
AGL Upstream Investments Pty Ltd

Drilling completion report: Waukivory groundwater monitoring bores

Gloucester Gas Project

30 July 2014

Document information

Client: AGL Upstream Investments Pty Ltd Title: Drilling completion report: Waukivory groundwater monitoring bores Subtitle: Gloucester Gas Project Document No: 2162406C-WAT-RPT-7761 RevB Date: 30 July 2014

Rev	Date	Details
А	01/07/2014	Draft
В	30/07/2014	Final

Author, Reviewer and Approver details				
Prepared by:	Carolina Sardella	Date: 30/07/2014	Signature:	ble
Reviewed by:	Stuart Brown	Date: 30/07/2014	Signature:	STRAD
Approved by:	Andrea Madden	Date: 30/07/2014	Signature:	IndrewHadd

Distribution

AGL Upstream Investments Pty Ltd, Parsons Brinckerhoff file, Parsons Brinckerhoff Library

©Parsons Brinckerhoff Australia Pty Limited 2014

Copyright in the drawings, information and data recorded in this document (the information) is the property of Parsons Brinckerhoff. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by Parsons Brinckerhoff. Parsons Brinckerhoff makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information.

Document owner

Parsons Brinckerhoff Australia Pty Limited

ABN 80 078 004 798

Level 27 Ernst & Young Centre 680 George Street, Sydney NSW 2000 GPO Box 5394 Sydney NSW 2001 Australia Tel: +61 2 9272 5100 Fax: +61 2 9272 5101 Email: sydney@pb.com.au www.pbworld.com *Certified to ISO 9001, ISO 14001, AS/NZS 4801 A GRI Rating: Sustainability Report 2011*

Contents

Page I	number
--------	--------

Glos	sary		vi
Abbr	eviatio	ns	xv
Units	5		xvi
Exec	utive s	ummary	xvii
1.	Introd		1
1.			
	1.1	Gloucester Gas Project	1
	1.2	Waukivory drilling program	1
2.	Site cl	haracterisation	5
	2.1	Site location	5
	2.2	Rainfall	5
	2.3	Geological setting	6
	2.4	Hydrogeological setting	12
3.	Drillin	g program	13
	3.1	Health, safety and environment	13
	3.2	Groundwater monitoring bore drilling and construction	14
4.	Perme	eability testing	20
5.	Groun	idwater levels	22
	5.1	Upthrust – shallow rock	23
	5.2	Fault zone	23
6.	Groun	idwater quality	24
	6.1	Groundwater quality monitoring	24
	6.2	Groundwater quality results	27
	6.3	Isotopes	31
7.	Concl	usions	35
	7.1	Groundwater levels	35
	7.2	Groundwater quality	35
8.	Recor	nmendations	36

9.	9. Statement of limitations		37
	9.1	Scope of services	37
	9.2	Reliance on data	37
	9.3	Environmental conclusions	37
	9.4	Report for benefit of client	37
	9.5	Other limitations	38
10.	Refe	rences	39

List of tables

Table 2.1	BoM and AGL weather stations in the Gloucester Basin (BoM 2014)	5
Table 2.2	Stratigraphy of the Gloucester Basin	8
Table 2.3	Main hydrogeological units of the Gloucester Basin	12
Table 3.1	Monitoring bore licences	15
Table 3.2	Bore construction details	16
Table 3.3	Monitoring bore survey coordinates and elevations	19
Table 4.1	Hydraulic conductivity results from slug tests	21
Table 5.1	Initial groundwater levels	22
Table 6.1	Groundwater analytical suite	25
Table 6.2	Sample containers for chemical and isotopic analytes	26
Table 6.3	Water quality summary for the Waukivory monitoring bores	28
Table 6.4	Major ion chemistry	30
Table 6.5	Stable isotope results for the upthrust monitoring bores	32
Table 6.6	δ^{13} C-DIC, radiocarbon and tritium results for the upthrust monitoring bores	32
Table 6.7	Dissolved methane concentrations and isotope results for the upthrust monitoring	
	bores	33
Table 6.8	Chlorine-36 results for WKMB04	34

List of figures

Figure 1.1	Regional location	3
Figure 1.2	Locations of the Waukivory groundwater monitoring bores	4
Figure 2.1	Monthly rainfall and cumulative deviation from the mean data from the AGL	
	Gloucester Station (AGL 2014a)	6
Figure 2.2	Regional geology	9
Figure 2.3	Waukivory interpreted seismic section (from Parsons Brinckerhoff (2014))	11
Figure 3.1	Nested groundwater monitoring bores at the Waukivory site	17
Figure 4.1	Rising and falling head (slug) testing (after Waterra 2011)	20
Figure 5.1	Groundwater levels at the Waukivory monitoring bores	23
Figure 6.1	Piper diagram for the Waukivory monitoring bores	27
Figure 6.2	Deuterium versus oxygen-18 for Waukivory monitoring bores	31
Figure 6.3	¹³ C-CH ₄ versus ² H-CH ₄ for the Waukivory monitoring bores	33

List of appendices

Appendix A	Borehole logs
	Doronoic logo

- Appendix B Geophysical logs
- Appendix C Hydraulic conductivity reports
- Appendix D Hydrographs

- Appendix E Water quality summary table
- Appendix F ALS laboratory reports
- Appendix G GNS stable isotope laboratory reports
- Appendix H Rafter radiocarbon laboratory reports
- Appendix I ANSTO Laboratory Tritium results
- Appendix J UC Davis Stable Isotope Facility Carbon-13 and methane results
- Appendix K ANU Chlorine-36 results

Glossary

Acidity	Base neutralising capacity.
Alkalinity	Acid neutralising capacity.
Alluvium	Unconsolidated sediments (clays, sands, gravels and other materials) deposited by flowing water. Deposits can be made by streams on river beds, floodplains, and alluvial fans.
Alluvial aquifer	Permeable zones that store and produce groundwater from unconsolidated alluvial sediments. Shallow alluvial aquifers are generally unconfined aquifers.
Ammonia	A compound of nitrogen and hydrogen (NH ₃) that is a common by-product of animal waste and landfills but is also found naturally in reduced environments. Ammonia readily converts to nitrate in soils and streams.
Anion	An ion with a negative charge – usually non-metal ions when disassociated and dissolved in water.
Annulus	The void space between two strings of casing in a water bore or gas well.
Anthropogenic	Occurring because of, or influenced by, human activity.
Aquatic ecosystem	The stream channel, lake or estuary bed, water, and (or) biotic communities and the habitat features that occur therein.
Aquifer	Rock or sediment in a formation, group of formations, or part of a formation that is saturated and sufficiently permeable to transmit economic quantities of water.
Aquifer properties	The characteristics of an aquifer that determine its hydraulic behaviour and its response to abstraction.
Aquifer, confined	An aquifer that is overlain by low permeability strata. The hydraulic conductivity of the confining bed is significantly lower than that of the aquifer.
Aquifer, semi-confined	An aquifer overlain by a low-permeability layer that permits water to slowly flow through it. During pumping, recharge to the aquifer can occur across the leaky confining layer – also known as a leaky artesian or leaky confined aquifer.
Aquifer, unconfined	Also known as a water table aquifer. An aquifer in which there are no confining beds between the zone of saturation and the surface. The water table is the upper boundary of an unconfined aquifer.

Aquitard	A low permeability unit that can store groundwater and also transmit it slowly from one formation to another. Aquitards retard but do not prevent the movement of water to or from adjacent aquifers.
Artesian water	Groundwater that is under pressure when tapped by a bore and is able to rise above the level at which it is first encountered. It may or may not flow at ground level. The pressure in such an aquifer commonly is called artesian pressure, and the formation containing artesian water is a confined aquifer.
Australian Height Datum (AHD)	The reference point (very close to mean sea level) for all elevation measurements, and used for correlating depths of aquifers and water levels in bores.
Background concentration	A natural concentration of a substance in a particular environment that is indicative of minimal influence by human (anthropogenic) sources.
Baseline sampling	A period of regular water quality and water level measurements that are carried out over a period long enough to determine the natural variability in groundwater conditions.
Bedding plane	In sedimentary or stratified rocks, the division plane which separates the individual layers, beds or strata.
Blowout	The uncontrolled release of formation fluids and gases encountered during borehole drilling.
BoP	Blowout preventer, a large series of valves used to seal, control and monitor blowouts of formation fluids and gasses.
Bore	A structure drilled below the surface to obtain water from an aquifer or series of aquifers.
Boundary	A lateral discontinuity or change in the aquifer resulting in a significant change in hydraulic conductivity, storativity or recharge.
Carbon-13 (¹³ C)	A natural, stable isotope of carbon and one of the environmental isotopes. It makes up about 1.109% of all naturally occurring carbon on Earth.
Carbon-14 (¹⁴ C)	Or radiocarbon is a radioactive isotope of carbon. Its nucleus contains six (6) protons and eight (8) neutrons. Its presence in organic materials is used in radiocarbon dating. It occurs naturally and has a relative abundance up to one part per trillion (0.000000001%) of all naturally-occurring carbon on Earth. Carbon-14 is one of the most important nuclides in groundwater studies because its half-life of 5,730 years covers a critical time scale of ~500 to 50,000 years, which is ideal for dating regional and intermediate flow systems.
Cation	An ion with a positive charge – usually metal ions when disassociated and dissolved in water.
Chlorine-36 (³⁶ Cl)	A naturally occurring radioisotope of chlorine. It has a half-life of 301,000±2,000 years and is suitable for age dating groundwaters up to 1 million years old.

Claystone	A non-fissile rock of sedimentary origin composed primarily of clay-sized particles (less than 0.004 mm).
Coal	A sedimentary rock derived from the compaction and consolidation of vegetation or swamp deposits to form a fossilised carbonaceous rock.
Coal seam	A layer of coal within a sedimentary rock sequence.
Coal seam gas (CSG)	Coal seam gas is a form of natural gas (predominantly methane) that is extracted from coal seams.
Concentration	The amount or mass of a substance present in a given volume or mass of sample, usually expressed as microgram per litre (water sample) or micrograms per kilogram (sediment sample).
Conceptual model	A simplified and idealised representation (usually graphical) of the physical hydrogeologic setting and the hydrogeological understanding of the essential flow processes of the system. This includes the identification and description of the geologic and hydrologic framework, media type, hydraulic properties, sources and sinks, and important aquifer flow and surface-groundwater interaction processes.
Confining layer	Low permeability strata that may be saturated but will not allow water to move through it under natural hydraulic gradients.
Contamination	Contamination is the presence of a non-natural compound in soil or water, or unwanted compound in chemicals or other mixtures.
Datalogger	A digital recording instrument that is inserted in monitoring and pumping bores to record pressure measurements and water level variations.
Detection limit	The concentration below which a particular analytical method cannot determine, with a high degree of certainty, a concentration.
Deuterium (² H)	Also called heavy hydrogen, a stable isotope of hydrogen with a natural abundance of one atom in 6,500 of hydrogen. The nucleus of deuterium, called a deuteron, contains one proton and one neutron, where a normal hydrogen nucleus has just one proton.
Dip	The inclination of a planar surface measured in the vertical plane perpendicular to its strike.
Dip - slip fault	A fault (either normal or reverse) where the relative movement (or slip) on the fault plane is vertical.
Discharge	The volume of water flowing in a stream or through an aquifer past a specific point in a given period of time.
Dissolution	Process of dissolving a substance into a liquid. If the saturation index is less than zero, the mineral is undersaturated with respect to the solution and the mineral might dissolve.
Dissolved organic carbon (DOC)	The combined total of all organic carbon species dissolved in solution. Where dissolved is defined as below 0.45 micrometres.

Electrical Conductivity (EC)	A measure of a fluid's ability to conduct an electrical current and is an estimation of the total ions dissolved. It is often used as a measure of water salinity.
Environmental isotopes	Also known as stable isotopes, they act as 'groundwater signatures' and can be used as natural groundwater tracers.
Equilibrium	A balance between the thermodynamic forces of precipitation and dissolution. A saturation index (SI) of zero indicates apparent equilibrium.
Falling head test	A hydraulic test on a monitoring bore or piezometer that involves a sudden rise in water level (i.e. a volume of water is quickly added to the water column and the rate of water level decline is measured). Also called a slug test or slug-in test.
Fault	A fracture in rock along which there has been an observable amount of displacement. Faults are rarely single planar units; normally they occur as parallel to sub-parallel sets of planes along which movement has taken place to a greater or lesser extent. Such sets are called fault or fracture zones.
Flow testing	A gas and water appraisal program (generally carried out over several months) to determine the dewatering profile required to flow gas from one or several test production wells completed for exploration purposes.
Fluvial	Pertaining to a river or stream.
Fluvial deposit	A sedimentary deposit consisting of material transported by suspension or laid down by a river or stream.
Formation water	See produced water.
Fracture	Breakage in a rock or mineral along a direction or directions that are not cleavage or fissility directions.
Fractured rock aquifer	These occur in sedimentary, igneous and metamorphosed rocks which have been subjected to disturbance, deformation, or weathering, and which allow water to move through joints, bedding planes, fractures and faults. Although fractured rock aquifers are found over a wide area, they generally contain much less groundwater than alluvial and porous sedimentary rock aquifers.
Fracture stimulation	See hydraulic fracturing.
Global Meteoric Water Line (GMWL)	A line that defines the relationship between oxygen-18 (¹⁸ O) and deuterium (² H) in fresh surface waters and precipitation from a number of global reference sites.
Groundwater	The water contained in interconnected pores or fractures located below the water table in the saturated zone.
Groundwater age	Groundwater ages are commonly referred to as:
classification	Modern <100 years
	Sub-modern 100-1,000 years
	Old >1,000 years

Groundwater flow	The movement of water through openings in sediment and rock within the zone of saturation.
Groundwater system	A system that is hydrogeologically more similar than different in regard to geological province, hydraulic characteristics and water quality, and may consist of one or more geological formations.
Hydraulic conductivity	The rate at which water of a specified density and kinematic viscosity can move through a permeable medium (notionally equivalent to the permeability of an aquifer to fresh water).
Hydraulic fracturing	A fracture stimulation technique that increases a gas well's productivity by creating a pathway into the targeted coal seam by injecting sand and fluids through the perforated interval directly into the coal seam under high pressure.
Hydraulic gradient	The change in total hydraulic head with a change in distance in a given direction.
Hydraulic head	Is a specific measurement of water pressure above a datum. It is usually measured as a water surface elevation, expressed in units of length. In an aquifer, it can be calculated from the depth to water in a monitoring bore. The hydraulic head can be used to determine a hydraulic gradient between two or more points.
Hydrochemistry	Chemical characterisation of water (both surface water and groundwater).
Hydrogeology	The study of the interrelationships of geologic materials and processes with water, especially groundwater.
Hydrology	The study of the occurrence, distribution, and chemistry of all surface waters.
Igneous rocks	Rocks that have solidified from molten or partly molten material (magma).
lon	An ion is an atom or molecule where the total number of electrons is not equal to the total number of protons, giving it a net positive or negative electrical charge.
Isotope	One of multiple forms of an element that has a different number of neutrons than other atoms of that element. Some elements have isotopes that are unstable or radioactive, while others have 'stable isotopes'.
Isotropic	Having hydraulic properties that are the same in all directions.
Lithology	The study of rocks and their depositional or formational environment on a large specimen or outcrop scale.
Local Meteoric Water Line (LMWL)	A line that defines the local relationship between oxygen-18 (18O) and deuterium (2H) in fresh surface waters and precipitation. In this report the LMWL used is for the Sydney region.
Major ions	Constituents commonly present in concentrations exceeding 10 milligram per litre. Dissolved cations generally are calcium, magnesium, sodium, and potassium; the major anions are sulphate, chloride, fluoride, nitrate, and those contributing to alkalinity, most generally assumed to be bicarbonate and carbonate.

Methane (CH ₄)	An odourless, colourless, flammable gas, which is the major constituent of natural gas. It is used as a fuel and is an important source of hydrogen and a wide variety of organic compounds.
MicroSiemens per centimetre (µS/cm)	A measure of water salinity commonly referred to as EC (see also Electrical Conductivity). Most commonly measured in the field with calibrated field meters.
Monitoring bore	A non-pumping bore, is generally of small diameter that is used to measure the elevation of the water table and/or water quality. Bores generally have a short well screen against a single aquifer through which water can enter.
Normal faulting	Where the fault plane is vertical or dips towards the downthrow side of a fault.
Oxidising conditions	Conditions in which a species loses electrons and is present in oxidised form.
Oxygen-18 (¹⁸ O)	A natural, stable isotope of oxygen and one of the environmental isotopes. It makes up about 0.2 % of all naturally-occurring oxygen on Earth.
Percent modern carbon (pMC)	The activity of 14C is expressed as percent modern carbon (pMC) where 100 pMC corresponds to 95 % of the 14C concentration of NBS oxalic acid standard (close to the activity of wood grown in 1890).
Permeability	The property or capacity of a porous rock, sediment, clay or soil to transmit a fluid. It is a measure of the relative ease of fluid flow under unequal pressure. The hydraulic conductivity is the permeability of a material for water at the prevailing temperature.
Permeable material	Material that permits water to move through it at perceptible rates under the hydraulic gradients normally present.
Permian	The last period of the Palaeozoic era that finished approximately 230 million years before present.
рН	potential of Hydrogen; the logarithm of the reciprocal of hydrogen-ion concentration in gram atoms per litre; provides a measure on a scale from 0 to 14 of the acidity or alkalinity of a solution (where 7 is neutral, greater than 7 is alkaline and less than 7 is acidic).
Piezometer	See monitoring bore.
Porosity	The proportion of open space within an aquifer, comprised of intergranular space, pores, vesicles and fractures.
Porosity, primary	The porosity that represents the original pore openings when a rock or sediment formed.
Porosity, secondary	The porosity caused by fractures or weathering in a rock or sediment after it has been formed.
Porous rock	Consolidated sedimentary rock containing voids, pores or other openings (joints, cleats, fractures) which are interconnected in the rock mass and may be capable of storing and transmitting water.
Precipitation	(1) in meteorology and hydrology, rain, snow and other forms of water falling

	from the sky (2) the formation of a suspension of an insoluble compound by mixing two solutions. Positive values of saturation index (SI) indicate supersaturation and the tendency of the water to precipitate that mineral.
Produced water	Natural groundwater generated from coal seams during flow testing and production dewatering.
Pumping test	A test made by pumping a bore for a period of time and observing the change in hydraulic head in the aquifer. A pumping test may be used to determine the capacity of the bore and the hydraulic characteristics of the aquifer.
Quaternary	The most recent geological period extending from approximately 2.5 million years ago to the present day.
Quality assurance	Evaluation of quality-control data to allow quantitative determination of the quality of chemical data collected during a study. Techniques used to collect, process, and analyse water samples are evaluated.
Radioisotope	Radioisotopes undergo radioactive decay allowing for determination of residence times in aquifers and groundwater systems.
Recharge	The process which replenishes groundwater, usually by rainfall infiltrating from the ground surface to the water table and by river water reaching the water table or exposed aquifers. The addition of water to an aquifer.
Recharge area	A geographic area that directly receives infiltrated water from surface and in which there are downward components of hydraulic head in the aquifer. Recharge generally moves downward from the water table into the deeper parts of an aquifer then moves laterally and vertically to recharge other parts of the aquifer or deeper aquifer zones.
Recovery	The difference between the observed water level during the recovery period after cessation of pumping and the water level measured immediately before pumping stopped.
Recovery event	A monitoring event (in this case the download of dataloggers and the final water sampling program) completed after the pumping test.
Redox potential (ORP or Eh)	The redox potential is a measure (in volts) of the affinity of a substance for electrons – its electronegativity – compared with hydrogen (which is set at 0). Substances more strongly electronegative than (i.e. capable of oxidising) hydrogen have positive redox potentials. Substances less electronegative than (i.e. capable of reducing) hydrogen have negative redox potentials. Also known as oxidation-reduction potential and Eh.
Redox reaction	Redox reactions, or oxidation-reduction reactions, are a family of reactions that are concerned with the transfer of electrons between species, and are mediated by bacterial catalysis. Reduction and oxidation processes exert an important control on the distribution of species like O2, Fe2+, H2S and CH4 etc. in groundwater.
Reducing conditions	Conditions in which a species gains electrons and is present in reduced form.
Residence time	The time that groundwater spends in storage before moving to a different

part of the hydrological cycle. Reverse fault A dip-slip fault in which the hangingwall (wall above the fault) moves upward relative to the footwall (wall beneath the fault). Salinity The concentration of dissolved salts in water, usually expressed in milligrams of total dissolved solids per litre (mg/L TDS) or units of electrical conductivity (EC). Salinity classification Fresh water quality – water with a salinity $< 800 \ \mu$ S/cm. Marginal water quality - water that is more saline than freshwater and generally waters between 800 and 1,600 µS/cm. Brackish quality – water that is more saline than freshwater and generally waters between 1,600 and 4,800 µS/cm. Slightly saline quality - water that is more saline than brackish water and generally waters with a salinity between 4,800 and 10,000 µS/cm. Moderately saline quality - water that is more saline than brackish water and generally waters between 10,000 and 20,000 µS/cm. Saline quality – water that is almost as saline as seawater and generally waters with a salinity greater than 20,000 μ S/cm. Seawater quality – water that is generally around 55,000 µS/cm. Sandstone Sandstone is a sedimentary rock composed mainly of sand-sized minerals or rock grains (predominantly quartz). Screen A type of bore lining or casing of special construction, with apertures designed to permit the flow of water into a bore while preventing the entry of aquifer or filter pack material. Sedimentary rock aquifer These occur in consolidated sediments such as porous sandstones and conglomerates, in which water is stored in the intergranular pores, and limestone, in which water is stored in solution cavities and joints. These aquifers are generally located in sedimentary basins that are continuous over large areas and may be tens or hundreds of metres thick. In terms of quantity, they contain the largest volumes of groundwater. Shale A laminated sedimentary rock in which the constituent particles are predominantly of clay size. Siltstone A fine-grained rock of sedimentary origin composed mainly of silt-sized particles (0.004 to 0.06 mm). Stable isotope Stable isotopes are atoms of the same element that have different masses due to differences in the number of neutrons they contain. Stable isotopes are not subject to radioactive decay, meaning they do not breakdown over time. Standing water level The height to which groundwater rises in a bore after it is drilled and (SWL) completed, and after a period of pumping when levels return to natural atmospheric or confined pressure levels.

Stratigraphy The depositional order of sedimentary rocks in layers.

Strike	The direction of a horizontal straight line constructed on an inclined planar surface, at the direction of 90 ⁰ from the dip direction.
Strike-slip fault	A fault where the displacement (or slip) is horizontal / parallel to the strike of the displacement plane.
Surface water- groundwater interaction	This occurs in two ways: (1) streams gain water from groundwater through the streambed when the elevation of the water table adjacent to the streambed is greater than the water level in the stream; and (2) streams lose water to groundwater through streambeds when the elevation of the water table is lower than the water level in the stream.
Tertiary	Geologic time at the beginning of the Cainozoic era, 65 to 2.5 million years ago, after the Cretaceous and before the Quaternary.
Thrust fault	A reverse fault with a low angle of dip.
Total Dissolved Solids (TDS)	A measure of the salinity of water, usually expressed in milligrams per litre (mg/L). See also EC.
Tritium (³ H)	A short-lived isotope of hydrogen with a half-life of 12.43 years. It is commonly used to identify the presence of modern recharge. Tritium is produced naturally in small amounts owing to the interaction of cosmic radiation with atmospheric oxygen and nitrogen in the troposphere, and is also produced by thermonuclear explosions.
Tuff	Tuff is a type of volcanic rock consisting of consolidated explosive ash ejected from vents during a volcanic eruption.
Water quality	Term used to describe the chemical, physical, and biological characteristics of water, usually in respect to its suitability for a particular purpose.
Water quality data	Chemical, biological, and physical measurements or observations of the characteristics of surface and ground waters, atmospheric deposition, potable water, treated effluents, and waste water and of the immediate environment in which the water exists.
Water table	The top of an unconfined aquifer. It is at atmospheric pressure and indicates the level below which soil and rock are saturated with water.
Well	Pertaining to a gas exploration well or gas production well.
Workover	The process of performing major maintenance or remedial treatments on an oil or gas well. In many cases, workover implies the removal and replacement of the production tubing string after the well has been killed and a workover rig has been placed on location. Through-tubing workover operations, using coiled tubing, snubbing or slickline equipment, are routinely conducted to complete treatments or well service activities that avoid a full workover where the tubing is removed. This operation saves considerable time and expense.

Abbreviations

AGL	AGL Upstream Investments Pty Ltd
ANSTO	Australian Nuclear Science and Technology Organisation
ВоМ	Bureau of Meteorology
BTEX	Benzene, toluene, ethyl benzene and xylenes
CDFM	Cumulative deviation from mean
CSG	Coal seam gas
DIC	Dissolved organic carbon
DO	Dissolved oxygen
EC	Electrical Conductivity
JSA	Job Safety Analysis
HESP	Health, Environment and Safety Plan
GGP	Gloucester Gas Project
GMWL	Global Meteoric Water Line
GRL	Gloucester Resources Limited
LMWL	Local Meteoric Water Line
LOQ	Limit of quantitation
LOR	Limit of reporting
LTA	Long term average
ORP	Oxidation reduction potential
РАН	Polycyclic aromatic hydrocarbons
PEL	Petroleum Exploration Licence
PPE	Personal Protective Equipment
SMP	Safety Management Plan
SWL	Standing water level
SWMS	Safe Work Methods Statements
TD	Total depth
TDS	Total Dissolved Solids
ТРН	Total recoverable hydrocarbons

Units

°C	degrees Celsius
L/s	litres per second
m	metres
mAHD	metres Australian Height Datum
mbgl	metres below ground level
m/day	metres per day
mL	millilitres
mm	millimetres
µS/cm	microSiemens per centimetre
mg/L	milligrams per litre
µg/L	micrograms per litre
mV	millivolt
‰	per mil
рСМ	percent modern carbon
TU	tritium unit
VPDB	Vienna PeeDee Belemnite
VSMOW	Vienna Standard Mean Ocean Water
yrs BP	years before present

Executive summary

AGL Upstream Infrastructure Investments Pty Ltd (AGL) is proposing to build the Gloucester Gas Project (GGP) which will comprise several stages of development; however, only one stage, the Stage 1 Gas Field Development Area (GFDA) is currently approved. A comprehensive groundwater investigation (*Phase 2 Groundwater Investigations*) was completed in early 2012 to confirm the hydrogeological conceptual model across the stage 1 GDFA. Surface water and groundwater investigations are ongoing pending the commencement of the GGP.

This report relates to the completion of nested groundwater monitoring bores adjacent to AGL's proposed Waukivory Pilot flow test site. The bores were drilled between January and May 2012 and initial baseline monitoring data collected at the site to February 2014. With the upcoming Waukivory pilot there is an opportunity to collect additional groundwater data associated with the proposed flow testing trial where the deep coal seams will be fracture stimulated and dewatered.

The drilling program focussed on a fault zone where old rock layers are thrust over younger strata. The objective of the drilling program was to establish a monitoring network to assess the baseline groundwater conditions in the fractured rock aquifer in the upthrust fault block (close to the surface) and within the fault zone itself. The location of the monitoring bores was selected to be within the area of influence of the Waukivory Pilot gas well WK11 and potentially the other Waukivory Pilot gas wells (WK12, WK13, and WK14). Three groundwater monitoring bores (WKMB01, WKMB02 and WKMB04) were installed in the upthrust block (targeting the first major water cut in the shallow rock [Leloma Formation] and the Roseville Coal Seam) and one was installed within the fault zone (WKMB03). Although not detected during the drilling, gas was observed after installation in the bore screened in the Roseville Coal Seam (WKMB04). This bore was to be converted to a vibrating wire piezometer but the conversion was unsuccessful and it was subsequently plugged and abandoned by AGL.

Following the completion of the three remaining monitoring bores, screened in the Leloma Formation, in situ pressure transducers (dataloggers) were installed and hydraulic conductivity testing undertaken.

The hydraulic conductivity results were consistent with the values previously encountered within the Stage 1 GFDA of the GGP.

Initial monitoring indicates that groundwater levels and temporal trends in strata above and below the thrust fault are similar. Each of the three monitoring bores show a response to high rainfall events.

Initial groundwater quality monitoring suggests that:

- Groundwater quality is marginal to saline, with alkaline pH and strongly reducing to oxidizing conditions.
 Major ion chemistry is similar, although the relative concentrations vary between monitoring bores.
- Dissolved metal concentrations are typically low, however exceedances of the ANZECC (2000) guidelines for freshwater ecosystems were observed for aluminium, copper, lead, nickel and zinc in at least one monitoring bore. Ammonia, total phosphorus and reactive phosphorus were detected at concentrations above the ANZECC (2000) guidelines at all monitoring bores.
- TPH were detected at concentrations above the laboratory LOR at WKMB03 and WKMB04. PAHs and BTEX were below the laboratory LOR at all monitoring bores. Phenolic compounds were below the laboratory LOR at all monitoring bores, with the exception of phenol which was detected at WKMB03.
- Isotope data indicate that groundwater in all monitoring bores is of meteoric origin. Groundwater is several thousand years old in the shallow rock monitoring bores, several thousand years old in the fault zone at WKMB03 (14,500 yrs BP) and in the Roseville Coal Seam at WKMB04 (>40,000 yrs BP).

 Methane isotope data is below the LOQ and cannot be interpreted with a degree of confidence at WKMB01 and WKMB02; however values suggest a thermogenic origin. Methane isotope data indicates that methane is of early mature thermogenic origin at WKMB03 and WKMB04.

It is recommended that monitoring continues at the Waukivory monitoring bores in accordance with the existing program. It is also recommended that these monitoring bores are included in the groundwater monitoring plan for the Waukivory Pilot flow test due to commence in late-2014 (pending approvals) together with the installation of real-time telemetry recording groundwater level fluctuations, which would assist timely data collection and interrogation of groundwater levels during the proposed Waukivory Pilot flow test.

1. Introduction

This report is the drilling and completion report for the four groundwater monitoring bores constructed as part of the Waunkivory Pilot investigation and associated activities. The report includes baseline water levels and water quality information to February 2014.

1.1 Gloucester Gas Project

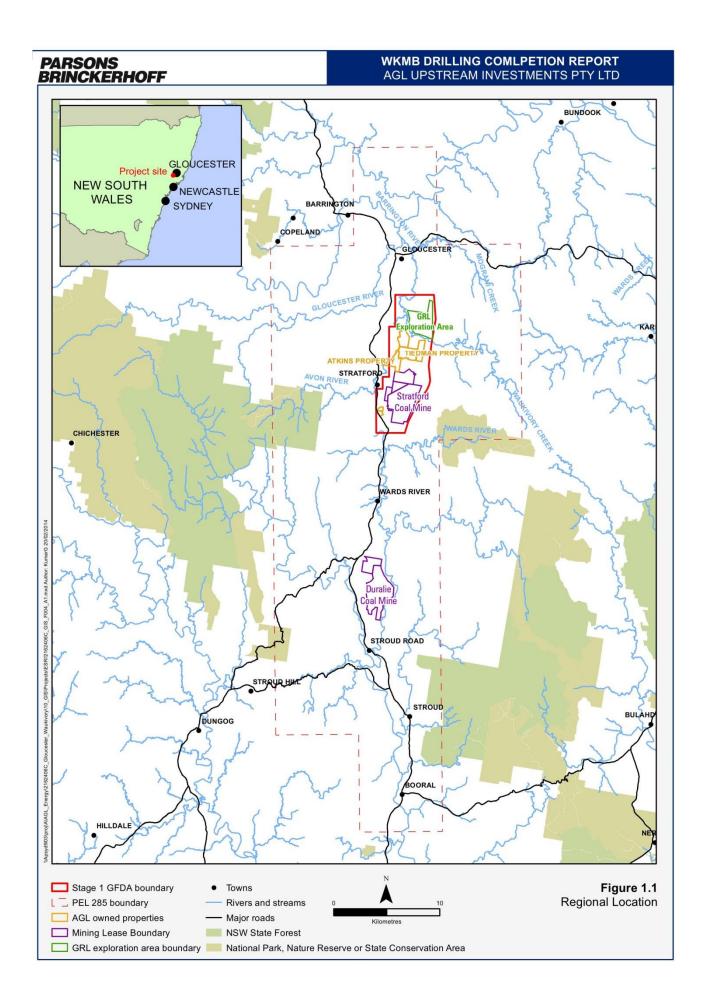
AGL Upstream Infrastructure Investments Pty Ltd (AGL) is proposing to build the Gloucester Gas Project (GGP) which comprises several stages of development facilitating the extraction of coal seam gas (CSG) from the Gloucester Basin. Concept Plan and Project Approval (Part 3A Approval) for the Stage 1 Gas Field Development Area (GFDA) was granted on 22 February 2011 under Part 3A of the *Environmental Planning and Assessment Act (1979) (EP&A Act)*. In addition the project received approval under the *Environment Protection and Biodiversity Conservation Act (1999) (EPBC Act)* (EPBC Approval) on 11 February 2013.

AGL also holds Petroleum Exploration Licence (PEL) 285, under the *Petroleum (Onshore) Act 1991*, covering the whole of the Gloucester Basin, approximately 100 km north of Newcastle, NSW. AGL has also applied for a Petroleum Production Lease (PPL) for the Stage 1 area subject of the planning approvals. The Stage 1 GFDA in relation to the PEL boundary is shown in Figure 1.1.

The GGP will involve the dewatering of deep groundwater and the extraction of gas from multiple coal seams within the Gloucester Coal Measures. Target coal seam depths will vary from site to site but are expected to range between 200 and 1,000 metres below ground level (mbgl). The current GGP includes the construction, operation and decommissioning of 110 coal seam gas wells and associated infrastructure, including gas and water gathering lines, within the Stage 1 GFDA.

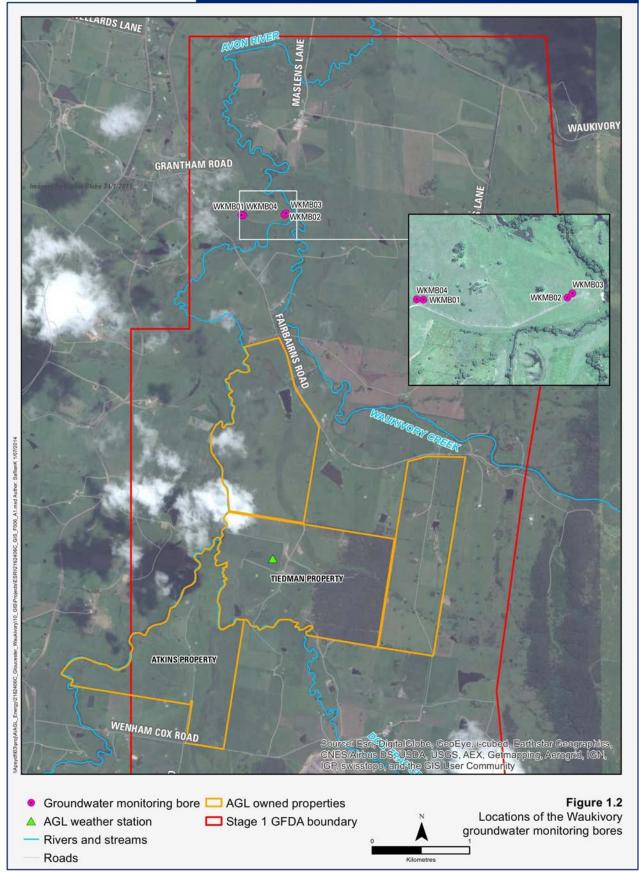
1.2 Waukivory drilling program

Two nested sites of groundwater monitoring bores (four bores in total) were constructed on the Mitchell property, owned by Gloucester Resources Limited (GRL) in the vicinity of AGL's Waukivory Pilot flow test site, in Gloucester, from January to May 2012 as part of the *Phase 2 Groundwater Investigations* for the Stage 1 GFDA.


The addition of these four Waukivory bores to the existing monitoring network allows further characterisation of a local geological fault feature and facilitates the monitoring of local shallow groundwater during planned flow testing. In addition, the local geology and hydrogeology of the GGP can be further explored and greater characterisation of the groundwater systems determined.

The drilling program focussed on an identified fault zone where old rock layers are trust over younger strata. The objective of the drilling program was to establish a monitoring network to assess the baseline groundwater conditions in the fractured rock aquifer in the upthrust fault block (close to the surface) and within the fault zone itself. Three groundwater monitoring bores were installed in the upthrust block: two shallow rock monitoring bores were installed in the first major water cut in the Leloma Formation, and one monitoring bore was installed in the Roseville Coal Seam (Jilleon Formation). A further monitoring bore was installed in the Deards Coal Seam (Leloma Formation).

The Waukivory drilling program compromised:


- Installation of four groundwater monitoring bores (WKMB01, WKMB02, WKMB03 and WKMB04).
- Geophysical logging at the deepest groundwater monitoring bore (WKMB04).

- Installation of insitu pressure transducers (dataloggers) at all groundwater monitoring bores (except WKMB04).
- Hydraulic conductivity testing at all groundwater monitoring bores (except WKMB04).
- Baseline groundwater quality testing, including: field parameters, major cations and anions, dissolved metals, nutrients, dissolved methane, hydrocarbons and isotopic characteristics.

PARSONS BRINCKERHOFF

WKMB DRILLING COMLPETION REPORT AGL UPSTREAM INVESTMENTS PTY LTD

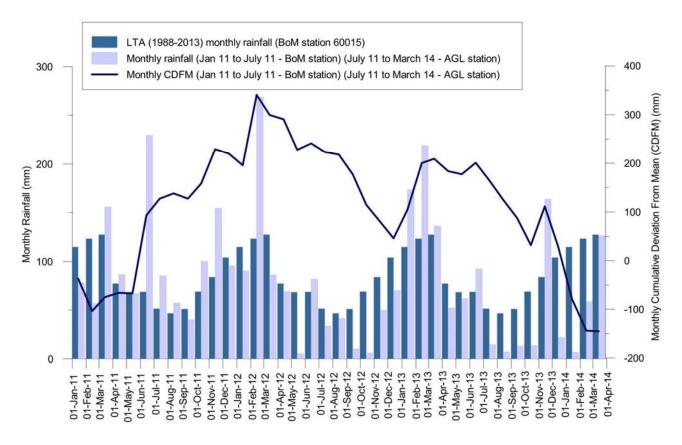
2. Site characterisation

2.1 Site location

The Waukivory groundwater monitoring bore drill sites associated with the Waukivory Pilot are situated approximately 6 km south of Gloucester, NSW, on a GRL owned property, 176 Fairbairns Lane, Forbesdale. The site is bound to the east and south by the Avon River.

The Waukivory Pilot site is located in paddocks used for low intensity cattle grazing adjacent to the flood plain of the Avon River; the primary water course in the area.

2.2 Rainfall


There are three Bureau of Meteorology (BoM) weather stations within the Gloucester Basin in the vicinity of the Waukivory Pilot, and an additional AGL weather station on the Tiedman property at Stratford. Average rainfall and the period of monitoring for the BoM and AGL stations are presented in Table 2.1.

Station ID	Name	Monitoring period	Long term average annual rainfall (mm)	
BoM 60015	Gloucester Post Office	1888 to present	982.4	
BoM 60112	Gloucester Hiawatha	1976 to present	1,023.2	
BoM 60042	Craven (Longview)	1961 to present	1,061.6	
AGL	Tiedman property	2011 to present	909.3	

 Table 2.1
 BoM and AGL weather stations in the Gloucester Basin (BoM 2014)

Long term annual rainfall averaged across all three BoM weather stations is approximately 1,022 mm.

Rainfall data collected by AGL since July 2011 are presented in Figure 2.1. Cumulative deviation from the mean monthly rainfall indicates that rainfall during 2011 was generally above average. Over the following two years since March 2012, rainfall conditions have been generally below average (with the exception of high rainfall in the first two months of 2013).

Figure 2.1 Monthly rainfall and cumulative deviation from the mean data from the AGL Gloucester Station (AGL 2014a)

2.3 Geological setting

2.3.1 Regional geology

The Gloucester Basin comprises a thick succession of Permian sedimentary rocks representing deposition in both terrestrial and marine environments during a complex period of subsidence, uplift and relative sea level change (marine transgression and regression).

The basin is a synclinal intermontane structure formed in part of the New England Fold Belt between a major Permian plate margin and the Sydney-Gunnedah Basin (Lennox 2009). The north – south trending synclinal nature of the Gloucester Basin resulted from the collision between the East Australian and Pacific Plates.

Following a period of extension during the Early Permian, the Gloucester Basin has undergone periods of normal and reverse faulting, with large scale tilting associated with late stage compressional movements towards the end of the Permian (Hughes 1984). Reverse faults dominate the present day structure. A comparison with the contemporary horizontal stress field map (Hillis et al. 1998) indicates the basin is likely to be under compression in an east-west orientation.

The stratigraphy dips steeply (up to 90°) on the flanks of the basin, dipping towards the north-south trending synclinal basin axis and flattening toward the centre of the basin. Early-Permian and Carboniferous hard resistive volcanics form the ridgelines of the basin margins: the Mograni Range to the east; and the Gloucester and Barrington Tops to the west.

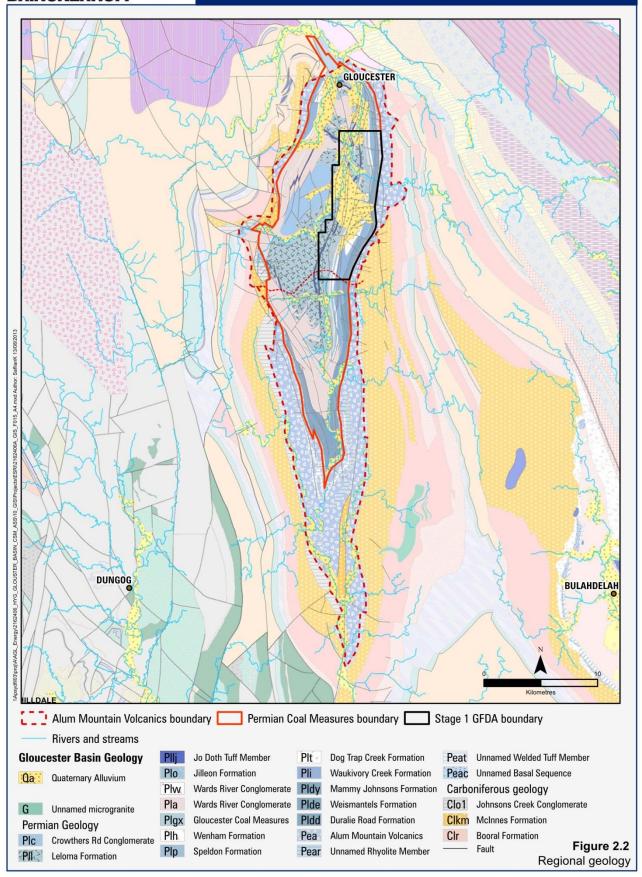
Overlying the Permian stratigraphy is a thin sequence of surficial Quaternary sediments. The Quaternary sediments are non-uniform in thickness, and comprise unconsolidated alluvial and colluvial sediments (sand,

gravel, silt and clay) along the drainage channels and across the River Avon floodplain, sourced from the surrounding outcropping Permian deposits.

2.3.2 Stratigraphy of the investigation area

The Gloucester Basin is divided into three major Permian stratigraphic units each representing a distinct depositional setting: the Gloucester Coal Measures, the Dewrang Group, and the Alum Mountain Volcanics. The generalised stratigraphy of the basin is summarised in Table 2.2. A geological map of the basin is shown in Figure 2.2.

The GGP within the Stage 1 GFDA will target the intermediate and deep coal seams in the Gloucester Coal Measures, generally below depths of 200 m to around 1000 m.


