

# AGL UPSTREAM INVESTMENTS PTY LTD GLOUCESTER GAS PROJECT

April 2015 Monitoring Report: Tiedman Irrigation Program EPL 20358

Reporting Period: March 2015

AGL Upstream Investments Pty Ltd
ABN 58 115 063 744
Locked Bag 1837, St Leonards NSW 2065
Level 22, 101 Miller Street, North Sydney NSW 2060
Telephone: 02 9921 2999 Facsimile: 02 9921 2474

Complaints Line (24 hours): 1300 799 716



#### **Foreword**

PREMISES Gloucester Coal Seam Gas Project

**Bucketts Way** 

Gloucester NSW 2422

LICENCE DETAILS <u>Environment Protection Licence 20358</u>

LICENCEE AGL Upstream Investments Pty Limited (AGL)

LICENCEE'S ADDRESS Locked Bag 1837, North Sydney, NSW 2060

MONITORING DATE 22 March 2015

MONITORING BY Parsons Brinckerhoff, on behalf of AGL

**ANALYSIS BY** ALS Laboratory, Smithfield (Work order: ES1506753)

DATE AGL OBTAINED DATA 17 April 2015

**REPORT DATE** 24 April 2015

REPORT PREPARED BY
Nicola Fry, Hydrogeologist

#### Introduction

AGL is proposing to build the Gloucester Gas Project (GGP) which comprises several stages of development facilitating the extraction of coal seam gas (CSG) from the Gloucester Basin. Concept plan and project approval (Part 3A Approval) for the Stage 1 Gas Field Development Area (GFDA) was granted on 22 February 2011 under Part 3A of the Environmental Planning and Assessment Act (1979) (EP&A Act). In addition the project received approval under the Environment Protection and Biodiversity Conservation Act (1999) (EPBC Act) (EPBC Approval) on 11 February 2013.

The GGP will involve depressurising of deep groundwater and the extraction of gas from multiple coal seams within the Gloucester coal measures. Target coal seam depths will vary from site to site but are expected to range between 200 and 1,000 m below ground level (mbgl). The current GGP includes the construction, operation, and decommissioning of not more than 110 coal seam gas wells and associated infrastructure, including gas and water gathering lines within the Stage 1 GFDA. A comprehensive groundwater investigation (Phase 2 Groundwater Investigations) was completed in early 2012 to confirm the hydrogeological conceptual model across the Stage 1 GFDA (PB, 2012). Surface water and groundwater investigations are ongoing.

This Monitoring Report relates to the water monitoring activities specified in Part 5, Monitoring and Recording Conditions, of the Environment Protection Licence 20358 (EPL). This report relates specifically to the monitoring surrounding the Tiedman Irrigation Program, and details:

1. Monitoring results from EPL Monitoring Point 34 at the Tiedman Irrigation Program catch dam west (CDW) following a high rainfall overflow event (22 March 2015).

As per the EPL, the Tiedmans monitoring encompasses the monitoring points at locations as shown in Table 1 and Figure 1. The specific analytes and frequency tested are shown in Table 2. The monitoring results for this report are shown in Table 3.

The monitoring point that is the subject of this report is part of the GGP groundwater monitoring network, as described in AGL's Water Management Plan for the Tiedman Irrigation Program (AGL, 2012a) and Soil Quality Monitoring and Management Program (AGL, 2012b)). Water monitoring results for the Irrigation Program are presented in a baseline water monitoring report (PB, 2013a) and six-monthly compliance reports (PB, 2013a, 2013b, 2014a, 2014b, 2015).

The following sampling method was used to obtain the surface water sample:

 Grab sample using a telescopic sampler for surface water and dam water samples (from CDW).

The water quality samples are analysed by an external NATA certified laboratory (ALS Environmental, Smithfield), in accordance with the EPA Approved Methods Publication "Approved Methods for the Sampling and Analysis of Water Pollutants in New South Wales" (EPA, 2004), with the exception of calcium, which underwent filtration rather than acid extraction as a preliminary treatment prior to analysis.

