

AGL UPSTREAM INVESTMENTS PTY LTD GLOUCESTER GAS PROJECT

September 2015 Monitoring Report: Tiedman Irrigation Program EPL 20358

Reporting Period: May 2015

AGL Upstream Investments Pty Ltd
ABN 58 115 063 744
Locked Bag 1837, St Leonards NSW 2065
Level 22, 101 Miller Street, North Sydney NSW 2060
Telephone: 02 9921 2999 Facsimile: 02 9921 2474

Complaints Line (24 hours): 1300 799 716

Foreword

PREMISES Gloucester Coal Seam Gas Project

Bucketts Way

Gloucester NSW 2422

LICENCE DETAILS <u>Environment Protection Licence 20358</u>

LICENCEE AGL Upstream Investments Pty Limited (AGL)

LICENCEE'S ADDRESS Locked Bag 1837, North Sydney, NSW 2060

MONITORING DATE 13 May 2015

MONITORING BY Parsons Brinckerhoff, on behalf of AGL

DATE AGL OBTAINED DATA 3 September 2015

REPORT DATE 16 September 2015

REPORT PREPARED BY James Duggleby, Senior Hydrogeologist

Introduction

AGL is proposing to build the Gloucester Gas Project (GGP) which comprises several stages of development facilitating the extraction of coal seam gas (CSG) from the Gloucester Basin. Concept plan and project approval (Part 3A Approval) for the Stage 1 Gas Field Development Area (GFDA) was granted on 22 February 2011 under Part 3A of the Environmental Planning and Assessment Act (1979) (EP&A Act). In addition the project received approval under the Environment Protection and Biodiversity Conservation Act (1999) (EPBC Act) (EPBC Approval) on 11 February 2013.

The GGP will involve depressurising of deep groundwater and the extraction of gas from multiple coal seams within the Gloucester coal measures. Target coal seam depths will vary from site to site but are expected to range between 200 and 1,000 m below ground level (mbgl). The current GGP includes the construction, operation, and decommissioning of not more than 110 coal seam gas wells and associated infrastructure, including gas and water gathering lines within the Stage 1 GFDA. A comprehensive groundwater investigation (Phase 2 Groundwater Investigations) was completed in early 2012 to confirm the hydrogeological conceptual model across the Stage 1 GFDA (PB, 2012). Surface water and groundwater investigations are ongoing.

This Monitoring Report relates to the water monitoring activities specified in Part 5, Monitoring and Recording Conditions, of the Environment Protection Licence 20358. This report relates specifically to the monitoring surrounding the Tiedman Irrigation Program, and details:

1. An additional monitoring result (standing water level) from the May quarterly water sampling event at the Tiedman Irrigation Program at monitoring point 50 (SP8B) (13 May 2015). It is noted that this result was not received at the time of publication of the remaining sampling results from the 13 May 2015 sampling event.

As per the Licence, the monitoring encompasses the monitoring points at the locations as shown in Table 1 and Figure 1. The specific analytes and frequency tested are shown in Table 2. The monitoring result relevant to this report is shown in Table 3.

The monitoring point that is the subject of this report is part of the GGP groundwater monitoring network, as described in AGL's Water Management Plan for the Tiedman Irrigation Program (AGL, 2012a) and Soil Quality Monitoring and Management Program (AGL, 2012b)). Water monitoring results for the irrigation program are presented in a baseline water monitoring report (PB, 2013a) and six-monthly compliance reports (PB, 2013a, 2013b, 2014b, 2014b, 2015).

This report is prepared in accordance with the *Requirements for Publishing Pollution Monitoring Data* (EPA, 2012) (Publication Requirements).

The remainder of the monitoring results collected during the May quarterly sampling event at the Tiedman Irrigation Program were published in AGL's <u>June 2015 Monitoring Report: Tiedman Irrigation Program</u>, in accordance with the Publication Requirements.

The remaining water and land monitoring points in EPL 20358 will be reported in subsequent reports when the requirement for monitoring is triggered.

More information on the groundwater monitoring of the GGP is available on the project website: aql.com.au/Gloucester

S AGL

Table 1: Water quality monitoring points: Irrigation Program (as per EPL 20358)