Table 2.2	Stratigraphy of the Gloucester Basin
-----------	--------------------------------------

Period	Group	Sub- group	Formation	Approx. thickness (m)	Coal seam	Depositional Environment	Tectonic Events
			Crowthers Road Conglomerate	350		-	
				585	Linden		
					Jo Doth		
			Leloma		Bindaboo		
					Deards	Marine	
		Craven			Cloverdale	regression, progradation of	Uplift to west of Gloucester Basin
			Jilleon	175	Roseville	alluvial fans	Dasin
					Tereel/Fairbairns	-	
			Wards River Conglomerate	Variable		-	
					Bowens Road		
			Wenham	23.9	Bowens Road Lower		
		Speldon	Formation				Extension (normal fault development) and regional subsidence. Uplift to west of Basin
			Dog Trap Creek	126	Glenview	Marine transgression but also some progradation of alluvial fans in the west related to uplift	
		Gloucester Coal Measures	ⁿ Waukivory Creek	326	Avon		
	sures				Triple		
	ul Mea				Rombo		
	er Coa				Glen Road		
	lceste				Valley View		
Glot				Parkers Road			
Upper Permian Dewrang	Mammy	Johnsons	300	Mammy Johnsons	Marine transgression,	Extension (normal fault	
	Dewrang	Weisman	ntel	20	Weismantel	regression and further marine	development) and regional
ddn	Dev	Duralie F	Road	250		transgression	subsidence
u					Clareval		
Lower Permian	Alum Mountain Volcanics				Basal	Arc-related rift	

(1) Modified from AECOM (2009) and SRK (2005).

PARSONS BRINCKERHOFF

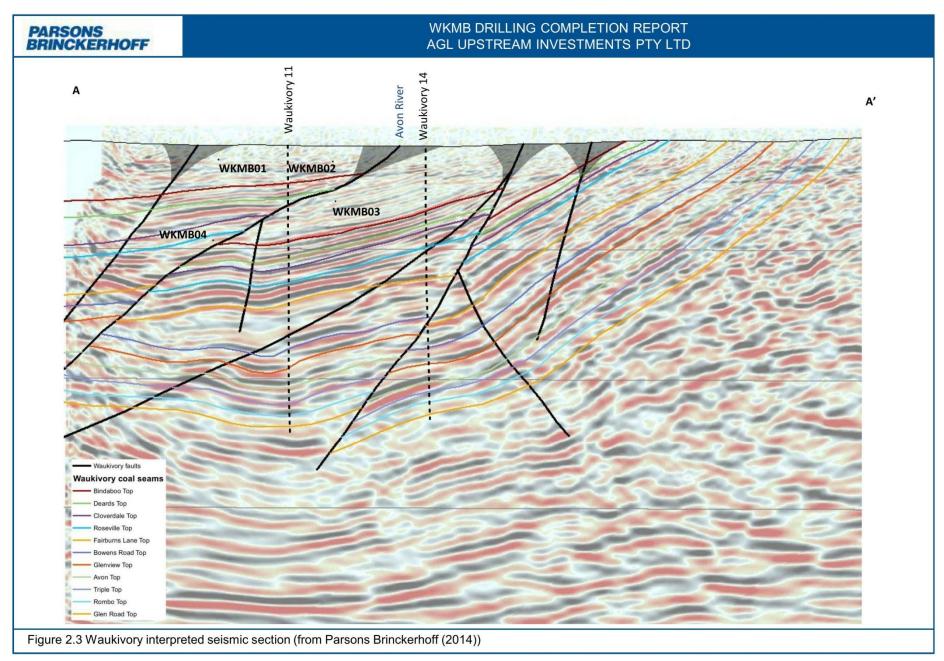
WKMB DRILLING COMLPETION REPORT AGL UPSTREAM INVESTMENTS PTY LTD

2.3.3 Structural geology of the investigation area

The tectonic development and structural setting of the Gloucester-Stroud Syncline is discussed by Roberts et al. (1991) based on regional geological mapping and seismic profile interpretation. Subsequent structural interpretations have been carried out by SRK (2005) and Lennox (2009). The following summary is based on those reports.

The Gloucester-Stroud Syncline is the largest structure in the surrounding region, being more than 55 km long and 24 km wide with steeply dipping limbs containing a stratigraphic section up to 8 km thick (Roberts et al. 1991). The syncline has a sinuous axial trace that trends in generally northerly direction (355°) but that swings eastwards (022°) between Stratford and Gloucester. The syncline is doubly plunging, closing at both ends forming a tight cance-like structure. The axial plane is inclined slightly to the east; bedding in the limbs of the syncline tends to dip steeply toward the axis at more than 60°, with some bedding sub-vertical or slightly overturned.

The syncline is a fault bounded trough, active during the Permian. Roberts et al. (1991) identify up to six deformation events that were important in the depositional and structural development of the basin. SRK (2005) simplified the structural development into two main stages:


- Early Middle Permian dextral tectonic margin, resulting in reactivation of NNW-striking faults as strikeslip dextral and formation of NE and EW striking normal faults, particularly around the margins of a circular basement feature (suspected deep intrusion) in the northern part of the basin. The majority of the coal measures were deposited during this complex phase.
- Late Permian shortening in a NE direction during the early stages of the Hunter Bowen Orogeny, resulting in reverse and thrust faulting on NNW faults and some NNE faults.

Combining structural domains with the known distribution of stratigraphy, SRK (2005) divides the basin into three structure/stratigraphic domains:

- 1. An eastern domain containing a number of coal seams in the Avon and Craven sub-groups.
- 2. A western domain where the surface mapping indicates sequences of Waukivory Formation and Wards River Conglomerate that mark periods of prograding fluvial systems that have significantly reduced the thickness of coal seams.
- 3. Major fault zones that separate the eastern and western domains.

2.3.3.1 Waukivory Fault

The fault zones identified in the Waukivory study area are mostly reverse faults where older rock strata are thrust over younger strata. Figure 2.3 shows the trace of the major faults identified in seismic section. The displacements of identified coal seams across the fault are mapped.

2.4 Hydrogeological setting

Four broad hydrogeological units have been identified within the Gloucester Basin (Table 2.3). The permeability and groundwater flow characteristics of rocks within the Gloucester Basin are controlled by several factors including lithology, depth and the degree of fracturing and faulting. In this sense hydrogeological units and flow systems do not always correspond with defined geological boundaries (Parsons Brinckerhoff 2014a).

Unit	Aquifer type	Aquifer type Formation name		Hydraulic characteristics	
Alluvium	Semi-confined, clay capped, porous, granular	Quaternary alluvium	Clay/mixed gravels	Heterogeneous, highly variable permeability associated with varying lithology	
Shallow Rock (<150m)	Semi-confined, fractured rock	Upper Permian Coal Measures, Alum Mountain Volcanics	Interbedded sandstone/siltstone with bedding plane fractures	Heterogeneous, high and low permeability domains associated with fault zones and fracturing	
Interburden	rden Confined, Upper Permian fractured rock Coal Measures		Interbedded indurated sandstone/siltstone and claystone	Low permeability associated with sparse fractures, permeability decreases with depth	
Coal Seams Confined, Upper Permian fractured rock Coal Measures			Coal/shale	Low permeability associated with cleating and fractures in coal seams, permeability decreases with depth	

Table 2.3	Main hydrogeological units of the Gloucester Basin
-----------	--

The four hydrogeological units are summarised as follows (Parsons Brinckerhoff 2014a):

- 1. Alluvial deposits adjacent to major creeks and rivers comprising unconsolidated sand, gravel and clay. These systems are heterogeneous but generally permeable with rapid recharge, through-flow and discharge associated with interactions with streams, and to a lesser extent with the underlying less permeable shallow rock. Hydraulic conductivity measurements range from 0.3 to 300 metres per day (m/d), averaging around 10 m/d.
- 2. Shallow rock comprising variably weathered and fractured Permian rocks extending to approximately 150 m below the surface, across all sub-cropping Permian units. The shallow rock zone is highly heterogeneous with relatively impermeable domains separated by more permeable domains, but on the whole it is more permeable that the deeper coal measures. The higher permeability domains are due to a higher density of fracturing associated with an irregular weathering profile and the near-surface expression of faulting. Groundwater flow within this zone is more strongly controlled by weathering and fracturing than the attitude of geological strata. Hydraulic conductivity of the shallow rock ranges from 10 m/d to 1x10⁻⁶ m/d at a depth of 150 m, but is typically in the order of 10⁻³ to 10⁻⁴ m/d.
- 3. **Deep coal measures interburden**. Sandstone and siltstone units that form interburden to coal seams are indurated and typically of very low permeability, forming aquitards and confining layers. Permeability of the interburden decreases with depth such that, at the maximum depth of CSG production it is likely to be in the order of 10⁻⁵ to 10⁻⁷ m/d, or less.
- 4. **Coal seams** tend to be slightly more permeable than the interburden and commonly form weak water bearing zones. Permeability and storage are provided by small fractures and cleats in the coal. As with the interburden, drill-stem tests show that the permeability of coal seams generally decreases with depth. At the maximum depth of CSG production, the permeability of coal seams is very low $(10^{-4} 10^{-6} m/d)$, but may be an order of magnitude higher than the interburden.

3. Drilling program

Parsons Brinckerhoff was the principal contractor for the site investigation program, providing all project management services, including management of sub-contractors.

Parsons Brinckerhoff supplied all the required technical services including geological, geophysical, hydrogeological and surveying services using the following sub-contractors:

- Highland Drilling (all drilling and bore completions except the abandonment of WKMB04 which was carried out by AGL).
- Groundsearch Australia Pty (downhole geophysical logging).
- CalCo Surveyors Pty Ltd (surveying services).

3.1 Health, safety and environment

Onsite health, safety and environmental risks were managed through a health, environment and safety plan (HESP) (Parsons Brinckerhoff 2012a), construction and environment management plan (CEMP) (Parsons Brinckerhoff 2012b) and safety management plan (SMP) (Parsons Brinckerhoff 2011 and 2012c); these documents were prepared in advance of the drilling program and were reviewed and approved by AGL's safety team. Highland Drilling (nominated drilling contractors for the works) provided safe work method statements (SWMS) (Highland Drilling 2012a) and job safety analyses (JSA) (Highland Drilling 2012b) covering works relating to the drilling and construction of the boreholes, these documents were also reviewed and approved by AGL.

All Highland Drilling and Parsons Brinckerhoff staff and site visitors were required to undergo a drill site induction during which they were given an overview of the commitments included in the HESP, SMP and CEMP and how these applied to their specific duties.

3.1.1 Health, Environment and Safety Plan

Prior to the commencement of the field based phase of the project, Parsons Brinckerhoff developed a comprehensive site specific HESP for the supervision of drilling work and groundwater monitoring activities at the Gloucester sites: *Health, Environment and Safety Plan (HESP) AGL – Gloucester Gas Project, groundwater investigations* (Parsons Brinckerhoff 2012a). This plan details the planned field tasks and the associated risk, and introduced risk mitigation measures to manage the risks. Measures include: risk elimination, substitution and implementation of controls, training, and use of personal protective equipment (PPE).

3.1.2 Safety Management Plan

The installation of the monitoring bores was conducted in accordance with the SMP which was developed by Parsons Brinckerhoff in collaboration with Highland Drilling and approved by AGL (Parsons Brinckerhoff 2012c). The SMP should be read in conjunction with the following AGL and Highland Drilling documents which together cover the health, safety and environmental working procedures for AGL's GGP:

- Upstream Gas Golden Rules (AGL 2010).
- Gloucester Gas Operations Occupational Health and Safety Management Plan (OHSMP) (AGL 2012a).
- Gloucester Gas Operations Emergency Response Plan (AGL 2012b).
- Gloucester Gas Project Environmental Management Plan (EMP) (AGL 2013).

- Standard Work Method Statement Gloucester drilling (Highland Drilling 2012a).
- Job Safety Analysis Gloucester drilling (Highland Drilling 2012b).

All fieldwork undertaken at the Gloucester drill sites was covered by the aforementioned documents including subsequent testing, and groundwater monitoring and sampling. These documents aim to ensure that the health, safety and welfare of Parsons Brinckerhoff employees and subcontractors are upheld through systematically identifying and documenting hazards, and assessing and controlling the associated risks.

3.1.3 Construction and Environment Management Plan

All site operations were undertaken in accordance with the environmental management systems as detailed in a site specific CEMP.

A detailed water management plan was a critical part of the CEMP detailing the stringent measures implemented to ensure compliance to zero discharge of produced (drilling) waters to adjacent land and surface water receivers. To assist in managing the reuse of lower salinity groundwater and the disposal of higher salinity groundwater and drilling mud, the following water management plan was implemented:

- All water utilised during the drilling process was supplied and brought to site by AGL.
- All groundwater produced during the drilling operations was captured in above ground storage tanks. If the capacity of the tanks reached 80%, work on that bore ceased until excess water in the tanks could be emptied. All groundwater was trucked to the produced water storage dams on AGL's Tiedman property for disposal.
- Drilling muds (Halliburton EZ-mud) were disposed of to a licenced facility.
- All cuttings produced during drilling were also contained in above ground tanks and were dried and used for internal farm track maintenance on the Tiedman property.

Run-off waters from rainfall events were diverted from the drilling areas (where required) by the construction of diversion bunds on the up-gradient side of the site. Water from the drill pads and associated constructed access tracks was diverted away by sand bag bunds, silt fencing and other control structures so as to direct water onto adjacent grassed areas and avoid erosion of the drill pads, fire trail and track areas.

3.1.4 Wellsite Permit to Work System

The internationally recognised Wellsite Permit to Work System (www.wellsite.org.au) was used by Parsons Brinckerhoff for the GGP groundwater drilling program. The system provides the means to manage field safety aspects in a systematic, formalised and auditable manner. As a standardised work planning mechanism the Permit to Work System was used for all non-routine tasks where a health and safety plan did not exist (including hot works), thus forcing the individual to undertake a documented work plan and assessment of the risks.

3.2 Groundwater monitoring bore drilling and construction

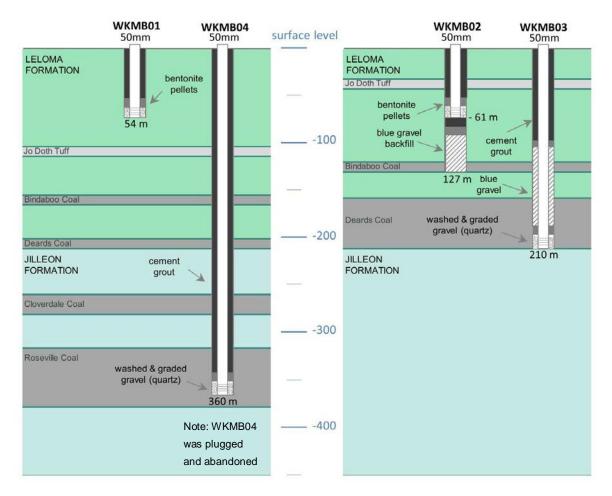
Between January and May 2012, four groundwater monitoring bores were drilled and constructed on the Waukivory pilot site. AGL submitted a Category 1 notification together with the required Site Disturbance Notices to the Division of Resources and Energy (DRE) under the reconnaissance drilling program requirements of PEL 285. Test (monitoring bore) licences under the Water Act 1912 were obtained by AGL prior to the monitoring bore drilling program (Table 3.1).

The drilling and completion of the groundwater monitoring bores was carried out in accordance with the NSW Office of Water (NOW) bore licence conditions and followed a detailed design and specification compliant with the National Uniform Drillers Licencing Committee (NUDLC) 2012, Minimum Construction Requirements for Water Bores in Australia, Edition 3.

Table 3.1Monitoring bore licences

NOW Licence No.	No. of locations	Local bore ID		Site location (property)	Lot	DP	Bore type
20BL173038	4 bores	WKMB01 WKMB02	WKMB03 WKMB04	Waukivory	11	841445	Groundwater monitoring

The drilling of all bores was undertaken by Highland Drilling, using a rotary drilling rig under the supervision of a Parsons Brinckerhoff hydrogeologist. The target depth of all boreholes was confirmed by the supervising hydrogeologist. Geological bore logs are included in Appendix A.


Table 3.2 and Figure 3.1 summarise the bore construction details.

Monitoring bores WKMB01 and WKMB04 were drilled between January and February 2012 and monitoring bores WKMB02 and WKMB03 were drilled between April and May 2012.

Table 3.2Bore construction details

Monitoring bore	Borehole diameter (mm)	Predominant drill bit	BoP & muds	Depth of 6" casing (mbgl)	Total depth (mbgl)	Screened interval (mbgl)	Screened interval (mAHD)	Screened formation	Hydro- stratigraphic units	Construction details
WKMB01	127	Air hammer	N/A	18.0	54.0	47.0 - 53.0	51.2 – 48.2	Leloma (upthrust)	Siltstone / sandstone	50 mm uPVC casing and screen
WKMB02	127	Air hammer	BoP & muds	18.0	127.0	51.0 - 60.0	52.5 - 43.5	Leloma (upthrust)	Siltstone / sandstone	50 mm uPVC casing and screen
WKMB03	140	Air hammer	BoP & muds	36.0	210.0	200.0 - 209.0	-96.8 – -105.9	Leloma (fault zone)	Siltstone / sandstone	50 mm galvanised steel casing and screen
WKMB04	140	Air hammer	N/A	18.0	360.0	335.0 – 347.0	-234.0246.0	Jilleon (upthrust)	Siltstone / sandstone / coal	50 mm galvanised steel casing and screen

(1) mbgl = metres below ground level; mAHD = metres Australian Height Datum.

Figure 3.1 Nested groundwater monitoring bores at the Waukivory site

3.2.1 Drilling of monitoring bores

Drilling through the weathered horizon in the top 6 m was undertaken with a 200 mm (7.8") drag bit. This unstable section of the borehole was then lined with a 152 mm (6.0") internal diameter, welded steel surface casing of various lengths depending on the geology. Air rotary drilling through the solid rock was undertaken using a 140 mm (5.5") percussion hammer drill bit at all monitoring bores.

Although not encountered during the drilling, immediately following the drilling and completion of the deep monitoring bore, gas was observed in WKMB04, coming from the screened interval in the Roseville Coal Seam. Flows were controlled by installing a gas wellhead at this site to seal the bore.

Prior to the commencement of the second part of the field program, a desktop risk assessment for the drilling and construction of monitoring bores WKMB02 and WKMB03 was undertaken, as per the requirements of the updated SMP (Parsons Brinckerhoff, 2012c). Taking into consideration the borehole depth and the likely strata to be drilled through (i.e. faults and / or producing coal seams), monitoring bore WKMB02 was assessed to be low risk and WKMB03 was assessed to be high risk. The risk rating determines the construction method and level of well control required i.e. the practices used to prevent and/or manage the influx of formation fluids/gas in the borehole (blowouts) and this is often via the use of a Blowout Preventer (BoP) and drill muds.

As the deep monitoring bore WKMB03 was assessed to have the potential for gas, it was drilled using well control (utilising a 5.5" BoP). At a prescribed pressure threshold level the BoP is set to deploy and will clamp around the top of the drill rods or casing, killing potential gas surges released from coal seams.

The BoP requires an anchor into competent rock, typically around one third of the total drill depth. A 152 mm (6.0") internal diameter, screwed steel casing was installed to 36 mbgl and grouted in place at WKMB03. In addition to the 6.0" casing, a 203 mm (8.0") internal diameter, welded, steel riser was installed to support the upper, loosely consolidated profile to 6 mbgl. The drilling from 0 to 6 mbgl was undertaken with a 215 mm (8 ½") drag bit, while drilling from 6 to 210 mbgl (total depth) was undertaken with a 140 mm percussion hammer drill bit. As an additional well control measure, monitoring bore WKMB03 was drilled overbalanced. (i.e. using drilling muds (Halliburton EZ-mud)). When drilling overbalanced, formation fluids and gases are supressed by the weighting of the muds. The muds are pumped through the drill string, and are captured at the surface and recirculated.

Monitoring bore WKMB02 was originally planned to be WKMB03 and was drilled using a BoP. A number of collapses in the formation were encountered during drilling at this location, likely due to the narrow bore diameter and the low water inflow. To stabilize the bore, drilling foam was added and it was constructed to a shallower depth as WKMB02. The specifications of the backfill and collapses are presented in the geological log in Appendix A.

The Leloma Formation encountered at the Waukivory site is characterised by grey siltstone and fine grained (and minor very fine and fine to medium grained) grey sandstone, with minor carbonaceous staining. Some minor bands of Jo Doth Tuff and thin (less than 1 m), bright and dull coal seams were also observed. A few chips of chert and quartz were also identified. The Jilleon Formation was characterised by fine grained, grey sandstone and grey siltstone, and very thin (less than 1 m) sequences of bright coal). The intersection of the Jo Doth Tuff suggests that the formations dip towards the west.

The first water cuts were low (i.e. ~0.2 L/s) and were observed at between 20 mbgl (WKMB01) and 47 mbgl (WKMB04). The highest water cut (0.8 L/s) observed in the Leloma Formation was at 54 mbgl at WKMB01. Groundwater in the Leloma Formation was generally brackish to saline (712 μ S/cm to 21,410 μ S/cm) and alkaline (7.14 to 8.49 pH units). The maximum water cut observed in the Jilleon Formation was 0.3 L/s at 216 mbgl. Groundwater in the Jilleon Formation was brackish to moderately saline (2,688 μ S/cm to 11,870 μ S/cm) and alkaline (8.09 to 8.78 pH units).

3.2.2 Airlifting

Airlift development was continuous during drilling at the air rotary boreholes and they were further developed at termination until the discharge water was free of sediment and the water quality field parameters stabilised.

3.2.3 Logging

A detailed geological log of the lithology recorded at one metre intervals was produced, and instantaneous water flow recorded at the end of each drill rod (every 6 m) where applicable. Physio-chemical parameters (pH, electrical conductivity (EC), temperature, total dissolved solids (TDS), dissolved oxygen (DO) and oxidation reduction potential (ORP)) were measured (using a calibrated YSI water quality meter) at the end of each rod. These parameters are shown on the geological bore logs provided for each monitoring bore in Appendix A. Groundwater inflow and quality data could not be obtained for WKMB02 and WKMB03 as they were drilled with muds.

3.2.4 Borehole construction

Following the drilling of the bores to the target depth/formation, a Parsons Brinckerhoff hydrogeologist finalised the specifications and design of the groundwater monitoring bore installations.

The shallower monitoring bores WKMB01 and WKMB02 were installed with 50 mm internal diameter, Class 18 uPVC screwed casing and screen (0.5 mm aperture machine slotted) with a 1 m sump and end plug.

The deeper monitoring bores WKMB03 and WKMB04 were installed with 50 mm internal diameter, galvanised steel, screwed casing and stainless steel screen (1 mm aperture slots) with a 1 m galvanised steel sump and end cap at WKMB03, and a 13 m galvanised steel sump and end cap at WKMB04.

The screen length targeted the most productive water bearing zone. A washed and graded (3 - 5 mm) gravel filter pack was installed in the annulus around the screen and extended up to 13 m above the screened section.

Coated bentonite pellets were then installed above the gravel pack. A 4 to 6 m thick plug of bentonite was installed above the gravel pack at all monitoring bores. A cement grout mix was then tremmied in a controlled manner to the surface at all bores except WKMB03, which was backfilled with coarser blue gravel between 115 mbgl and 198 mbgl (adjacent to the initial proposed screened interval for WKMB02), and then grouted to the surface. The bentonite seal and cement grout ensure hydraulic isolation of the screened section preventing any flow of groundwater through the annulus of the bore column. Following the construction of each bore, the site was reinstated and a lockable steel monument welded over the bores and surrounded at its base by a concrete slab.

3.2.5 Downhole geophysics

WKMB04 was geophysically logged (gamma, density, resistivity, calliper and sonic) by Groundsearch Australia Pty under the supervision of Parsons Brinckerhoff hydrogeologists prior to the construction of the bore to accurately gauge changes in lithology. The geophysiscal logs are presented in Appendix B.

Geophysical logging was attempted at the original WKMB03 site (before it reverted to WKMB02) however there were too many collapses in the formation for the logging tools to reach total depth.

3.2.6 Survey

Registered surveyors CalCo Surveyors Pty Ltd surveyed the location and height of all the monitoring bores under the supervision of Parsons Brinckerhoff. All bores were surveyed to MGA, a grid coordinate system based on the Universal Transverse Mercator projection and the Geocentric Datum of Australia 1994. The bores were also surveyed for surface elevation to Australian Height Datum (AHD) (Table 3.3).

Monitoring bore	Easting	Northing	Ground level elevation (mAHD)	Top of casing level elevation (mAHD)
WKMB01	402153.63	6452566.28	101.16	101.70
WKMB02	402575.54	6452572.49	103.49	104.08
WKMB03	402589.87	6452584.93	103.22	103.81
WKMB04	402133.69	6452567.49	100.98	102.38

Table 3.3	Monitoring bore survey coordinates and elevations
-----------	---

3.2.7 WKMB04 workover

Safety concerns related to gas observed after construction at WKMB04 saw a gas wellhead immediately installed to shut in the gas flows. No groundwater level monitoring or water sampling was possible so a decision to convert the site to a vibrating wire piezometer was made in mid-2013. Prior to conversion it was possible to obtain one water sample from the deep screened interval by bailing the bore. Conversion to a fully grouted vibrating wire piezometer was scheduled for November 2013 however the conversion was abandoned after the cemented galvanised steel bore casing could not be successfully removed (AGL 2014b). The abandonment program was successfully carried out by Gas Field Services under the guidance of drilling engineers from AGL's Operations team.

4. Permeability testing

Falling and rising head ('slug') tests were conducted at monitoring bores WKMB01, WKMB02 and WKMB03 to estimate the horizontal hydraulic conductivity of each screened water bearing zone. Hydraulic conductivity is the permeability of the formation with respect to the porous flow of water.

A falling head test is achieved by introducing a volume of water or solid 'slug' to displace the water column within the monitoring bore causing the water level to instantaneously rise and flow from the bore into the aquifer via the screen (Figure 4.1). A rising head test is the opposite, where a volume of water (or a solid slug) is instantaneously removed from the monitoring bore, causing the water level to fall, drawing water into the bore from the aquifer. The time it takes for the water level in the bore to recover to pre-test levels is related to the permeability of the host formation. Rising and falling head tests sometimes produce slightly different results and therefore each bore is tested three times (falling, rising, then falling again).

The slug consists of solid high-density plastic tube (1.6 m long). Details of the set-up for the falling and rising head tests are shown in Figure 4.1.

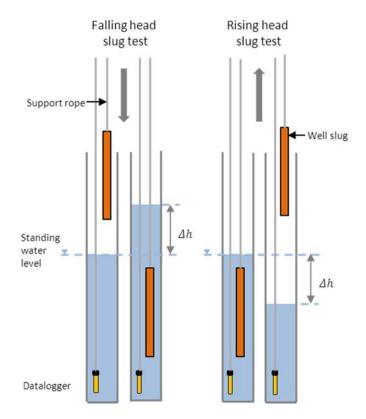


Figure 4.1 Rising and falling head (slug) testing (after Waterra 2011)

At the commencement of the testing, the standing water level (SWL) in the bore is measured from a fixed reference point at the top of casing and the datalogger programmed to record at 5 second intervals to measure rapid changes in water level within the bore.

Test data were processed and analysed using the appropriate Bouwer and Rice (Bouwer 1989), or Hvorslev (1951) method with AQTESOLV Version 4.5. Results are presented as estimates of hydraulic conductivity (as m/day) in Table 4.1. The AQTESOLV analyses are included in Appendix C.

The permeability values are consistent with hydraulic conductivity values previously encountered within the GGP (Parsons Brinckerhoff 2012d and 2014b).

Monitoring bore	Screened section (mbgl)	Lithology	Formation	Hydraulic conductivity range (m/day)^	Mean Hydraulic conductivity (m/day)
WKMB01	47.0 - 53.0	Siltstone / sandstone	Leloma	2.71x10 ⁻⁴ − 3.31x10 ⁻⁴	2.94 x 10 ⁻⁴
WKMB02	51.0 - 60.0	Siltstone / sandstone	Leloma	6.35x10 ⁻⁴ – 1.35x10 ⁻³	7.4 x 10 ⁻⁴
WKMB03	200.0 - 209.0	Siltstone / sandstone	Leloma	1.68x10 ⁻⁴ - 2.68x10 ⁻⁴	2.1 x 10 ⁻⁴
WKMB04	335.0 - 347.0	Siltstone / sandstone / coal	Jilleon	#	#

Table 4.1	Hydraulic conductivity results from slug tests
-----------	--

(1) # = no test undertaken, WKMB04 was plugged and abandoned.

(2) ^ All tests conducted with the Bower - Rice method.

5. Groundwater levels

This section presents the initial baseline groundwater level monitoring results for the Waukivory bores. Hydrographs showing groundwater levels and rainfall from the start of monitoring until March 2014 are presented in Figure 5.1. There is a strong correlation with large rainfall events. Individual hydrographs for each monitoring bore are included in Appendix D.

Following the completion of each monitoring bore (with the exception of the abandoned WKMB04), *in situ* pressure transducers (dataloggers) were suspended in the water column from a galvanised steel wire and programmed to record a groundwater level (or standing water level (SWL)) measurement every six hours. To verify the level recorded by the dataloggers, manual measurements are recorded quarterly using an electronic dip meter.

A barometric logger installed above the water table at monitoring bore S5MB01 on AGL's Tiedman property (part of the original Stage 1 groundwater monitoring network) is used to correct the raw pressure transducer data to allow for changes in atmospheric pressure. Initial manual groundwater level measurements following bore installation are presented in Table 5.1. Groundwater level monitoring is continuing and will be subject to more detailed assessment in the next Annual Groundwater Monitoring Status Report to be issued in September 2014 (for the water year 2013/14).

Bore ID	Date	Screened formation	Ground elevation (mAHD)	SWL (mbgl)	SWL (mAHD)
WKMB01	29/02/2012	Leloma - shallow rock	101.16	5.42	96.28
WKMB02	04/06/2012	Leloma - shallow rock	103.49	7.49	96.60
WKMB03	13/08/2012	Leloma - interburden	103.22	4.42	99.39
WKMB04	N/A	Jilleon - interburden	100.98	N/A	N/A

Table 5.1 Initial groundwater levels

(1) N/A = not applicable. WKMB04 was plugged and abandoned.

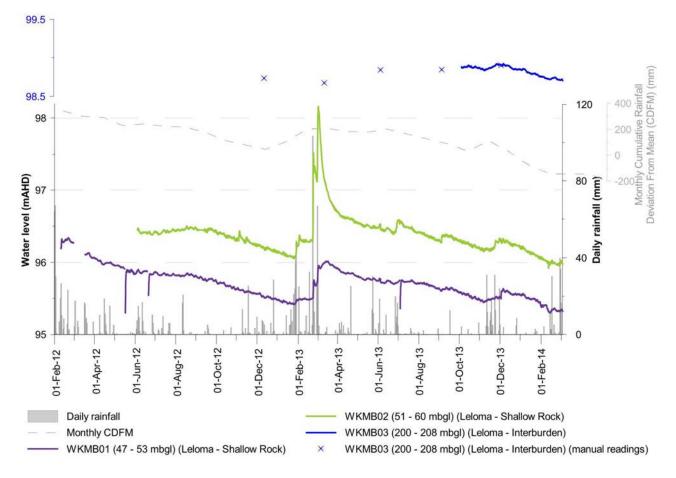


Figure 5.1 Groundwater levels at the Waukivory monitoring bores

5.1 Upthrust – shallow rock

The upthrust shallow rock monitoring bores WKMB01 and WKMB02 show similar strong responses to rainfall events (Figure 5.1). Groundwater levels in both bores respond rapidly, increasing up to ~0.5 m at WKMB01 and up to ~2.5 m at WKMB02 in response to the high rainfall events in January and February 2013.

5.2 Fault zone

The datalogger in interburden monitoring bore WKMB03 failed between September 2012 and September 2013, although manual readings are available for that period (Figure 5.1). Groundwater levels show a slight increase (~0.5 m) between September 2012 and September 2013. The data recorded shows a similar but possibly more subdued response to rainfall events compared to the shallow rock monitoring bores.

The water level at WKMB03 is higher than at the shallow rock monitoring bores, indicating the potential for upward flow at this location.

6. Groundwater quality

6.1 Groundwater quality monitoring

Groundwater sampling was undertaken between June and August 2013 at WKMB01, WKMB02 and WKMB03 and in October 2013 at WKMB04.

6.1.1 Sampling techniques

Two methods were used to obtain groundwater quality samples from the monitoring bores. The methods were selected based on the permeability of the screened formation of each bore which was determined during the drilling and subsequent hydraulic conductivity testing. All bores are relatively low yielding and a low flow sampling pump or double check bailer was used, in summary:

- A micro-purge[™] low flow sampling pump was used at monitoring bores: WKMB01, WKMB02 and WKMB03.
- A double check bailer was used at monitoring bore WKMB04.

The micro-purge[™] system allows groundwater to be drawn into the pump intake directly from the screened portion of the aquifer, eliminating the need to purge relatively large volumes of groundwater from these bores. Water quality parameters were monitored during the micro-purge[™] pumping to ensure that a representative groundwater sample was collected.

The 45 mm diameter double check bailer has check valves (top and bottom), preventing water entry during retrieval and ensures that discrete specific samples are obtained.

Physio-chemical parameters (pH, EC, temperature, TDS, DO and ORP) were measured during and following purging using a calibrated YSI water quality meter.

6.1.2 Chemical analysis of water

Groundwater samples collected in the field were analysed for a broad chemical suite designed specifically to assess the chemical characteristics of the different water bearing zones at the monitoring sites. Table 6.1 details the groundwater analytical suite.

Table 6.1 Groundwater analytical suite

Category	Parameters			
Physical parameters (field)	Electrical conductivity (EC)	рН		
	Temperature	Oxidation redox potential (ORP)		
	Dissolved oxygen (DO)	Total dissolved solids (TDS)		
Physical parameters (lab)	EC	рН		
	TDS			
Major ions	Calcium	Chloride		
	Magnesium	Bicarbonate		
	Sodium	Sulphate		
	Potassium	Fluoride		
		Silica		
Metals and minor/trace	Aluminium	Lead		
elements	Arsenic	Manganese		
	Barium	Mercury*		
	Beryllium	Molybdenum		
	Boron	Nickel		
	Bromine	Selenium		
	Cadmium	Strontium		
	Cobalt	Uranium		
	Copper	Vanadium		
	Iron	Zinc		
Nutrients	Ammonia	Nitrite		
	Phosphorus (total)	Nitrate		
	Phosphorus (reactive)	Total organic carbon (TOC)		
Hydrocarbons	Phenol compounds	Total petroleum hydrocarbons (TPH)		
	Polycyclic aromatic hydrocarbons (PAH)	Benzene, toluene, ethyl benzene and xylenes (BTEX)		
		Oil and grease		
Dissolved gases	Methane	Propane		
	Ethene	Butene		
	Ethane	Butane		
	Propene			
Isotopes	Oxygen-18 (¹⁸ O)	Radiocarbon (¹⁴ C)		
	Deuterium (² H)	Carbon-13 dissolved organic carbon		
	Tritium (³ H)	(¹³ C _{DIC})*		
	Chloride-36 (³⁶ Cl)**	Carbon-13 methane $(^{13}C-CH_4)$ and deuterium methane $(^{2}H-CH_4)$		

(1) * Not analysed at WKMB04.

(2) ** Only analysed at WKMB04.

Groundwater samples for laboratory analysis were collected in the sample bottles specified by the laboratory, with appropriate preservation when required, as listed in Table 6.2. Samples undergoing dissolved metal analysis were filtered through 0.45 µm filters in the field prior to collection.

Table 6.2	Sample containers for chemical and isotopic analytes	
-----------	--	--

Category	Sample container
Physical properties (turbidity) & major cations and anions	1 x 500 mL plastic, unpreserved
Dissolved metals	1 x 60 mL plastic, preserved with nitric acid, field filtered
Nutrients	1 x 125 mL plastic, preserved with sulphuric acid
Total organic carbon	1 x 40 mL amber glass, preserved with sulphuric acid
Phenols/PAH/TPH (C10-C36)	1 x 500 mL amber glass, unpreserved
ТРН (С6-С9)/ВТЕХ	2 x 40 mL amber glass, preserved with hydrochloric acid
Dissolved gases	2 x 40 mL amber glass, preserved with sulphuric acid
Oxygen-18 and deuterium	30 mL nalgene, unpreserved (no head space)
Radiocarbon	500 mL nalgene, unpreserved
Tritium, Chlorine-36	1 L nalgene, unpreserved
Isotopes of methane	2 x 40 mL amber vials, unpreserved

The samples were sent to the following laboratories under appropriate chain-of-custody protocols (documentation and laboratory results are provided in Appendices):

- Australian Laboratory Service (ALS) Environmental Pty Ltd, Smithfield, Sydney Chemistry analysis.
 NATA certified laboratory (Appendix F).
- GNS Stable Isotope Laboratory, Lower Hutt, New Zealand Oxygen-18 and deuterium analysis (Appendix G).
- Rafter Radiocarbon Laboratory, Lower Hutt, New Zealand Carbon-14 analysis (Appendix H).
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights tritium (Appendix I).
- UC Davis Stable Isotope Facility, Davis, California, USA carbon-13 (¹³C_{DIC}) and methane isotope analysis (¹³C-CH₄ and ²H-CH₄) (Appendix J).
- Australian National University (ANU) Department of Nuclear Physics, Canberra Chlorinre-36 (Appendix K).

6.1.2.1 Field QA/QC

The field sampling procedures conformed to Parsons Brinckerhoff's Quality Assurance/Quality Control protocols to prevent cross-contamination and preserve sample integrity. The following QA/QC procedures were applied:

- Samples were collected in appropriate bottles with appropriate preservation solutions.
- Samples were kept chilled (<4°C) at all times.
- Samples were delivered to the laboratories within the specified holding times.
- Unstable parameters were analysed in the field (field parameters).

6.1.2.2 Laboratory QA/QC

The laboratories conduct their own internal QA/QC program to assess the repeatability of the analytical procedures and instrument accuracy. These programs include analysis of laboratory sample duplicates, spike samples, certified reference standards, surrogate standards/spikes and laboratory blanks.

6.2 Groundwater quality results

This chapter presents the baseline water quality monitoring results. The results have been compared against the ANZECC (2000) guidelines for freshwater ecosystems (south-east Australia – lowland rivers) because the rivers are the ultimate receiving waters for groundwater discharge. However these water guidelines are often naturally exceeded in catchments with rocks deposited in marine environments, hence they are only used here for comparative purposes rather than as strict water quality objectives or trigger values.

Full water quality results are presented in Appendix E.

Piper diagrams are a graphical representation of the chemistry of a water sample and can be used to graphically show the relative concentrations of major ions (Ca²⁺, Mg²⁺, Na⁺, K⁺, Cl⁻, HCO₃⁻ and SO₄²⁻). The piper plot for all the Waukivory monitoring bores is presented in Figure 6.1.

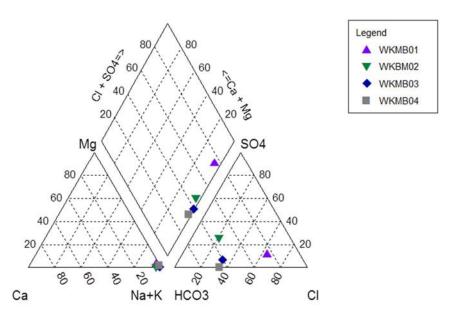


Figure 6.1 Piper diagram for the Waukivory monitoring bores

A summary of water quality results for the Waukivory monitoring bores is provided in Table 6.3. Full water quality results are presented in Appendix E.

Parameters	Units	ANZECC (2000) guidelinesª	WKMB01	WKMB02	WKMB03	WKMB04
General Parameters			1			
pH (field)	pH units	6.5 – 8.0 ^b	7.87	9.20	9.95	8.33
pH (lab)			8.270	9.07	10.00	na
Conductivity (field)	µS/cm	125-2,200 ^b	5,436	1,013	1,563	16,420
Conductivity (lab)			6,100	1,030	3,050	16,500
Temperature	°C	-	17.76	17.26	18.02	29.00
Dissolved oxygen	% sat	85-110% ^b	3.6	37.4	80.9	41.9
TDS (field)	g/L	-	3.533	0.660	0.690	10.67
TDS (lab measured)			3.540	0.688	2.240	11.00
Redox potential	mV	-	-338.3	22.7	-19.6	34.8
Major ions	· ·	· 	· 			
Calcium	mg/L	-	23	7	5	10
Magnesium	mg/L	-	28	<1	<1	47
Sodium	mg/L	-	1,470	236	625	4,650
Potassium	mg/L	-	7	7	35	25
Chloride	mg/L	-	1,420	80	371	2,580
Sulphate	mg/L	-	349	129	94	<1
Total alkalinity as CaCO ₃	mg/L	-	763	288	954	7,080
Dissolved metals						
Aluminium	mg/L	0.055 (pH>6.5)	0.06	0.19	0.76	0.02
Arsenic	mg/L	0.013 (AsV), 0.024 (AsIII)	0.002	0.002	0.003	0.002
Barium	mg/L	-	0.629	0.072	0.405	31.0
Beryllium	mg/L	ID	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.0002	<0.0001	<0.0001	<0.0001	<0.0001
Cobalt	mg/L	ID	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	0.0014	<0.001	0.001	0.004	<0.001
Lead	mg/L	0.0034	<0.001	<0.001	0.049	0.002
Manganese	mg/L	1.9	0.101	0.002	0.008	0.014
Mercury	mg/L	0.0006	na	na	na	<0.0001
Molybdenum	mg/L	ID	0.002	0.004	0.015	0.010
Nickel	mg/L	0.011	0.014	0.001	0.002	0.012
Selenium	mg/L	0.011 (total)	<0.01	<0.01	<0.01	<0.01

Table 6.3 Water quality summary for the Waukivory monitoring bores

Parameters	Units	ANZECC (2000) guidelines ^a	WKMB01	WKMB02	WKMB03	WKMB04
Strontium	mg/L	-	3.75	0.463	0.758	28.000
Uranium	mg/L	ID	0.005	<0.001	<0.001	0.001
Vanadium	mg/L	ID	<0.01	<0.01	<0.01	<0.01
Zinc	mg/L	0.008	0.018	0.018	1.220	1.530
Boron	mg/L	0.37	<0.05	<0.05	0.10	0.11
Iron	mg/L	ID	0.96	<0.05	0.20	0.52
Bromine	mg/L	ID	3.7	0.2	0.8	5.6
Nutrients						
Ammonia as N	mg/L	0.02 ^a	0.75	0.44	13.50	3.70
Nitrite as N	mg/L	0.02 ^a	<0.01	<0.01	<0.01	<0.01
Nitrate as N	mg/L	0.70	<0.01	<0.01	0.02	<0.01
Total phosphorus as P	mg/L	0.05 ^a	0.22	0.11	0.43	0.33
Reactive phosphorus as P	mg/L	0.02 ^a	0.10	0.07	0.04	0.04
Total organic carbon	mg/L	-	15	3	168	60
Dissolved gases						
Methane	µg/L	-	7,400	4,340	32,100	3,150
Phenolic compounds						
Phenol	µg/L	320	<1	<1	1.3	<1
РАН	µg/L	-	<lors< td=""><td><lors< td=""><td><lors< td=""><td><lors< td=""></lors<></td></lors<></td></lors<></td></lors<>	<lors< td=""><td><lors< td=""><td><lors< td=""></lors<></td></lors<></td></lors<>	<lors< td=""><td><lors< td=""></lors<></td></lors<>	<lors< td=""></lors<>
ВТЕХ	µg/L	-	<lors< td=""><td><lors< td=""><td><lors< td=""><td><lors< td=""></lors<></td></lors<></td></lors<></td></lors<>	<lors< td=""><td><lors< td=""><td><lors< td=""></lors<></td></lors<></td></lors<>	<lors< td=""><td><lors< td=""></lors<></td></lors<>	<lors< td=""></lors<>
Total petroleum hydrocarbons						
C ₁₅ -C ₂₈	µg/L	ID	<100	<100	270	14,700
C ₂₉ -C ₃₆	µg/L	ID	<50	<50	140	7,820

(1) (a) ANZECC (2000) guidelines for the protection of freshwater aquatic ecosystems: 95% protection levels (trigger values).