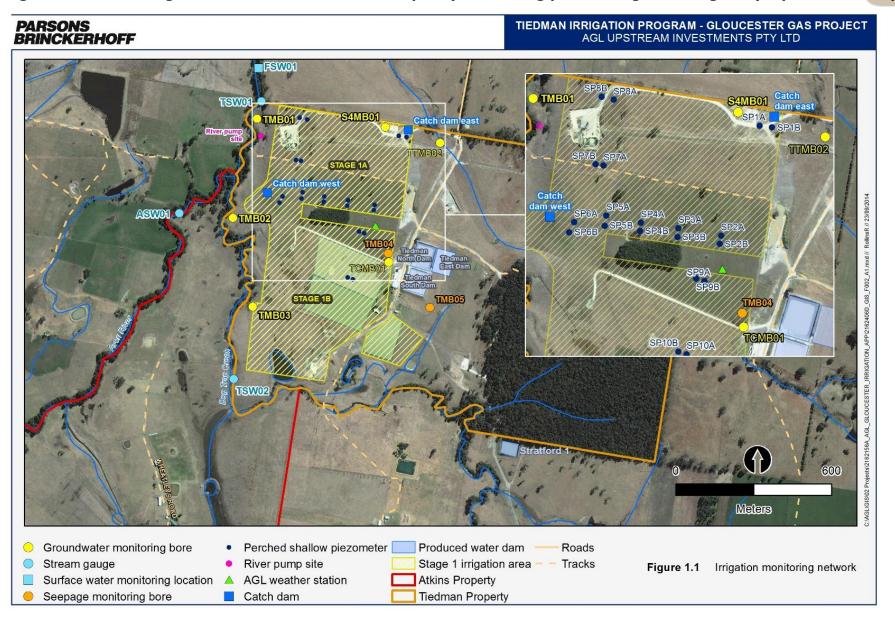
This report is prepared in accordance with the *Requirements for Publishing Pollution Monitoring Data* (EPA, 2012) (Publication Requirements).

Results of the remaining water and land monitoring points in EPL 20358 will be reported following receipt of analyses in subsequent reports.

More information on the groundwater monitoring of the GGP is available on the project website: <a href="mailto:agl.com.au/Gloucester">agl.com.au/Gloucester</a>



**WAGL** 


Table 1: Water quality monitoring points: Irrigation Program (as per EPL 20358)

| EPA ID no. | Monitoring Point | Type of monitoring point                                 | Easting (m)      | Northing (m) |  |  |  |
|------------|------------------|----------------------------------------------------------|------------------|--------------|--|--|--|
| 27         | TND              | Produced water storage dam                               | Tiedman property |              |  |  |  |
| 28         | TSD              | Produced water storage dam                               | Tiedman property |              |  |  |  |
| 29         | TED              | Produced water storage dam                               | Tiedman property |              |  |  |  |
| 30         | TMB04            | Groundwater quality monitoring – seepage monitoring bore | 402558.1         | 6448921.7    |  |  |  |
| 31         | TMB05            | Groundwater quality monitoring – seepage monitoring bore | 402650.1         | 6448725.3    |  |  |  |
| 33         | CDE              | Surface water quality monitoring – catch dam east        | Tiedman proper   | ty           |  |  |  |
| 34         | CDW              | Surface water quality monitoring – catch dam west        | Tiedman property |              |  |  |  |
| 35         | FSW01            | Surface water quality monitoring                         | 402001           | 6449646      |  |  |  |
| 36         | ASW01            | Surface water quality monitoring                         | 401711.09        | 6449092.2    |  |  |  |
| 37         | TSW01            | Surface water quality monitoring                         | 401993.98        | 6449416.7    |  |  |  |
| 38         | TSW02            | Surface water quality monitoring                         | 401922.1         | 6448740.9    |  |  |  |
| 39         | TMB01            | Groundwater quality monitoring                           | 401996.98        | 6449419.7    |  |  |  |
| 40         | TMB02            | Groundwater quality monitoring                           | 401905.11        | 6449100.6    |  |  |  |
| 41         | TMB03            | Groundwater quality monitoring                           | 401969.53        | 6448755      |  |  |  |
| 42         | S4MB01           | Groundwater quality monitoring                           | 402581.88        | 6449409.7    |  |  |  |
| 43         | TCMB01           | Groundwater quality monitoring                           | 402501.7         | 6448899      |  |  |  |
| 44         | TTMB02           | Groundwater quality monitoring                           | 402699           | 6449358      |  |  |  |
| 45         | SP1B             | Soil water quality monitoring                            | 402570.3         | 6449381.3    |  |  |  |
| 46         | SP2B             | Soil water quality monitoring                            | 402444.2         | 6449100.1    |  |  |  |
| 47         | SP4B             | Soil water quality monitoring                            | 402252           | 6449131.3    |  |  |  |
| 48         | SP6B             | Soil water quality monitoring                            | 402103.5         | 6449178.6    |  |  |  |
| 49         | SP7B             | Soil water quality monitoring                            | 402144.8         | 6449292.1    |  |  |  |
| 50         | SP8B             | Soil water quality monitoring                            | 402159.1         | 6449454.8    |  |  |  |
| 51         | SP9B             | Soil water quality monitoring                            | 402387.5         | 6449016.9    |  |  |  |
| 52         | SP10B            | Soil water quality monitoring                            | 402344.2         | 6448840.6    |  |  |  |