EPA ID no.	Monitoring Point	Type of monitoring point	Easting (m)	Northing (m)			
27	TND	Produced water storage dam	Tiedman property				
28	TSD	Produced water storage dam	Tiedman property				
29	TED	Produced water storage dam	Tiedman property				
30	TMB04	Groundwater quality monitoring	402558.1	6448921.7			
31	TMB05	Groundwater quality monitoring	402650.1	6448725.3			
33	CDE	Surface water quality monitoring – catch dam east	Tiedman property				
34	CDW	Surface water quality monitoring – catch dam west	Tiedman property				
35	FSW01	Surface water quality monitoring	402001	6449646			
36	ASW01	Surface water quality monitoring	401711.09	6449092.2			
37	TSW01	Surface water quality monitoring	401993.98	6449416.7			
38	TSW02	Surface water quality monitoring	401922.1	6448740.9			
39	TMB01	Groundwater quality monitoring	401996.98	6449419.7			
40	TMB02	Groundwater quality monitoring	401905.11	6449100.6			
41	TMB03	Groundwater quality monitoring	401969.53	6448755			
42	S4MB01	Groundwater quality monitoring	402581.88	6449409.7			
43	TCMB01	Groundwater quality monitoring	402501.7	6448899			
44	TTMB02	Groundwater quality monitoring	402699	6449358			
45	SP1B	Soil water quality monitoring	402570.3	6449381.3			
46	SP2B	Soil water quality monitoring	402444.2	6449100.1			
47	SP4B	Soil water quality monitoring	402252	6449131.3			
48	SP6B	Soil water quality monitoring	402103.5	6449178.6			
49	SP7B	Soil water quality monitoring	402144.8	6449292.1			
50	SP8B	Soil water quality monitoring	402159.1	6449454.8			
51	SP9B	Soil water quality monitoring	402387.5	6449016.9			
52	SP10B	Soil water quality monitoring	402344.2	6448840.6			

Coordinate reference system: Map Grid of Australia 1994

Figure 1: Location of groundwater and surface water quality monitoring points: Irrigation Program (as per EPL 20358)

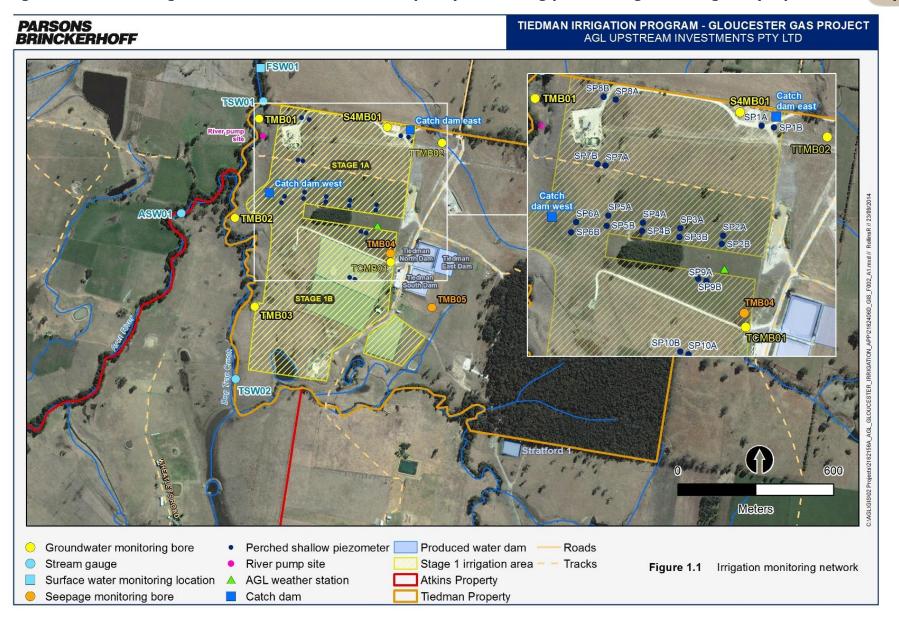


Table 2: Analytes monitored and frequency (as per EPL 20358) - monitoring points 27 – 52 (water monitoring points) (based on EPL 20358 current during May 2015)

	Units of measure	Monitoring points																	
Analyte		27,29		:	28 30		,31	33	33,34 3		35		37,38	39,40,41,42		43,44		45,46,47,48,49,50,51, 52	
		Frequency	sampling	Frequency	sampling	Frequency	sampling method	Frequency	sampling	Frequency	sampling	Frequency	sampling	Frequency	sampling	Frequency	sampling	Frequency	sampling
Aluminium	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Ammonia	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Arsenic	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Barium	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Beryllium	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Bicarbonate	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample												
Boron	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Cadmium	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Calcium	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Chloride	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample												
Chromium	milligrams per litre							Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Cobalt	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Copper	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Dissolved oxygen	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Electrical conductivity	microsiemens per centimetre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Special Frequency 8	Special method 5	Quarterly	Grab sample	Special frequency 8	Special method 5	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Iron	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Lead	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1 Special	Grab sample	Each overflow event Each overflow	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Magnesium	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Frequency 1 Special	Grab sample	event Each overflow	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Manganese	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Frequency 1	Grab sample	event Each overflow	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Mercury Molybdenum	milligrams per litre milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	event Each overflow event	Grab sample Grab sample	Quarterly	Grab sample Grab sample	Quarterly	Grab sample Grab sample	Quarterly	Grab sample Grab sample	Quarterly	Grab sample Grab sample	Quarterly	Grab sample Grab sample
Nickel	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Nitrate	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Nitrite	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Overn											
рН	рН	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Phosphorus (total)	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Potassium	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Reactive Phosphorus	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample												
Redox potential	millivolts	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Selenium	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Silica	milligrams per litre							Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Sodium	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Sodium Adsorption Ratio	sodium adsorption ratio			Quarterly	Special Method 4														
Standing water level	meters (Australian Height Datum)					Special frequency 8	Special method 5							Special frequency 8	Special method 5	Special frequency 8	Special method 5	Quarterly	Special method
Strontium (dissolved)	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Sulfate	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Total alkalinity	milligrams per litre							Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Total dissolved solids	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Total organic carbon	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample												
Total suspended solids	milligrams per litre							Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample						
Uranium	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Vanadium	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special Frequency 1	Grab sample	Each overflow event	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
Zinc	milligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Special	Grab sample	Each overflow	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sample
ZINC	miligrams per litre	Quarterly	Grab sample	Quarterly	Grab sample	Frequency 1	Grap sample	event	чар sample	Quarterly	Grap sample	quarterly	Grap sample	Quarterly	Grab sample	Quarterly	Grab sample	Quarterly	Grab sam