(2) (b) ANZECC (2000) guidelines for the protection of freshwater aquatic ecosystems: trigger values for lowland rivers in south-east Australia.

(3) 'ID' indicates insufficient data for trigger value to be established.

(4) LOR - Laboratory limit of reporting.

(5) BOLD indicates a value outside of the ANZECC (2000) guideline trigger values.

(6) na - not analysed.

6.2.1 Field parameters

Groundwater salinity at WKMB01 was slightly saline (5,436 μ S/cm) and exceeds the ANZECC (2000) guideline value (125 – 2,200 μ S/cm). The pH conditions were moderately alkaline and above the ANZECC (2000) guideline (6.5-9.0). Redox conditions were strongly reducing.

Groundwater salinity at WKMB02 was marginal (1,013 μ S/cm) and did not exceed the ANZECC (2000) guideline values (125 – 2,200 μ S/cm). pH conditions were strongly alkaline and above the ANZECC (2000) guideline (6.5 – 8.0). Redox conditions were slightly oxidizing at WKMB02.

Groundwater salinity at WKMB03 was marginal (1,563 μ S/cm) and EC values were within the ANZECC (2000) guideline values (125 – 2,200 μ S/cm). pH conditions were strongly alkaline and above the ANZECC (2000) guideline (6.5 – 8.0). Redox conditions were slightly reducing.

Groundwater salinity WKMB04 was moderately saline (16,240 μ S/cm) and exceeded the ANZECC (2000) guideline value (125 – 2,200 μ S/cm). The pH conditions were moderately alkaline and redox conditions were slightly oxidising.

6.2.2 Major ion chemistry

Table 6.4 summarises the major ion chemistry of the Waukivory monitoring bores. Major ion chemistry is similar, although the relative concentrations vary between monitoring bores.

Bore	Water type
WKMB01	Na-CI-HCO ₃
WKMB02	Na-HCO ₃ -SO ₄ -Cl
WKMB03	Na-CO ₃ -Cl
WKMB04	Na-HCO ₃ -Cl

6.2.3 Dissolved metals

The major findings of dissolved metal analysis were as follows:

- Dissolved metal concentrations were typically low.
- Beryllium, cadmium, cobalt, selenium and vanadium were below the laboratory limit of reporting (LOR) at all monitoring bores. Mercury was analysed at WKMB04 only and was below the laboratory LOR.
- Arsenic and manganese were detected at all monitoring bores but did not exceed the ANZECC (2000) guideline values.
- Aluminium and zinc were detected at concentrations above the ANZECC (2000) guideline at all
 monitoring bores, except for aluminium at WKMB04. Copper and lead were detected at concentrations
 above the ANZECC (2000) guideline at WKMB03 and were below or just above the laboratory LOR at
 the other monitoring bores. Nickel was detected at concentrations above the ANZECC (2000) guideline
 at WKMB01 and WKMB04.
- Barium, molybdenum, strontium and bromine were detected at all monitoring bores. Uranium was
 detected at concentrations above the laboratory LOR at WKMB01 only. Boron was detected at
 WKMB03 and WKMB04. Iron was detected at all monitoring bores, except for WKMB02.

The dissolved metal concentrations are considered natural and not unusual for the Leloma and Jilleon formations.

6.2.4 Nutrients

Nitrite was below the limit of reporting at all monitoring bores. Nitrate was detected at concentrations below the ANZECC (2000) guideline at WKMB03 and was below the laboratory LOR at all other monitoring bores.

Ammonia, total phosphorus and reactive phosphorus were detected and exceeded the ANZECC (2000) guidelines at all monitoring bores. Total organic carbon ranged from 3 mg/L at WKMB02 to 168 mg/L at WKMB03.

6.2.5 Hydrocarbons

TPH (C_{15} - C_{28} and C_{29} - C_{36} fractions) were detected at concentrations above the laboratory LOR at WKMB03 and WKMB04. Hydrocarbons in these types of formations can be naturally occurring (Volk et al. 2011) and have been detected in sedimentary rocks in the Gloucester Basin during early exploration programs (Thornton1982; Hunt et al. 1983).

PAHs and BTEX were below the laboratory LOR at all monitoring bores.

Phenolic compounds were below the laboratory LOR at all monitoring bores, with the exception of phenol which was detected at WKMB03.

6.2.6 Dissolved gases

The dissolved methane concentration ranged from 3,150 µg/L at WKMB04 to 32,100 µg/L at WKMB03.

6.3 Isotopes

6.3.1 Stable isotopes of water

Stable isotope ($\delta^{18}O$ and $\delta^{2}H$) values are compared to the Global Meteoric Water Line (GMWL) ($\delta^{2}H = 8.13$ $\delta^{18}O + 10.8$) (Rozanski et al. 1993) in Figure 6.2. The GMWL (as seen on Figure 6.2) provides an important key to the interpretation of oxygen-18 and deuterium data. It is a line that defines the relationship between oxygen-18 (¹⁸O) and deuterium (²H) in fresh surface waters and precipitation from a number of global reference sites. Water with an isotopic composition that lies on the meteoric water line is assumed to have originated from the atmosphere and to be unaffected by other isotopic processes. The isotopic values for the groundwater samples are also compared to the Local Meteoric Water Line ($\delta^{2}H = 8.3 \ \delta^{18}O + 16.3$) (Crosbie et al. 2012). This line defines the relationship between ¹⁸O and ²H for rainfall in the Sydney region.

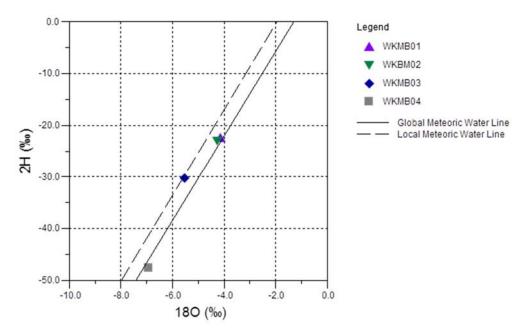


Figure 6.2 Deuterium versus oxygen-18 for Waukivory monitoring bores

Stable isotope results for all the Waukivory monitoring bores are presented in Table 6.5.

Bore	Oxygen-18 (‰)	Deuterium (‰)
WKMB01	-4.13	-22.5
WKMB02	-4.27	-22.9
WKMB03	-5.53	-30.2
WKMB04	-6.94	-47.8

 Table 6.5
 Stable isotope results for the upthrust monitoring bores

Stable isotope results indicate that WKMB01, WKMB02 and WKMB03 plot along the GMWL and LMWL, and WKMB04 near to the GMWL, indicating groundwater is of meteoric (rainfall) origin (Figure 6.2). These isotope results are consistent with previous monitoring rounds in the Gloucester Gas Project area in 2012 (Parsons Brinckerhoff 2012d) and 2013 (Parsons Brinckerhoff 2013a).

6.3.2 Radiogenic isotopes

Tritium and radiocarbon results are presented in Table 6.6. Carbon-13 of dissolved inorganic carbon (δ^{13} C-DIC) is also presented in Table 6.6.

Bore	δ ¹³ C (‰)	a ¹⁴ C (pMC)	¹⁴ C age* (yrs BP)	^{1₄} C age [#] (yrs BP)	Tritium (TU)
WKMB01	-15.6	67.07±0.2	3,148±24	2,800	0.12^±0.03
WKMB02	-16.2	36.09±0.1	8,126±24	7,500	0.23±0.03
WKMB03	-1.8	11.90	17,041±48	14,500	0.33±0.03
WKMB04	33.05	0.43±0.07	43,634±1,324	>40,000	na

Table 6.6 δ^{13} C-DIC, radiocarbon and tritium results for the upthrust monitoring bores

(1) * Uncorrected radiocarbon age.

(2) # Corrected radiocarbon age.

(3) ^ This result is below the Minimum Detectable Activity (MDA) and Limit of Quantification (Quant Limit)

and therefore has an unacceptable level of uncertainty. Hence the data should only be used as an indicator of true concentration. (4) na – not analysed.

The carbon-14 activity for WKMB01 was 67.07±0.2 pMC, corresponding to an uncorrected age of 3,148±24 yrs BP. Four correction methods are applied (Fontes-Garnier (1979); revised Fontes-Garnier; Tamers (1975) and Ingerson and Pearson (1964)) to apparent radiocarbon data to account for potential dilution of ¹⁴C signature by incorporation of inactive carbon. The four models showed good agreement for corrected radiocarbon ages, and the average corrected radiocarbon age for WKMB01 was 2,800 yrs BP. Tritium was below the Limit of Quantification (LOQ). The LOQ is the lowest concentration or quantity of a target variable that can be reported with a specified degree of confidence.

The carbon-14 activity for WKMB02 was 36.09 ± 0.1 pMC, corresponding to an uncorrected age of $8,124\pm24$ yrs BP. The carbon-14 activity for WKMB03 was 11.90 pMC, corresponding to an uncorrected age of 17,041 yrs BP. Radiocarbon ages have been corrected to account for potential dilution by processes such as carbonate dissolution, sulphate reduction and methanogenesis (as defined in Clark and Fritz (1997)) and are 7,500 and 14,500 years for WKMB02 and WKMB03, respectively.

The carbon-14 activity was at the limit of the radiocarbon method for WKMB04, indicating that groundwater was >40,000 yrs BP.

The isotopically heavy δ^{13} C-DIC value for WKMB04 indicate residual biogenic CO₂ remaining after biogenic conversion of some of the CO₂ to CH₄. During biogenic methane production via CO₂ reduction, the CO₂ reducing bacteria utilise the lighter isotopes leaving the heavy isotopes in the residual CO₂. δ^{13} C values of CO₂ of up to +21‰ were detected in coal seams during AGL drilling exploration programs, and up to +23.7‰ during earlier exploration programs in 2000 (Weber and Smith 2001).

6.3.3 Carbon and hydrogen isotopes of methane (δ^{13} C-CH₄ and δ^{2} H-CH₄)

Compound specific isotopes of dissolved methane (carbon-13 (δ^{13} C-CH₄) and deuterium (δ^{2} H-CH₄)) were analysed in all groundwater monitoring bores. Dissolved methane concentrations and isotope results are presented in Table 6.7, and isotope results are compared to data collected by AGL from coal seams during exploration in the GGP area.

Bore	CH₄ (µg/L)	δ ² H _{CH4} (‰)	δ ¹³ C _{CH4} (‰)
WKMB01	7,400	-135.6^	-45.6
WKMB02	4,340	-176.4^	-42.9^
WKMB03	32,100	-213.7	-22.5
WKMB04	3,150	-194.1	-32.38

Table 6.7	Dissolved methane concentrations and isotope results for the upthrust monitoring bores
-----------	--

Note: ^ Below LOQ.

The limit of quantitation (LOQ) is the lowest concentration or quantity of a target variable that can be reported with a specified degree of confidence; therefore sample WKMB01 and WKMB02 with δ^2 H-CH₄ results below the LOQ cannot be interpreted with a degree of confidence; however values do suggest a thermogenic origin (Figure 6.3).

The results for WKMB03 and WKMB04 indicate the methane is early mature thermogenic methane.

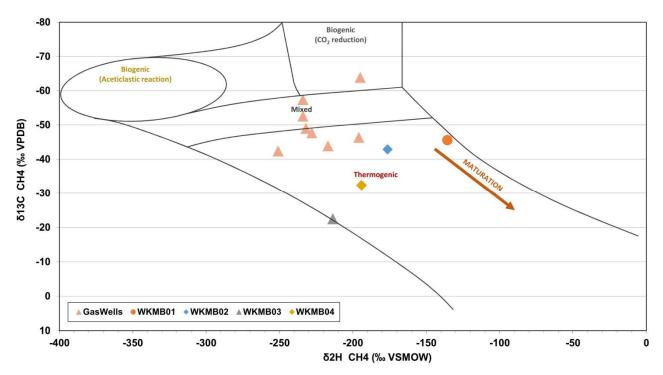


Figure 6.3 ¹³C-CH₄ versus ²H-CH₄ for the Waukivory monitoring bores

6.3.4 Chlorine-36

Chlorine-36 has a half-life of 301,000±2,000 years and is capable of dating groundwater with an age range of 46,000 to 1,000,000 years old. Chlorine-36 was selected as an age dating method as radiocarbon activities indicated groundwater age for targeted sections of the Gloucester Coal Measures was beyond the limit of radiocarbon dating. Chlorine-36 results are presented in Table 6.8.

The ³⁶Cl/Cl ratios of both gas wells still carry a meteoric recharge signature. That is, the ³⁶Cl/Cl ratio is above the *in situ* background value (secular equilibrium) estimated for methane bearing coal seams (\sim 4x10⁻¹⁵) (Snyder and Fabryka-Martin 2007). An estimate of groundwater age was calculated using a literature ³⁶Cl/Cl ratio for south-eastern Australia (\sim 60 x10⁻¹⁵) (Davie et al. 1989) for the initial ³⁶Cl/Cl ratio.

Groundwater ages were calculated using the equation defined in Bentley et al. (1986) (Eqn 1). This equation assumes that chloride and ³⁶Cl are solely derived from atmospheric sources with no internal sources or sinks except for ³⁶Cl decay and nucleogenic ³⁶Cl production.

$$t = \frac{1}{\lambda_{36}} \ln \frac{R - R_{se}}{R_0 - R_{se}}$$

Eqn 1

Where $\lambda 36$ is the decay constant for ³⁶Cl, *R* is the ₃₆Cl/Cl measured in groundwater, R_0 is the ₃₆Cl/Cl initial value, and R_{se} is the ₃₆Cl/Cl at secular equilibrium.

Based on calculated values, the age estimate for WKMB04 is $395\pm40 \times 10^3$ years old.

The decrease in the ³⁶Cl/Cl ratio the initial ratio can either be due to decay, or dilution by other sources of ³⁶Cl (e.g. mixing with low ³⁶Cl waters; leaching of salts and dissolution of evaporates). Due to the lack of data for these sources, age estimate calculations did not include these, and assumed chloride and ³⁶Cl are solely derived from atmospheric sources with no internal sources or sinks except for ³⁶Cl decay and nucleogenic ³⁶Cl production. Therefore, these age estimates are likely to be an upper estimate.

Table 6.8 Chlorine-36 results for WKMB04

Gas well	³⁶ CI/CI x10 ⁻¹⁵	³⁶ Cl x10 ⁸ atoms/L	Age estimate (10 ³ yrs)
WKMB04	26.6 ± 1.8	11.7 ± 0.0.8	395 ±40

7. Conclusions

Groundwater level and water quality data obtained from this drilling program support the hydrogeological model updated in the annual monitoring report for GGP (Parsons Brinckerhoff 2013b).

The conclusions from the current investigations are discussed below.

7.1 Groundwater levels

The groundwater level in the shallow rock monitoring bores WKMB01 and WKMB02 show a strong response to high rainfall events.

The limited datalogger data available for WKMB03 indicate that the groundwater level in the interburden also responds to rainfall events.

No groundwater level could be recorded at WKMB04 due to the presence of gas resulting in subsequent plugging and abandoning of the monitoring bore.

7.2 Groundwater quality

- Groundwater quality is marginal to moderately saline, with alkaline pH and strongly reducing to oxidizing conditions. Major ion chemistry is similar, although the relative concentrations vary between monitoring bores.
- Dissolved metal concentrations are typically low, however exceedances of the ANZECC (2000) guidelines were observed for aluminium, copper, lead, nickel and zinc in at least one monitoring bore. Ammonia, total phosphorus and reactive phosphorus were detected at concentrations above the ANZECC (2000) guidelines at all monitoring bores.
- TPH were detected at concentrations above the laboratory LOR at WKMB03 and WKMB04. PAHs and BTEX were below the laboratory LOR at all monitoring bores. Phenolic compounds were below the laboratory LOR at all monitoring bores, with the exception of phenol which was detected at WKMB03.
- Isotope data indicate that groundwater in all monitoring bores is of meteoric origin. Groundwater is several thousand years old in the shallow rock monitoring bores, more than ten thousand years old in the fault zone at WKMB03 (14,500 yrs BP) and much older again in the Roseville Coal Seam at WKMB04 (>40,000 yrs BP).
- Chlorine 36 dating of the deep groundwater at WKMB04 suggests the groundwater in the uppermost part of the Jilleon Formation at this location is around 395,000 yrs BP.
- Methane isotope data are below the LOQ and cannot be interpreted with a degree of confidence at WKMB01 and WKMB02; however values suggest a thermogenic origin. Methane isotope data indicates that methane is of early mature thermogenic origin at WKMB03 and WKMB04.

8. Recommendations

The following recommendations are made regarding these additional monitoring bores to the regional monitoring network and ongoing Gloucester Gas Project groundwater monitoring program:

- Continue electronic and manual groundwater level monitoring in 2014/15 to monitor and further understand the different groundwater systems and the hydrogeological environment over different seasonal conditions.
- Include the Waukivory groundwater monitoring bores (WKMB01, WKMB02 and WKMB03) in the groundwater monitoring plan for the Waukivory Pilot test due to commence in late-2014 (pending approvals).
- Install real-time telemetry recording groundwater level fluctuations to assist timely data collection and interrogation of groundwater levels during the proposed Waukivory Pilot flow test.
- Include the results from the groundwater level and groundwater quality monitoring into the next Gloucester Gas Project annual monitoring report (scheduled for September 2014).

9. Statement of limitations

9.1 Scope of services

This report has been prepared in accordance with the scope of services set out in the contract, or as otherwise agreed, between the client (AGL) and Parsons Brinckerhoff (scope of services). In some circumstances the scope of services may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

9.2 Reliance on data

In preparing the report, Parsons Brinckerhoff has relied upon data, surveys, plans and other information provided by the client and other individuals and organisations, most of which are referred to in the report (the data). Except as otherwise stated in the report, Parsons Brinckerhoff has not verified the accuracy or completeness of the data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in the report (conclusions) are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. Parsons Brinckerhoff will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to Parsons Brinckerhoff.

9.3 Environmental conclusions

In accordance with the scope of services, Parsons Brinckerhoff has relied upon the data and has conducted environmental field monitoring and/or testing in the preparation of the report. The nature and extent of monitoring and/or testing conducted is described in the report.

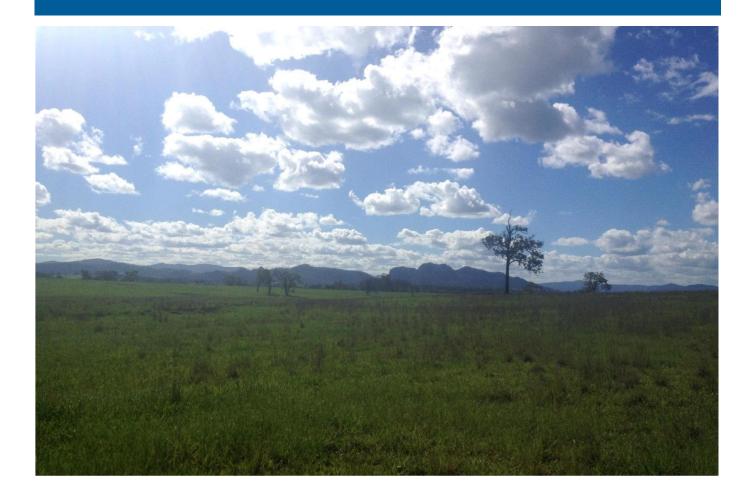
On all sites, varying degrees of non-uniformity of the vertical and horizontal soil or groundwater conditions are encountered. Hence no monitoring, common testing or sampling technique can eliminate the possibility that monitoring or testing results/samples are not totally representative of soil and/or groundwater conditions encountered. The conclusions are based upon the data and the environmental field monitoring and/or testing and are therefore merely indicative of the environmental condition of the site at the time of preparing the report, including the presence or otherwise of contaminants or emissions.

Within the limitations imposed by the scope of services, the monitoring, testing, sampling and preparation of this report have been undertaken and performed in a professional manner, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. No other warranty, expressed or implied, is made.

9.4 Report for benefit of client

The report has been prepared for the benefit of the client (and no other party). Parsons Brinckerhoff assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of Parsons Brinckerhoff or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Parties other than the client should not rely upon the report or the accuracy or completeness of any conclusions and should make their own enquiries and obtain independent advice in relation to such matters.

9.5 Other limitations


Parsons Brinckerhoff will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

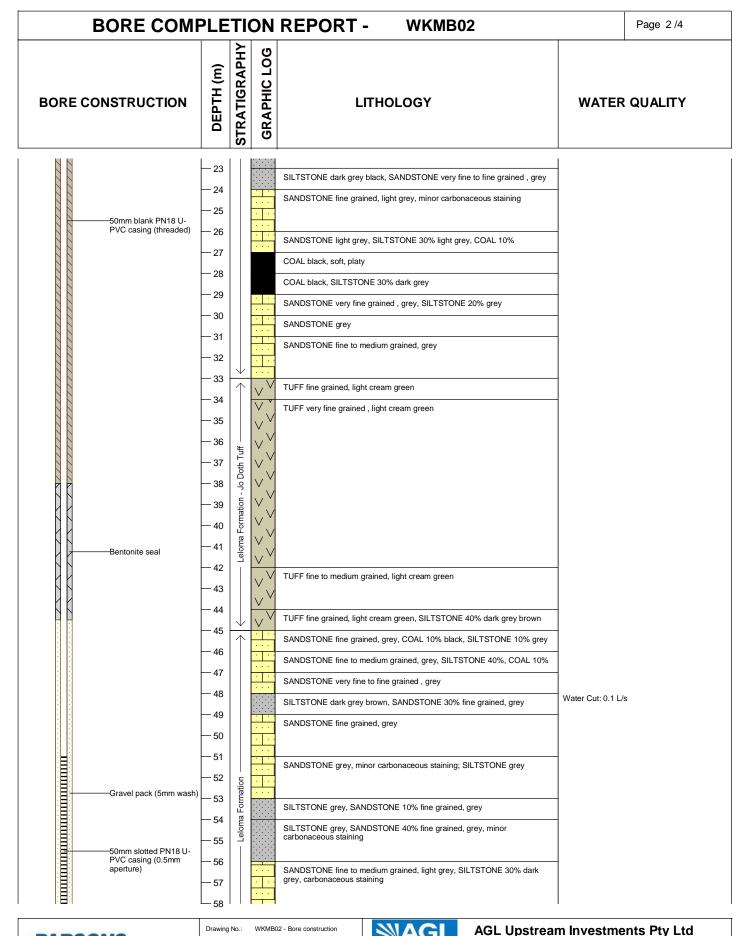
10. References

- AGL Energy Ltd (2010) Upstream Gas Golden Rules.
- AGL Energy Ltd (2012a) Occupational Health and Safety Management Plan (OHSMP), Gloucester Gas Operations.
- AGL Energy Ltd (2012b) Gloucester Gas Operations Emergency Response Plan.
- AGL Energy Ltd (2012c) Groundwater Management Plan.
- AGL Energy Ltd (2013) Gloucester Gas Project Environmental Management Plan (EMP).
- AGL Energy Ltd (2014a) Weather: Daily Summary Data, available at: <u>http://agk.com.au/gloucester/index.php/weather/</u>, accessed February 2014.
- AGL Energy (2014b) Letter to Peter Ainsworth (Office of Coal Seam Gas), Re: Waukivory Pilot Water Monitoring Bores, dated 6 February 2014.
- ANZECC (2000) Chapter 3 Aquatic Ecosystems, in Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand.
- Bouwer, H. (1989) The Bouwer and Rice slug test, Ground Water, vol. 27, no. 3, pp. 304-309.
- Bureau of Meteorology (2014) Climate Data Online, available at: <u>http://www.bom.gov.au/climate/data/</u>, accessed February 2014.
- Clark I.D. and Fritz P. (1997) Environmental isotopes in hydrogeology, CRC Press/Lewis Publishers, Boca Raton, Florida, 328 pp.
- Crosbie, R.S., Morrow D., Cresswell R.G., Leaney F.W., Lamontagne S. and Lefournour M. (2012) New insights into the chemical and isotopic composition of rainfall across Australia. CSIRO Water for a Healthy Country Flagship, Australia.
- Davie, R.F., Kellet, J.R., Fifield, L.K., Evans, W.R., Calf, G.E., Bird, J.R., Topham, S. and Ophel, T.R. (1989) Chlorine-36 measurements in the Murray Basin: preliminary results from the Victorian and South Australia Mallee region. BMR Journal of Australian Geology and Geophysics, 11:261-272.
- Fontes J-Ch. and Garnier J-M. (1979) Determination of the initial ¹⁴C activity of total dissolved carbon: A review of existing models and a new approach, Water Resources Research, 15:399–413.
- Highland Drilling (2012a) Safe work method statement & risk assessment: Gloucester groundwater project, dated January 2012.
- Highland Drilling (2012b) Job safety analysis: Gloucester groundwater project, construction of monitoring bores, dated January 2012.
- Hughes, W.W., Wilcox, R.D. and Wilcock, S.W. (1984) Regional exploration of the Gloucester Basin, Report prepared for Esso Australia Ltd.
- Hunt, J. W. (1989) Permian coals of eastern Australia: geological control of petrographic variation, International Journal of Coal Geology, 12, 589-634.
- Hvorslev M. J. (1951) Time lag and soil permeability in groundwater observations. U.S. Army Corps of Engineers Water-way Experimentation Station, Bulletin 36.
- Ingerson E. and Pearson Jr, F.J. (1964) Estimation of age and rate of motion of groundwater of the 14C-method. Recent researches in the fields of Atmosphere, Hydrosphere, and Nuclear Geochemistry, Sugawara Festival Volume, Maruzen Co., Tokyo.

- Lennox, M. (2009) Stroud Gloucester Trough: Review of the Geology and Coal Development, Ashley Resources, Sydney, dated January 2009.
- National Uniform Drillers Licencing Committee (NUDLC) (2012) Minimum construction requirements for water bores in Australia, Australian Government – National Water Commission.
- Parsons Brinckerhoff (2011) Safety management plan: Gloucester Gas Project, groundwater investigations, Waukivory flow test program. PR_5640 dated November 2011. Parsons Brinckerhoff Sydney.
- Parsons Brinckerhoff (2012a) Health, environment & safety plan: Gloucester Gas Project, groundwater investigations. Dated April 2012, OH_5603. Parsons Brinckerhoff Sydney.
- Parsons Brinckerhoff (2012b) Construction & environment management plan: Gloucester Gas Project Groundwater Investigations, Waukivory flow test program, groundwater investigations. PR_5630 dated April 2012. Parsons Brinckerhoff Sydney.
- Parsons Brinckerhoff (2012c) Safety management plan: Gloucester Gas Project, groundwater investigations, Waukivory flow test program. PR_5640 dated April 2012. Parsons Brinckerhoff Sydney.
- Parsons Brinckerhoff (2012d) Phase 2 Groundwater Investigations Stage 1 Gas Field Development Area, Gloucester Gas Project, PR_5630, dated January 2012, Parsons Brinckerhoff, Sydney.
- Parsons Brinkerhoff (2013a) Hydrogeological Investigation of a Strike-slip Fault in the Northern Gloucester Basin, 2192406B PR_5741 RevC, dated August 2013, Parsons Brinckerhoff, Sydney.
- Parsons Brinkerhoff (2013b) Gloucester Groundwater and Surface Water Monitoring Annual Status Report, 2162406E-RES-RPT-7423 RevA, dated October 2013, Parsons Brinckerhoff, Sydney.
- Parsons Brinckerhoff (2014a) (in preparation) Numerical groundwater modelling of the Gloucester Basin
 Local scale fault modelling. 2193335A, Parsons Brinckerhoff, Sydney.
- Parsons Brinkerhoff (2014b) (in preparation) Drilling completion report: Faulkland and Bucketts Way groundwater monitoring bores. 2193324A, Parsons Brinckerhoff, Sydney.
- Roberts, J., Engel, B., Chapman, J. (1991) Geology of the Camberwell, Dungog, and Bulahdelah 1:100 000 Geological Sheets 9133, 9233, 9333, New South Wales Geological Survey, Sydney.
- Rozanski, K., Araguas-Araguas L. and Gonfiantini R. (1993) Isotopic patterns in modern global precipitation, in Continental Isotope Indicators of Climate. American Geophysical Union Monograph, cited by Clark and Fritz, 1997.
- Snyder, G.T. and Fabryka-Martin, J.T (2007) ¹²⁹I and ³⁶Cl in dilute hydrocarbon waters: marinecosmogenic in situ, and anthropogenic sources. Applied Geochemistry. Vol.22:692-714.
- SRK Consulting (2005) Gloucester Basin Geological Review, SRK Project Number GBA001.
- Tamers M.A., 1975, The validity of radiocarbon dates on groundwater' Geophysical Survey, 2:217–239.
- Thornton, R.C.N. (1982) Oil occurrence in Esso stratigraphic corehole C7029, Gloucester Basin. Esso Australia Limited, 69pp.
- Volk H., Pinetown, K., Johnston, C. and McLean, W. (2011) A desktop study of the occurrence of Total Petroleum Hydrocarbon (TPH) and partially water-soluble organic compounds in Permian coals and associated coal seam groundwater. CSIRO Petroleum & Geothermal Research Portfolio Open File Report EP-13-09-11-11.
- Waterra (2011) Waterra 3 Part Well Slugs User Guide, Waterra (UK) Ltd <u>www.waterrauk.com</u>, accessed August 2011.
- Weber, C.R. and Smith, B.C. (2001) Stratford Coal Bed Methane Project PEL 285, Gloucester Basin, New South Wales, Review of Exploration Results and Resource Estimate. Pacific Power report.

Appendix A Borehole logs

BORE COM	PLE	ΤΙΟ	N REPOR	Г- WKMB01	Page1/2
Project: AGL Gloucester Gas P Location: Waukivory Easting: 402589.87	-	hing	6452594.02	Drilling contractor: Highland D Driller: I. Palk Rig: I Drilling method: Rotary Hammer	Rig 10
Easting: 402589.87 Northing: 6452584.93 TOC elevation: 101.2 mAHD (PVC casing) Grid system: MGA 94 Zone 56 Stick-up height: 0.54 m				Borehole:203mmBorehole:127mm	0 - 18 m Bit: Blade 18 - 54 m Bit: DHH
Start date: 30/01/2012 Compl. date: 31/01/2012 Total drilled depth: 54.0 m Static WI : 82.2 mAHD 19.5 mBTOC				Sump: 53.0-54.0m: 500 Cement grout: 0-39.0m: 0.5m3 Gravel backfill: NA Bentonite seal: 39.0-43.0 m	50mm 18 PVC nm PVC Class 18 (0.5mm slot) nm PVC Class 18 m washed gravel
BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY GRAPHIC I OG		LITHOLOGY	WATER QUALITY
Steel headworks and monument	-1				
6 inch steel surface casing	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15		high plasticity CLAY grey brown GRAVEL grey gold CLAYSTONE 10%, GRAVEL dark grey 30% light to dark grey quartzose, sub-ang GRAVEL light to dar SANDSTONE fine i GRAVEL light to da CLAYSTONE 15% GRAVEL medium th CLAYSTONE 15% SILTSTONE grey, 5	r, medium plasticity isticity r, CLAYSTONE 10% creamy white, hard, medium to r, CLAYSTONE 10% creamy white, hard, medium to r, claySTONE 10% fine to medium grained , moderately weathered, poorly sorted, SILTSTONE ey, SANDSTONE 20% fine to medium grained, ular rk grey, poorly sorted, SILTSTONE 25% dark grey, to medium grained, grey, quartzose rk grey, poorly sorted, SILTSTONE 20% dark grey, medium grey, SANDSTONE fine grained, sub-angular o dark grey, poorly sorted, SILTSTONE 20% dark greg medium grey, sandstone fine grained, sub-angular SANDSTONE 10% fine grained	_/
Cement grout	- 16 - 17 - 18 - 19 - 20 - 21 - 22		Sub-angular, SILTS GRAVEL light to da sub-angular, SILTS GRAVEL light to da SILTSTONE 20% of staining SANDSTONE fine fine carbonaceous stain	rk grey, SANDSTONE 25% fine to medium grained, TONE 20% dark grey, quartzose 5% angular rk grey, SANDSTONE 30% fine to medium grained, TONE 15% light to dark grey, quartzose 5% angular rk grey, SANDSTONE 25% fine to medium grained, lark grey, quartzose 5% angular, minor carbonaceous grained, grey, sub-angular to medium grained, medium to dark grey, sub-angular ing; COAL 10% fragments m to dark grey, tabular, SANDSTONE 25% fine	Water Cut: 0.2 L/s, Temp: 28.2 °C, EC: 7709 μS/cm, TDS: 5.011 g/L, DO: 28.3 %, pH: 8.08, ORP: 86.1 mV


DI DOONO	Drawing No.: WKMB	01 - Bore Construction	MAGL	AGL Upstream Investments Pty Ltd
PARSONS	Revision: A	Date Drawn: 26/2/14		WKMB01
BRINCKERHOFF	Drawn By: K. Maher	Checked By: J. Duggleby		Waukivory Groundwater Monitoring Program
	Project No. 2162406C			

BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG	LITHOLOGY	WATER QUALITY
50mm blank PN18 U-	23		· · · · ·	grained, dark grey, sub-angular, QUARTZOSE 5% minor carbonaceous staining	
PVC casing (threaded)	- 24		•••	SANDSTONE fine to medium grained, grey, quartz 5%	
	- 25		•••	SANDSTONE fine to medium grained, grey, sub-rounded, carbonaceous staining	
	- 26	Formation	· · · ·	SANDSTONE fine to medium grained, light to dark grey, sub-rounded, minor carbonaceous staining	
5 1/2 inch diameter borehole	- 27	ma Fc	· · ·	SANDSTONE fine to medium grained, grey, sub-rounded	
	- 28	Leloma	• • •	SANDSTONE fine grained, grey, sub-angular	
	- 29		• • •	SANDSTONE fine to medium grained, grey, sub-angular	
	- 30		· · · ·	SANDSTONE fine grained, medium to dark grey, sub-angular, SILTSTONE 50% dark grey	
	- 31		• • •	SANDSTONE fine to medium grained, light to medium grey, sub-angular, minor quartzite	
	- 33			SANDSTONE fine to medium grained, light to medium grey, sub-angular, minor carbonaceous staining	
	- 34		· · ·	SANDSTONE fine grained, grey, sub-rounded	
	- 35		• • •	SANDSTONE fine to medium grained, light to medium grey, sub-rounded, minor carbonaceous staining	
	- 36		•••	SANDSTONE fine to medium grained, light to medium grey, sub-angular	Water Cut: 0.2 L/s, Temp: 27.75 °C, EC:
	- 37		· · ·	SANDSTONE fine to medium grained, grey, sub-angular	μS/cm, TDS: 3.154 g/L, DO: 55.4 %, pH: 8.39, ORP: 83.9 mV
	- 38		• • •	SANDSTONE fine grained, grey, sub-angular, carbonaceous staining; SILTSTONE 5% dark grey	
	- 39		· · · ·	SANDSTONE fine to medium grained, grey, sub-rounded, COAL 5% dark greyish black, fragments, tabular	
Bentonite seal	- 40 - 41		• • •	SANDSTONE fine to medium grained, medium to dark grey, sub-angular, SILTSTONE 40% dark grey, tabular, minor carbonaceous staining	
				SANDSTONE fine to medium grained, light grey, sub-angular	
	- 42 - 43		· · ·	SANDSTONE fine to medium grained, light to medium grey, sub-angular, SILTSTONE 5% black	Water Cut: 0.2 L/s, Temp: 28.67 °C, EC: µS/cm, TDS: 2.891 g/L, DO: 56.8 %, pH: 8.44, ORP: 75.9 mV
	- 44			SANDSTONE fine to medium grained, light to medium grey, sub-angular, minor carbonaceous staining	,
	- 45		···	SANDSTONE fine to medium grained, grey, sub-angular	
	- 46		• • •	SANDSTONE fine to medium grained, light to medium grey, sub-angular, carbonaceous staining; SILTSTONE 5% dark grey	
	- 47		· · · ·	SANDSTONE fine to medium grained, light to medium grey, sub-angular to sub-rounded	
Gravel pack (5mm was 50mm slotted PN18 U- PVC casing (0.5mm aperture)	h) - 48		• • •	SANDSTONE fine to medium grained, light to medium grey, sub-rounded, minor carbonaceous staining	Water Cut: 0.8 L/s, Temp: 26.85 °C, EC: µS/cm, TDS: 2.529 g/L, DO: 31.4 %, pH: 8.42, ORP: 70.5 mV
50mm slotted PN18 U-			•••	SANDSTONE fine to medium grained, medium to dark grey, sub-angular to sub-rounded, COAL 10% fragments, tabular	0.42, 0.01 . 10.0
PVC casing (0.5mm aperture)	- 51		• •	SANDSTONE fine to medium grained, medium to dark grey, sub-angular to sub-rounded, minor carbonaceous staining	
	- 52		•••	SANDSTONE fine to medium grained, light to dark grey, sub-rounded	
50mm blank PN18 U-	- 53		· · · ·	SANDSTONE fine to medium grained, light to dark grey, sub-rounded, quartzose; minor carbonaceous staining	
PVC sump (threaded)	- 54	ļ,		SANDSTONE fine to medium grained, light to dark grey, sub-rounded, minor carbonaceous staining	Water Cut: 0.8 L/s, Temp: 25.92 °C, EC: µS/cm, TDS: 2.411 g/L, DO: 41.7 %, pH:
	— 55 — 56			SANDSTONE fine to medium grained, light to medium grey, sub-angular	8.49, ORP: 69.8 mV
	- 57				

AGL Upstream Investments Pty Ltd	MAGL	ruction	01 - Bore Const	WKMB	Drawing No.:	DI DOONO
WKMB01		26/2/14	Date Drawn:	А	Revision:	PARSONS
Waukivory Groundwater Monitoring Program		Checked By: J. Duggleby		. Maher	Drawn By: K	BRINCKERHOFF
				2162406C	Project No.	