Coordinate reference system: Map Grid of Australia 1994



Figure 1: Location of groundwater and surface water quality monitoring points: Irrigation Program (as per EPL 20358)



## Table 2: Analytes monitored and frequency (as per EPL 20358) - monitoring points 27 - 52 (water monitoring points)

|                                   |                                |                 |                      |           |                  |                     | Monitori           |                                      | ing points |                 |                     |                      |                     |                         |                     |                        |           |                                   |
|-----------------------------------|--------------------------------|-----------------|----------------------|-----------|------------------|---------------------|--------------------|--------------------------------------|------------|-----------------|---------------------|----------------------|---------------------|-------------------------|---------------------|------------------------|-----------|-----------------------------------|
| Analyte                           | Units of measure               | 2:<br>Frequency | 7,29 Sampling method |           | Sampling method  | 30,                 | 31 Sampling method | 33,34  Frequency Sampling method     |            | Sampling method | 36,3                | 7,38 Sampling method | _                   | 0,41,42 Sampling method |                     | ,44<br>Sampling method |           | 8,49,50,51, 52<br>Sampling method |
| Aluminium                         | milligrams per litre           | Quarterly       |                      |           | Grab sample      | Special Frequency 1 |                    |                                      | Quarterly  | Grab sample     | Quarterly           |                      | Frequency Quarterly |                         | Frequency Quarterly | Grab sample            | Quarterly | Grab sample                       |
| Ammonia                           | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Arsenic                           | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Barium                            | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Beryllium                         | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Bicarbonate                       | milligrams per litre           | Quarterly       | ·                    |           | Grab sample      | Special Frequency 1 | Grab sample        |                                      |            | ·               |                     | ·                    |                     | ·                       |                     |                        |           |                                   |
| Boron                             | milligrams per litre           | Quarterly       |                      |           | Grab sample      | Special Frequency 1 |                    | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
|                                   | milligrams per litre           | Quarterly       |                      |           | Grab sample      | Special Frequency 1 | •                  |                                      | Quarterly  | Grab sample     | Quarterly           | •                    | Quarterly           |                         |                     | Grab sample            |           | Grab sample                       |
|                                   |                                | 1 .             |                      |           |                  |                     |                    |                                      |            |                 | ,                   | ·                    |                     |                         |                     |                        |           | 1                                 |
| Calcium                           | milligrams per litre           | Quarterly       |                      |           | Grab sample      | Special Frequency 1 | •                  | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Chloride                          | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        |                                      |            |                 |                     |                      |                     |                         |                     |                        |           |                                   |
| Chromium                          | milligrams per litre           |                 |                      |           |                  |                     |                    | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Cobalt                            | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
|                                   | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| oxygen                            | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Electrical conductivity           | microsiemens per<br>centimetre | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Special Frequency 8 Special method 5 | Quarterly  | Grab sample     | Special frequency 8 | Special method 5     | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Iron                              | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Lead                              | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Magnesium                         | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Manganese                         | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Mercury                           | milligrams per litre           |                 |                      |           |                  |                     |                    | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Molybdenum                        | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Nickel                            | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Nitrate                           | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Nitrite                           | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        |                                      |            |                 |                     |                      |                     |                         |                     |                        |           |                                   |
