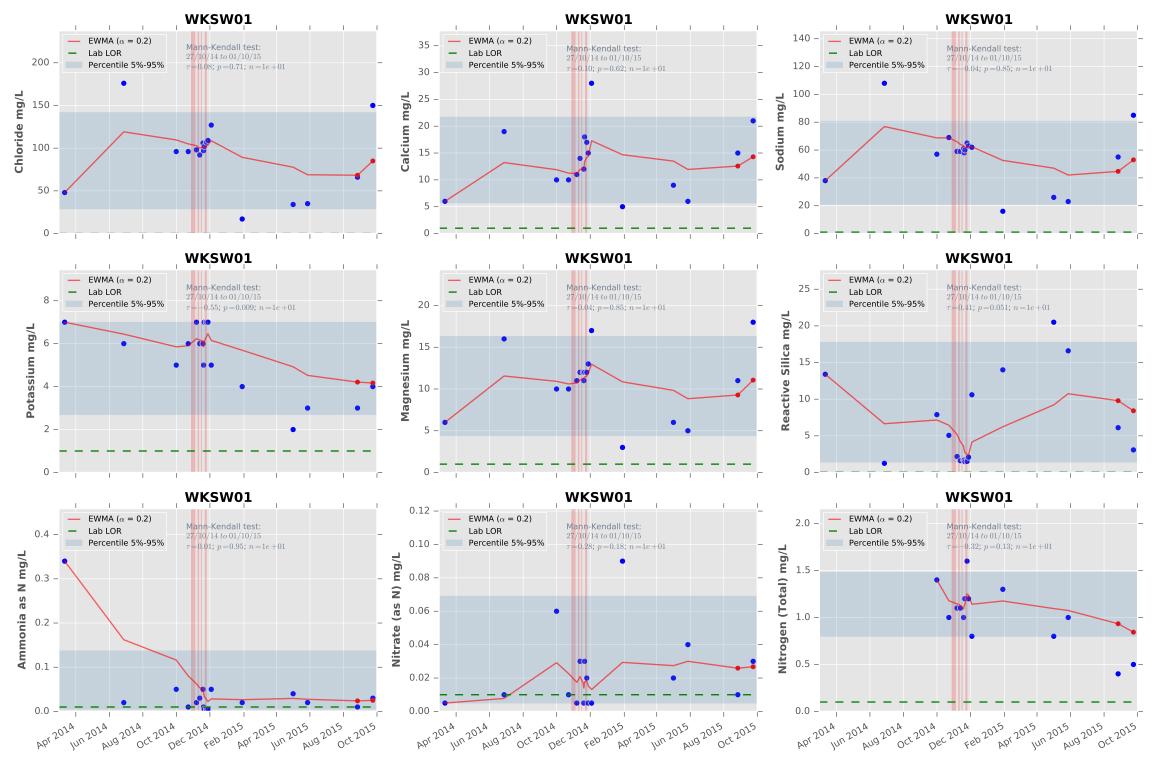
111

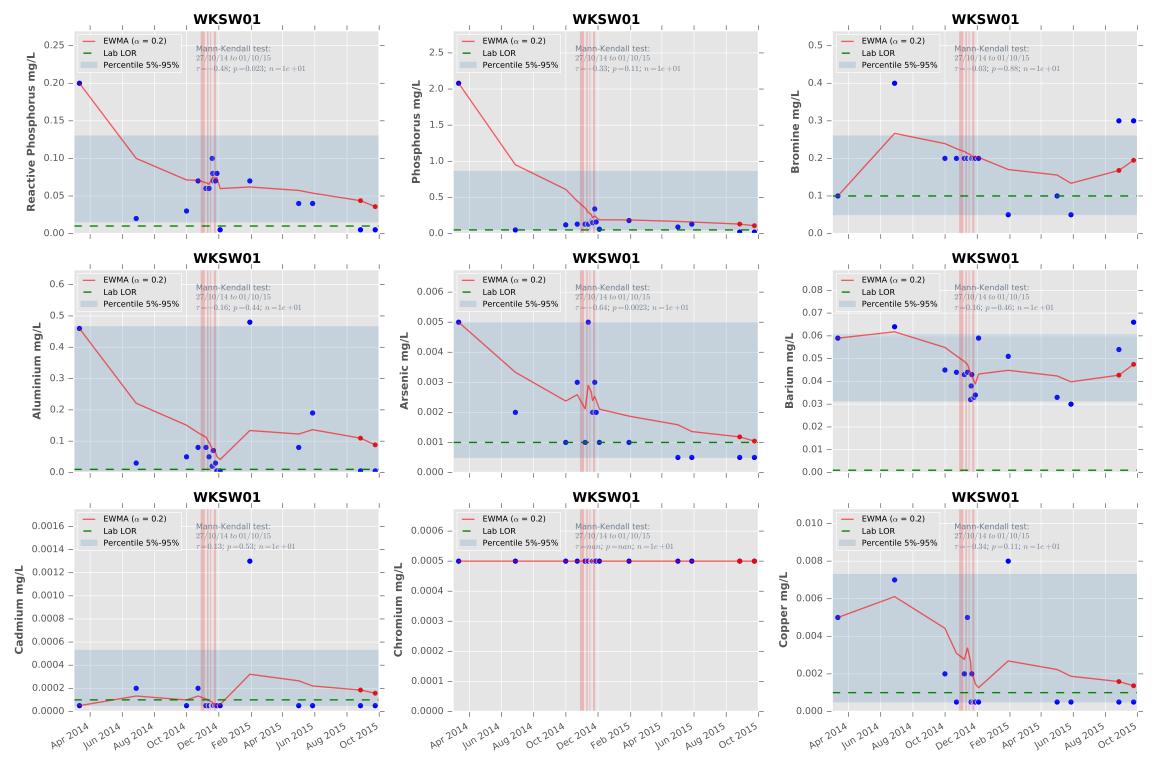
92.3


106


107





# Appendix I


Groundwater and surface water trend analysis