BORE COMPLETION REPORT - WKMB02								Page1/4
Project: AGL Gloucester Gas P	roject				Drilling contract	or: Highland Drillir	ng	
Location: Waukivory					Driller: I. Palk	Rig: Rig	10	
Easting: 402575.54	Nort	hin	g: 6	452575.49	Drilling method:	Rotary Hammer		
TOC elevation: 104.1 mAHD (F	VC ca	asing	g)		Borehole:	203 mm 0		Dit.
Grid system: MGA 94 Zone 56	S	tick	up l	neight: 0.59 m	Borehole:	140 mm 1	8 - 127 m	Bit: DHH
Purpose of bore:Groundwater monitoring boreScreened Fmn:Leloma FormationLogged by:N. Pearse-HawkinsStart date:8/05/2012Compl. date:18/05/2012Total drilled depth:127 m					U U	0-51.0m: Class 50r 51.0-60.0m: 50mm 60.0-61.0m: 50mm 0-38.0 to: 0.5m3 77.0-127.0m: 5-8m	PVC Class 1 PVC Class 1	8
Static WL: 96.60 mAHD	7.49) r	nBTC	C	Gravel pack:	44.5-61.0m: 5mm	washed grave	4
WL date: 4/06/2012					Bentonite plug:			
BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG		LITHOLOGY		WATE	R QUALITY
Steel headworks and	1							
monument	0			CLAY brownish gre	y, hard, soil		-	
	-1			CLAY light brown, h	nard, sandy		-	
	-2							
	-3		$\not \rightarrow$	CLAY light brown, v	veathered		-	
	-4							
	-5							
	-6			COAL black, highly	weathered, CLAY grey, high	nly weathered	-	
	-7			SILTSTONE grey, h	nighly weathered, CLAYSTO	NE	-	
	-8							
6 inch steel surface casing	-9							
	- 10			COAL black, highly	weathered, SILTSTONE gre	1		
	- 11			SILTSTONE grey, r	noderately weathered, CLAN	STONE	1	
	- 12		· · · · ·	SANDSTONE fine	grained, light grey, weathere	d	1	
	- 13		• •	4 · 1				
	- 14			SILTSTONE dark g	rey black, SANDSTONE fine	e grained, grey	-	
	- 15	ation		•				
	- 16	Formation		COAL black, weath	ered, SILTSTONE grey, min	or	-	
	- 17	Leloma	• •	SANDSTONE fine t	o medium grained, grey, mir	nor carbonaceous staining	1	
	- 18	<u>د</u>		SILTSTONE dark g	rey, minor carbonaceous sta	aining	1	
Cement grout	- 19			COAL black, soft			1	
	- 20			SILTSTONE dark g	rey black		1	
	- 21							
	<u>−</u> 22			1				

PARSONS	Drawing No.: WKMB	02 - Bore construction	MAGL	AGL Upstream Investments Pty Ltd
	Revision: A	Date Drawn: 26/2/2014		WKMB02
BRINCKERHOFF	Drawn By: K. Maher	Checked By: KJ. Duggleby		Waukivory Groundwater Monitoring Program
	Project No. 2162406C			

	Drawing No.: WKMB	1	
PARSONS	Revision: A	Date Drawn: 26/2/2014	
BRINCKERHOFF	Drawn By: K. Maher	Checked By: KJ. Duggleby	
	Project No. 2162406C		

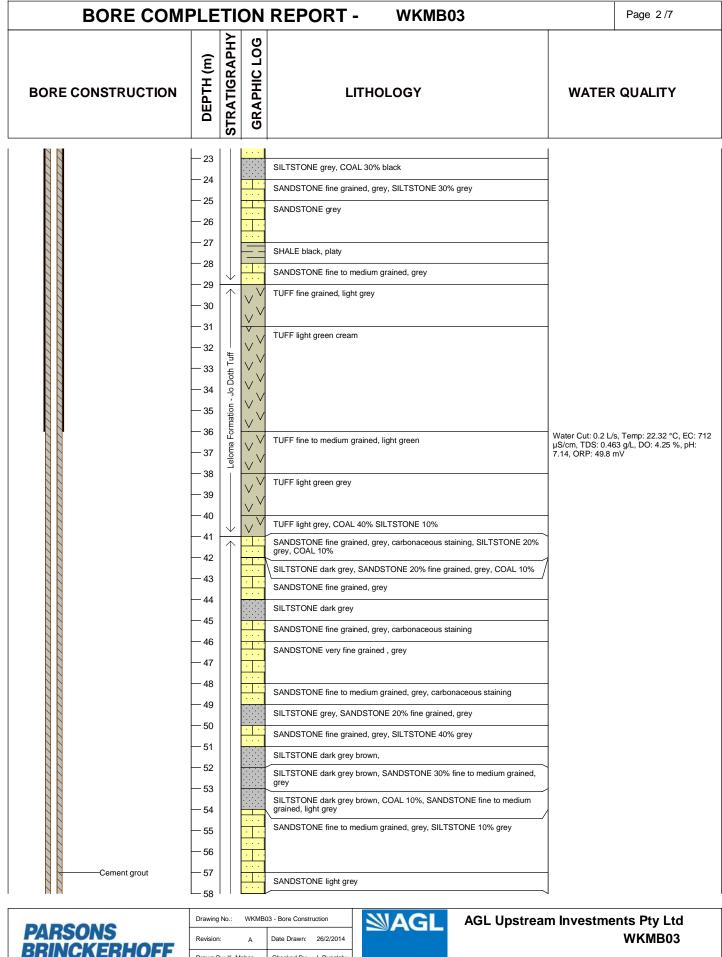
AGI

Waukivory Groundwater Monitoring Program

WKMB02

	BORE COMPLETION REPORT - WKMB02 Page 3/4							
BORI	E CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG	LITHOLOGY	WATER	QUALITY	
		58 59 -59 -60 -61 -62 -63 -64 -65 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -77 -78 -77 -78 -79 -80 -81 -82 -83 -84 -85 -86 -87 -88 -87 -88 -87 -88 -87 -88 -87 -88 -87 -90 -90 -91 -92 -93 -93			SANDSTONE fine grained, light grey, SILTSTONE 20% grey SANDSTONE fine to medium grained, light grey, SILTSTONE 10% grey	Water Cut: 0.1 L/ µS/cm, TDS: 2.21 12.28, ORP: -29.9	s, Temp: 19.74 °C, EC: 3501 77 g/L, DO: 58.1 %, pH: 9 mV	

BA BOOMO	Drawing No.: WKMB	02 - Bore construction	MAGL	AGL Upstream Investments Pty Ltd
PARSONS BRINCKERHOFF	Revision: A	Date Drawn: 26/2/2014		WKMB02
	Drawn By: K. Maher	Checked By: KJ. Duggleby		Waukivory Groundwater Monitoring Program
	Project No. 2162406C			


BORE COMPLETION REPORT - WKMB02 Page 4/4						
BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG	LITHOLOGY	WATER	QUALITY
Blue metal gravel backfill (5-8mm wash)	- 94 - 95 - 96 - 97 - 98 - 99 - 100 - 101 - 102 - 103 - 104 - 105 - 106 - 107 - 106 - 107 - 106 - 107 - 108 - 117 - 118 - 118 - 118 - 118 - 118 - 118 - 120 - 121 - 122 - 128 - 126 - 126 - 127 - 128 - 126 - 126 - 126 - 127 - 126 -					
	L 128	ــــــا			L	

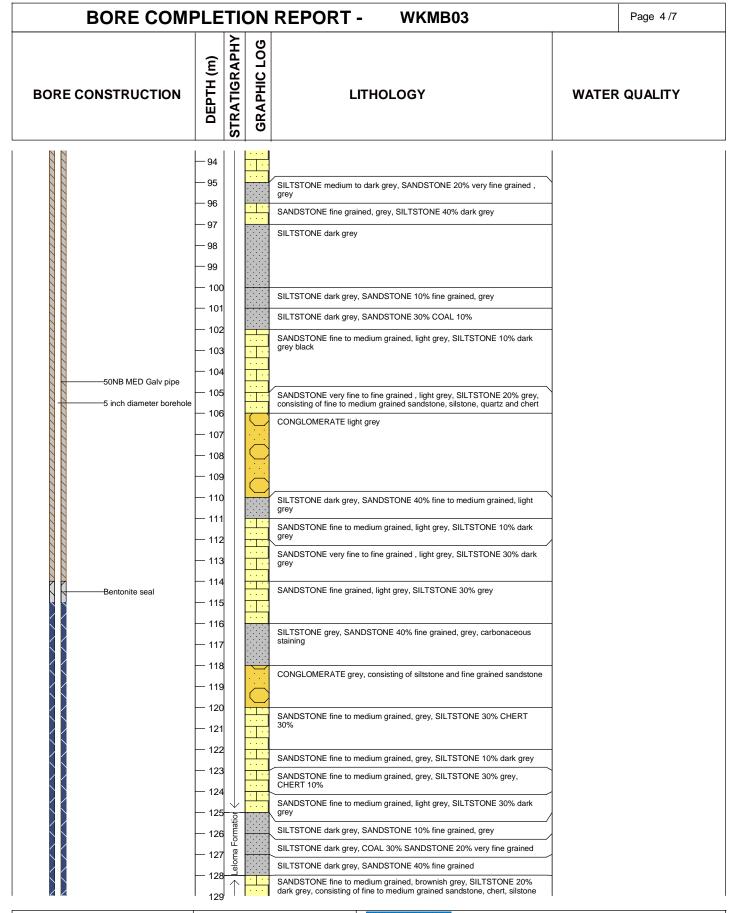
PARSONS BRINCKERHOFF	Drawing No.: WKMB	02 - Bore construction	MAGL	AGL Upstream Investments Pty Ltd
	Revision: A	Date Drawn: 26/2/2014		WKMB02
	Drawn By: K. Maher	Checked By: KJ. Duggleby		Waukivory Groundwater Monitoring Program
	Project No. 2162406C			

BORE COM	PLE	TI	ON	REPORT	- WKMB03		Page1/7	
Project: AGL Gloucester Gas P	roject				Drilling contract Driller: I. Palk	0	-	I
Location: Waukivory			Drilling method:	Rig: Rig Rotary Hammer	10			
Easting: 402589.87			g: 6	452584.93	Borehole:	203 mm 0	- 36 m	Bit: Blade
TOC elevation: 86.6 m AHD (Ga Grid system: MGA 94 Zone 56			-up ł	neight: 0.59 m	Borehole:	-	6 - 210.0 m	
Screened Fmn: Leloma Formation Logged by: N. Pearse-Hawkins Start date: 23/05/2012 Compl. date: 30/05/2012 Total drilled depth: 210.0 m					Plain casing: Screen: Sump: Cement grout: Gravel backfill: Bentonite seal:	0-200.0m: 50NB M 200.0-209.0m: 50N 209.0-210.0m: 50N 0-114.0m to: 1.4m3 115.0-189.0 m: 5-8 189.0-194.0m	nm 304SS (1 NB MED Gal µ 3	pipe sump
Static WL: 98.39 mAHD WL date: 13/08/2012	4.42	<u>e</u> n	nBTC	C	Gravel pack: Bentonite plug:	194.0-210.0m: 5mi	m washed gra	avel
BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG		LITHOLOGY		WATE	ER QUALITY
Steel headworks and monument	-1 -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -17 -18 -19 -20 -21 -22	Leloma Formation		CLAY light brown, s CLAY light brown, s CLAY black, weath CLAYSTONE grey, COAL black, moder SILTSTONE grey, r SANDSTONE fine t SILTSTONE dark g COAL black, weath SILTSTONE dark g COAL black, weath SILTSTONE grey, s SANDSTONE grey, s SANDSTONE fine t SANDSTONE fine t	ered moderately weathered rately weathered noderately weathered to medium grained, grey, weathered ered rey, SANDSTONE fine to me ered weathered SANDSTONE 20% very fine to medium grained, grey, SIL fine grained , grey COAL 30% black, hard	edium grained, grey, minor grained , grey		
	Drawing	. '	WKME	303 - Bore Construction		AGL Upstrear	m Investme	nts Ptv Ltd

DA DOONO	Drawing No.: WKMB0		
PARSONS	Revision: A	Date Drawn: 26/2/2014	
BRINCKERHOFF	Drawn By: K. Maher	Checked By: J. Duggleby	
	Project No. 2162406C		

AGL Upstream Investments Pty Ltd WKMB03

	Drawing No.: WKMB03 - Bore Construction					
ARSONS	Revision: A	Date Drawn: 26/2/2014				
RINCKERHUFF	Drawn By: K. Maher	Checked By: J. Duggleby				
	Project No. 2162406C					


WKMB03

BORE COMPLETION REPORT - WKMB03 Page 3/7							
BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG	LITHOLOGY	WATER	QUALITY	
	58 59 60 61 62 63 64 65 66 77 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 90 91 92 93	Leloma Formation		SILTSTONE dark grey, carbonaceous staining, SANDSTONE 20% fine to medium grained, light grey SANDSTONE fine to medium grained, grey SANDSTONE fine to medium grained, light grey, SILTSTONE 5% grey SANDSTONE fine to medium grained, grey, SILTSTONE 10% grey, carbonaceous staining SILTSTONE dark grey, COAL 10% SANDSTONE 10% fine grained SANDSTONE way fine grained, grey, SILTSTONE 40% grey SILTSTONE dark grey, SANDSTONE 20% fine to medium grained, light grey SANDSTONE very fine grained, grey, SILTSTONE 40% grey SANDSTONE very fine grained, grey, COAL 10% black SANDSTONE grey, SILTSTONE 10% grey SANDSTONE grey, SILTSTONE 40% grey SANDSTONE grey, SILTSTONE 40% grey SANDSTONE fine grained, grey, SILTSTONE 40% grey SANDSTONE wery fine grained, grey, SILTSTONE 40% grey SANDSTONE fine grained, grey, SILTSTONE 40% grey SANDSTONE wery fine grained, grey, SILTSTONE 40% grey SANDSTONE wery fine grained, grey, SILTSTONE 40% grey SILTSTONE dark grey, SANDSTONE 20% very fine grained, grey SANDSTONE wery fine to fine grained, grey SANDSTONE wery fine to fine grained, grey SANDSTONE wery fine to fine grained, grey SANDSTONE fine to medium grained, grey SANDSTONE fine to medium grained, grey SANDSTONE			

	Drawing No.: WKMB03 - Bore Construction				
PARSONS	Revision: A	Date Drawn: 26/2/2014			
BRINCKERMUFF	Drawn By: K. Maher	Checked By: J. Duggleby			
	Project No. 2162406C				

MAGL

AGL Upstream Investments Pty Ltd WKMB03

	Drawing No.: WKMB03 - Bore Construction				
PARSONS	Revision: A	Date Drawn: 26/2/2014	3		
BRINCKERHOFF	Drawn By: K. Maher	Checked By: J. Duggleby			
	Project No. 2162406C				

MAGL

AGL Upstream Investments Pty Ltd WKMB03

BORE COM		Page 5 /7				
BORE CONSTRUCTION		STRATIGRAPHY	GRAPHIC LOG	LITHOLOGY	WATEF	R QUALITY
Blue metal gravel backfill (5-8mm wash)	 129 130 131 132 133 134 135 136 137 136 137 138 136 137 138 140 142 144 145 151 152 152 152 152 152 152 153 154 155 156 157 156 157 158 161 161 162 163 164 			and minor quartz CONGLOMERATE grey white CONGLOMERATE grey white, SILTSTONE 30% black, consisting of sandstone, siltstone and chert CONGLOMERATE grey white SANDSTONE fine to medium grained, greenish whitish green, SILTSTONE 40% dark grey SILTSTONE dark blackish grey, SANDSTONE 40% fine grained, grey SILTSTONE dark blackish grey, SANDSTONE 40% fine to medium grained SANDSTONE wery fine grained, grey, SILTSTONE 20% medium to dark grey SANDSTONE fine to medium grained, grey, SILTSTONE 30% SANDSTONE fine grained, grey, SILTSTONE 30% SHALE 10% black, SILTSTONE dark grey, SANDSTONE 10% fine grained SILTSTONE fine grained, grey, SILTSTONE 20% medium to dark grey, SANDSTONE fine grained, grey, SILTSTONE 20% medium to dark grey, SANDSTONE fine grained, grey, SILTSTONE 20% medium to dark grey, SANDSTONE fine grained, grey, SILTSTONE 30% grey SILTSTONE dark grey, SANDSTONE 30% fine grained, grey, COAL 20% SANDSTONE fine grained, grey, SILTSTONE 40% dark greyish black, consisting of fine to medium grained sandstone, silstone and chert CONGLOMERATE grey SANDSTONE fine to medium grained, light grey, SHALE 20% black CONSTONE fine to medium grained, light grey, SHALE 20% black SANDSTONE fine to medium grained, light grey, SHALE 20% black		ents Ptv I td
PARSONS	Revisior		A	Date Drawn: 26/2/2014 AGL Upstree	anninvestme	WKMB03

BABCONC		1	······································
PARSONS	Revision: A	Date Drawn: 26/2/2014	WKMB03
BRINCKERHOFF	Drawn By: K. Maher	Checked By: J. Duggleby	Waukivory Groundwater Monitoring Program
	Project No. 2162406C	·	

BORE COMPLETION REPORT - WKMB03 Page 6/7				Page 6/7		
BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG	LITHOLOGY	WATER	QUALITY
	- 165 - 166 - 167 - 168 - 169 - 170	\rightarrow		SANDSTONE fine to medium grained, light grey, SILTSTONE 10% dark grey SHALE black, platy, soft; SILTSTONE 30% dark grey, SANDSTONE 30% fine to medium grained, grey SANDSTONE fine to medium grained, light brownish cream, COAL 30% SILTSTONE 30% SANDSTONE fine to medium grained, light brownish cream, SILTSTONE 30% SHALE 20% SANDSTONE very fine grained , light brownish cream, SHALE 40% black		
	- 171 - 172 - 173 - 174 - 175 - 176			SANDSTONE fine grained, light brownish cream, SILTSTONE 30% SHALE 10% SANDSTONE fine to medium grained, light brownish cream, SILTSTONE 20% COAL 10% SANDSTONE very fine to fine grained , light brownish cream, SILTSTONE 30% dark grey, SHALE 10% SILTSTONE dark grey, SANDSTONE 30% very fine grained SILTSTONE dark grey, COAL 30% SANDSTONE 20% fine grained, grey,		
	- 177 - 178 - 179 - 180 - 181			SANDSTONE very fine grained , grey, COAL 20% SILTSTONE 20% dark grey SANDSTONE fine grained, grey, SILTSTONE 20% grey, COAL 10% SANDSTONE fine to medium grained, grey, SILTSTONE 10% SILTSTONE dark grey, SANDSTONE 40% fine grained, grey, COAL 10% SILTSTONE dark grey, SANDSTONE 30% SILTSTONE dark grey, SANDSTONE 40% COAL 10%		
Bentonite seal	- 182 - 183 - 184 - 185 - 186 - 187 - 188 - 189 - 190 - 191 - 191 - 192 - 193 - 194 - 195 - 196	3 4 5 6 ards Coal		SANDSTONE fine to medium grained, light grey, SILTSTONE 40% dark grey, carbonaceous staining SANDSTONE fine grained, light grey, SILTSTONE 30% COAL 10% SANDSTONE light grey, COAL 40% SILTSTONE 10% grey SANDSTONE very fine grained, light grey, SILTSTONE 40% COAL 10% SANDSTONE fine to medium grained, light grey, SILTSTONE 20% COAL 20%		
		a Formation -		SANDSTONE fine to medium grained, light grey, SILTSTONE 20% COAL 10% SANDSTONE very fine to fine grained , light grey, SILTSTONE 10% grey SILTSTONE grey, SANDSTONE 40% fine to medium grained, light grey, COAL 10% SANDSTONE fine grained, grey, COAL 30%, SILTSTONE 20% dark grey		
		— 193 — 194 — 195			SANDSTONE grey, SILTSTONE 40%, COAL 10% SILTSTONE dark grey, SANDSTONE 20% fine grained, grey, COAL 10%	
	- 197 - 198 - 199 200			SILTSTONE dark grey, COAL 30%, SANDSTONE 30% SANDSTONE very fine to fine grained , grey, SILTSTONE 30% COAL 10% SILTSTONE dark grey black, SANDSTONE 40% fine grained, grey, COAL 10% SANDSTONE fine grained, grey, SILTSTONE 40% dark grey		

	Drawing No.: WKMB03 - Bore Construction			
PARSONS	Revision: A	Date Drawn: 26/2/2014		
BRINCKERHOFF	Drawn By: K. Maher	Checked By: J. Duggleby		
	Project No. 2162406C			

≫AGL

AGL Upstream Investments Pty Ltd WKMB03

BORE COMPLETION REPORT - WKMB03						Page 7 /7
BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG	LITHOLOGY	WATER	QUALITY
Gravel pack (5mm wash) 	- 200 - 201 - 202 - 203 - 204 - 205 - 206 - 207 - 208 - 209 - 210 - 211			SANDSTONE fine to medium grained, light grey, SILTSTONE 40% COAL 10% SILTSTONE dark grey, SANDSTONE 20% fine to medium grained, light grey, COAL 10% SILTSTONE dark grey, COAL 20% SANDSTONE 20% fine grained SANDSTONE very fine grained , grey, SILTSTONE 30% dark grey SILTSTONE grey, SANDSTONE 30% fine grained, grey, carbonaceous staining SANDSTONE very fine grained , grey, SILTSTONE 40% grey SILTSTONE dark grey, SANDSTONE 20% fine grained, grey, COAL 10%		

PARSONS BRINCKERHOFF	Drawing No.: WKMB	03 - Bore Construction	MAGL	AGL Upstream Investments Pty Lto	
	Revision: A	Date Drawn: 26/2/2014		WKMB03	
	Drawn By: K. Maher	Checked By: J. Duggleby		Waukivory Groundwater Monitoring Program	
	Project No. 2162406C				

BORE COM	PLE	ΤΙΟ	ЭN	REPORT	- WKMB04	ļ.		Page1/11
Project: AGL Gloucester Gas P	roject				Drilling contract	5	•	I
Location: Waukivory	-				Driller: I. Palk	Rig: Rig	10	
Easting: 402133.7	Nort	hing	j: 64	152567.5	Drilling method:	Rotary Hammer		
TOC elevation: NA					Borehole:	203 mm (Dit.
Grid system: MGA 94 Zone 56	St	tick-	up h	eight: NA	Borehole:	140 mm 1	8 - 360.0 n	
Purpose of bore:Groundwater monitoring boreScreened Fmn:Jilleon FormationLogged by:N. Pearse-HawkinsStart date:12/01/2012Compl. date:23/01/2012Total drilled depth:360.0 m					Plain casing: Screen: Sump: Cement grout: Gravel backfill: Bentonite seal:	0-335.0m: 50NB M 335.0-347.0m: 50N 347.0-360m: 50NE 0-318.0m: 4.0m3 NA 318.0-323.0m	nm 304SS (1	
Static WL: NA mAHD	NA	m	втс	C	Gravel pack:	323.0-360.0m: 5m	m washed ar	avel
WL date: NA					Bentonite plug:		in washed gi	
BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG		LITHOLOGY		WATE	ER QUALITY
Steel headworks and monument							-	
	-1 -2 -3 -4 -5 -6 -7			SOIL brown, sandy	, clayey; high plasticity		-	
	-8				grey, GRAVEL fine to media n, pebbles, gravel consisting			
6 inch steel surface	-9		···	silstone and quartzi	te	•	-	
casing	- 10		<u> </u>	GRAVEL fine to me	dium (2-64mm), blue green	brown, poorly sorted		
	- 11							
	- 12		<u> </u>				-	
	- 13			clay	moderately weathered, SIL	TSTONE 20% grey, minor		
	- 14				fine to fine engined error of	in bally successful a word	-	
	- 15				fine to fine grained , grey, sl	ignity weathered	-	
	- 16		• • •	SANDSTONE grey,	SILISTONE 10%			
	- 17		• • •		carbonaceous staining, CO		-	
	- 18				-	AL DIACK	-	
	- 19		· · · ·	SANDSTONE fine (gramou, groy			
	- 20		• • •	SANDSTONE	find grained gray actions	cours staining	-	
	- 21		• • •		fine grained , grey, carbonad fine grained , grey, SHALE I			
	- 22			minor, becoming fin				
	Drawing	1 I I 1 No.:	WKMB	04 - Bore Construction	MAGL	AGL Upstream	m Investme	nts Pty Ltd

DA DOOMO	Drawing No.: WKMB		
PARSONS	Revision: A	Date Drawn: 26/2/2014	
BRINCKERHOFF	Drawn By: K. Maher	Checked By: J. Duggleby	
	Project No. 2162406C	•	

Waukivory Groundwater Monitoring Program

BORE COMPLETION REPORT - WKMB04						Page 2/11
BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG	LITHOLOGY	WATER	QUALITY
	d JQ -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -34 -35 -36 -37 -38 -39 -40 -41 -42 -43 -44 -45 -46 -47 -48 -49 -50 -51 -52 -53 -54 -52 -53 -54	STRAT		SANDSTONE fine grained, grey SANDSTONE very fine grained, grey, SILTSTONE grey, carbonaceous staining SANDSTONE fine grained, grey SANDSTONE fine to medium grained, grey SANDSTONE fine to medium grained, grey SANDSTONE fine to medium grained, grey, SILTSTONE grey, carbonaceous staining SILTSTONE very fine grained, grey, SILTSTONE grey, carbonaceous staining SILTSTONE flae to medium grained, grey, SILTSTONE 50% very coarse grained, grey SANDSTONE fine to medium grained, grey, SILTSTONE 50% dark grey SANDSTONE fine grained, grey, SHALE 30% dark grey, SANDSTONE 20% fine grained, grey SANDSTONE fine grained, grey, SHALE black, minor SANDSTONE very fine grained, grey, SHALE black, minor SANDSTONE fine grained, grey, SILTSTONE 20% dark grey SANDSTONE fine grained, grey, SILTSTONE 10% grey SANDSTONE fine grained, grey, SHALE black, minor SANDSTONE fine grained, grey, SHALE 40% black, minor coal SANDSTONE fine grained, grey, SHALE 40% black, minor coal	Water Cut: 0.1 LA	
	— 55 — 56 — 57 — 58	Leloma Formation		SHALE black, hard, SANDSTONE 50% fine grained, grey SANDSTONE fine grained, grey, SILTSTONE 10% grey SANDSTONE very fine grained , grey, SHALE black, minor		

PARSONS	Drawing No.: WKM	304 - Bore Construction	
PARSONS	Revision: A	Date Drawn: 26/2/2014	
BRINCKERHUFF	Drawn By: K. Maher	Checked By: J. Duggleby	y
	Project No. 21624060	;	

Waukivory Groundwater Monitoring Program

BORE COM	PLE	TI	ON	REPORT - WKMB04		Page 3 /11
BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG	LITHOLOGY	WATER	QUALITY
	58	Leloma Formation	· · · ·	SANDSTONE very fine grained , grey]	
	- 59	Leloma F	• •	SANDSTONE fine grained, grey, SHALE 40% black	_	
	- 60		· · · ·	SANDSTONE very fine grained , grey, SHALE black, minor	Water Cut: 0.1 L/	S
	- 61			SANDSTONE fine grained, grey, SHALE 20% dark grey	-	
	- 62		• • • •			
	- 63		• • •			
	- 64			SANDSTONE grey, SILTSTONE minor carbonaceous staining		
	- 65		• • •			
	- 66		• • •			
	- 67			SILTSTONE dark grey, SANDSTONE 50% very fine grained , grey		
	- 68					
	- 69		• • •	SANDSTONE very fine to fine grained , grey, SILTSTONE 30% grey	_	
	- 70		• • •	SANDSTONE grey, SILTSTONE 10% carbonaceous staining, minor green white and grey chert		
	- 71 - 72		• • •			
	-73		· · · ·	SANDSTONE grey	Water Cut: 0.2 L/	S
	-74			SILTSTONE dark grey, SANDSTONE 50% fine grained, grey		
	-75				_	
	-76		•••	SANDSTONE very fine grained , dark grey, SHALE 20% black		
	-77		•••			
	-78		•••			
	- 79		• • •			
	- 80		• • •	SHALE black, light to medium, SILTSTONE 35% dark grey, carbonaceous		
	- 81			staining, SANDSTONE 30% fine grained, grey	_	
	- 82			SILTSTONE dark grey, SANDSTONE 40% fine grained, grey, SHALE 20% black		
	- 83		• • •	SANDSTONE very fine grained , grey, SILTSTONE 30% dark grey, SHALE 10%		
	- 84			SILTSTONE dark grey, SHALE 10% black, SANDSTONE 10% fine		
	- 85			grained, grey	-	
	- 86			SILTSTONE dark grey, SANDSTONE 40%	_	
	- 87		•••	SANDSTONE fine grained, grey, SILTSTONE 30% grey		
	- 88				-	
	- 89		• • •	SANDSTONE fine grained, grey, SHALE 50% grey	-	
	- 90		· · ·	SANDSTONE grey		
	- 91		• • •		-	
	- 92		· · · ·	SANDSTONE grey, carbonaceous staining, SILTSTONE 20%		
	- 93		• • •	SANDSTONE grey, SILTSTONE 50% grey		
N=1 N=1	' T					
PARSONS	Drawing	-	WKMB	Date Drawn: 26/2/2014	m Investme	ents Pty Ltd WKMB04

DI DOONO	Drawing No.: WKMB	04 - Bore Constr	uction	
PARSONS	Revision: A	Date Drawn:	26/2/2014	
BRINCKERHOFF	Drawn By: K. Maher	Checked By:	J. Duggleby	
	Project No. 2162406C			

Waukivory Groundwater Monitoring Program

BORE COMPLETION REPORT - WKMB04						Page 4/11
BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG	LITHOLOGY	WATER	QUALITY
	- 94 - 95 - 96 - 97 - 98 - 99 - 100 - 101 - 102 - 103 - 104 - 105 - 106 - 107 - 108 - 117 - 118 - 117 - 118 - 117 - 118 - 117 - 128 - 120 - 127 - 128 - 126 - 127 - 128 - 128	$ \qquad \qquad$		SILTSTONE dark blackish grey SANDSTONE fine grained, grey, SHALE 30% black, SILTSTONE 10% grey SILTSTONE dark blackish grey SANDSTONE very fine grained , grey, SHALE 10% black SILTSTONE dark grey SANDSTONE fine grained, grey, carbonaceous staining SANDSTONE grey, SILTSTONE 40% dark grey SILTSTONE dark blackish grey, SHALE 30% black, COAL minor SANDSTONE very fine grained , grey, SILTSTONE 30% grey SANDSTONE fine to medium grained , grey SILTSTONE dark grey, SANDSTONE very fine grained , grey, minor SANDSTONE fine grained , grey, SILTSTONE 20% grey SILTSTONE fine grained , grey, SILTSTONE 20% grey SILTSTONE grey, SANDSTONE 30% fine grained , grey TUFF light creamy green, SILTSTONE 30% grey TUFF light creamy green, SHALE 30% black TUFF light creamy green, SHALE 30% black TUFF light creamy green SHALE 30% black TUFF light creamy green ANDSTONE very fine grained , grey, TUFF 10%, SHALE 10% black SILTSTONE grey, SHALE black, minor		

	Drawing No.: WKME	04 - Bore Construction	MAGI
PARSONS	Revision: A	Date Drawn: 26/2/2014	
BRINCKERHOFF	Drawn By: K. Maher	Checked By: J. Duggleby	
	Project No. 2162406C	•	

Waukivory Groundwater Monitoring Program

BORE COMPLETION REPORT - WKMB04						Page 5 /11
BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG	LITHOLOGY	WATER	QUALITY
	LAG - 129 - 130 - 131 - 132 - 133 - 134 - 135 - 136 - 137 - 138 - 137 - 138 - 137 - 138 - 140 - 141 - 142 - 143 - 144 - 145 - 146 - 147 - 148 - 149 - 150 - 151 - 155 - 156 - 157	Leloma Formation		SANDSTONE fine grained, grey, SHALE black, minor, TUFF minor SILTSTONE dark grey, SANDSTONE fine to medium grained, light grey, TUFF minor SILTSTONE dark grey, SHALE 30% black, TUFF light creamy green, minor SANDSTONE fine grained, grey, SILTSTONE 40% grey SILTSTONE grey SANDSTONE fine grained, grey, carbonaceous staining SANDSTONE fine grained, grey, SILTSTONE 40% grey SANDSTONE fine grained, grey, SILTSTONE 40% grey SANDSTONE fine grained, grey SANDSTONE fine grained, grey SILTSTONE dark grey, SHALE 10% black SANDSTONE fine grained, grey SANDSTONE fine grained, grey SANDSTONE fine to medium grained, grey, SILTSTONE 10% grey SILTSTONE grey, SANDSTONE 40% very fine grained , grey SILTSTONE fine to medium grained, grey, SILTSTONE 10% grey SILTSTONE fine to medium grained, grey, SILTSTONE 20% grey SANDSTONE fine to medium grained, grey, SILTSTONE 20% grey SANDSTONE fine to medium grained, grey, SILTSTONE fine grained, grey, minor SANDSTONE fine grained, grey, SILTSTONE fine grained, grey, minor	Water Cut: 0.2 L/s	
Cement grout	— 158 — 159 — 160 — 161 — 162 — 163 — 164	→ Leloma Formation - B		SILTSTONE grey, SANDSTONE 30% fine grained, grey SANDSTONE fine grained, grey, SHALE 20% black SILTSTONE grey, SANDSTONE 30% fine grained, light grey		

PARSONS BRINCKERHOFF	Drawing No.: WKMB	04 - Bore Construction	MAGL	AGL Upstream Investments Pty Ltd
	Revision: A	Date Drawn: 26/2/2014		WKMB04
	Drawn By: K. Maher	Checked By: J. Duggleby		Waukivory Groundwater Monitoring Program
	Project No. 2162406C			

BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG	LITHOLOGY	WATER	QUALITY
50NB MED Galv pipe	— 165 — 166 — 167			SANDSTONE very fine grained , grey, SILTSTONE 20% grey	-	
	— 168 — 169			SILTSTONE dark grey, SANDSTONE 20% fine grained, greyish brown SANDSTONE fine grained, grey, SILTSTONE 10% grey	-	
	— 170 — 171			SILTSTONE dark grey, SANDSTONE 20% fine grained, grey	_	
	— 172 — 173			SANDSTONE fine grained, grey, SHALE 20% black SILTSTONE grey, SHALE 10% black, SANDSTONE 10% fine grained, grey	_	
	— 174 — 175 — 176			SANDSTONE fine to medium grained, grey, SILTSTONE 20% grey SILTSTONE dark grey, SHALE 40% black, SANDSTONE 20% fine grained, grey		
	— 170 — 177 — 178			SANDSTONE fine to medium grained, light grey SILTSTONE grey, SHALE 20% black, SANDSTONE 20% fine grained, grey		
5 inch diameter borehole	— 179 — 180 — 181		· · · · · · · · · · · · · · · · · · ·	SANDSTONE fine grained, grey, SILTSTONE 20% grey, SHALE black, minor		
	— 182 — 183			SILTSTONE dark grey, SANDSTONE 40% very fine grained , grey	_	
	— 184	ation		SILTSTONE dark grey SILTSTONE dark grey, SHALE 20% black, SANDSTONE 10% fine grained, grey		
	— 185 — 186	LL		SANDSTONE fine grained, grey, SILTSTONE 10% dark grey		
	— 187 — 188		· · · · · · · · · · · · · · · · · · ·	SANDSTONE very fine grained , grey, SILTSTONE 30% grey, carbonaceous staining		
	- 189		· · · ·	SANDSTONE fine to medium grained, grey, carbonaceous staining		
	— 190 — 191		• • •	SANDSTONE fine to medium grained, grey, SILTSTONE 40% dark grey	_	
	- 192			SILTSTONE grey, SANDSTONE very fine grained , grey, carbonaceous staining	21410 µS/cm, TD	s, Temp: 19.75 °C, EC: S: 8.068 g/L, DO: 8.4 %
	— 193 — 194			SANDSTONE medium grained , light grey, SHALE 30% black	— pH: 7.51, ORP: -′	103.0 MV
	- 195		· · · ·	SANDSTONE light grey SANDSTONE fine to medium grained, light grey, SILTSTONE 20% grey	-	
	— 196 — 197		· · · ·	SANDSTONE fine to medium grained, light grey, carbonaceous staining	1	
	- 198 - 199 200			SILTSTONE grey, carbonaceous staining	-	

PARSONS	Drawing No.: WKMB	04 - Bore Construction	
PARSONS	Revision: A	Date Drawn: 26/2/2014	3
BRINCKERHOFF	Drawn By: K. Maher	Checked By: J. Duggleby	
	Project No. 2162406C		

AGL Upstream Investments Pty Ltd WKMB04

Waukivory Groundwater Monitoring Program

BORE COM	PLE	TI	ON	REPORT - WKMB04		Page 7 /11
BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG	LITHOLOGY	WATER	QUALITY
			CC 1 - C - C - C - C - C - C - C - C - C	SANDSTONE fine grained, grey, carbonaceous staining, SILTSTONE 10% grey SILTSTONE grey, SANDSTONE 30% fine grained, grey SILTSTONE grey, SANDSTONE 30% fine grained, grey SANDSTONE fine to medium grained, grey, SHALE black, minor SILTSTONE dark grey, SHALE black, minor SILTSTONE dark grey, SHALE black, minor SILTSTONE dark grey, SHALE 40% SANDSTONE 20% very fine grained SANDSTONE fine to medium grained, grey, carbonaceous staining, SHALE 10% black SANDSTONE fine grained, grey, carbonaceous staining SANDSTONE grey, SILTSTONE 10% grey SANDSTONE fine to medium grained, grey SANDSTONE very fine grained , light grey, SILTSTONE 20% grey SANDSTONE very fine grained , grey, SILTSTONE 30% grey, CHERT Ight cream SANDSTONE grey, SILTSTONE 10% grey,	μS/cm, TDS: 3.3ξ 8.43, ORP: -33.1	s, Temp: 26.59 °C, EC: 4162)6 g/L, DO: 15.6 %, pH:
	- 232 - 233 - 234 - 235	3		SILTSTONE grey, SANDSTONE 20% very fine grained , grey SANDSTONE fine grained, grey, SILTSTONE 10% grey	Water Cut: 0.1 L/ μS/cm, TDS: 3.24 8.46, ORP: 3.7 m	s, Temp: 28.53 °C, EC: 5330 19 g/L, DO: 24.3 %, pH: V
PARSONS	Drawing		WKMB A	04 - Bore Construction Date Drawn: 26/2/2014 AGL Upstrea	ım Investme	ents Pty Ltd WKMB04
BRINCKERHOFF	Drawn E	By: K. N	laher	Checked By: J. Duggleby Waukivory Gro	undwater Monito	oring Program

	Drawing No WRWD	04 - Bore Construction	AGL Ups
IOFE	Revision: A	Date Drawn: 26/2/2014	-
IOFF	Drawn By: K. Maher	Checked By: J. Duggleby	Waukivory
	Project No. 2162406C		,

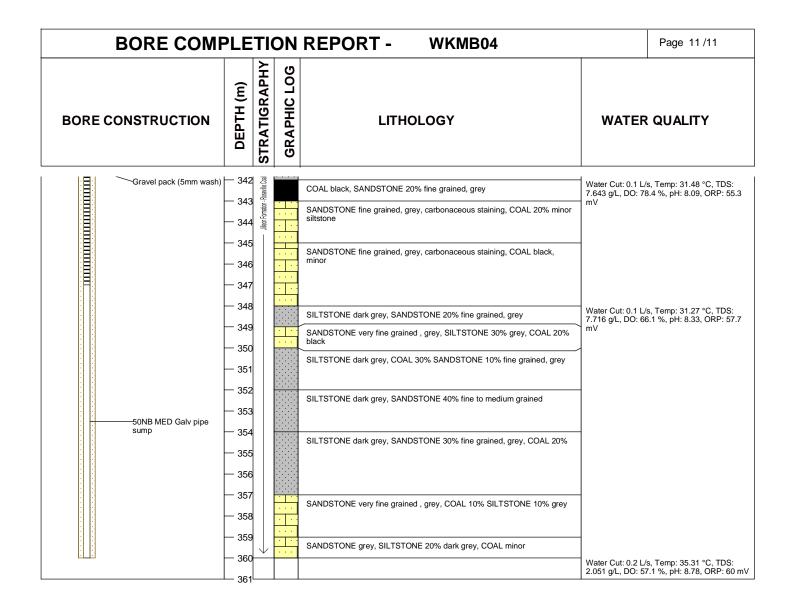
WKMB04

ry Groundwater Monitoring Program

BORE COMPLETION REPORT - WKMB04 Page 8/1						
BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG	LITHOLOGY WATE		QUALITY
	 236 237 238 239 240 241 242 243 244 245 246 250 251 253 254 255 256 257 253 254 255 256 257 258 256 257 258 256 256 257 258 256 256 257 258 256 261 262 263 264 265 266 267 268 266 267 268 266 267 268 266 267 268 267 267 268 267 268 267 268 267 268 267 268 267 268 267 267 268 270 271 			SANDSTONE light grey, SILTSTONE 30% minor quartz SANDSTONE grey, SILTSTONE 10% minor shale SILTSTONE grey, SANDSTONE 20% fine grained, grey SANDSTONE very fine grained, grey, SILTSTONE 10% dark grey SILTSTONE grey, SHALE 10% black SANDSTONE very fine grained, grey SANDSTONE very fine grained, grey SANDSTONE fine to medium grained, grey SANDSTONE fine to medium grained, grey CONGLOMERATE grey creamy green SILTSTONE fine to medium grained, light grey, SILTSTONE 20% grey SILTSTONE fine grained, grey, SHALE minor SANDSTONE fine to medium grained, light grey, SILTSTONE 20% grey SILTSTONE fine grey, SULTSTONE 20% black SANDSTONE fine to medium grained, light grey, SILTSTONE 20% grey SILTSTONE grey, SILTSTONE 20% black SANDSTONE fine to medium grained, grey SANDSTONE grey, SILTSTONE 20% SANDSTONE grey, SILTSTONE 20% SANDSTONE grey, SILTSTONE 20% SANDSTONE grey, SILTSTONE 20% SANDSTONE fine to medium grained, grey SANDSTONE fine to medium grained,	μS/cm, TDS: 3.4! 8.45, ORP: 12 m Water Cut: 0.1 L/μS/cm, TDS: 2.6 8.56, ORP: 23.9 Water Cut: 0.1 L/μS/cm, TDS: 2.7: ORP: 31.9 mV Water Cut: 0.1 L/μS/cm, TDS: 7.20	s, Temp: 29.8 °C, EC: 4170 17 g/L, DO: 47.5 %, pH: mV s, Temp: 26.9 °C, EC: 11080 1 g/L, DO: 26 %, pH: 8.39, s, Temp: 28.69 °C, EC: 3209 38 g/L, DO: 61.1 %, pH:

PARSONS BRINCKERHOFF	Drawing No.: WKMB	MAG	
	Revision: A	Date Drawn: 26/2/2014	
BRINCKERHUFF	Drawn By: K. Maher	Checked By: J. Duggleby	
	Project No. 2162406C		

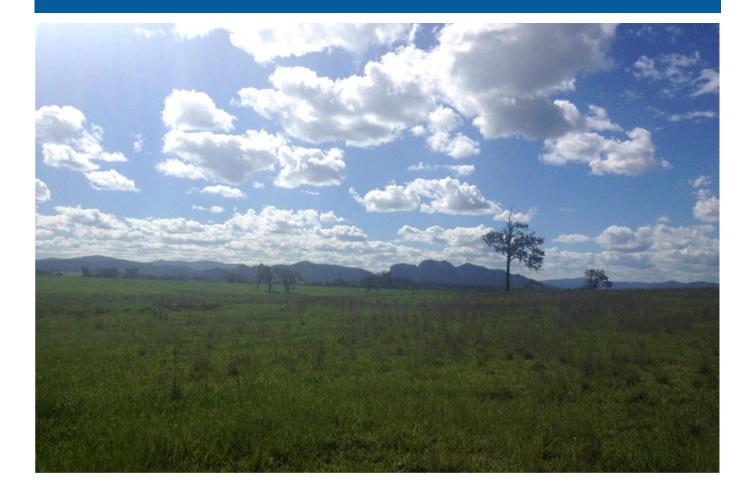
Waukivory Groundwater Monitoring Program


BORE CONSTRUCTION Yes Solution LITHOLOGY WATER QUAL 0 <td< th=""><th></th></td<>	
- 272 - 273 - 273 - 274 - 274 - 274 - 274 - 274 - 274 - 274 - 274 - 274 - 274 - 274 - 274 - 274 - 274 - 274 - 274 - 275 - 275 - 275 - 276 - 276 - 276 - 276 - 276 - 276 - 276 - 276 - 276 - 277 - 276 - 277 - 276 - 277 - 277 - 277 - 279 - 279 - 279 - 279 - 279 - 279 - 279 - 279 - 279 - 279 - 279 - 279 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 283 <td< th=""><th></th></td<>	
- 273 - 273 - 274 SANDSTONE grey, SILTSTONE 40% dark grey, COALY SHALE 30% - 274 - 275 - 276 - 276 - 276 - 276 - 277 - 276 - 277 - 277 - 277 - 278 - 277 - 278 - 277 - 279 - 279 - 279 - 279 - 281 - 280 - 281 - 281 - 281 - 281 - 281 - 283 - 3ILTSTONE dark grey - 283 Water Cut: 0.1 L/s, Temp: 30	
- 274 0 - <td></td>	
277 - 277	
- 277 - 277 - 278 - 278 - 278 - 278 - 278 - 278 - 278 - 279 - 270 - 270 - 270 - 270 - 270 - 270 - 270 - 270 - 270 - 270 - 270 - 270 - 270 - 270 - 270 - 270 - 281 - 282 - 282 - 283 <td< td=""><td></td></td<>	
- 279 - 280 - 280 - 281 - 282 - 282 - 282 - 283 - 282 - 283 - 283	8.88 °C, EC: 670 : 52.3 %, pH:
- 280 - 280 - 281 - 281 - 282 - 282 - 282 - 282 - 283 - 283	
281 SILTSTONE dark grey, SANDSTONE 20% medium grained, light grey 281 SANDSTONE fine to medium grained, grey, SILTSTONE 40% dark grey 282 SILTSTONE dark grey 283 SILTSTONE dark grey	
282 SANDSTONE fine to medium grained, grey, SILTSTONE 40% dark grey 283 SILTSTONE dark grey 283 High Street	
283 24.36 g/L μH: 8.27, ORP: 37.6 mV	0.87 °C. EC:
SILTSTONE dark grey, SANDSTONE 40% fine grained, light grey	L, DO: 54.8 %,
284 C SANDSTONE medium grained , light grey	
287 SANDSTONE light grey, SILTSTONE 20% grey	
	0.57 °C, EC:
PH: 8.29, ORP: 42.1 mV	/2, 00: 07:0 %,
- 292 SANDSTONE fine grained, light grey	
- 293 SANDSTONE fine grained, light grey, SILTSTONE 30% dark grey	
294 SANDSTONE fine grained, light brownish grey, minor carbonaceous staining Water Cut: 0.1 L/s, Temp: 30 μS/cm, TDS: 7.591 g/L, DO: ORP: 41.2 mV	0.29 °C, EC: 268 : 56.7 %, pH: 8.3
SANDSTONE fine to medium grained, light grey, SILTSTONE 20% grey	
298 SANDSTONE fine grained, light grey, minor carbonaceous staining	
- 301 SANDSTONE fine grained, light grey, SILISTONE 20% dark grey	
303 E SANDSTONE fine to medium grained, light grey, SILTSTONE 40% dark	
305 SANDSTONE fine grained, light grey, carbonaceous staining, SILTSTONE	
306 10% grey Water Cut: 0.1 L/s, Temp: 28	
PARSONS Drawing No.: WKMB04 - Bore Construction Revision: A Date Drawr: 26/2/2014 AGL Upstream Investments Pty WKM	8.68 °C, EC:

PARSONS BRINCKFRHOFF	04 - Bore Construction		
PARSONS	Revision: A	Date Drawn: 26/2/2014	
BRINCKERMUFF	Drawn By: K. Maher	Checked By: J. Duggleby	
	Project No. 2162406C		