| рН                                | pH                             | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Phosphorus<br>(total)             | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Potassium                         | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Reactive                          | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        |                                      |            |                 |                     |                      |                     |                         |                     |                        |           |                                   |
| Phosphorus  Redox potential       | millivolts                     | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Selenium                          | milligrams per litre           | Quarterly       | Grab sample          |           | Grab sample      | Special Frequency 1 |                    |                                      | Quarterly  | Grab sample     | Quarterly           | •                    | Quarterly           | Grab sample             |                     | Grab sample            |           | Grab sample                       |
| Silica                            | milligrams per litre           |                 |                      |           |                  |                     |                    |                                      | Quarterly  | Grab sample     | Quarterly           | ·                    | Quarterly           | Grab sample             | ,                   | Grab sample            |           | Grab sample                       |
| Sodium                            | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        |                                      | Quarterly  | Grab sample     | Quarterly           | •                    | Quarterly           | Grab sample             |                     | Grab sample            | ,         | Grab sample                       |
| Sodium<br>Adsorption              | sodium adsorption ratio        |                 |                      |           | Special Method 4 | - Fall Frequency 1  |                    | State Sample                         |            |                 |                     |                      |                     | 33 33                   |                     | - Lampie               |           | J. J. Janipic                     |
| Ratio Standing water              | meters (Australian             |                 |                      |           | 7,55.5.7.66764   | Special frequency 8 | Special method 5   |                                      |            |                 |                     |                      | Special frequency 8 | Special method 5        | Special frequency 8 | Special method 5       | Quarterly | Special method 1                  |
| level<br>Strontium                | Height Datum)                  | Quartorly       | Grah samala          | Quarterly | Grah cample      |                     | •                  | Fach overflow event Crab serval      | Quarterly  | Grah cample     | Quartorly           |                      |                     |                         |                     |                        | ,         | 1                                 |
| (dissolved)                       | milligrams per litre           | Quarterly       | ·                    |           | Grab sample      | Special Frequency 1 |                    |                                      | Quarterly  | Grab sample     |                     | ·                    | Quarterly           | Grab sample             |                     | Grab sample            |           | Grab sample                       |
| Sulfate                           | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grad sample        |                                      | Quarterly  | Grab sample     | Quarterly           | •                    | Quarterly           | Grab sample             | ,                   | Grab sample            | Quarterly | Grab sample                       |
| Total alkalinity  Total dissolved | milligrams per litre           |                 |                      |           |                  |                     |                    |                                      | Quarterly  | Grab sample     |                     | ·                    | Quarterly           | Grab sample             |                     | Grab sample            | ,         | Grab sample                       |
| solids Total organic              | milligrams per litre           | Quarterly       |                      |           | Grab sample      | Special Frequency 1 | •                  | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| carbon  Total suspended           | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        |                                      |            |                 |                     |                      |                     |                         |                     |                        |           |                                   |
| solids                            | milligrams per litre           |                 |                      |           |                  |                     |                    | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          |                     |                         |                     |                        |           |                                   |
| Uranium                           | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Vanadium                          | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |
| Zinc                              | milligrams per litre           | Quarterly       | Grab sample          | Quarterly | Grab sample      | Special Frequency 1 | Grab sample        | Each overflow event Grab sample      | Quarterly  | Grab sample     | Quarterly           | Grab sample          | Quarterly           | Grab sample             | Quarterly           | Grab sample            | Quarterly | Grab sample                       |

Notes:

Notes:

Special Frequency 1 – Quarterly if inflow within 12 hours of purging dry.