Notes

Special Frequency 1 – Quarterly if inflow within 12 hours of purging dry.

Special Frequency 2 – Every 24 hours

Special Frequency 2 – Every 24 hours
Special Frequency 8 – Every 6 hours
Special Method 1 – manual dip
Special Method 4 – by calculation
Special Method 5 - automated datalogger
Shaded grey - not required to be analysed

GGP EPL 20358 Water Monitoring Report – Irrigation Trial: September 2015

_					
		Monitoring points	50		
		Location	SP8B		
		Sampled date	13/05/2015		
		Date AGL obtained data	03/09/2015		
Analyte	Units of measure	Limit of reporting			
Standing water level	m AHD	0.01	111.05		

₩AGL

References

AGL, 2012a. Water Management Plan for the Tiedman Irrigation Program AGL. Available online: http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/CSG%20and%20the%20Environment/Gloucester/Plans%20and%20Proposals/2013/May/AGL%20WMP%20Tiedman%20Irrigation%20V1%203%20140512%20Final%20Compiled%20LowRes.pdf

AGL, 2012b. Soil Quality Monitoring and Management Program. Available online: http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/CSG%20and%20the%20Environment/Gloucester/Plans%20and%20Proposals/2013/May/Gloucester%20Soil%20Management.pdf

Environment Protection Authority (EPA), 2004. Approved Methods for the Sampling and Analysis of Water Pollutants in New South Wales, The Department of Environment and Conservation, Sydney, Australia. Available online: http://www.environment.nsw.gov.au/resources/water/approvedmethods-water.pdf

Parsons Brinckerhoff (PB) 2012. Phase 2 Groundwater Investigations – Stage 1 Gas Field Development Area, Gloucester Gas Project. Report dated January 2012, PR_5630. Available online: <a href="http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/CSG%20and%20the%20Environment/Gloucester/Assessments%20and%20Reports/2012/January/PB%20Gloucester%20Groundwater%20Report%20Phase%202%20Appendices%20E-P.pdf

Parsons Brinckerhoff (PB) 2013a. Gloucester Gas Project – Tiedman Irrigation Trial Baseline Water Monitoring Program. Report dated January 2013, 2162406D PR_6306. Available online: <a href="http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/CSG%20and%20the%20Environment/Gloucester/Plans%20and%20Proposals/2013/May/Gloucester%20Irrigation PR.pdf

Parsons Brinckerhoff (PB) 2013b. Tiedman Irrigation Trial – August 2013 Water Compliance Report, Gloucester Gas Project. Report dated August 2013, 2162406F-WAT-RTP-7408 RevC. <a href="http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/CSG%20Community%20News/Gloucester/Community%20Updates/2013/September/2162406F%20WAT%20RPT%207408%20FINAL LowRes.pdf

Parsons Brinckerhoff (PB) 2014a. Tiedman Irrigation Program – Water Compliance Report for the Period 1 July to 31 December 2013, Gloucester Gas Project. Report dated January 2014, 2162406F-WAT-RPT-7674 RevB. Available online:

http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/CSG%20and%20the%20Environment/Gloucester/Assessments%20and%20Reports/2014/20140131 Teidman%20Irrigation%20Program%20%20Water%20Compliance%20Report.pdf

Parsons Brinckerhoff (PB) 2014b. Tiedman Irrigation Program – Water Compliance Report for the Period 1 January to 4 July 2014, Gloucester Gas Project. Report dated August 2014, 2162406F-WAT-RPT-7674 001 RevD. Available online:

http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/Gloucester%20Document%20Repository/Irrigation%20Program/20140828 Tiedman%20Irrigation%20Program%20%20Water%20Compliance%20Report.pdf

Parsons Brinckerhoff (PB) 2015. Tiedman Irrigation Program – Water Compliance Report for the Period 5 July – 31 December 2014, Gloucester Gas Project. Report dated February 2015, 2268517A-WAT-RPT-001 Rev C. Available online:

http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/Gloucester%20Document%20Repository/Irrigation%20Program/20150226 Tiedman%20Irrigation%20Program%20%20Water%20Compliance%20Report.pdf

The State of NSW and Environment Protection Authority (EPA), 2012. Requirements for publishing pollution monitoring data. Environment Protection Authority, Sydney, Australia. Available online: http://www.epa.nsw.gov.au/resources/licensing/130742reqpubpmdata.pdf