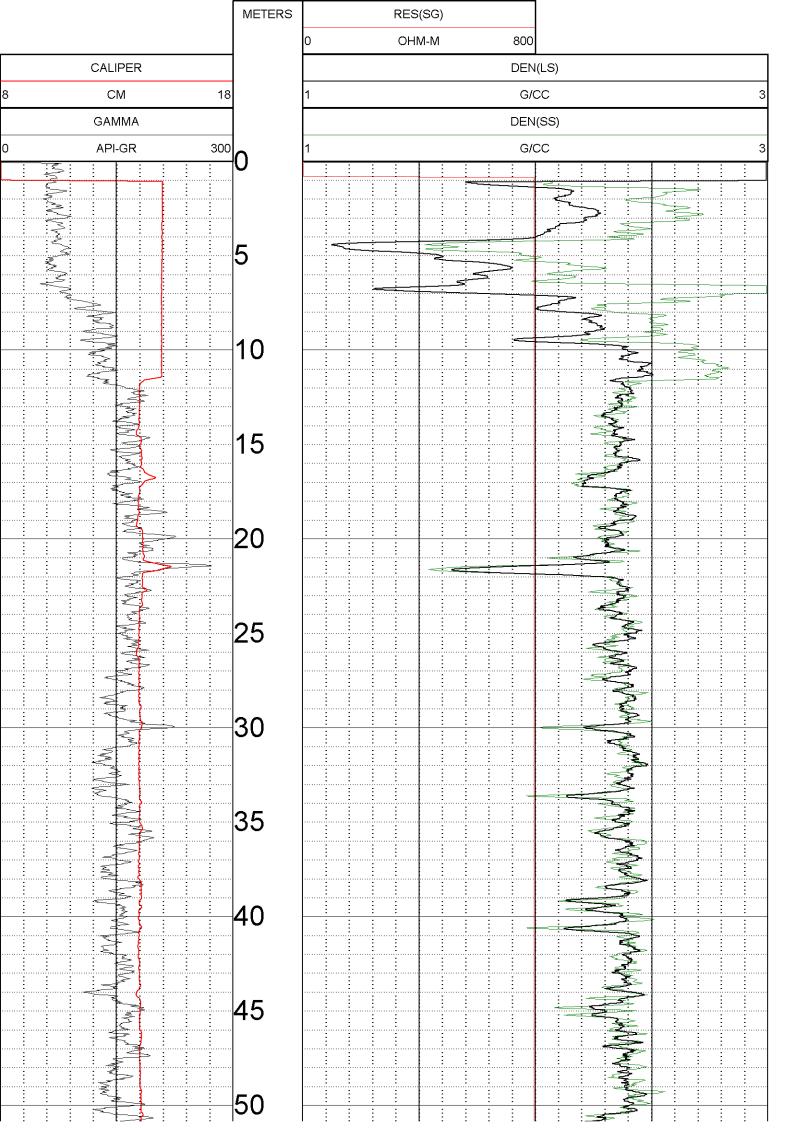
WKMB04 Waukivory Groundwater Monitoring Program

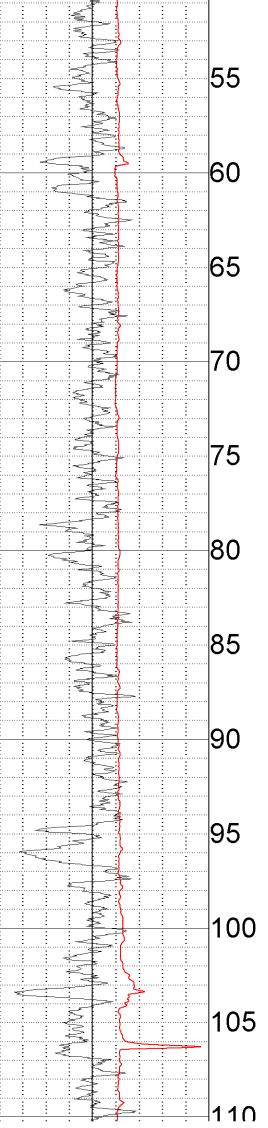
BORE COMPLETION REPORT - WKMB04 Page 10/11								
BORE CONSTRUCTION	DEPTH (m)	STRATIGRAPHY	GRAPHIC LOG	LITHOLOGY	WATER QUALITY			
	- 307		· · ·	SANDSTONE light grey, COAL 10%	10800 µS/cm, TDS: 1.75 g/L, DO: 52.3 %, pH: 8.6, ORP: 37.9 mV			
	— 308 — 309 — 310			SILTSTONE dark grey, SANDSTONE 20% fine grained, grey, COAL 10%				
	— 311 — 312 — 313			SANDSTONE fine to medium grained, grey, SILTSTONE 10% dark grey, carbonaceous staining	Water Cut: 0.1 L/s, Temp: 31.58 °C, TDS: 7.029 g/L, DO: 56.9 %, pH: 8.62, ORP: 88. mV			
	- 314		••••	SILTSTONE dark grey, SANDSTONE 40% fine grained, grey				
	- 315			SNADSTONE grey, fine grained, sandstone, SILTSTONE 30% dark grey				
	- 316			SILTSTONE dark grey, SANDSTONE 30% fine grained, grey				
	- 317 - 318 - 319		· · · · · · · · · · · · · · · · · · ·	SANDSTONE fine grained, grey, carbonaceous staining, SILTSTONE 30% dark grey, minor coal	Water Cut: 0.1 L/s, Temp: 30.08 °C, TDS: 6.816 g/L, DO: 85.7 %, pH: 8.78, ORP: 36			
Bentonite seal	- 319 - 320 - 321	-		SANDSTONE grey	- mV			
	- 322		• • •	SANDSTONE grey, SILTSTONE 40% brownish grey	-			
	- 323	\uparrow		SILTSTONE dark grey, COAL 20% SANDSTONE 10% fine grained, grey	-			
	— 324 — 325			SILTSTONE dark grey, COAL 30% SANDSTONE 30%	Water Cut: 0.1 L/s, Temp: 29.6 °C, TDS: 6.815 g/L, DO: 47.5 %, pH: 8.64, ORP: 41. mV			
	- 326		· · · ·	SANDSTONE fine grained, grey, SILTSTONE 10% dark grey	-			
	— 327 — 328			SILTSTONE dark grey, SANDSTONE 30% fine grained, grey, COAL 20%				
	— 329			COAL black, SILTSTONE 30% dark grey, SANDSTONE 20% fine grained, grey				
	— 330 — 331		· · · ·	SANDSTONE fine grained, dark grey, SILTSTONE 20% dark grey, minor siltstone				
	- 332		· · · ·	SANDSTONE very fine grained , dark grey, carbonaceous staining]			
	- 333			SILTSTONE dark grey, COAL 20% SANDSTONE 10% fine grained, grey,]			
	— 334 — 335		· · · · · · · · · · · · · · · · · · ·	SANDSTONE very fine grained , grey, SILTSTONE 40% dark grey, COAL 10%				
	- 336			SILTSTONE dark grey, COAL 40% SANDSTONE 10% fine grained, grey	Water Cut: 0.1 L/s, Temp: 28.91 °C, TDS: 6.56 g/L, DO: 62.9 %, pH: 8.25, ORP: 86.9			
50mm 304SS (0.5mm slot)	— 337 — 338 — 339	ille Coal	· · · · · · · · · · · · · · · · · · ·	SANDSTONE fine grained, grey, COAL 10%	- mV			
50mm 304SS (0.5mm slot)	— 340 — 341 342	Jilleon Formation - Roseville Coa		SILTSTONE dark grey, SANDSTONE 30% fine grained, grey				
	Drawing N	No.:	WKMB	D4 - Bore Construction AGL Upstream	m Investments Pty Ltd			
PARSONS	Revision:		А	Date Drawn: 26/2/2014	WKMB04			
BRINCKERHOFF	Drawn By			Checked By: J. Duggleby Waukivory Grou	undwater Monitoring Program			
	Project No	o. 216	62406C					

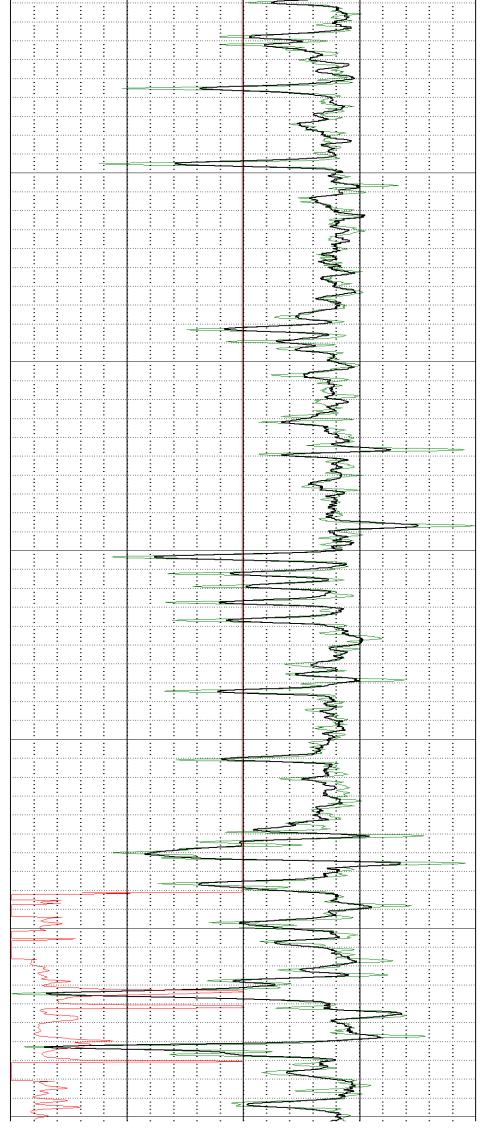

Project No. 2162406C

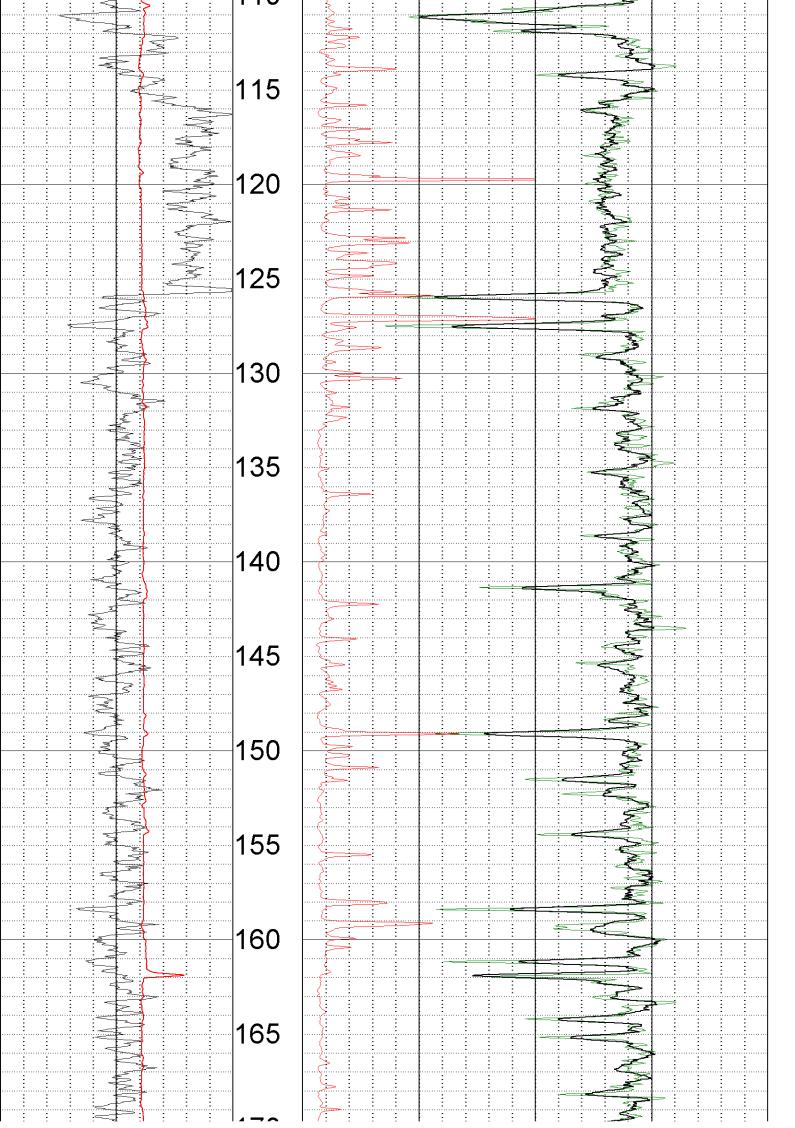
PARSONS BRINCKERHOFF	Drawing No.: WKMB	04 - Bore Construction	MAGL	AGL Upstream Investments Pty Ltd
	Revision: A	Date Drawn: 26/2/2014		WKMB04
	Drawn By: K. Maher	Checked By: J. Duggleby		Waukivory Groundwater Monitoring Program
	Project No. 2162406C			

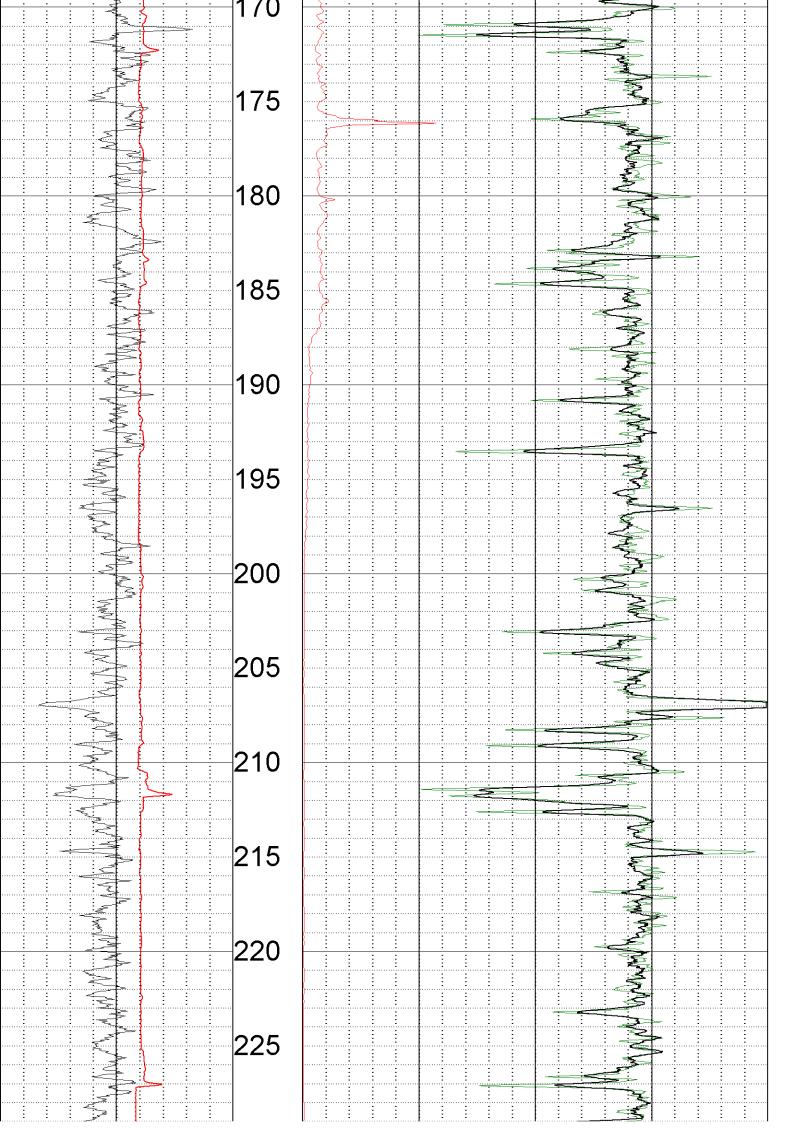
Appendix B

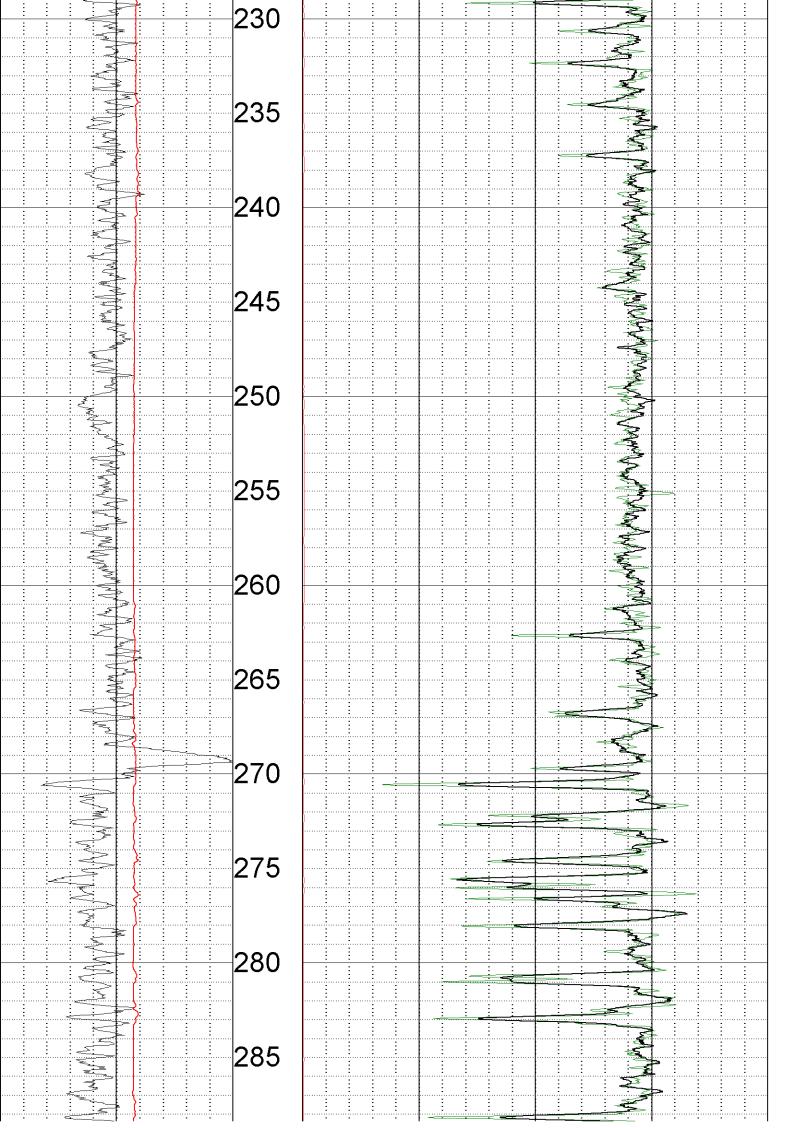

Geophysical logs

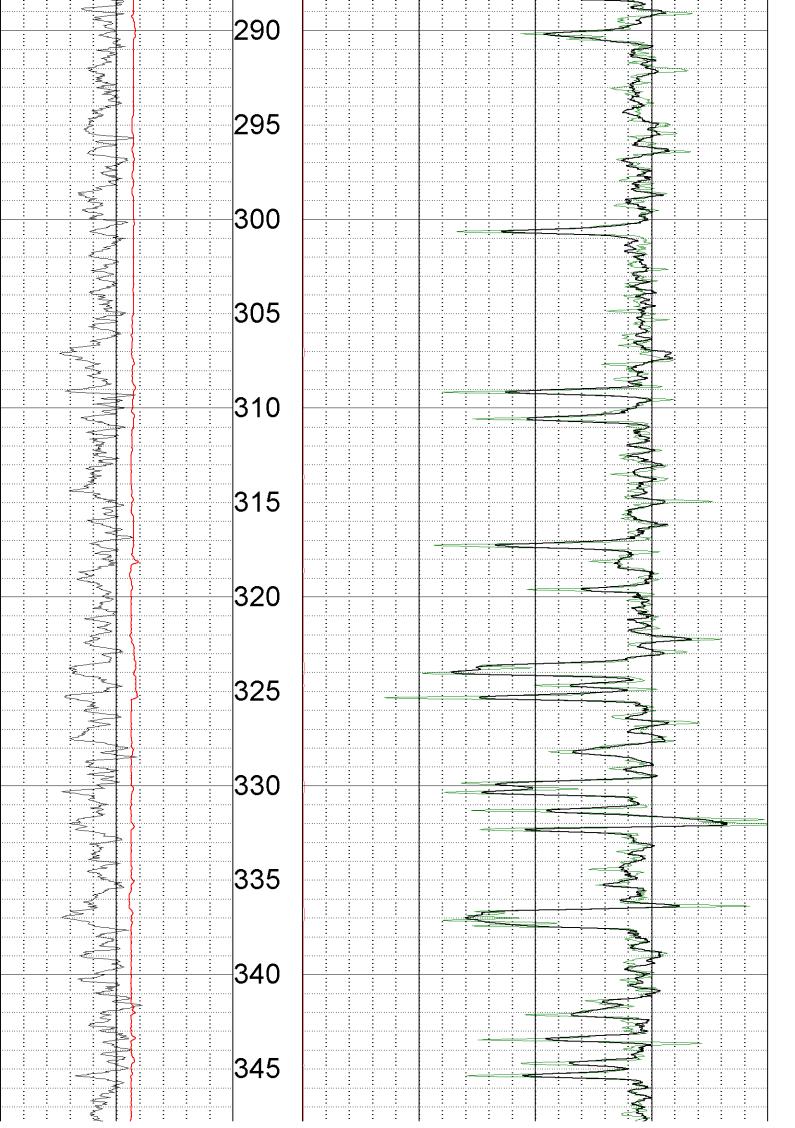


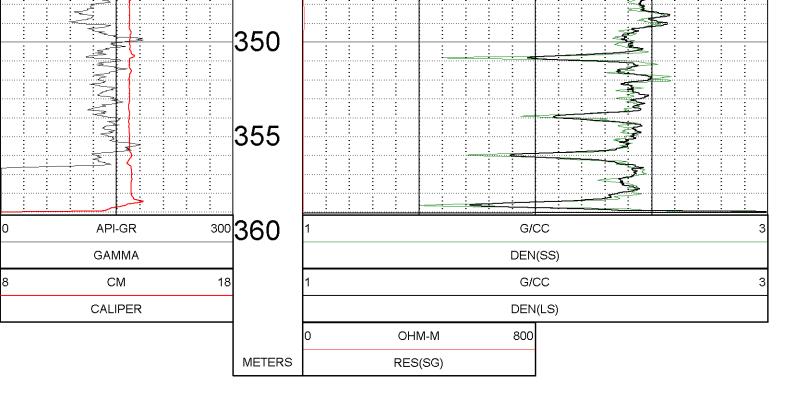

GROUNDSEARCH AUSTRALIA (ABN 11 057 389 152)

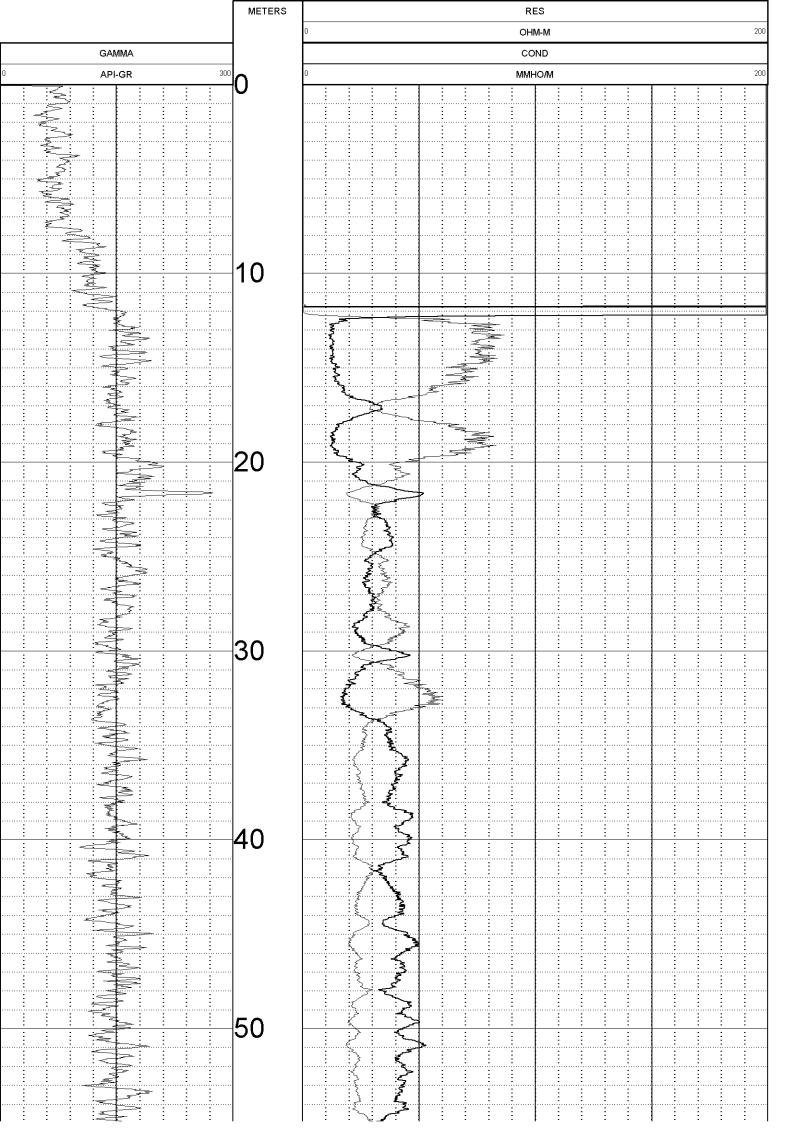

WKMB04 DENSITY 1:200

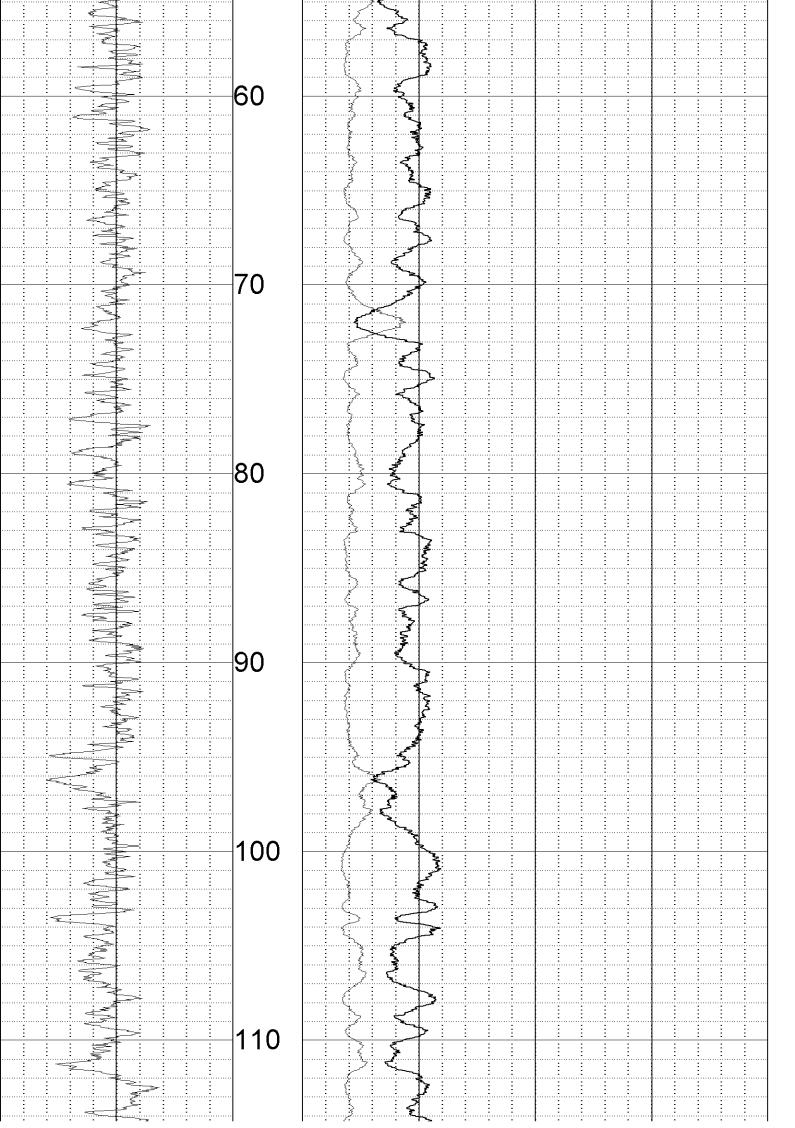

WELL : LOCATION/FIELD : COUNTY : LOCATION :	AGL WKMB04 DENSITY 1:200 GLOUCESTER AUST N/AW 0	TOWNSHIP	OTHER SERVICES: IND DEN NEU SON N/A	RANGE : 0
DEPTH DRILLER : LOG BOTTOM :	01/20/12 50 359.12 -1.23	PERMANENT DATUM	GL	KB : N/A DF : N/A GL : -0.00
CASING DIAMETER : CASING TYPE : CASING THICKNESS:	PVC	LOGGING UNIT FIELD OFFICE RECORDED BY		
BIT SIZE : MAGNETIC DECL. : MATRIX DENSITY : NEUTRON MATRIX :	0 2.65	RM :	0 0 0 177	FILE : PROCESSED TYPE : 9035AA LGDATE: 01/20/12 THRESH: 99999
	N/A N/A ALL SERVICES PROV	IDED SUBJECT TO STAN	DARD TERMS AND CC	NDITIONS

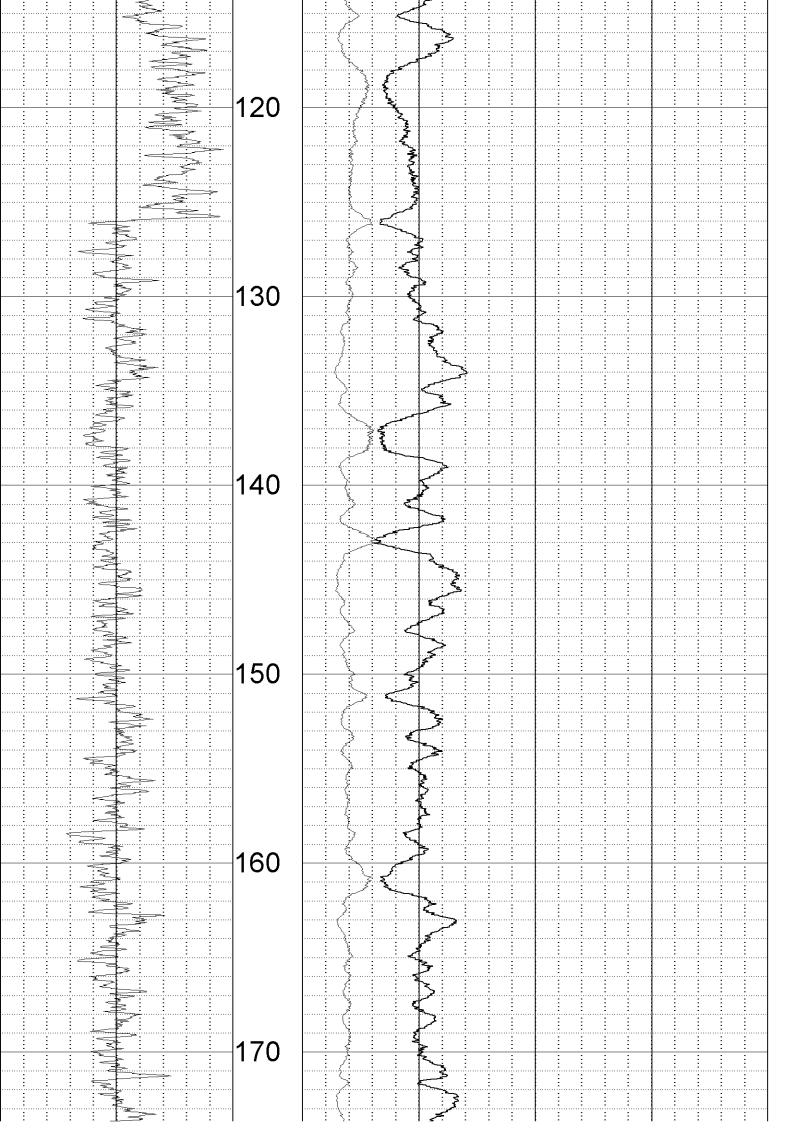


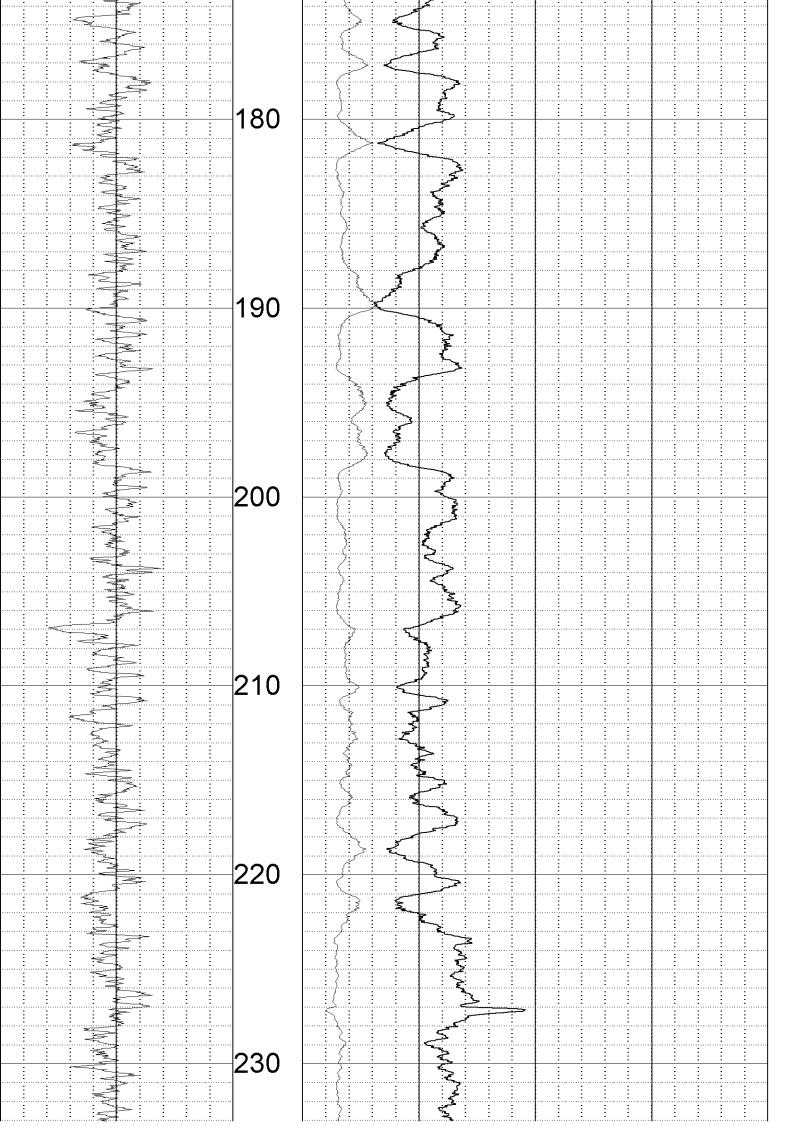


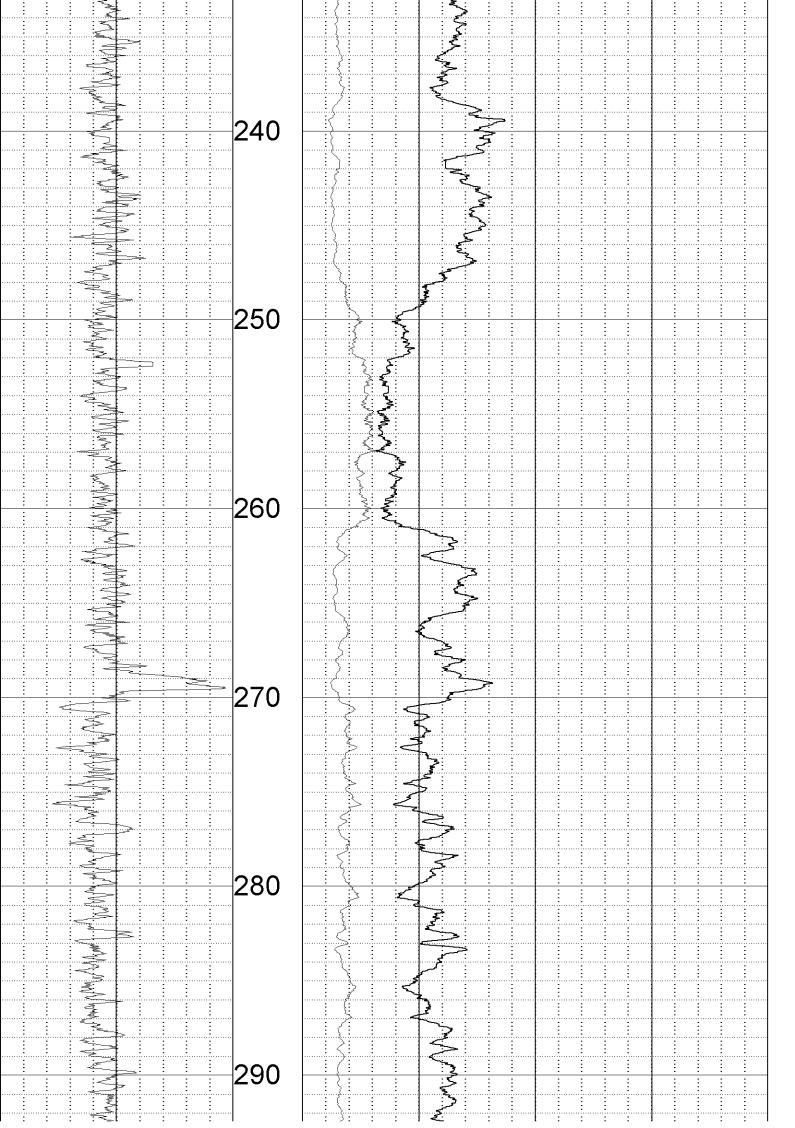


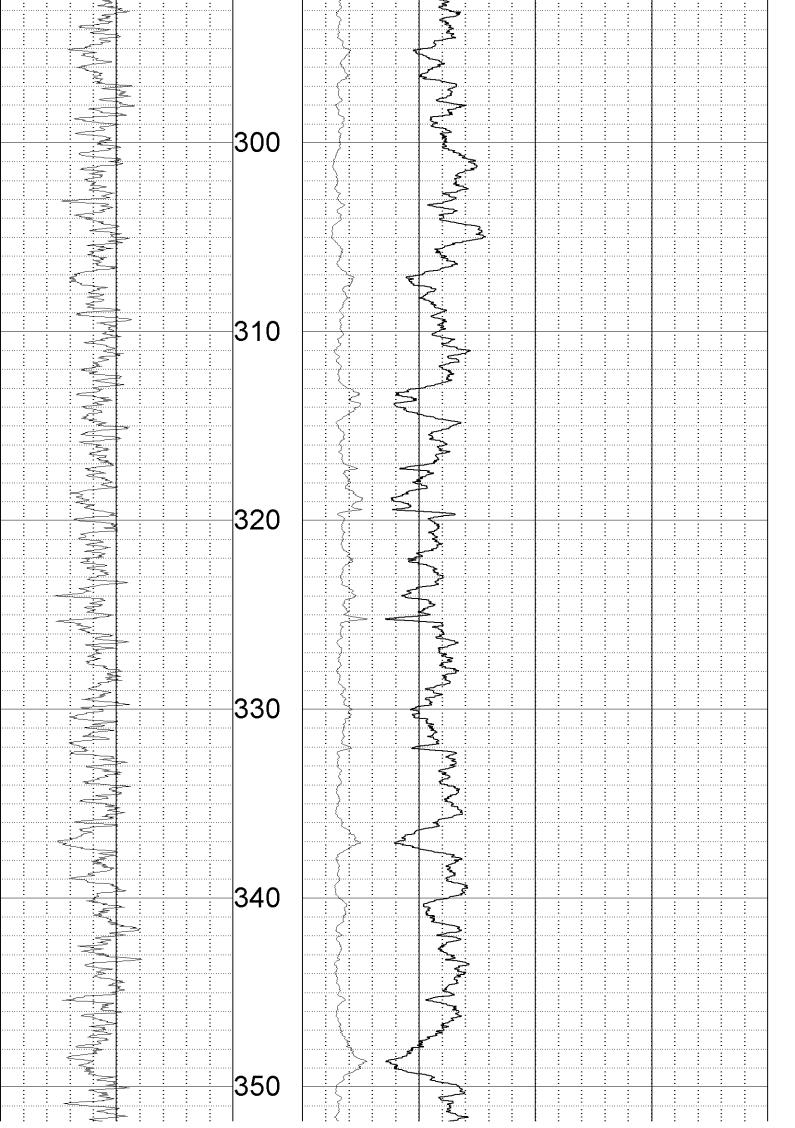


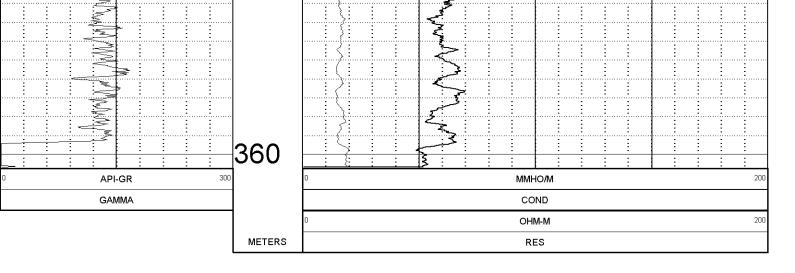


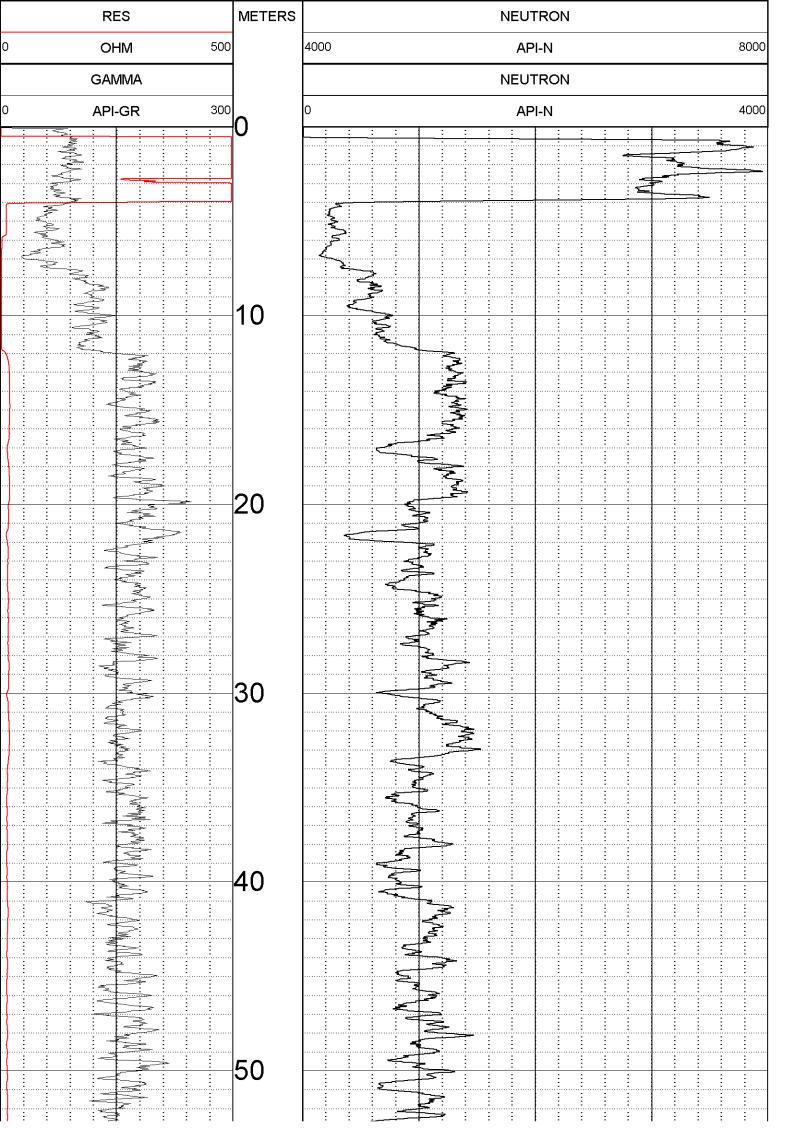

GROUNDSEARCH AUSTRALIA (ABN 11 057 389 152)