Special Frequency 2 – Eveny 24 hours

Special Frequency 2 – Every 24 hours Special Frequency 8 – Every 6 hours Special Method 1 – manual dip Special Method 4 – by calculation Special Method 5 - automated datalogger Shaded grey - not required to be analysed



Page 6 of 8

GGP EPL 20358 Water Monitoring Report – Irrigation Trial: March 2015

### Water monitoring results

Table 3: March 2015 water monitoring results for monitoring point 34

|                               |                  | Monitoring points         | 34                      |  |  |
|-------------------------------|------------------|---------------------------|-------------------------|--|--|
|                               |                  | Location                  | CDW                     |  |  |
|                               |                  | Sampled date              | 22/03/2015 <sup>a</sup> |  |  |
|                               |                  | Date AGL obtained<br>data | 17/04/2015              |  |  |
| Analyte                       | Units of measure | Limit of reporting        |                         |  |  |
| Aluminium                     | mg/L             | 0.01                      | 0.40                    |  |  |
| Ammonia                       | mg/L             | 0.01                      | 0.09                    |  |  |
| Arsenic                       | mg/L             | 0.001                     | 0.002                   |  |  |
| Barium                        | mg/L             | 0.001                     | 0.021                   |  |  |
| Beryllium                     | mg/L             | 0.001                     | <0.001                  |  |  |
| Boron                         | mg/L             | 0.05                      | 0.06                    |  |  |
| Cadmium                       | mg/L             | 0.0001                    | <0.0001                 |  |  |
| Calcium                       | mg/L             | 1                         | 9                       |  |  |
| Chromium                      | mg/L             | 0.001                     | <0.001                  |  |  |
| Cobalt                        | mg/L             | 0.001                     | <0.001                  |  |  |
| Copper                        | mg/L             | 0.001                     | 0.006                   |  |  |
| Dissolved oxygen <sup>b</sup> | mg/L             | 0.01                      | na                      |  |  |
| Electrical conductivity       | μS/cm            | 1                         | 363                     |  |  |
| Iron                          | mg/L             | 0.05                      | 0.34                    |  |  |
| Lead                          | mg/L             | 0.001                     | <0.001                  |  |  |
| Magnesium                     | mg/L             | 1                         | 4                       |  |  |
| Manganese                     | mg/L             | 0.001                     | 0.007                   |  |  |
| Mercury                       | mg/L             | 0.0001                    | <0.0001                 |  |  |
| Molybdenum                    | mg/L             | 0.001                     | 0.001                   |  |  |
| Nickel                        | mg/L             | 0.001                     | 0.002                   |  |  |
| Nitrate                       | mg/L             | 0.01                      | 4.67                    |  |  |
| рН <sup>с</sup>               | pН               | 0.01                      | 7.38                    |  |  |
| Phosphorus                    | mg/L             | 0.01                      | 2.42                    |  |  |
| Potassium                     | mg/L             | 1                         | 14                      |  |  |
| Redox potential <sup>b</sup>  | mV               | 0.1                       | na                      |  |  |
| Selenium                      | mg/L             | 0.01                      | <0.01                   |  |  |
| Silica                        | mg/L             | 0.1                       | 18.5                    |  |  |
| Sodium                        | mg/L             | 1                         | 53                      |  |  |
| Strontium (dissolved)         | mg/L             | 0.001                     | 0.043                   |  |  |
| Sulfate                       | mg/L             | 1                         | 35                      |  |  |
| Total alkalinity              | mg/L             | 1                         | 74                      |  |  |
| Total dissolved solids        | mg/L             | 10                        | 469                     |  |  |
| Total suspended solids        | mg/L             | 5                         | 131 <sup>d</sup>        |  |  |
| Uranium                       | mg/L             | 0.001                     | <0.001                  |  |  |
| Vanadium                      | mg/L             | 0.01                      | <0.01                   |  |  |
| Zinc                          | mg/L             | 0.005                     | 0.046                   |  |  |

<sup>&</sup>lt;sup>a</sup> Overflow event

na - not analysed



 $<sup>^{\</sup>rm b}$  unable to be collected by calibrated flow meter in the field at the time of sampling

<sup>&</sup>lt;sup>c</sup> unable to be collected by calibrated flow meter in the field at the time of sampling; result shown was laboratory analysed, although holding time was exceeded

<sup>&</sup>lt;sup>d</sup> Exceedence of 100 percentile concentration limit for total suspended solids (50 mg/L). Exceedence reported to the EPA on 17th April 2015.