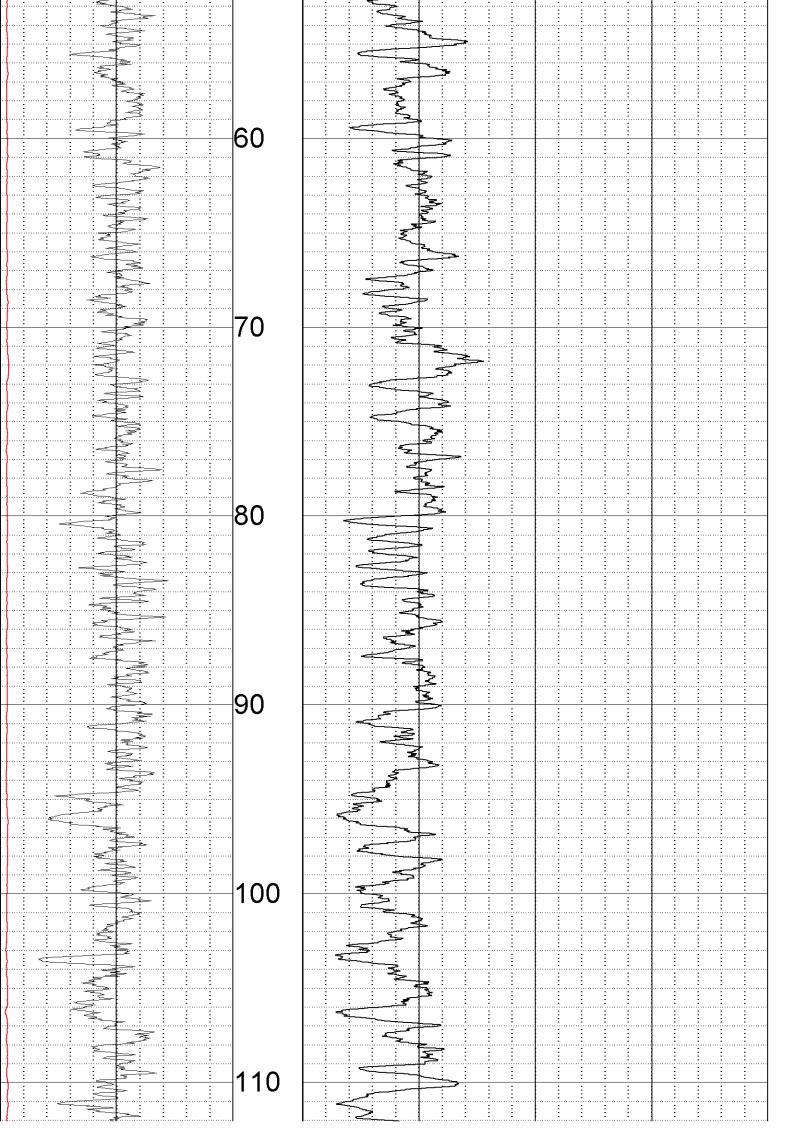

WKMB04 INDUCTION 1:200

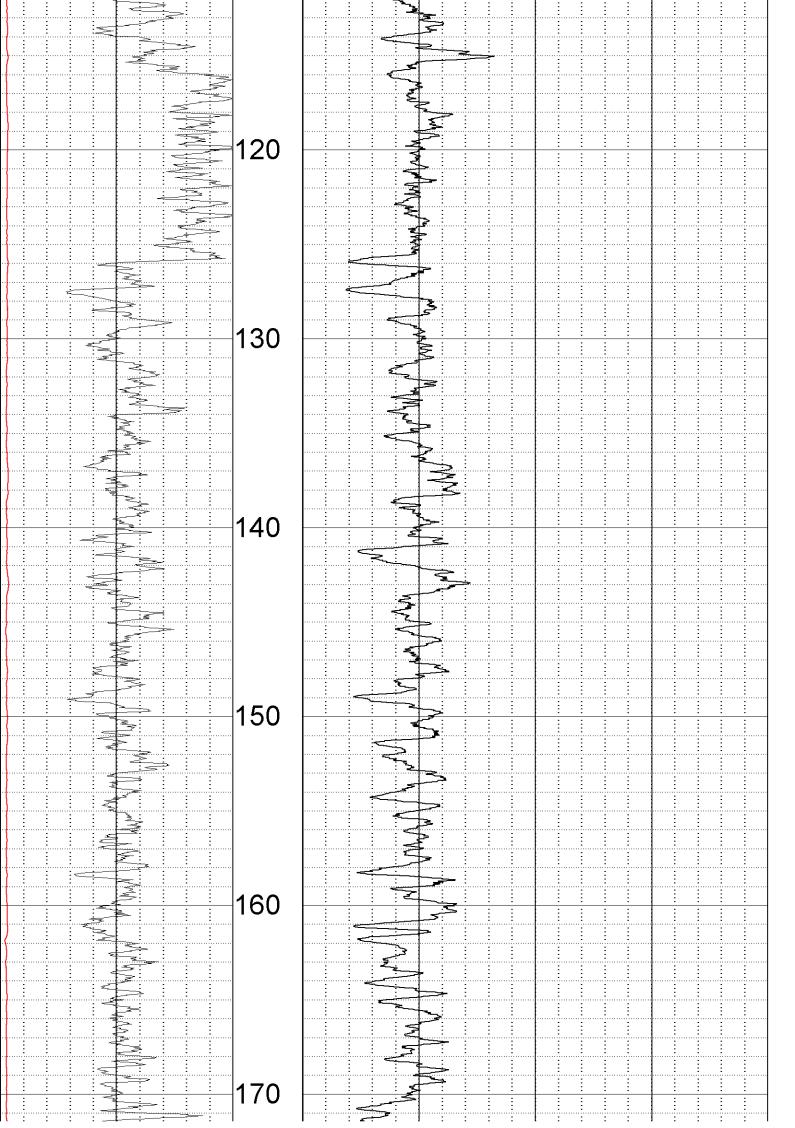

WELL : LOCATION/FIELD : COUNTY : LOCATION :	AGL WKMB04 INDUCTION 1:20 GLOUCESTER AUST N/AW 0		OTHER SERVICES: IND DEN NEU SON N/A	RANGE : 0
DEPTH DRILLER : LOG BOTTOM :		PERMANENT DATUM LOG MEASURED FROM DRL MEASURED FROM	GL	KB : N/A DF : N/A GL : -0.00
CASING DIAMETER : CASING TYPE : CASING THICKNESS:	PVC	LOGGING UNIT FIELD OFFICE RECORDED BY		
BIT SIZE : MAGNETIC DECL. : MATRIX DENSITY : NEUTRON MATRIX :	0 2.65	RM	: 0 : 0 : 0 : 177	FILE : PROCESSED TYPE : 9510A LGDATE: 01/20/12 LGTIME : 16:20: THRESH: 99999
	N/A N/A ALL SERVICES PROV	IDED SUBJECT TO STAN	IDARD TERMS AND CO	NDITIONS

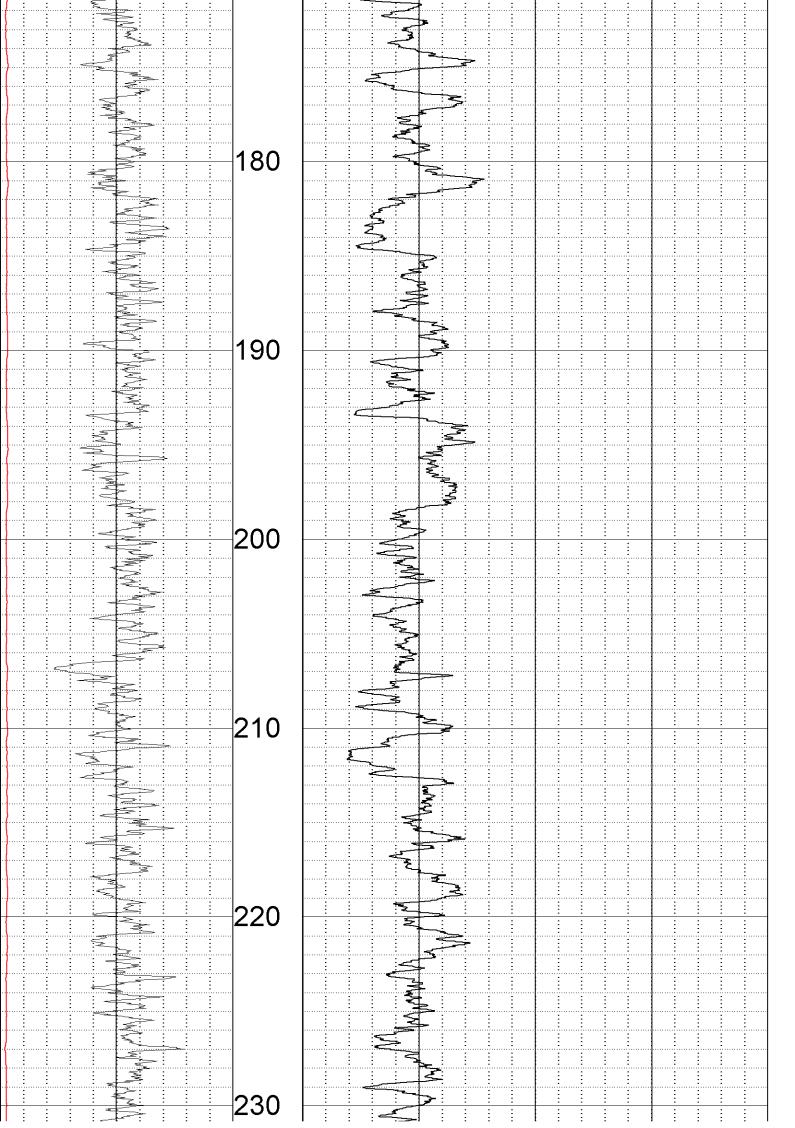


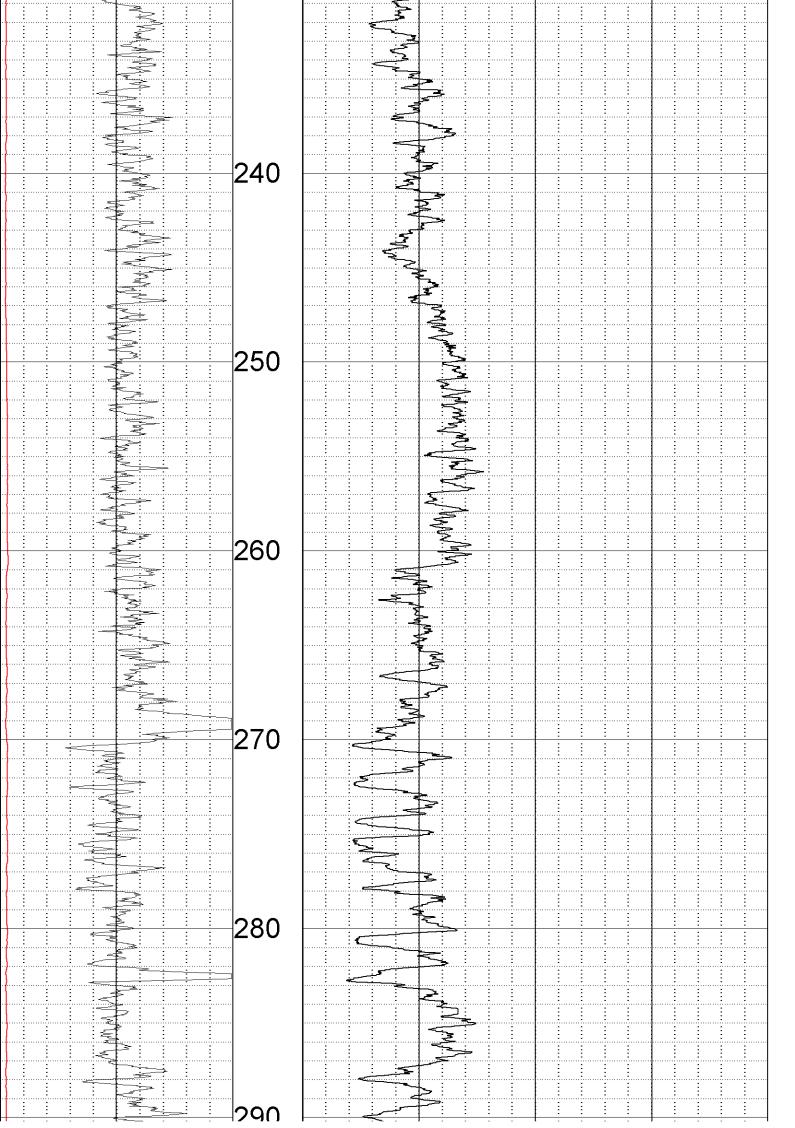


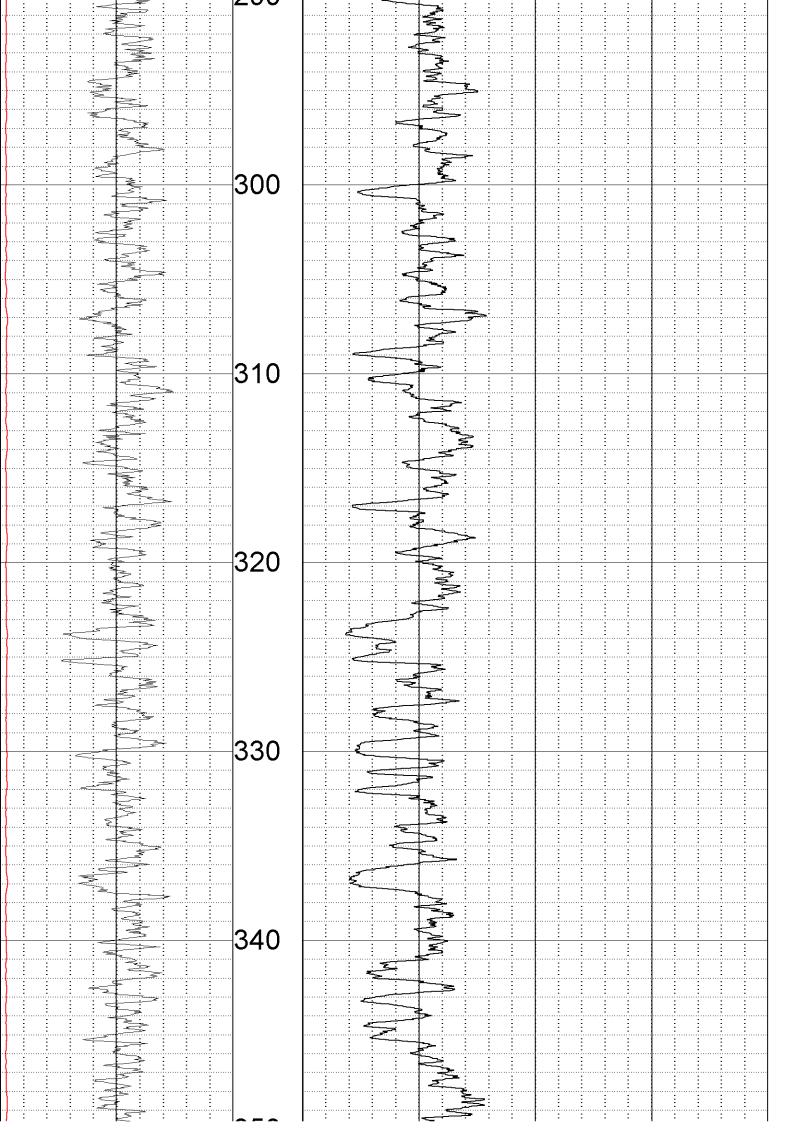


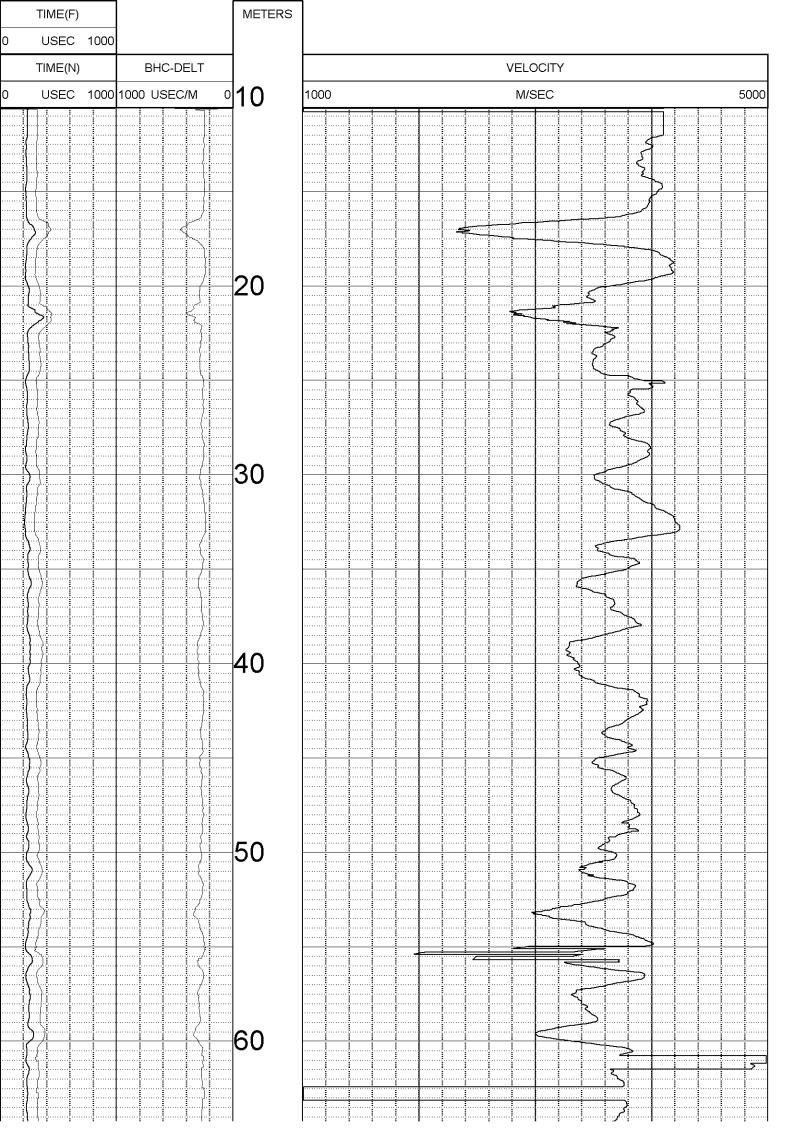


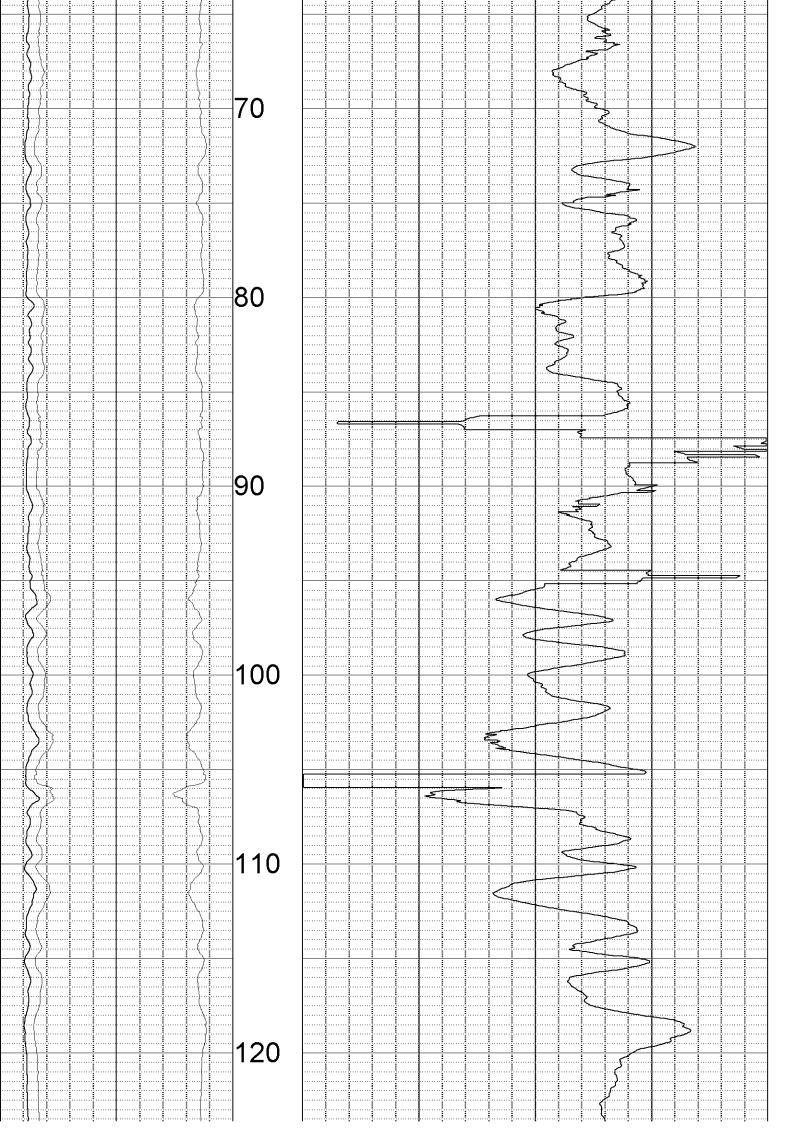

GROUNDSEARCH AUSTRALIA (ABN 11 057 389 152)

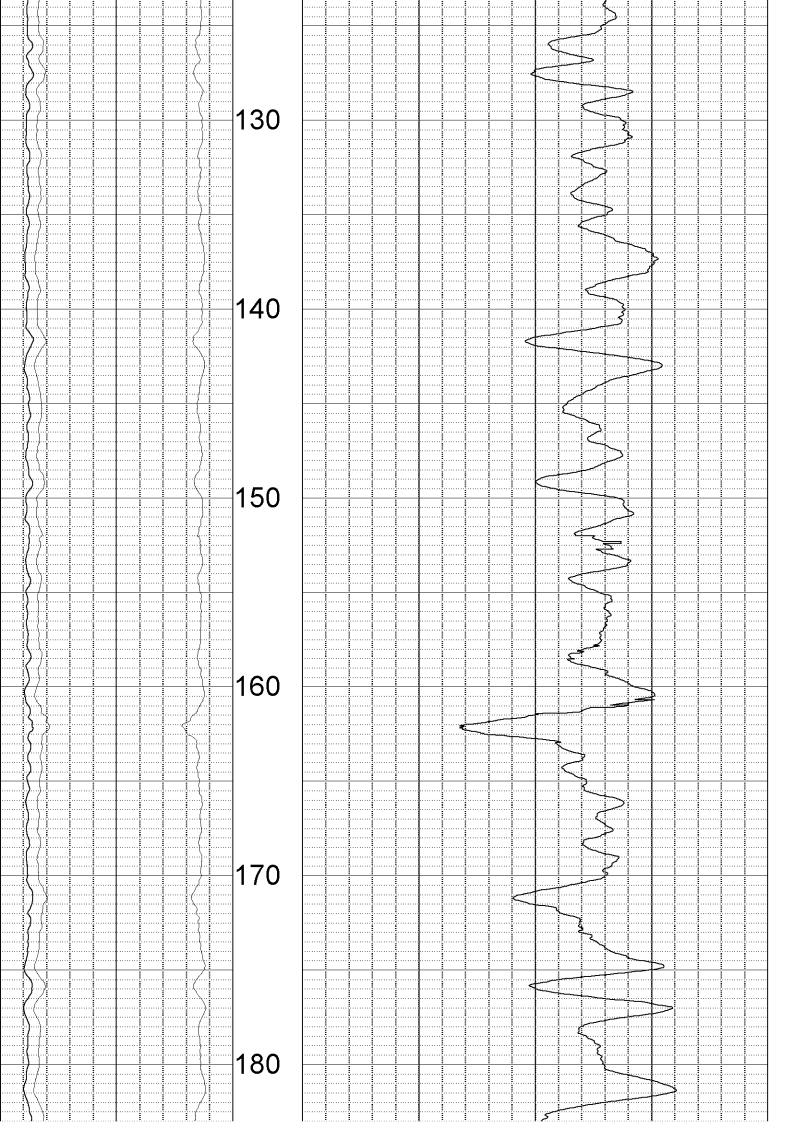

WKMB04 NEUTRON 1:200

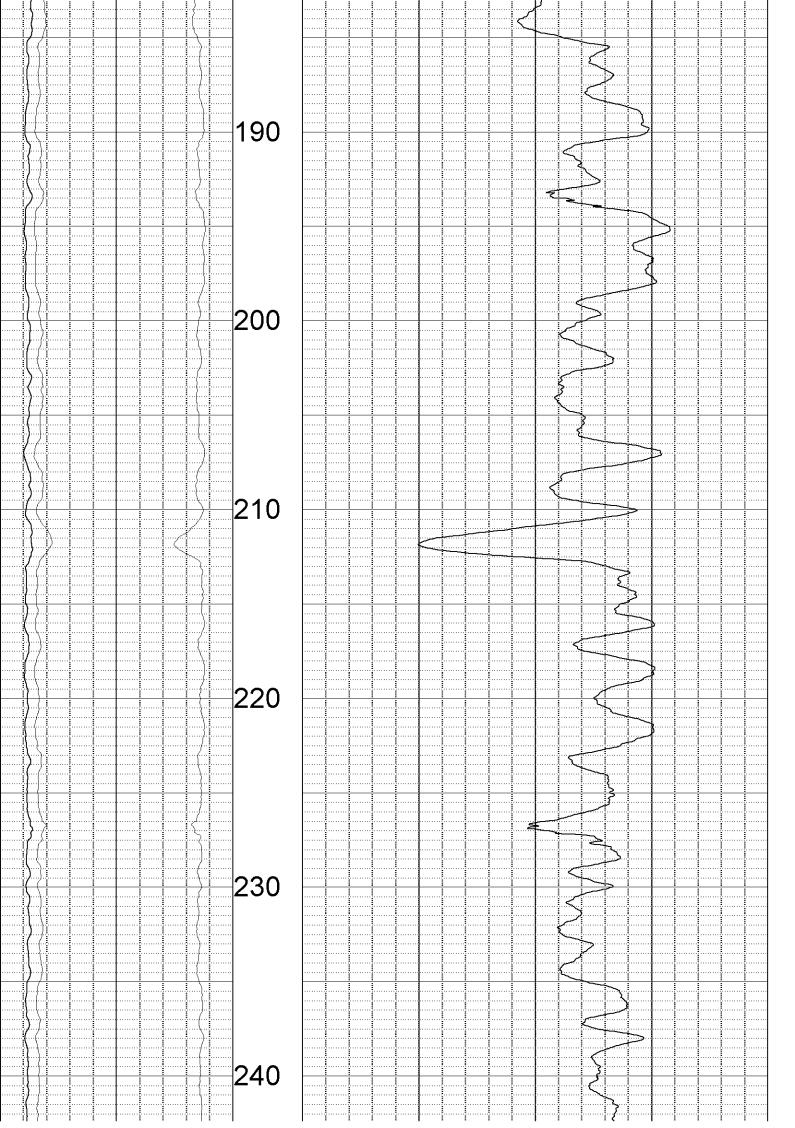

WELL : LOCATION/FIELD : COUNTY : LOCATION :	AGL WKMB04 NEUTRON 1:200 GLOUCESTER AUST N/AW 0		OTHER SERVICES: IND DEN NEU SON N/A	RANGE : 0
LOG BOTTOM :	01/21/12 50 360.86 -0.85	PERMANENT DATUM LOG MEASURED FROM DRL MEASURED FROM	GL	KB : N/A DF : N/A GL : -0.00
CASING DIAMETER : CASING TYPE : CASING THICKNESS:	PVC	LOGGING UNIT FIELD OFFICE RECORDED BY		
BIT SIZE : MAGNETIC DECL. : MATRIX DENSITY : NEUTRON MATRIX :	0.000 2.65		: 0 : 0	FILE : PROCESSED TYPE : 9057A LGDATE: 01/21/12 LGTIME : 09:04: THRESH: 99999
	N/A N/A ALL SERVICES PROV	IDED SUBJECT TO STAN	IDARD TERMS AND CO	NDITIONS

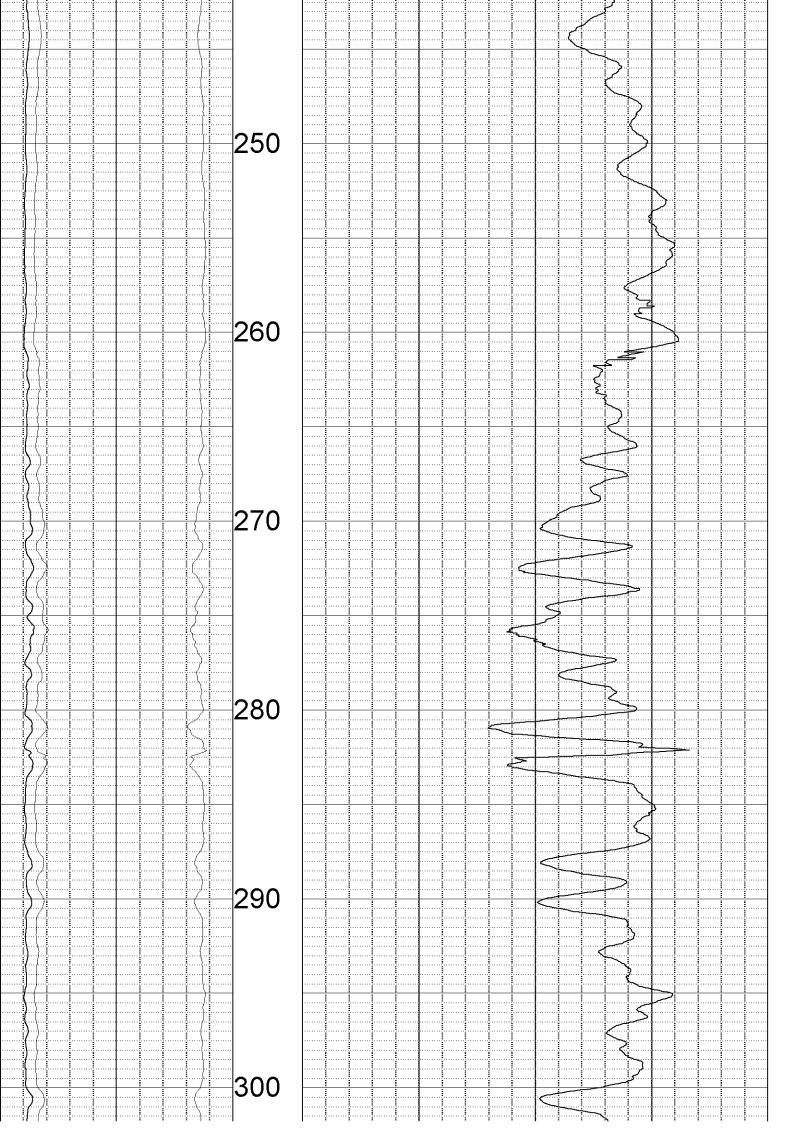


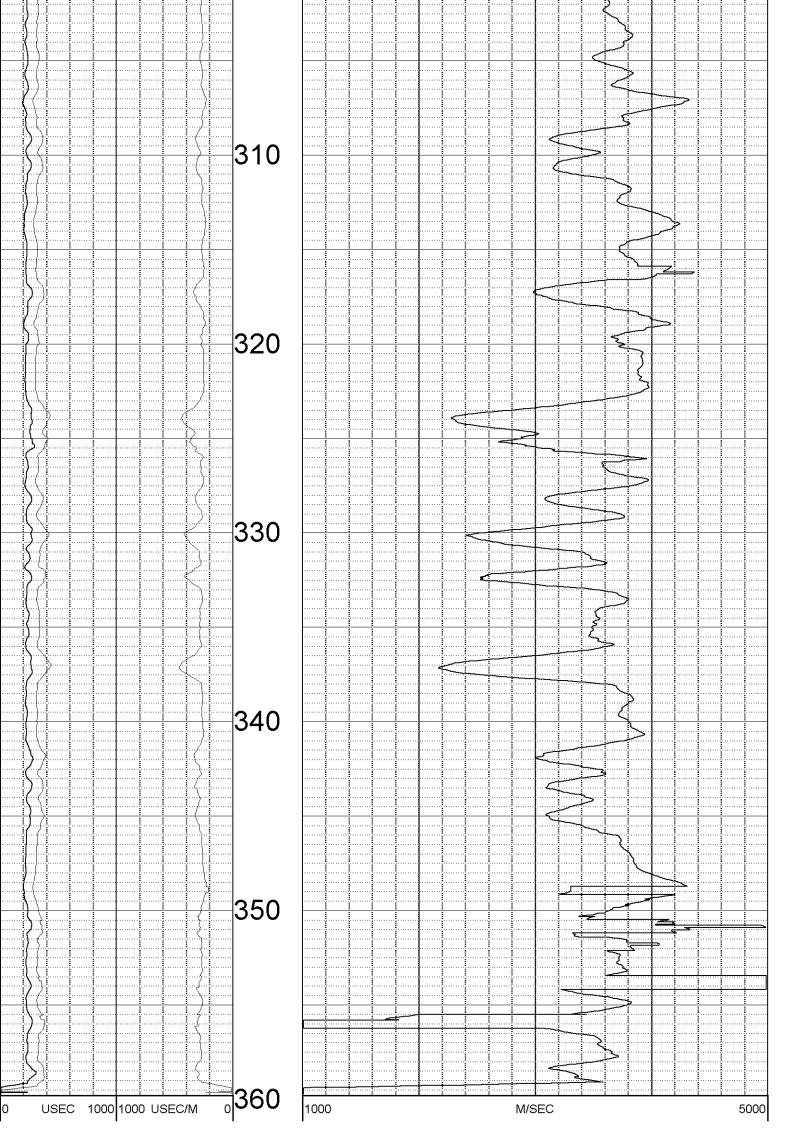


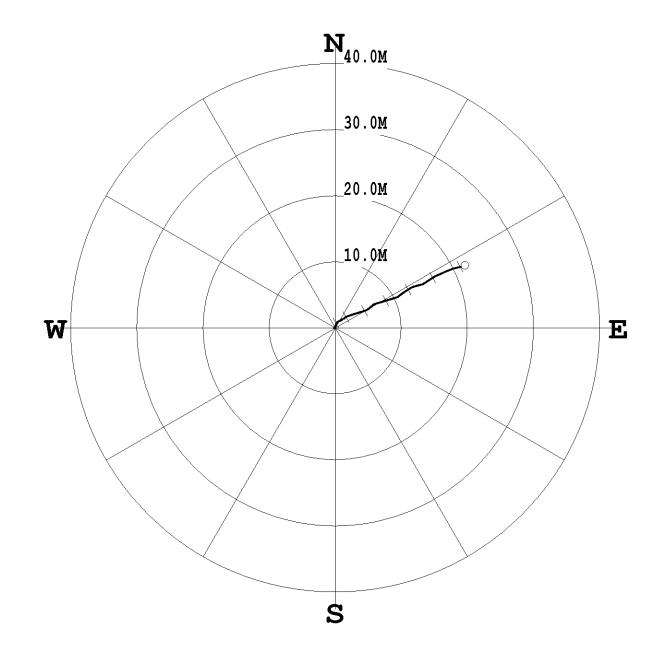

		: :	350				: :	:	:	:	:	:			
		: :	550						1	-	:		-	: :	
		1			: < <u>_</u>		1		Ē	Ē					
						<u> </u>			Ē	Ē					
						2			Ē	Ē					
						- : :									
4		i i		-											
		i i				-	i i		ļ		-				
		İ					İ		Ì						
		i i	200			<u></u>			Ē		-				
			360			3									
0	API-GR	300		0			А	PI-N						4(000
	GAMMA			NEUTRON											
0 OHM 500				4000			A	PI-N						80	000
	RES		METERS				NEU	JTRON	١						
			1	1											


GROUNDSEARCH AUSTRALIA (ABN 11 057 389 152)


WKMB04 VELOCITY 1:200


WELL : LOCATION/FIELD : COUNTY : LOCATION :	AGL WKMB04 VELOCITY 1:200 GLOUCESTER AUST N/AW 0		OTHER SERVICES: IND DEN NEU SON N/A	RANGE : 0
LOG BOTTOM :	01/21/12 50 359.75 10.55	PERMANENT DATUM LOG MEASURED FROM DRL MEASURED FROM	GL	KB : N/A DF : N/A GL : -0.00
CASING DIAMETER : CASING TYPE : CASING THICKNESS:	PVC	FIELD OFFICE	: T110 : RUTHERFORD : M LEA	
BIT SIZE : MAGNETIC DECL. : MATRIX DENSITY : NEUTRON MATRIX :	0 2.65	RM RM TEMPERATURE	: 0 : 0 : 177	FILE : PROCESSED TYPE : 9320A2 LGDATE : 01/21/12 LGTIME : : THRESH: : 99999
	N/A N/A ALL SERVICES PROV	IDED SUBJECT TO STAN	DARD TERMS AND CO	NDITIONS



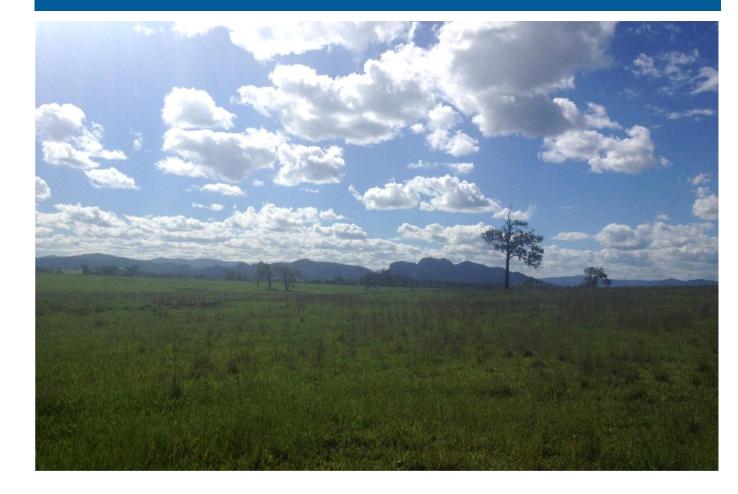

	TIME(N)	BHC-DELT		VELOCITY	
0	USEC 1000				
	TIME(F)		METERS		

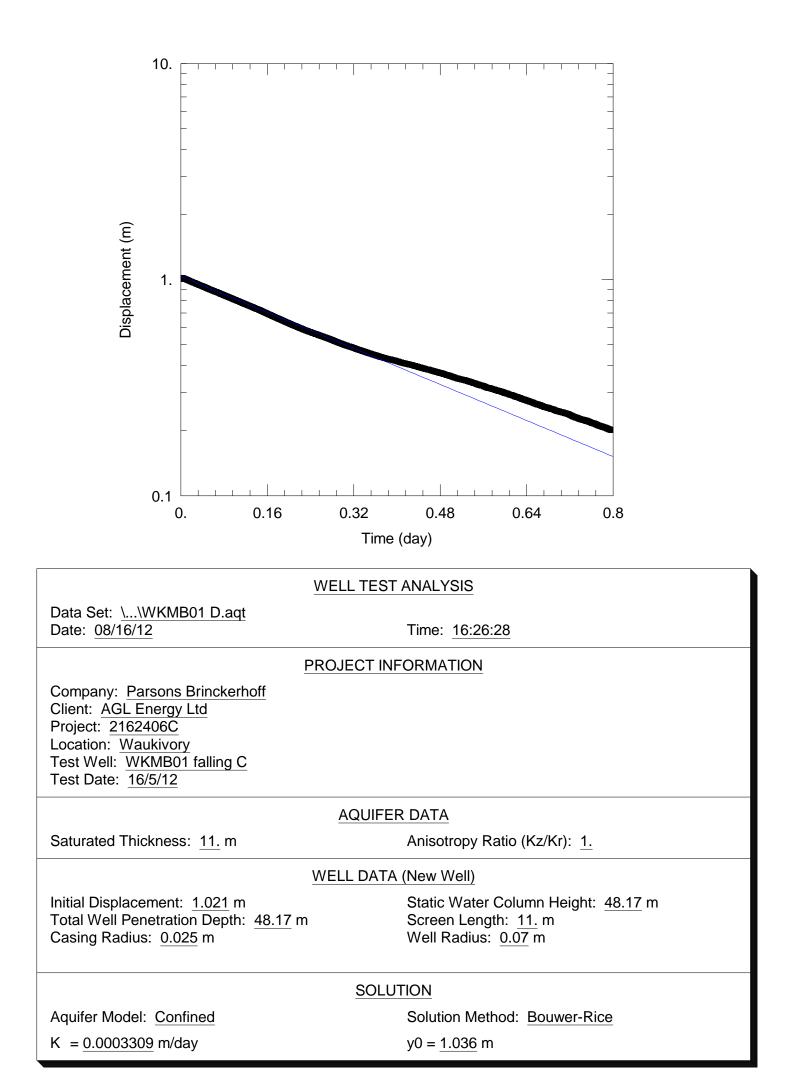
PLAN VIEW COMPU-LOG DEVIATION

CLIENT: AGL LOCATION: GLOUCESTER HOLE ID: WKMB04 NEUTRON DATE OF LOG: 01/21/12 PROBE: 9057A 2423

MAG DECL: 0.0

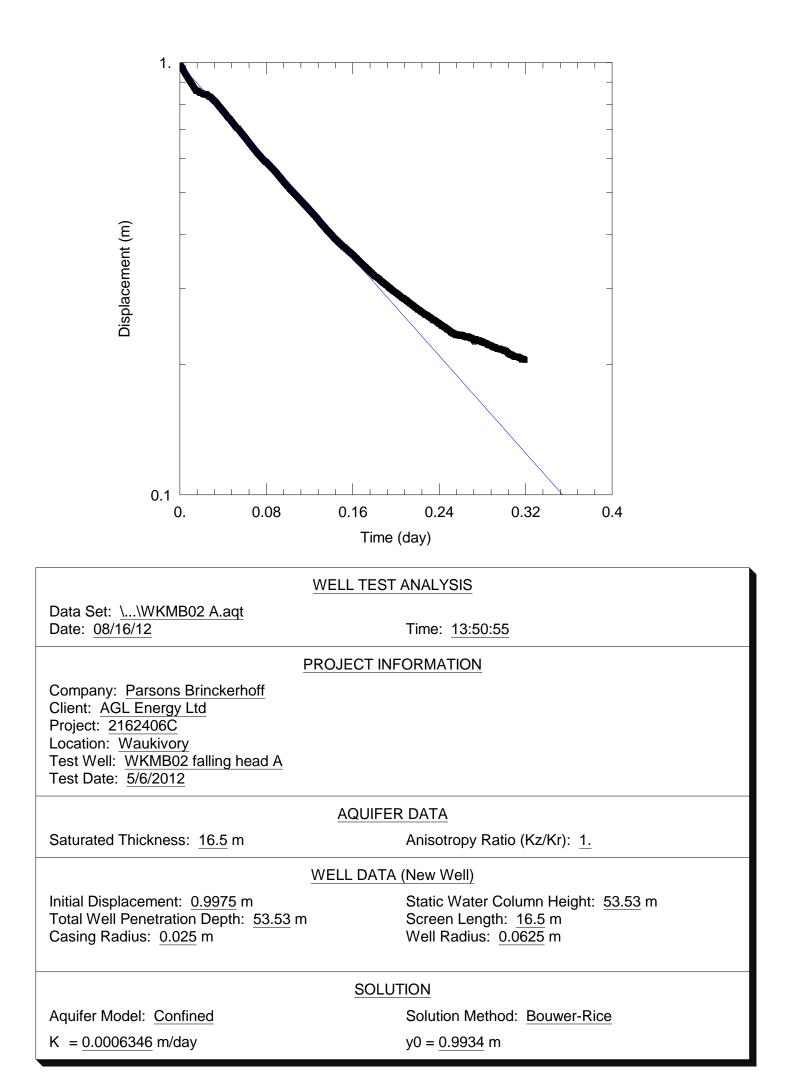
SCALE: 5 M/CM TRUE DEPTH: 359.83 M AZIMUTH: 64.3 DISTANCE: 21.8 M + = 50 M INCR $^{\circ}$ = BOTTOM OF HOLE