AGL, 2012a. Water Management Plan for the Tiedman Irrigation Program AGL. Available online: <a href="http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/CSG%20and%20the%20Environment/Gloucester/Plans%20and%20Proposals/2013/May/AGL%20WMP%20Tiedman%20Irrigation%20V1%203%20140512%20Final%20Compiled%20LowRes.pdf">http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/CSG%20and%20the%20Environment/Gloucester/Plans%20and%20Proposals/2013/May/AGL%20WMP%20Tiedman%20Irrigation%20V1%203%20140512%20Final%20Compiled%20LowRes.pdf</a>

AGL, 2012b. Soil Quality Monitoring and Management Program. Available online: <a href="http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/CSG%20and%20the%20Environment/Gloucester/Plans%20and%20Proposals/2013/May/Gloucester%20Soil%20Management.pdf">http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/CSG%20and%20the%20Environment/Gloucester/Plans%20and%20Proposals/2013/May/Gloucester%20Soil%20Management.pdf</a>

Environment Protection Authority (EPA), 2004. Approved Methods for the Sampling and Analysis of Water Pollutants in New South Wales, The Department of Environment and Conservation, Sydney, Australia. Available online: <a href="http://www.environment.nsw.gov.au/resources/water/approvedmethods-water.pdf">http://www.environment.nsw.gov.au/resources/water/approvedmethods-water.pdf</a>

Parsons Brinckerhoff (PB) 2012. Phase 2 Groundwater Investigations – Stage 1 Gas Field Development Area, Gloucester Gas Project. Report dated January 2012, PR\_5630. Available online: <a href="http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/CSG%20and%20the%20Environment/Gloucester/Assessments%20and%20Reports/2012/January/PB%20Gloucester%20Groundwater%20Report%20Phase%202%20Appendices%20E-P.pdf</a>

Parsons Brinckerhoff (PB) 2013a. Gloucester Gas Project – Tiedman Irrigation Trial Baseline Water Monitoring Program. Report dated January 2013, 2162406D PR\_6306. Available online: <a href="http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/CSG%20and%20the%20Environment/Gloucester/Plans%20and%20Proposals/2013/May/Gloucester%20Irrigation PR.pdf</a>

Parsons Brinckerhoff (PB) 2013b. Tiedman Irrigation Trial – August 2013 Water Compliance Report, Gloucester Gas Project. Report dated August 2013, 2162406F-WAT-RTP-7408 RevC. <a href="http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/CSG%20Community%20News/Gloucester/Community%20Updates/2013/September/2162406F%20WAT%20RPT%207408%20FINAL LowRes.pdf">LowRes.pdf</a>

Parsons Brinckerhoff (PB) 2014a. Tiedman Irrigation Program – Water Compliance Report for the Period 1 July to 31 December 2013, Gloucester Gas Project. Report dated January 2014, 2162406F-WAT-RPT-7674 RevB. Available online:

http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/CSG%20and%20the%20Environment/Gloucester/Assessments%20and%20Reports/2014/20140131 Teidman%20Irrigation%20Program%20%20Water%20Compliance%20Report.pdf

Parsons Brinckerhoff (PB) 2014b. Tiedman Irrigation Program – Water Compliance Report for the Period 1 January to 4 July 2014, Gloucester Gas Project. Report dated August 2014, 2162406F-WAT-RPT-7674 001 RevD. Available online:

http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/Gloucester%20Document%20Repository/Irrigation%20Program/20140828 Tiedman%20Irrigation%20Program%20%20Water%20Compliance%20Report.pdf

Parsons Brinckerhoff (PB) 2015. Tiedman Irrigation Program - Water Compliance Report for the Period 5 July to 31 December 2014. Report dated February 2015, 2268517A-WAT-RPT-001 RevC. Available online:

http://www.agl.com.au/~/media/AGL/About%20AGL/Documents/How%20We%20Source%20Energy/Gloucester%20Document%20Repository/Irrigation%20Program/20150226 Tiedman%20Irrigation%20Program%20%20Water%20Compliance%20Report.pdf

The State of NSW and Environment Protection Authority (EPA), 2012. Requirements for publishing pollution monitoring data. Environment Protection Authority, Sydney, Australia. Available online: <a href="http://www.epa.nsw.gov.au/resources/licensing/130742reqpubpmdata.pdf">http://www.epa.nsw.gov.au/resources/licensing/130742reqpubpmdata.pdf</a>

**S** AGI