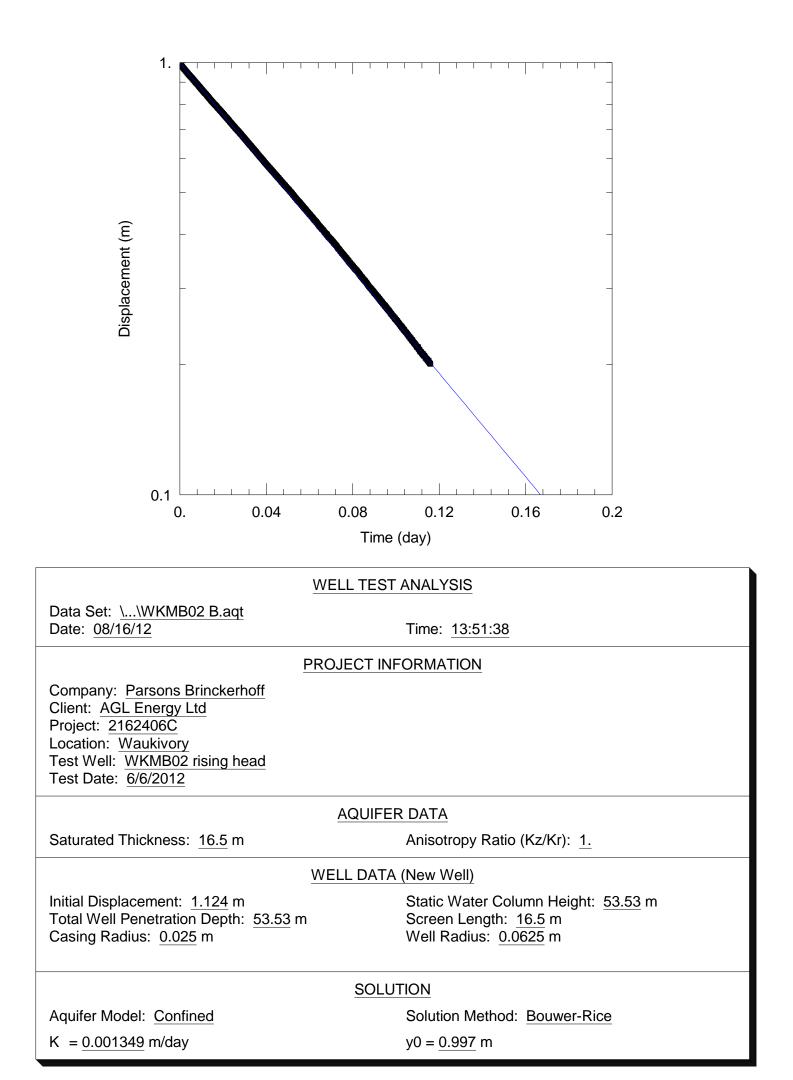


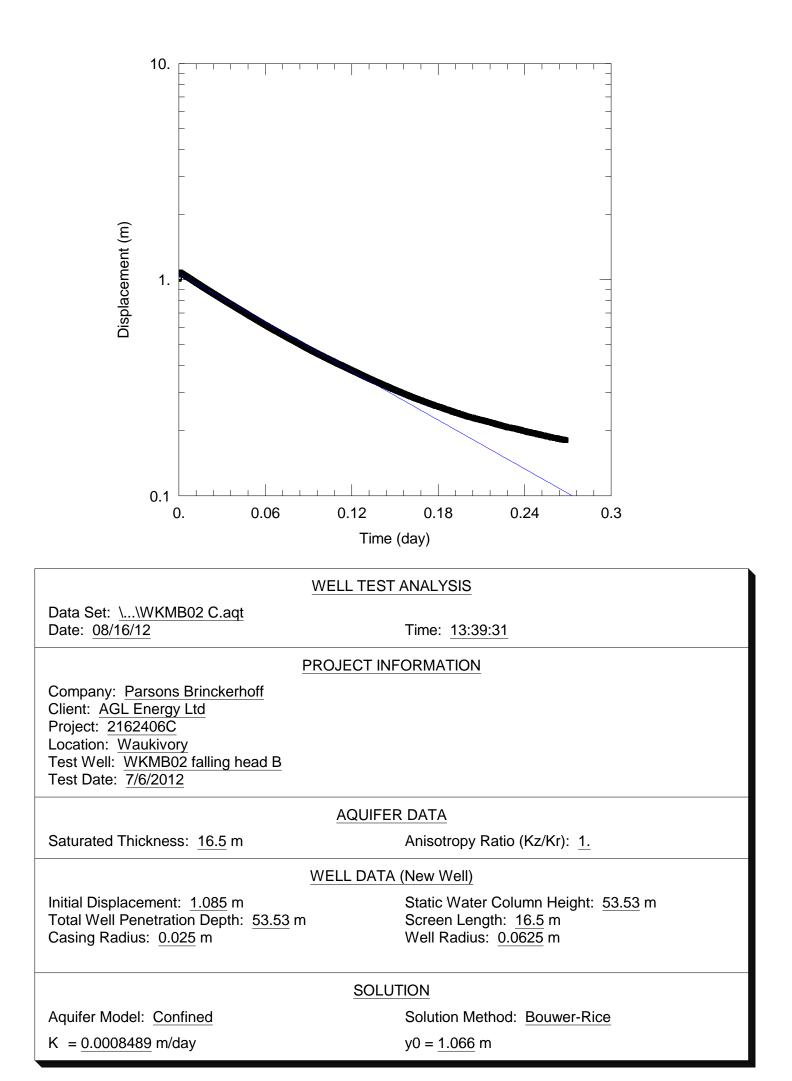

CLIENT : AGL HOLE ID. : WKMB04 NEUTRO FIELD OFFICE : RUTHERFORD DATA FROM : 0 MAG. DECL. : 0.000 DATE OF LOG : 01/21/12 PROBE : 9057A , DEPTH UNITS : METERS 2423 LOG: WKMB04NEUTRON 01-21-12 09-04 9057A .01 -0.85 360.86 DEVI.log

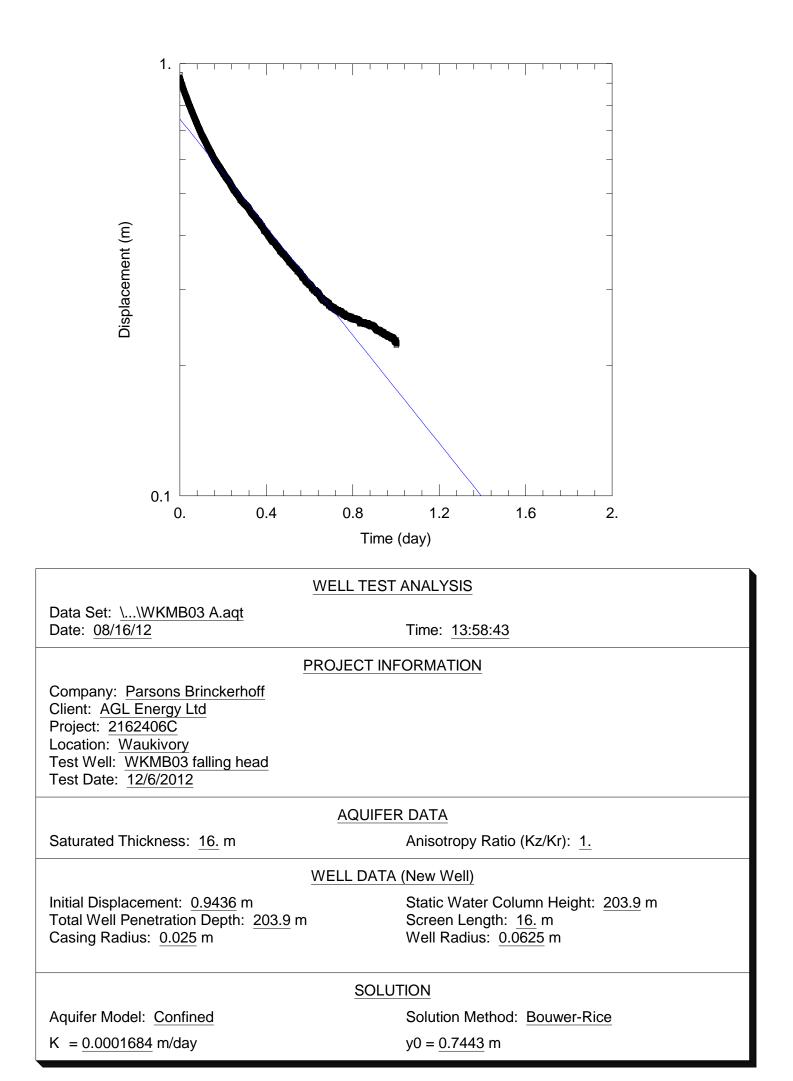
* * * * * * COMPU-LOG - VERTICAL DEVIATION * * * * * * *

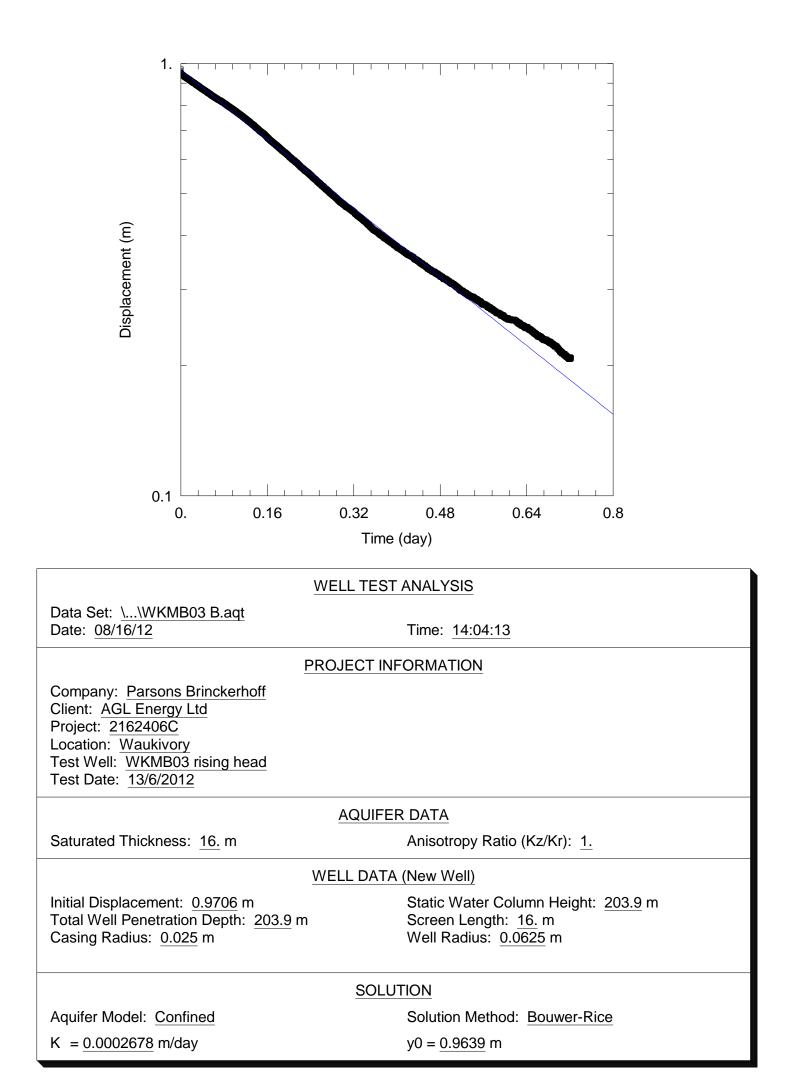
Appendix C

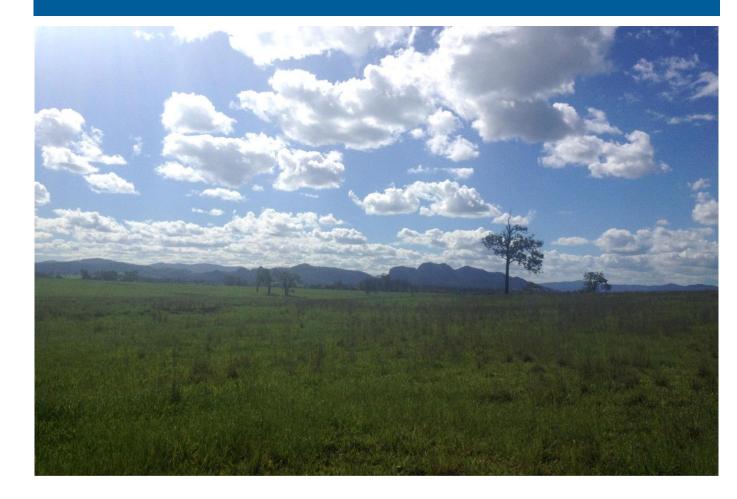

Hydraulic conductivity reports

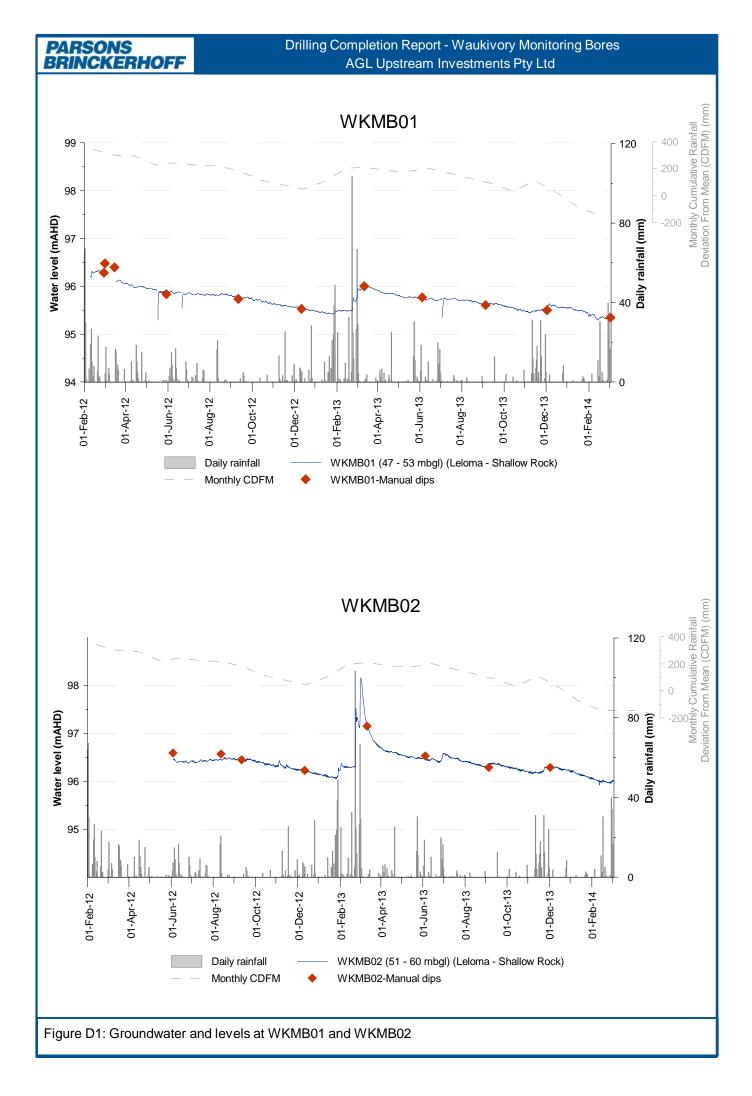


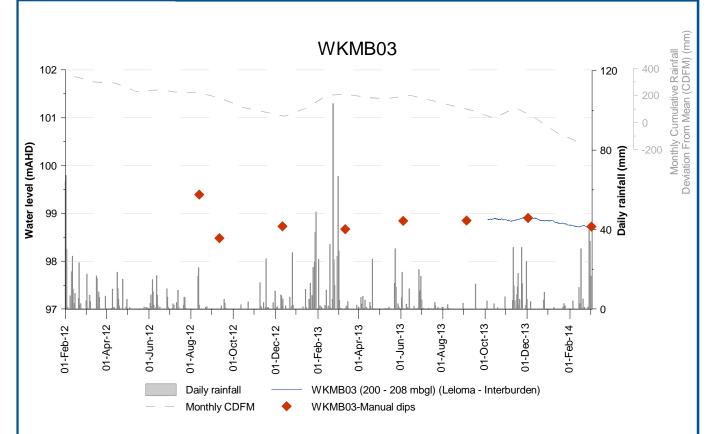


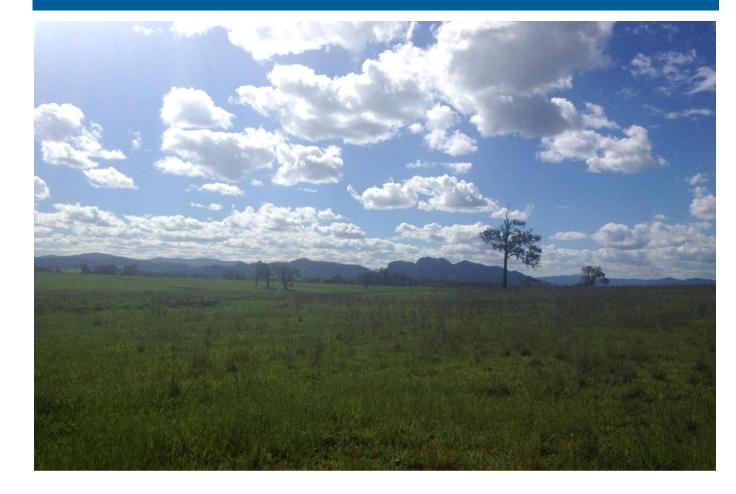









Appendix D Hydrographs


PARSONS BRINCKERHOFF

Drilling Completion Report - Waukivory Monitoring Bores AGL Upstream Investments Pty Ltd

Appendix E

Water quality summary table

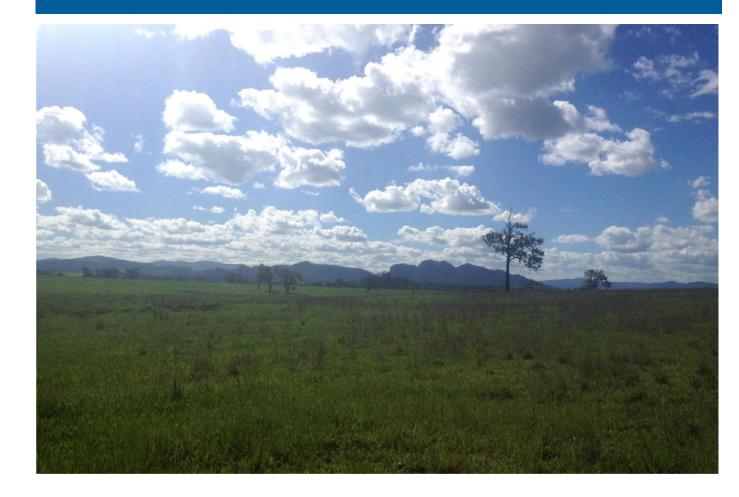
Analyte	Units	LOR	ANZECC 2000 Guidelines	WKMB01	WKMB02	WKMB03	WKMB04
Sample date			Galuelinés	19/06/2012 Sandstone	21/08/2012 Siltstone /	21/08/2012 Siltstone /	23/10/2013 Siltstone /
Formation				Leloma	sandstone Leloma	sandstone Deards	sandstone / co Jilleon
Aquifer Screen Depth (mbgl)				Shallow bedrock 47 - 53	Interburden 51-60	Interburden 200-209	Interburden 335-347
General parameters Conductivity (field) Conductivity (lab)	µS/cm	1	125 - 2,200*	5,436 6,100	1,013 1,030	1,563 3,050	16,420 16,500
pH (field) pH (lab)	pH units	0.01	6.5-8.0*	7.87 8.27	9.20 9.07	9.95 10.00	8.33 na
Temperature Dissolved Oxygen	°C % sat	0.1	- 85-110 %* saturation	17.76 3.6	17.26 37.4	18.02 80.9	29.00 41.9
Dissolved Oxygen TDS (field)	mg/L mg/L	0.01 1	-	0.38 3.533	3.71 0.660	7.63 0.690	3.04 10.67
TDS (lab) Redox Water type #	mV	0.1	-	3,540 -338.3 Na-CI-HCO ₃	688 22.7 Na-HCO ₃ -SO ₄ -Cl	2,240 -19.6 Na-CO ₃ -Cl	11,000 34.8 Na-HCO ₃ -CI
Laboratory Analytes Hydroxide alkalinity as CaCO ₃	mg/L	1	-	<1	<1	<1	<1
Carbonate alkalinity as CaCO ₃ Bicarbonate alkalinity as CaCO ₃	mg/L mg/L	1 1 1	-	<1 763	73 215	688 266	375 6,700
Total alkalinity as CaCO ₃ Sulfate as SO ₄ ²⁻ Chloride	mg/L mg/L mg/L	1 1 1	-	763 349 1,420	288 129 80	954 94 371	7,080 <1 2,580
Calcium Magnesium	mg/L mg/L	1 1	-	23 28	7 <1	5 <1	10 47
Sodium Potassium Silica	mg/L mg/L mg/L	1 1 0.1		1,470 7 16.2	236 7 22.9	625 35 10.4	4,650 25 16.6
Fluoride lons	mg/L	0.1		0.4	0.3	1.4	0.6
Total Anions Total Cations	meq/L meq/L	0.01	-	62.6 67.6	10.7 10.8	31.5 29.3	214.0 207.0
Ionic Balance Dissolved Metals Aluminium	% mg/L	0.01	- 0.055	3.81 0.06	0.40	3.62 0.76	0.02
Arsenic Barium	mg/L mg/L	0.001 0.001	0.013 (As V) -	0.002	0.002	0.003 0.405	0.002 31
Beryllium Cadmium Cobalt	mg/L mg/L mg/l	0.001 0.0001 0.001	ID 0.0002 ID	<0.001 <0.0001 <0.001	<0.001 <0.0001 <0.001	<0.001 <0.0001 <0.001	<0.001 <0.0001 <0.001
Cobalt Copper Lead	mg/L mg/L mg/L	0.001 0.001 0.001	ID 0.0014 0.0034	<0.001 <0.001 <0.001	<0.001 0.001 <0.001	<0.001 0.004 0.049	<0.001 <0.001 0.002
Manganese Mercury	mg/L mg/L	0.001 0.0001	1.9 0.0006	0.101 na	0.002 na	0.008 na	0.014 <0.0001
Molybdenum Nickel Selenium	mg/L mg/L mg/L	0.001 0.001 0.01	ID 0.011 0.011 (total)	0.002 0.014 <0.01	0.004 0.001 <0.01	0.015 0.002 <0.01	0.010 0.012 <0.01
Strontium Uranium	mg/L mg/L	0.001	- ID	3.75	0.463	0.758	28.000
Vanadium Zinc	mg/L mg/L	0.01 0.005 0.05	ID 0.008 0.37	<0.01 0.018	<0.01 0.018	<0.01 1.220	<0.01 1.530
Boron Iron Bromine	mg/L mg/L mg/L	0.05	ID ID	<0.05 0.96 3.7	<0.05 <0.05 0.2	0.10 0.20 0.8	0.11 0.52 5.6
Nutrients Ammonia as N	mg/L	0.01	0.02b	0.75	0.44	13.50	3.70
Nitrite as N Nitrate as N Nitrite + Nitrate as N	mg/L mg/L mg/L	0.01 0.01 0.01	0.02b 0.7	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 0.02 0.02	<0.01 <0.01 <0.01
Total Phosphorous Reactive Phosphorous	mg/L mg/L	0.01	0.05b 0.02b	0.22	0.11	0.43 0.04	0.33
Total Organic Carbon Dissolved Gases	mg/L	1	-	15	3	168	60
Methane Ethene Ethane	μg/L μg/L μg/L	10 10 10	-	7,400 <10 <10	4,340 <10 <10	32,100 <10 <10	3,150 <10 <10
Propene Propane	μg/L μg/L	10 10	-	<10 <10 <10	<10 <10 <10	<10 <10 <10	<10 <10
Butane Butene Phenolic compounds	μg/L μg/L	10 10	-	<10 <10	<10 <10	<10 <10	<10 <10
Phenol Phenol 2-Chlorophenol	μg/L μg/L	1	320 490	<1 <1	<1 <1	1.3 <1	<1
2-Methylphenol 3-&4-Methylphenol	μg/L μg/L	1 2	-	<1 <2	<1 <2	<1 <2	<1 <2
2-Nitrophenol 2.4-Dimethylphenol 2.4-Dichlorophenol	μg/L μg/L μg/L	1 1 1	ID ID 160	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1
2.6-Dichlorophenol 4-Chloro-3-Methylphenol	μg/L μg/L	1	ID -	<1	<1	<1 <1	<1
2.4.6-Trichlorophenol 2.4.5-Trichlorophenol	μg/L μg/L	1 1	20 ID	<1 <1	<1 <1	<1 <1	<1 <1
Pentachlorophenol Polycyclic aromatic hydrocarbons Naphthalene	μg/L s μg/L	2	ID 0.016	<2	<2	<2 <1	<2 <1
Acenaphthylene Acenaphthene	μg/L μg/L	1 1	-	<1 <1	<1 <1	<1 <1	<1 <1
Fluorene Phenanthrene	μg/L μg/L	1	- ID ID	<1 <1	<1 <1	<1 <1	<1 <1
Anthracene Fluoranthene Pyrene	μg/L μg/L μg/L	1 1 1	ID ID -	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1
Benz(a)anthracene	μg/L μg/L	1	-	<1 <1	<1 <1	<1 <1	<1 <1
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	μg/L μg/L μg/L	1 1 0.5	- - ID	<1 <1 <0.5	<1 <1 <0.5	<1 <1 <0.5	<1 <1 <0.5
Indeno(1.2.3.cd)pyrene Dibenz(a.h)anthracene	μg/L μg/L	1	-	<1 <1	<1 <1	<1 <1	<1
Benzo(g.h.i)perylene Total petroleum hydrocarbons C6-C9 Fraction	µg/L	20	- ID	<1 <20	<1 <20	<1 <20	<1 <20
C10-C14 Fraction C10-C14 Fraction C15-C28 Fraction	μg/L μg/L μg/L	50 100	ID ID ID	<50 <100	<20 <50 <100	<50 270	<50 14,700
C29-C36 Fraction C10-C36 Fraction (sum)	μg/L μg/L	50 50	ID -	<50 <50	<50 <50	140 410	7,820 22,500
Total recoverable hydrocarbons C6-C10 Fraction C6-C10 Fraction minus BTEX (F1)	μg/L μg/L	20 20	-	<20 <20	<20 <20	<20 <20	<20 <20
>C10-C16 Fraction >C16-C34 Fraction	μg/L μg/L	100 100	-	<100 <100	<100 <100	<100 300	100 20,500
C34-C40 Fraction C10-C40 Fraction (sum)	μg/L μg/L	100 100	-	<100 <100	<100 <100	<100 300	3,480 24,100
Aromatic Hydrocarbons Benzene Foluene	μg/L μg/L	1	950 ID	<1 <2	<1 <2	<1 <2	<1 <2
Ethyl Benzene m&p-Xylenes	μg/L μg/L	2	ID ID	<2 <2	<2 <2	<2 <2	<2 <2
o-Xylenes Fotal xlyenes	μg/L μg/L	2	350	<2 <2	<2 <2	<2	<2 <2
Sum of BTEX Naphthalene sotopes	μg/L μg/L	1 5	-	<1 <5	<1 <5	<1 <5	<1 <5
Dxygen-18 Deuterium	‰	0.01 0.1	-	-4.13 -22.5	-4.27 -22.9	-5.53 -30.2	-6.94 -47.8
Carbon-13 Radiocarbon	% pMC	0.1 0.1	-	-15.6 67.07±0.2	-16.2 36.09±0.1	-1.8 11.9	33.05 0.43±0.07
Radiocarbon Age (uncorrected) Chlorine-36 Tritium	yrs BP 36CI/CI (x10 ⁻¹⁵) TU	0.01	-	3,148±24 na 0.12^±0.03	8,126±24 na 0.23±0.03	1,7041±48 na 0.33±0.03	43,634±1,324 26.6±1.8 na
1 mum 13C in Methane 2H in Methane	VPDB VSMOW	0.01	-	-45.6 -135.6^	-42.9^ -176.4^	-22.5 -213.7	-32.38 -194.1

 Bold indicates exceedance of guideline value
 ID - Insufficient data
 PARESONS

 na - not analysed
 # Calculated using Aquachem.
 PRESONSECTION

 Guideline values
 * ANZECC 2000 - Water Quality Guidelines: 95% protection levels (trigger values) for the protection of freshwater aquatic ecosystems.
 * ANZECC 2000 - Water Quality Guidelines: 95% protection levels (trigger values) for the protection of freshwater aquatic ecosystems.

 * ANZECC 2000 - Water Quality Guidelines: 95% protection levels (trigger values) for the protection of freshwater aquatic ecosystems.


 * ANZECC 2000 - Water Quality Guidelines: 95% protection levels (trigger values) for the protection of freshwater aquatic ecosystems.

 * ANZECC 2000 - Water Quality Guidelines: 95% protection levels (trigger values) for the protection of freshwater aquatic ecosystems.

 * ANZECC 2000 - Water Quality Guidelines: 95% protection levels (trigger values) for the protection of the protection of the protection of the protection of the shwater aquatic ecosystems.

 * ANZECC 2000 - Water Quality Guidelines: 95% protection levels (trigger values) for the protection of the protectin of the protection of the protection of the protectin

Appendix F ALS laboratory reports

Environmental Division

	CERTI	FICATE OF ANALYSIS	
Work Order	ES1215392	Page	: 1 of 7
Client	: PARSONS BRINCKERHOFF AUST P/L	Laboratory	: Environmental Division Sydney
Contact	: MS NINA PEARSE-HAWKINS	Contact	: Loren Schiavon
Address	: GPO BOX 5394 SYDNEY NSW, AUSTRALIA 2001	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: npearsehawkins@pb.com.au	E-mail	: loren.schiavon@alsglobal.com
Telephone	: +61 02 9272 5100	Telephone	: +61 2 8784 8503
Facsimile	: +61 02 9272 5101	Facsimile	: +61 2 8784 8500
Project	: 2162406C	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		•••
C-O-C number	:	Date Samples Received	: 21-JUN-2012
Sampler	: NPH	Issue Date	: 28-JUN-2012
Site	:		
		No. of samples received	: 1
Quote number	: SY/394/09	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

Accredited for compliance with

ISO/IEC 17025.

- General Comments
- Analytical Results
- Surrogate Control Limits

ignatories
ıç

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Ankit Joshi	Inorganic Chemist	Sydney Inorganics	
Ashesh Patel	Inorganic Chemist	Sydney Inorganics	
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics	
Pabi Subba	Senior Organic Chemist	Sydney Organics	
Sarah Millington	Senior Inorganic Chemist	Sydney Inorganics	

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group A Campbell Brothers Limited Company

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Control CAS Number LOR Unit Image: Control Image: Contro Image:	Sub-Matrix: WATER		Clie	ent sample ID	WKMB01	 	
Consound CAS Number LOR Unit E8121538-001 IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		Cli				 	
Cathology Cash and any and any and any and any any any any any any any any any any				-		 	
ph Value O.01 0.101 0.82 oractional base of the second sec		CAS Number	LOK	Unit			
AchiOP: Conductivity by PC Titrator μScm 6100 Electrical Conductivity 20°C 1 μScm 6100			0.01	n I I Init	0.07		
Flectral Conductivity @ 29°C 1 (b)S/m 6400 EAD15: Total Dissolved Solids 0			0.01	pH Unit	8.27	 	
EAM15: Total Dissolved Solids Image: Solid Solids Total Dissolved Solids (Sile*)***********************************							
Total Disolved Solids §180°C Gis 210-010 1 mgl. 3560	Electrical Conductivity @ 25°C		1	μS/cm	6100	 	
ED037P: Alkalinity by PC Titrator Hydroxide Akalinity as CaC03 DINO:210:001 1 mg/L <1							
Hydroxide Alkalinity as CaCO3 DMO-210001 1 mg/L <1	Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	3540	 	
Carbonate Alkalinity as CaCO3 3812-32.6 1 mg/L <1							
Bicarbonate Alkalinity as CaCO3 71.52.3 1 mgl. 763 <	Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Total Alkalinity as CaCO3 1 mg/L 763		3812-32-6	1	mg/L		 	
ED0416: Sulfato (Turbidimetric) as SO4 2- by DA Sulfato (Turbidimetric) as SO4 2- by DA Sulfato (Turbidimetric) 1 mg/L 349 ED0456: Choirde Discrete analyser Chioride Discrete analyser ED0351: Choirde Discrete analyser Calcium Magnesium 7440-70-2 1 mg/L 23 Bodisin 7440-70-2 1 mg/L 23 Magnesium 7430-954 1 mg/L 28 Calcium 740-72 1 mg/L 740-72 740-72 740-72 740-72 740-72 740-72 740-72 740-72 740-72 740-72 740-72 740-72 <td>Bicarbonate Alkalinity as CaCO3</td> <td>71-52-3</td> <td></td> <td>_</td> <td></td> <td> </td> <td> </td>	Bicarbonate Alkalinity as CaCO3	71-52-3		_		 	
Suffate as SQ4 - Turbidimetric 14808-79-8 1 mg/L 349 Image and and and and and and and and and and	Total Alkalinity as CaCO3		1	mg/L	763	 	
ED045C: Chloride Discrete analyser Image of the second secon	ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Chloride 16887-00-6 1 mg/L 1420	Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	349	 	
Chloride 16887-00-6 1 mg/L 1420	ED045G: Chloride Discrete analyser						
Calcium 7440-70-2 1 mg/L 23		16887-00-6	1	mg/L	1420	 	
Calcium 7440-70-2 1 mg/L 23	ED093F: Dissolved Major Cations						
Sodium 7440-23-5 1 mg/L 1470 Potassium 7440-09-7 1 mg/L 7		7440-70-2	1	mg/L	23	 	
Potassium T440.09-7 1 mg/L 7	Magnesium	7439-95-4	1	mg/L	28	 	
EG020F: Dissolved Metals by ICP-MS Aluminium 7429-90-5 0.01 mg/L 0.06 Arsenic 7440-38-2 0.001 mg/L 0.002 Beryllium 7440-39-3 0.001 mg/L <0.001	Sodium	7440-23-5	1	mg/L	1470	 	
Aluminium 7429-90-5 0.01 mg/L 0.06 Arsenic 7440-38-2 0.001 mg/L 0.002 Beryllium 7440-41-7 0.001 mg/L <0.001	Potassium	7440-09-7	1	mg/L	7	 	
Aluminium 7429-05 0.01 mg/L 0.06 Arsenic 7440-38-2 0.001 mg/L 0.002 Beryllium 7440-41-7 0.001 mg/L <0.001	EG020F: Dissolved Metals by ICP-MS						
Beryllium 7440-41-7 0.001 mg/L <0.001	1	7429-90-5	0.01	mg/L	0.06	 	
Barium 7440-39-3 0.001 mg/L 0.629	Arsenic	7440-38-2	0.001	mg/L	0.002	 	
Cadmium 7440-43-9 0.0001 mg/L <0.0001	Beryllium	7440-41-7	0.001	mg/L	<0.001	 	
Cobalt 7440-48-4 0.001 mg/L <0.001	Barium	7440-39-3	0.001	mg/L	0.629	 	
Copper 7440-50-8 0.001 mg/L <0.001	Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Lead 7439-92-1 0.001 mg/L <0.001	Cobalt	7440-48-4	0.001	mg/L	<0.001	 	
Manganese 7439-96-5 0.001 mg/L 0.101 -	Copper	7440-50-8	0.001	mg/L	<0.001	 	
Molybdenum 7439-98-7 0.001 mg/L 0.002	Lead	7439-92-1	0.001	mg/L	<0.001	 	
Nickel 7440-02-0 0.001 mg/L 0.014 <th>Manganese</th> <th>7439-96-5</th> <th>0.001</th> <th>mg/L</th> <th>0.101</th> <th> </th> <th> </th>	Manganese	7439-96-5	0.001	mg/L	0.101	 	
Selenium 7782-49-2 0.01 mg/L <0.01	Molybdenum	7439-98-7	0.001	mg/L	0.002	 	
Strontium 7440-24-6 0.001 mg/L 3.75	Nickel	7440-02-0	0.001	mg/L	0.014	 	
Uranium 7440-61-1 0.001 mg/L 0.005	Selenium	7782-49-2	0.01	mg/L	<0.01	 	
	Strontium	7440-24-6	0.001	mg/L	3.75	 	
	Uranium	7440-61-1	0.001	mg/L	0.005	 	
Vanadium 7440-62-2 0.01 mg/L <0.01	Vanadium	7440-62-2	0.01	mg/L	<0.01	 	
Zinc 7440-66-6 0.005 mg/L 0.018	Zinc	7440-66-6	0.005	mg/L	0.018	 	

Sub-Matrix: WATER		Cli	ent sample ID	WKMB01	 	
	Cl		ng date / time	19-JUN-2012 15:00	 	
Compound	CAS Number	LOR	Unit	ES1215392-001	 	
EG020F: Dissolved Metals by ICP-MS						
Boron	7440-42-8	0.05	mg/L	<0.05	 	
Iron	7439-89-6	0.05	mg/L	0.96	 	
Bromine	7726-95-6	0.1	mg/L	3.7	 	
EG052G: Silica by Discrete Analyser						
Reactive Silica		0.10	mg/L	16.2	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.4	 	
EK055G: Ammonia as N by Discrete	Analyser					
Ammonia as N	7664-41-7	0.01	mg/L	0.75	 	
EK057G: Nitrite as N by Discrete Ana	alyser					
Nitrite as N		0.01	mg/L	<0.01	 	
EK058G: Nitrate as N by Discrete An	alyser					
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	 	
EK059G: Nitrite plus Nitrate as N (NC	Dx) by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	<0.01	 	
EK067G: Total Phosphorus as P by D	Discrete Analyser					
Total Phosphorus as P		0.01	mg/L	0.22	 	
EK071G: Reactive Phosphorus as P t	by discrete analyser					
Reactive Phosphorus as P		0.01	mg/L	0.10	 	
EN055: Ionic Balance						
Total Anions		0.01	meq/L	62.6	 	
Total Cations		0.01	meq/L	67.6	 	
Ionic Balance		0.01	%	3.81	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	15	 	
EP033: C1 - C4 Hydrocarbon Gases						
Methane	74-82-8	10	µg/L	7400	 	
Ethene	74-85-1	10	µg/L	<10	 	
Ethane	74-84-0	10	µg/L	<10	 	
Propene	115-07-1	10	µg/L	<10	 	
Propane	74-98-6	10	µg/L	<10	 	
Butene	25167-67-3	10	µg/L	<10	 	
Butane	106-97-8	10	µg/L	<10	 	
EP075(SIM)A: Phenolic Compounds						
Phenol	108-95-2	1.0	µg/L	<1.0	 	

Sub-Matrix: WATER		Clie	ent sample ID	WKMB01	 	
	Clie	ent sampli	ng date / time	19-JUN-2012 15:00	 	
Compound	CAS Number	LOR	Unit	ES1215392-001	 	
EP075(SIM)A: Phenolic Compounds - Con						
2-Chlorophenol	95-57-8	1.0	µg/L	<1.0	 	
2-Methylphenol	95-48-7	1.0	μg/L	<1.0	 	
3- & 4-Methylphenol	1319-77-3	2.0	μg/L	<2.0	 	
2-Nitrophenol	88-75-5	1.0	μg/L	<1.0	 	
2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0	 	
2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0	 	
2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0	 	
4-Chloro-3-Methylphenol	59-50-7	1.0	µg/L	<1.0	 	
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	 	
2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0	 	
Pentachlorophenol	87-86-5	2.0	µg/L	<2.0	 	
EP075(SIM)B: Polynuclear Aromatic Hyd	rocarbons					
Naphthalene	91-20-3	1.0	µg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	 	
Anthracene	120-12-7	1.0	µg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	µg/L	<1.0	 	
Pyrene	129-00-0	1.0	µg/L	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	 	
Chrysene	218-01-9	1.0	µg/L	<1.0	 	
Benzo(b)fluoranthene	205-99-2	1.0	µg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	 	
[^] Sum of polycyclic aromatic hydrocarbons		0.5	µg/L	<0.5	 	
EP080/071: Total Petroleum Hydrocarbo	ns					
C6 - C9 Fraction		20	µg/L	<20	 	
C10 - C14 Fraction		50	µg/L	<50	 	
C15 - C28 Fraction		100	µg/L	<100	 	
C29 - C36 Fraction		50	µg/L	<50	 	
[^] C10 - C36 Fraction (sum)		50	µg/L	<50	 	
EP080/071: Total Recoverable Hydrocart	oons - NEPM 2010	0 Draft				

Sub-Matrix: WATER		Clie	ent sample ID	WKMB01				
	Cli	ient sampli	ng date / time	19-JUN-2012 15:00				
Compound	CAS Number	LOR	Unit	ES1215392-001				
EP080/071: Total Recoverable Hydro	ocarbons - NEPM 201	0 Draft - C	Continued					
C6 - C10 Fraction		20	µg/L	<20				
[^] C6 - C10 Fraction minus BTEX (F1)		20	µg/L	<20				
>C10 - C16 Fraction		100	µg/L	<100				
>C16 - C34 Fraction		100	µg/L	<100				
>C34 - C40 Fraction		100	µg/L	<100				
^ >C10 - C40 Fraction (sum)		100	µg/L	<100				
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1				
Toluene	108-88-3	2	µg/L	<2				
Ethylbenzene	100-41-4	2	µg/L	<2				
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2				
ortho-Xylene	95-47-6	2	µg/L	<2				
^ Total Xylenes	1330-20-7	2	µg/L	<2				
[^] Sum of BTEX		1	µg/L	<1				
Naphthalene	91-20-3	5	µg/L	<5				
EP075(SIM)S: Phenolic Compound S	Surrogates							
Phenol-d6	13127-88-3	0.1	%	25.7				
2-Chlorophenol-D4	93951-73-6	0.1	%	61.3				
2.4.6-Tribromophenol	118-79-6	0.1	%	71.0				
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1	%	70.1				
Anthracene-d10	1719-06-8	0.1	%	70.9				
4-Terphenyl-d14	1718-51-0	0.1	%	90.8				
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	101				
Toluene-D8	2037-26-5	0.1	%	108				
4-Bromofluorobenzene	460-00-4	0.1	%	100				

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10.0	64.1
2-Chlorophenol-D4	93951-73-6	11.3	122.9
2.4.6-Tribromophenol	118-79-6	11.7	144.0
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	19.9	122.8
Anthracene-d10	1719-06-8	23.3	125.8
4-Terphenyl-d14	1718-51-0	20.3	134.5
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

Contraction of the second seco	CERTI	FICATE OF ANALYSIS	
Work Order	ES1220412	Page	: 1 of 8
Amendment	: 1		
Client	: PARSONS BRINCKERHOFF AUST P/L	Laboratory	: Environmental Division Sydney
Contact	: MR JAMES DUGGLEBY	Contact	: Loren Schiavon
Address	: GPO BOX 5394	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	SYDNEY NSW, AUSTRALIA 2001		
E-mail	: jduggleby@pb.com.au	E-mail	: loren.schiavon@alsglobal.com
Telephone	: +61 02 9272 5100	Telephone	: +61 2 8784 8503
Facsimile	: +61 02 9272 5101	Facsimile	: +61 2 8784 8500
Project	: 2162406	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 22-AUG-2012
Sampler	: S.M	Issue Date	: 04-APR-2014
Site	:		
		No. of samples received	: 3
Quote number	: SY/394/09	No. of samples analysed	: 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

• This report has been amended and re-released to allow the removal of additional analytical data.

\checkmark	NATA Accredited Laboratory 825 Accredited for compliance with	Signatories This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.								
NATA	ISO/IEC 17025.	Signatories	Position	Accreditation Category						
		Celine Conceicao	Senior Spectroscopist	Sydney Inorganics Sydney Organics						
		Pabi Subba	Senior Organic Chemist							
WORLD RECOGNISED		Sanjeshni Jyoti Mala	Senior Chemist Volatile	Sydney Organics						
		Sarah Millington	Senior Inorganic Chemist Sydney Inorganics	Sydney Inorganics						

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	WKMB02	WKMB03	 	
	Client sampling date / time		21-AUG-2012 15:00	21-AUG-2012 15:00	 		
Compound	CAS Number	LOR	Unit	ES1220412-001	ES1220412-002	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	9.07	10.0	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	1030	3050	 	
EA015: Total Dissolved Solids							
Total Dissolved Solids @180°C		10	mg/L	688	2240	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	73	688	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	215	266	 	
Total Alkalinity as CaCO3		1	mg/L	288	954	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	129	94	 	
ED045G: Chloride Discrete analyser							
Chloride	16887-00-6	1	mg/L	80	371	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	7	5	 	
Magnesium	7439-95-4	1	mg/L	<1	<1	 	
Sodium	7440-23-5	1	mg/L	236	625	 	
Potassium	7440-09-7	1	mg/L	7	35	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	0.19	0.76	 	
Arsenic	7440-38-2	0.001	mg/L	0.002	0.003	 	
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	 	
Barium	7440-39-3	0.001	mg/L	0.072	0.405	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	0.007	 	
Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.001	0.004	 	
Lead	7439-92-1	0.001	mg/L	<0.001	0.049	 	
Manganese	7439-96-5	0.001	mg/L	0.002	0.008	 	
Molybdenum	7439-98-7	0.001	mg/L	0.004	0.015	 	
Nickel	7440-02-0	0.001	mg/L	0.001	0.002	 	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	 	

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	WKMB02	WKMB03			
	Client sampling date / time		21-AUG-2012 15:00	21-AUG-2012 15:00				
Compound	CAS Number	LOR	Unit	ES1220412-001	ES1220412-002			
EG020F: Dissolved Metals by ICP-MS - 0	EG020F: Dissolved Metals by ICP-MS - Continued							
Strontium	7440-24-6	0.001	mg/L	0.463	0.758			
Uranium	7440-61-1	0.001	mg/L	<0.001	<0.001			
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01			
Zinc	7440-66-6	0.005	mg/L	0.018	1.22			
Boron	7440-42-8	0.05	mg/L	<0.05	0.10			
Iron	7439-89-6	0.05	mg/L	<0.05	0.20			
Bromine	7726-95-6	0.1	mg/L	0.2	0.8			
EG052F: Dissolved Silica by ICPAES								
Silica	7631-86-9	0.1	mg/L	22.9	10.4			
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.3	1.4			
EK055G: Ammonia as N by Discrete An	alyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.44	13.5			
EK057G: Nitrite as N by Discrete Analy	ser							
Nitrite as N		0.01	mg/L	<0.01	<0.01			
EK058G: Nitrate as N by Discrete Analy	/ser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	0.02			
EK067G: Total Phosphorus as P by Disc	crete Analyser							
Total Phosphorus as P		0.01	mg/L	0.11	0.43			
EK071G: Reactive Phosphorus as P by	EK071G: Reactive Phosphorus as P by discrete analyser							
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.07	0.04			
EN055: Ionic Balance								
Total Anions		0.01	meq/L	10.7	31.5			
Total Cations		0.01	meq/L	10.8				
Total Cations		0.01	meq/L		29.3			
Ionic Balance		0.01	%	0.40				
Ionic Balance		0.01	%		3.62			
EP005: Total Organic Carbon (TOC)	EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L	3	168			
EP033: C1 - C4 Hydrocarbon Gases								
Methane	74-82-8	10	µg/L	4340	32100			
Ethene	74-85-1	10	µg/L	<10	<10			
Ethane	74-84-0	10	µg/L	<10	<10			
						-		· · · · · · · · · · · · · · · · · · ·

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	WKMB02	WKMB03	 	
	Cli	ent sampli	ng date / time	21-AUG-2012 15:00	21-AUG-2012 15:00	 	
Compound	CAS Number	LOR	Unit	ES1220412-001	ES1220412-002	 	
EP033: C1 - C4 Hydrocarbon Gases - Cont	tinued						
Propene	115-07-1	10	µg/L	<10	<10	 	
Propane	74-98-6	10	µg/L	<10	<10	 	
Butene	25167-67-3	10	µg/L	<10	<10	 	
Butane	106-97-8	10	µg/L	<10	<10	 	
EP075(SIM)A: Phenolic Compounds							
Phenol	108-95-2	1.0	µg/L	<1.0	1.3	 	
2-Chlorophenol	95-57-8	1.0	µg/L	<1.0	<1.0	 	
2-Methylphenol	95-48-7	1.0	µg/L	<1.0	<1.0	 	
3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0	<2.0	 	
2-Nitrophenol	88-75-5	1.0	µg/L	<1.0	<1.0	 	
2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0	<1.0	 	
2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0	<1.0	 	
2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0	<1.0	 	
4-Chloro-3-methylphenol	59-50-7	1.0	µg/L	<1.0	<1.0	 	
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	<1.0	 	
2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0	<1.0	 	
Pentachlorophenol	87-86-5	2.0	µg/L	<2.0	<2.0	 	
EP075(SIM)B: Polynuclear Aromatic Hydr	rocarbons						
Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0	 	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	<1.0	 	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	<1.0	 	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	<1.0	 	
Anthracene	120-12-7	1.0	µg/L	<1.0	<1.0	 	
Fluoranthene	206-44-0	1.0	µg/L	<1.0	<1.0	 	
Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0	 	
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0	 	
Benzo(b)fluoranthene	205-99-2	1.0	µg/L	<1.0	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	 	

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	WKMB02	WKMB03	 	
	Cl	ient sampli	ng date / time	21-AUG-2012 15:00	21-AUG-2012 15:00	 	
Compound	CAS Number	LOR	Unit	ES1220412-001	ES1220412-002	 	
EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons - Cont	inued					
Sum of polycyclic aromatic hydrocarbons		0.5	µg/L	<0.5	<0.5	 	
^ Benzo(a)pyrene TEQ (WHO)		0.5	µg/L	<0.5	<0.5	 	
EP080/071: Total Petroleum Hydrocart	oons						
C6 - C9 Fraction		20	µg/L	<20	<20	 	
C10 - C14 Fraction		50	µg/L	<50	<50	 	
C15 - C28 Fraction		100	µg/L	<100	270	 	
C29 - C36 Fraction		50	µg/L	<50	140	 	
[^] C10 - C36 Fraction (sum)		50	µg/L	<50	410	 	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	0 Draft					
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	 	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	<20	 	
(F1)							
>C10 - C16 Fraction	>C10_C16	100	µg/L	<100	<100	 	
>C16 - C34 Fraction		100	µg/L	<100	300	 	
>C34 - C40 Fraction		100	µg/L	<100	<100	 	
>C10 - C40 Fraction (sum)		100	µg/L	<100	300	 	
EP080: BTEXN							
Benzene	71-43-2	1	µg/L	<1	<1	 	
Toluene	108-88-3	2	µg/L	<2	<2	 	
Ethylbenzene	100-41-4	2	µg/L	<2	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	 	
ortho-Xylene	95-47-6	2	µg/L	<2	<2	 	
^ Total Xylenes	1330-20-7	2	µg/L	<2	<2	 	
[^] Sum of BTEX		1	µg/L	<1	<1	 	
Naphthalene	91-20-3	5	µg/L	<5	<5	 	
EP075(SIM)S: Phenolic Compound Su							
Phenol-d6	13127-88-3	0.1	%	23.9	15.9	 	
2-Chlorophenol-D4	93951-73-6	0.1	%	52.8	39.0	 	
2.4.6-Tribromophenol	118-79-6	0.1	%	78.5	53.8	 	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.1	%	71.9	68.1	 	
Anthracene-d10	1719-06-8	0.1	%	75.7	69.1	 	
4-Terphenyl-d14	1718-51-0	0.1	%	69.5	63.6	 	

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	WKMB02	WKMB03	 	
	Client sampling date / time				21-AUG-2012 15:00	 	
Compound	CAS Number	LOR	Unit	ES1220412-001	ES1220412-002	 	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.1	%	88.6	90.2	 	
Toluene-D8	2037-26-5	0.1	%	105	92.4	 	
4-Bromofluorobenzene	460-00-4	0.1	%	88.5	90.5	 	

ALS

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10.0	64.1
2-Chlorophenol-D4	93951-73-6	11.3	122.9
2.4.6-Tribromophenol	118-79-6	11.7	144.0
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	19.9	122.8
Anthracene-d10	1719-06-8	23.3	125.8
4-Terphenyl-d14	1718-51-0	20.3	134.5
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

CERTIFICATE OF ANALYSIS									
ES1323077	Page	: 1 of 7							
: PARSONS BRINCKERHOFF AUST P/L	Laboratory	: Environmental Division Sydney							
: MR JAMES DUGGLEBY	Contact	: Client Services							
: GPO BOX 5394	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164							
: jduggleby@pb.com.au	E-mail	: sydney@alsglobal.com							
: +61 02 9272 5100	Telephone	: +61-2-8784 8555							
: +61 02 9272 5101	Facsimile	: +61-2-8784 8500							
: 2162406C	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement							
:									
:	Date Samples Received	: 24-OCT-2013							
: CHRIS RICHARD	Issue Date	: 30-OCT-2013							
:									
	No. of samples received	: 1							
: EN/008/13	No. of samples analysed	: 1							
	 ES1323077 PARSONS BRINCKERHOFF AUST P/L MR JAMES DUGGLEBY GPO BOX 5394 SYDNEY NSW, AUSTRALIA 2001 jduggleby@pb.com.au +61 02 9272 5100 +61 02 9272 5101 2162406C CHRIS RICHARD 	ES1323077PagePARSONS BRINCKERHOFF AUST P/LLaboratoryMR JAMES DUGGLEBYContactGPO BOX 5394AddressSYDNEY NSW, AUSTRALIA 2001E-maili jduggleby@pb.com.auE-mail: +61 02 9272 5100Telephone: +61 02 9272 5101Facsimile2 162406CQC Level:Date Samples Received:Issue Date:No. of samples received							

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Signatories NATA Accredited Laboratory 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11. Accredited for compliance with NATA ISO/IEC 17025. Signatories Position Accreditation Category Inorganic Chemist Ankit Joshi Sydney Inorganics Senior Spectroscopist Celine Conceicao Sydney Inorganics WORLD RECOGNISED ACCREDITATION Senior Inorganic Chemist Hoa Nguyen Sydney Inorganics Senior Organic Chemist Pabi Subba Sydney Organics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	WKMB04	 	
	C	lient samplir	ng date / time	23-OCT-2013 09:45	 	
Compound	CAS Number	LOR	Unit	ES1323077-001	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	µS/cm	16500	 	
EA015: Total Dissolved Solids						
Total Dissolved Solids @180°C		10	mg/L	11000	 	
EA025: Suspended Solids						
Suspended Solids (SS)		5	mg/L	3130	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	375	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	6700	 	
Total Alkalinity as CaCO3		1	mg/L	7080	 	
ED040F: Dissolved Major Anions						
Silicon as SiO2	14464-46-1	0.1	mg/L	16.6	 	
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	 	
ED045G: Chloride Discrete analyser						
Chloride	16887-00-6	1	mg/L	2580	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	10	 	
Magnesium	7439-95-4	1	mg/L	47	 	
Sodium	7440-23-5	1	mg/L	4650	 	
Potassium	7440-09-7	1	mg/L	25	 	
EG020F: Dissolved Metals by ICP-MS						
Arsenic	7440-38-2	0.001	mg/L	0.002	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	0.001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	 	
Lead	7439-92-1	0.001	mg/L	0.002	 	
Nickel	7440-02-0	0.001	mg/L	0.012	 	
Zinc	7440-66-6	0.005	mg/L	1.53	 	
EG035F: Dissolved Mercury by FIMS		0.000				
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.6	 	

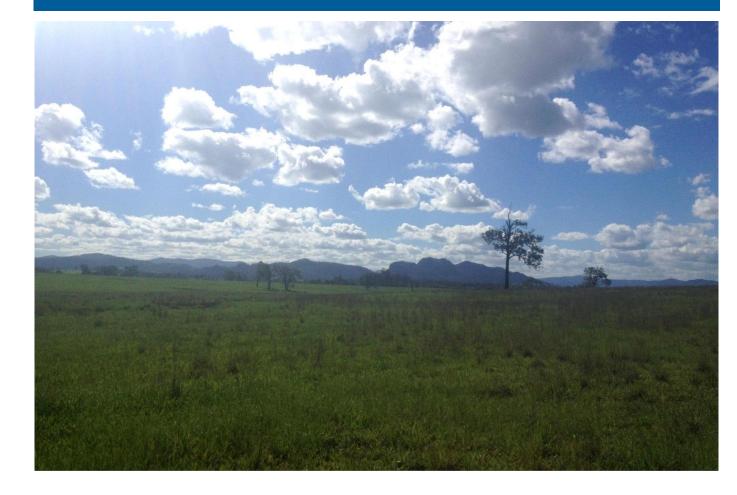
Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	WKMB04	 	
	Cl	ient sampli	ng date / time	23-OCT-2013 09:45	 	
Compound	CAS Number	LOR	Unit	ES1323077-001	 	
EK055G: Ammonia as N by Discrete Anal	lyser					
Ammonia as N	7664-41-7	0.01	mg/L	3.70	 	
EK057G: Nitrite as N by Discrete Analyse	er					
Nitrite as N		0.01	mg/L	<0.01	 	
EK058G: Nitrate as N by Discrete Analys	ser					
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	<0.01	 	
EK067G: Total Phosphorus as P by Discr	rete Analyser					
Total Phosphorus as P		0.01	mg/L	0.33	 	
EK071G: Reactive Phosphorus as P by d	iscrete analyser					
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.04	 	
EN055: Ionic Balance						
Total Anions		0.01	meq/L	214	 	
Total Cations		0.01	meq/L	207	 	
Ionic Balance		0.01	%	1.71	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	60	 	
EP033: C1 - C4 Hydrocarbon Gases						
Methane	74-82-8	10	µg/L	3150	 	
EP075(SIM)A: Phenolic Compounds						
Phenol	108-95-2	1.0	µg/L	<1.0	 	
2-Chlorophenol	95-57-8	1.0	µg/L	<1.0	 	
2-Methylphenol	95-48-7	1.0	µg/L	<1.0	 	
3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0	 	
2-Nitrophenol	88-75-5	1.0	µg/L	<1.0	 	
2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0	 	
2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0	 	
2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0	 	
4-Chloro-3-methylphenol	59-50-7	1.0	µg/L	<1.0	 	
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	 	
2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0	 	
Pentachlorophenol	87-86-5	2.0	µg/L	<2.0	 	
EP075(SIM)B: Polynuclear Aromatic Hyd	rocarbons					

Page : 5 of 7 Work Order : ES1323077 Client : PARSONS BRINCKERHOFF AUST P/L Project : 2162406C

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	WKMB04	 	
	Cl	ient sampli	ng date / time	23-OCT-2013 09:45	 	
Compound	CAS Number	LOR	Unit	ES1323077-001	 	
EP075(SIM)B: Polynuclear Aromatic Hyd	drocarbons - Cont	inued				
Naphthalene	91-20-3	1.0	µg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	 	
Anthracene	120-12-7	1.0	µg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	µg/L	<1.0	 	
Pyrene	129-00-0	1.0	µg/L	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	 	
Chrysene	218-01-9	1.0	µg/L	<1.0	 	
Benzo(b)fluoranthene	205-99-2	1.0	μg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	 	
[^] Sum of polycyclic aromatic hydrocarbons		0.5	μg/L	<0.5	 	
[^] Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	 	
EP080/071: Total Petroleum Hydrocarbo	ons					
C6 - C9 Fraction		20	µg/L	<20	 	
C10 - C14 Fraction		50	µg/L	<50	 	
C15 - C28 Fraction		100	µg/L	14700	 	
C29 - C36 Fraction		50	µg/L	7820	 	
[^] C10 - C36 Fraction (sum)		50	µg/L	22500	 	
EP080/071: Total Recoverable Hydrocar	bons - NEPM 201	3				
C6 - C10 Fraction	C6_C10	20	µg/L	<20	 	
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	µg/L	<20	 	
>C10 - C16 Fraction	>C10_C16	100	µg/L	100	 	
>C16 - C34 Fraction		100	µg/L	20500	 	
>C34 - C40 Fraction		100	µg/L	3480	 	
>C10 - C40 Fraction (sum)		100	µg/L	24100	 	
 C10 - C16 Fraction minus Naphthalene (F2) 		100	µg/L	100	 	

Page : 6 of 7 Work Order : ES1323077 Client : PARSONS BRINCKERHOFF AUST P/L Project : 2162406C

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	WKMB04	 	
	Cli	ent sampli	ng date / time	23-OCT-2013 09:45	 	
Compound	CAS Number	LOR	Unit	ES1323077-001	 	
EP080: BTEXN						
Benzene	71-43-2	1	µg/L	<1	 	
Toluene	108-88-3	2	µg/L	<2	 	
Ethylbenzene	100-41-4	2	µg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	 	
ortho-Xylene	95-47-6	2	µg/L	<2	 	
Total Xylenes	1330-20-7	2	µg/L	<2	 	
Sum of BTEX		1	µg/L	<1	 	
Naphthalene	91-20-3	5	µg/L	<5	 	
EP075(SIM)S: Phenolic Compound	Surrogates					
Phenol-d6	13127-88-3	0.1	%	43.6	 	
2-Chlorophenol-D4	93951-73-6	0.1	%	66.8	 	
2.4.6-Tribromophenol	118-79-6	0.1	%	79.2	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.1	%	66.0	 	
Anthracene-d10	1719-06-8	0.1	%	57.6	 	
4-Terphenyl-d14	1718-51-0	0.1	%	77.9	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.1	%	118	 	
Toluene-D8	2037-26-5	0.1	%	130	 	
4-Bromofluorobenzene	460-00-4	0.1	%	99.6	 	



Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10.0	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27.4	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

Appendix G

GNS stable isotope laboratory reports

STABLE ISOTOPE RESULTS

Wendy McLean Level 27, 680 George St

Sydney 2001 Australia

National Isotope Centre 30 Gracefield Road Lower Hutt 5010 PO Box 31 312 Lower Hutt 5040 New Zealand T +64-4-570 1444 F +64-4-570 4657 www.gns.cri.nz

Project Title		Invoice	Parsons Brinckerhoff
SIL Order No.:	W-1204085	Attn:	Wendy McLean
Client Ref.:			Level 27, 680 George St
Date Received:	9/07/2012		World Square, Sydney
Date Measured:			NSW 2001
Approved By:			Australia
Date Reported:	26/07/2012		

Sample Type: water (H & O)

SIL ID	External ID	δD Value	δ18O Value	Analysis Type	Overseas or NZ	Country Code	Collection Date/Time (Start)	Other Info
W-1204088	WKMB01	-22.5	-4.13	D, O18	OS	AS	17/06/2012	Groundwater

STABLE ISOTOPE RESULTS

Wendy McLean Level 27, 680 George St World Square, Sydney NSW 2001 Australia

National Isotope Centre 30 Gracefield Road Lower Hutt 5010 PO Box 31 312 Lower Hutt 5040 New Zealand T +64-4-570 1444 F +64-4-570 4657 www.gns.cri.nz

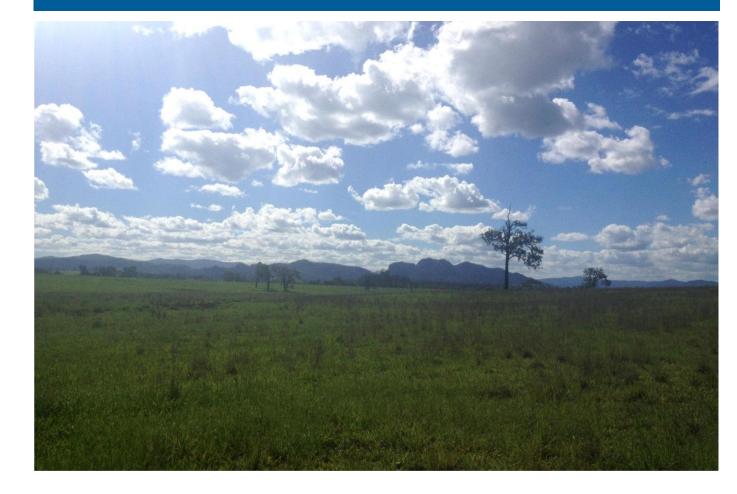
Project Title		Invoice	Parsons Brinckerhoff
SIL Order No.:	W-1204501	Attn:	Wendy McLean
Client Ref.:			Level 27, 680 George St
Date Received:	27/09/2012		World Square, Sydney
Date Measured:			NSW 2001
Approved By:			Australia
Date Reported:	24/10/2012		

Sample Type: water (H & O)

SIL ID	External ID	δD Value	δ18O Value	Analysis Type	Overseas or NZ	Country Code	Collection Date/Time (Start)	Other Info
W-1204502	WKMB02	-22.9	-4.27	D, O18	OS	AS	21/08/2012	groundwater
W-1204503	WKMB03	-30.2	-5.53	D, O18	OS	AS	21/08/2012	groundwater

STABLE ISOTOPE RESULTS

Parsons Brinckerhoff Level 27, 680 George St World Square, Sydney NSW 2001 Australia


National Isotope Centre 30 Gracefield Road Lower Hutt 5010 PO Box 31 312 Lower Hutt 5040 New Zealand T +64-4-570 1444 F +64-4-570 4657 www.gns.cri.nz

Project Title SIL Order No.: Client Ref.:	2162406C - Waukivory	Invoice Attn:	Parsons Brinckerhoff Ellen Kwantes Level 27, 680 George St
Date Received: Date Measured:	5/11/2013		World Square, Sydney NSW 2001
Approved By: Date Reported:	2/12/2013		Australia
Sample Type:	water (H & O)		
	Extornal ID AD Va		

SIL ID	External ID	δD Value	δ18O Value	Analysis Type	Overseas or NZ	State or Province	Country Code	Collection Date/Time (Start)	Other Info
W-1302892	WKMB04	-47.8	-6.94	D, O18	OS	New South Wales	AS	25/10/2013 9:45	Groundwater

Appendix H

Rafter radiocarbon laboratory reports

Accelerator Mass Spectrometry Result This result for the sample submitted is for the exclusive use of the submitter. All liability whatsoever to any third party is excluded. NZA 50832

R 40031/6 Job No: 190807 Measured: 16/08/2012 TW No: 2781 Date issued: 24 Aug 2012

Sample ID	WKMB01
Description	Groundwater
Fraction dated	Groundwater
Submitter	Wendy McLean Parsons Brinckerhoff

Conventional Radiocarbon Age (years BP)	3148	±	24	
¹³ C and Source of measurement	-15.6	±	0.1	C13
Fraction modern	0.6758	±	0.0020	
Δ^{14} C (‰) and collection date	-329.3	±	2.0	19 Jun 2012

Sample Treatment Details

Sample was submitted in a nalgene bottle, was colourless with minimal brown particulate matter. Sample loaded with 4 ml phosphoric acid. CO2 was generated by water CO2 evolution 4.5 mg C was obtained. Sample was converted to graphite by reduction with hydrogen over iron catalyst.

Conventional Radiocarbon Age and Δ^{14} C are reported as defined by Stuiver and Polach, Radiocarbon 19:355-363 (1977) and Δ^{14} C is decay corrected to the collection date given, and not reported if no collection date was supplied. Fraction modern (F) is the blank corrected fraction modern normalized to δ^{13} C of -25 permil, defined by Donahue, D. J., T. Linick, and A. T. Jull, *Radiocarbon, 32* (2):135-142 (1990). δ^{13} C was obtained from the source indicated. The reported errors comprise statistical errors in sample and standard determinations, combined in quadrature with a system error component based on the analysis of an ongoing series of measurements on an oxalic acid standard. Further details of pretreatment and analysis are available on request.

Accelerator Mass Spectrometry Result This result for the sample submitted is for the exclusive use of the submitter. All liability whatsoever to any third party is excluded. NZA 51702 R 40114/1 Job No: 192257 Measured: 12/11/2012 TW No: 2813 Date issued: 14 Nov 2012

Sample ID	WKMB02
Description	
Fraction dated	Groundwater
Submitter	Wendy McLean Parsons Brinckerhoff

Conventional Radiocarbon Age (years BP)	8126	±	24	
δ^{13} C and Source of measurement	-16.0	±	0.2	C13
Fraction modern	0.3636	±	0.0011	
Δ^{14} C (‰) and collection date	-639.1	±	1.1	21 Aug 2012
Measurement Comment:				

Sample Treatment Details

Sample was submitted in: Semi-transparent plastic square bottle and some whitish precipitate with head space. Head space comment: big. Sample colour: colourless. Odour Description: no smell. CO2 was generated by phosphoric acid evolution, and carbonate content was 64.3mgC/kgH2O, total dissolved inorganic carbon (TDIC) 5.4mmol/kgH2O. Sample was converted to graphite by reduction with hydrogen over iron catalyst.

Conventional Radiocarbon Age and Δ^{14} C are reported as defined by Stuiver and Polach, Radiocarbon 19:355-363 (1977) and Δ^{14} C is decay corrected to the collection date given, and not reported if no collection date was supplied. Fraction modern (F) is the blank corrected fraction modern normalized to δ^{13} C of -25 permil, defined by Donahue, D. J., T. Linick, and A. T. Jull, *Radiocarbon, 32* (2):135-142 (1990). δ^{13} C was obtained from the source indicated. The reported errors comprise statistical errors in sample and standard determinations, combined in quadrature with a system error component based on the analysis of an ongoing series of measurements on an oxalic acid standard. Further details of pretreatment and analysis are available on request.

Accelerator Mass Spectrometry Result This result for the sample submitted is for the exclusive use of the submitter. All liability whatsoever to any third party is excluded. NZA 52010 R 40114/2 Job No: 192258 Measured: 5/12/2012

TW No: 2821

Date issued: 17 Dec 2012

Sample ID	WKMB03
Description	
Fraction dated	Groundwater
Submitter	Wendy McLean Parsons Brinckerhoff

Conventional Radiocarbon Age (years BP) δ^{13} C and Source of measurement	19528 13.4	± ±	63 0.2	C13
Fraction modern	0.0880	±	0.0007	
$\Delta^{\rm 14}$ C (‰) and collection date	-912.7	±	0.7	21 Aug 2012
Measurement Comment:				

Sample Treatment Details

Sample was submitted in: Semi-transparent plastic square bottle and some pale dark brownish precipitate and with head space. Head space comment: large head space. Sample colour: slightly dirty looking. Odour Description: no smell. CO2 was generated by phosphoric acid evolution, and carbonate content was 124mgC/kgH2O, total dissolved inorganic carbon (TDIC) 10.3mmol/kgH2O. The low yield meant that insufficient CO2 was obtained for further processing, and therefore the process was repeated and CO2 from both was combined. Gas was recombusted with silver wire to remove possible sulphur contamination. Sample was converted to graphite by reduction with hydrogen over iron catalyst.

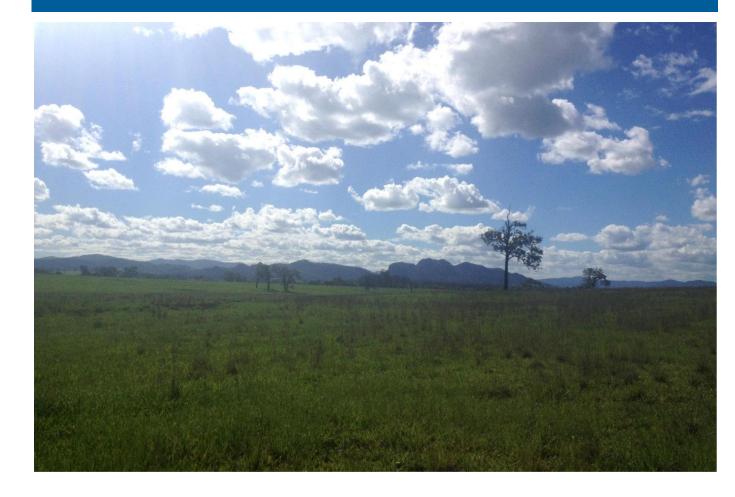
Conventional Radiocarbon Age and Δ^{14} C are reported as defined by Stuiver and Polach, Radiocarbon 19:355-363 (1977) and Δ^{14} C is decay corrected to the collection date given, and not reported if no collection date was supplied. Fraction modern (F) is the blank corrected fraction modern normalized to δ^{13} C of -25 permil, defined by Donahue, D. J., T. Linick, and A. T. Jull, *Radiocarbon, 32* (2):135-142 (1990). δ^{13} C was obtained from the source indicated. The reported errors comprise statistical errors in sample and standard determinations, combined in quadrature with a system error component based on the analysis of an ongoing series of measurements on an oxalic acid standard. Further details of pretreatment and analysis are available on request.

Accelerator Mass Spectrometry Result This result for the sample submitted is for the exclusive use of the submitter. All liability whatsoever to any third party is excluded. NZA 55400

R 40396/1 Job No: 197084 Measured: 25/11/2013 TW No: 2904 Date issued: 10 Jan 2014

Sample ID	WKMB04
Description	Groundwater
Fraction dated	Groundwater
Submitter	Ellen Kwantes Parsons Brinckerhoff

Conventional Radiocarbon Age (years BP) δ^{13} C and Source of measurement	43643 33.0	± ±	1324 0.2	C13
Fraction modern	0.0044	±	0.0007	
Δ^{14} C (‰) and collection date	-995.7	±	0.7	23 Oct 2013
Measurement Comment:				


Sample Treatment Details

Sample was submitted in: 500ml plastic bottle tightly capped with no headspace or odour, layer of brown sediment at bottom. CO2 was generated by phosphoric acid evolution, and carbonate content was 131.5mgC/kgH2O, total dissolved inorganic carbon (TDIC) 11mmol/kgH2O. Sample carbon dioxide was converted to graphite by reduction with hydrogen over iron catalyst.

Conventional Radiocarbon Age and Δ^{14} C are reported as defined by Stuiver and Polach, Radiocarbon 19:355-363 (1977) and Δ^{14} C is decay corrected to the collection date given, and not reported if no collection date was supplied. Fraction modern (F) is the blank corrected fraction modern normalized to δ^{13} C of -25 permil, defined by Donahue, D. J., T. Linick, and A. T. Jull, *Radiocarbon, 32* (2):135-142 (1990). δ^{13} C was obtained from the source indicated. The reported errors comprise statistical errors in sample and standard determinations, combined in quadrature with a system error component based on the analysis of an ongoing series of measurements on an oxalic acid standard. Further details of pretreatment and analysis are available on request.

Appendix I

ANSTO Laboratory - Tritium results

Institute for Environmental Research Analytical Report

Client:

Contact: Tel:

Report Number: Batch Description: Samples Received: Registration Date: Report Date: Logged By: ANSTO Cost Code: Funds Type: Supervising Analyst: Parsons Brinckerhoff GPO Box 5394 Sydney NSW 2001 Wendy McLean (02) 9272-5234

2012/0188 tritium in water 8 5-Jul-2012 27-Aug-2012 Kellie-Anne Farrawell 0205V-1 Project - Commercial Robert Chisari

Signature: Avert Chinary Robert Chisari

Date: 27/08/2012

AUSTRALIAN NUCLEAR SCIENCE AND TECHNOLOGY ORGANISATION New Illawarra Road, Lucas Heights (Locked Bag 2001, Kirrawee DC NSW 2232) T+612 9717 3111 F+612 9543 5097 www.ansto.gov.au

LIMS ID#	Client Identification	Sample Description
		-
2012/0188-5	WKMB01	Groundwater

	Uncertainty ¹ MDA ²	Bq/kg Bq/kg	0.003 0.017	 Values reported are combined standard uncertainty, calculated to 1 sigma. A Coverage factor, <i>k</i>, of 2 may be used to calculate Expanded Uncertainty to 95% confidence. The MDA (Minimum Detectable Activity) and Quant Limit (Limit of Quantification) are calculated to 95% confidence. 	This result is below the MDA/Quant Limit and therefore has an unacceptable level of uncertainty. Hence, the data should only be used as an indicator of the true concentration		ľ
ate	Tritium Activity	Bq/kg	0.014^	, k, of 2 may be used ed to 95% confidence	nty. Hence, the data :		R G A N I S A T I O N 3111 F +61 2 9543 5097
Tritium Concentration at Sampling Date	Uncertainty ¹ Quant Limit ²	TU TU	0.03 0.14	gma. A Coverage facto Intification) are calculat	sptable level of uncerta	08/2012	AUSTRALIAN NUCLEAR SCIENCE AND TECHNOLOGY ORGANISATION New Illawarra Road, Lucas Heights (Locked Bag 2001, Kirrawee DC NSW 2232) T+612 9717 3111 F+61 2 9543 5097 www.ansto.gov.au
tium Concentrat	Tritium Ratio	1 I	12 0.12 ^	ity, calculated to 1 sig int Limit (Limit of Qua	refore has an unacce	Date: 27/08/2012	N NUCLEAR SCIENCE d, Lucas Heights (Locked Bag 2001, www
Tri	Sample Date No. Sample Collected		5 14/06/2012	red standard uncertair able Activity) and Qua	A/Quant Limit and the	Miran	A U S T R A L I A N New Illawarra Road, L
	Client Slient		WKMB01	 S: 1. Values reported are combined standard uncertainty, calculated to 1 sigma. A Coverage factor, <i>k</i>, of 2 may be used to 95% confidence. 2. The MDA (Minimum Detectable Activity) and Quant Limit (Limit of Quantification) are calculated to 95% confidence. 	This result is below the MD of the true concentration	re: Robert Chisari	l
				Notes: 1. Va to 2. Th	Th of i	Signature	

Institute for Environmental Research Analytical Report

Report Number: 2012/0188

Institute for Environmental Research Analytical Report

Client:

Contact: Tel:

Report Number: Batch Description: Samples Received: Registration Date: Report Date: Logged By: ANSTO Cost Code: Funds Type: Supervising Analyst: Parsons Brinckerhoff GPO Box 5394 Sydney NSW 2001 Wendy McLean/ Nina Pearse-Hawkins (02) 9272-5234

2012/0283a Tritium activity in ground water 19 24-Sep-2012 8-Jan-2013 Robert Chisari 0205v-1 Project - Commercial Robert Chisari

obert Ching Signature: Robert Chisari

Date: 8/01/2013

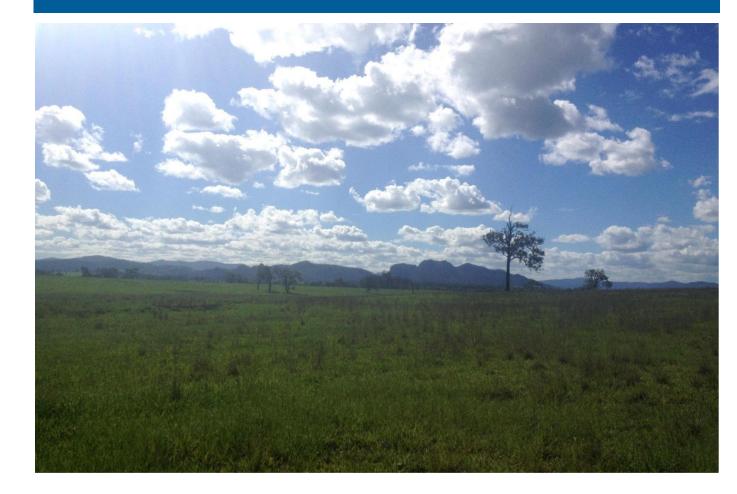
www.ansto.gov.au

LIMS ID#	Client Identification	Sample Description	
2012/0283-1	WKMB02	Groundwater	
2012/0283-2	WKMB03	Groundwater	

Institute for Environmental Research Analytical Report

Report Number: 2012/0283a

MDA ²	Bq/kg	0.01 6 0.016
Uncertainty ¹	Bq/kg	0.003 0.004 3
Tritium Activity	Bq/kg	0.028 0.040
Quant Limit ²	DT	0 .0 4 .4
Tritium Uncertainty ¹ Ratio	Ð	0.03 0.03
Tritium Ratio	5	0.23 0.34
Date Sample Collected		21/08/2012 21/08/2012
Sample No.		- 0
Client Identification		WKMB02 WKMB03


Tritium Concentration at Sampling Date

Continued...

AUSTRALIAN NUCLEAR SCIENCE AND TECHNOLOGY ORGANISATION New Illawarra Road, Lucas Heights (Locked Bag 2001, Kirrawee DC NSW 2232) T+61 2 9717 3111 F+61 2 9543 5097 www.ansto.gov.au

Appendix J

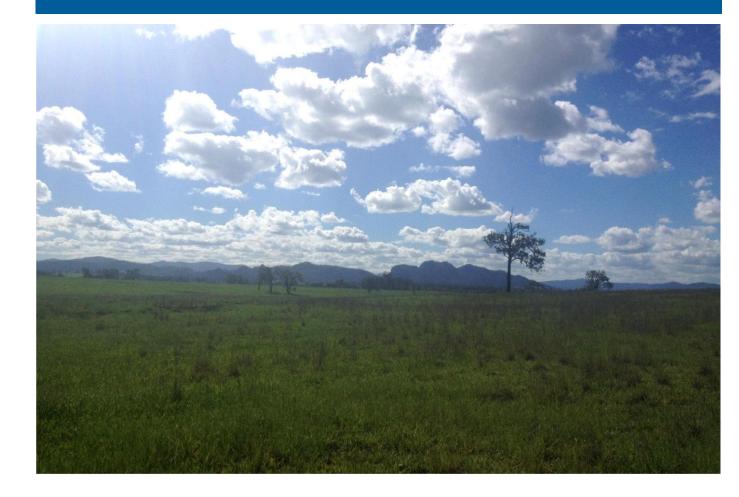
UC Davis Stable Isotope Facility - Carbon-13 and methane results

Sample Received 7/9/12	$\delta^2 H_{VSMOW}$ Comments				
WKMB01	-135.6 Below LOQ				
		CHECK STD		MEASURED	KNOWN
Received 9/28/12		U	CDM2	-146.9	-149.0
WKMB02	-176.4 Below LOQ	U	CDM2	-149.8	-149.0
WKMB03	-213.7	U	CDM2	-148.7	-149.0
		U	CDM2	-149.2	-149.0
		U	CDM2	-145.4	-149.0
		U	CDM2	-148.2	-149.0
		U	CDM2	-151.7	-149.0
		U	CDM2	-148.3	-149.0
			avg	-148.5	
			sd	1.9	

CALIBRATION STDS		KNOWN
NG1	-189.0	-185.1
NG1	-189.2	-185.1
NG2	-235.5	-237.0
NG2	-235.4	-237.0
NG3	-167.5	-167.6
NG3	-165.1	-167.6

2nd CHECK STDS	MEASURED	KNOWN
NGS3	-177.8	-177.0
NGS3	-174.9	-177.0
B iso	-267.5	-266.7
B iso	-266.4	-266.7

Sample WKMB04	$\delta^2 H_{VSMOW}$ Comments -194.1			
	101.1	CHECK STD (10 ppm)	MEASURED	KNOWN
		UCDM3	-149.4	-149.0
		UCDM3	-150.5	-149.0
		UCDM3	-149.1	-149.0
		UCDM3	-149.6	-149.0
		UCDM3	-144.6	-149.0
		UCDM3	-147.6	-149.0
		avg	-148.5	
		sd	2.1	
		CALIBRATION STDS	MEASURED	KNOWN
		NG1	-188.1	-185.1
		NG1	-185.7	-185.1
		NG2	-236.4	-237.0
		NG2	-236.4	-237.0
		NG3	-168.0	-167.6
		NG3	-164.8	-167.6
		100	-104.0	-107.0
		2nd CHECK STDS	MEASURED	KNOWN
		Mamm	-184.7	-189.1
		H iso	-153.9	-155.7
		B iso	-266.6	-269.1


Sample Received 7/9/12 WKMB01	$\delta^{13}C_{VPDB}$ Comments			
	-43.0	CHECK STD	MEASURED	KNOWN
Received 9/28/12		12.38 ppm tank std	-36.6	-36.8
WKMB02	-42.9 Below LOQ	12.38 ppm tank std	-37.2	-36.8
WKMB03	-22.5	12.38 ppm tank std	-36.7	-36.8
		12.38 ppm tank std	-37.2	-36.8
		12.38 ppm tank std	-36.9	-36.8
		12.38 ppm tank std	-36.9	-36.8
		avg	-36.9	
		sd	0.2	
		CALIBRATION STDS		KNOWN
		NG1	-34.2	-34.2
		NG1	-34.3	-34.2
		NG2	-68.9	-68.9
		NG2	-68.9	-68.9
		NG3	-43.6	-43.6
		NG3	-43.5	-43.6
		2nd CHECK STDS	MEASURED	KNOWN
		NGS3	-44.9	-44.8
		NGS3	-44.9	-44.8
		NGS3	-73.4	-73.3
		NGS3	-73.5	-73.3

$\delta^{13}C_{VPDB}$ Comments -32.38			
	CHECK STD (10 ppm)	MEASURED	KNOWN
	UCDM3	-36.87	-36.7
	UCDM3	-36.66	-36.7
	UCDM3	-36.68	-36.7
	UCDM3	-36.97	-36.7
	UCDM3	-36.63	-36.7
	UCDM3	-36.66	-36.7
	avg	-36.74	
	sd	0.14	
	CALIBRATION STDS	MEASURED	KNOWN
	NG1	-34.00	-34.2
	NG1	-34.08	-34.2
	NG2	-69.11	-68.9
	NG2	-69.38	-68.9
	2nd CHECK STDS	MEASURED	KNOWN
	H iso	-23.70	-23.9
	H iso	-23.62	-23.9
	L iso	-66.11	-66.5
	L iso	-66.31	-66.5
	B iso	-54.66	-54.5
	B iso	-54.89	-54.5
	T iso	-38.50	-38.3
	T iso	-38.63	-38.3

Sample WKMB04

Sample WKMB04	δ ¹³ C _{VPDB} 32.45	μg C/mL Comments 1556.5	Project: 2162406C CHECK STD 0.2 ml 10mM Li2CO3 ((Acros)
			MEASURED	KNOWN
			-13.43	-13.37
			-13.29	MEAN
			-13.31	-13.36
			-13.36	SD
			-13.38	0.05
			-13.36	

Appendix K ANU - Chlorine-36 results

Wheel C252 - 09 December 2013					
Sample	³⁶ CI/CI (x10 ⁻¹⁵)	Error			
Carolina Sardella, PB					
WKM B04	26.6	1.8			