3.0 GEOLOGY

The study area is situated within the Lachlan Fold Belt in south eastern New South Wales. Review of the areas geological setting was conducted with reference to the Department of Natural Resources Gunning 1:100,000 series sheet as is shown in **Figure 2**.

The investigation area is dominated by the Ordovician Adaminaby Group which comprises inter-bedded sandstone, phyllite and siltstone sequences that have been tightly folded and faulted. The Adaminaby Group adjoins Silurian aged granites to the east and south. The region is influenced by numerous major north-south fault structures with localised east-west lineaments.

4.0 HYDROGEOLOGY

4.1 SETTING

Viable groundwater resources in the area are associated primarily with fractured rock aquifers controlled by geological faults, fractures, and joints from both regional and district faulting. Enhanced hydraulic conductivity is largely dependent on the scale and density of primary (void space between grains) and secondary (fractures) porosity.

Groundwater gradients and flow regimes are expected to imitate catchment topography with flows towards the Lachlan River under subtle gradients.

The subject bores have been sited in proximity of geological lineaments mapped from aerial photography and geological maps to meet operational requirements. The bore locations are shown in **Figure 1**.

4.1.1 **DEPTH**

The subject bores were drilled to 114m (Bore 1) and 120m (Bore 2) whilst registered bores in the area are installed to depths between 18 metres and 61 metres below ground level (mbgl). During the investigation the static water level (SWL) in the subject bores was 26.84m (Bore 1) and 13.88m (Bore 2) during round 1 pump testing.

4.1.2 YIELD

Average yields for registered bores in the vicinity of the site are between 0.1L/s and 1.89L/s. The cumulative yield in the subject bores was reported as approximately 4L/s (Bore 1) and 0.6L/s (Bore 2) during airlifting by the driller.

4.1.3 GRADIENT AND FLOW

Determination of groundwater gradients and flow parameters requires field monitoring and surveying of boreheads to relative levels. The gathering of this necessary detail was beyond the scope of work for this assessment. Local groundwater flows are expected to mimic topographic trends with subtle gradients towards the Lachlan River to the north.

4.1.4 RECHARGE AND DISCHARGE

The deep fractured rock aquifers intersected by the subject bores are considered regional scale systems with recharge from an extensive catchment area. During the scope of work no signs of groundwater discharge (seeps or springs) were identified at the site.

4.2 LICENSED WORKS

A review of *NOW* registered bore records was conducted to develop a conceptual understanding of regional groundwater conditions, including aquifer depths, yields, and water quality. The search did not identify any registered bores within a one (1) kilometre radius of the subject bores as depicted in **Figure 3**. The search was extended to the surrounding area. A summary of selected registered bore details is outlined in **Table 2** and bore reports are provided in **Appendix E**.

The existing registered bores in proximity to the area are drilled to various depths from 18-61m with 'good' to 'brackish' water quality and low yields up to 1.9L/s. In general the existing bores are considered insufficient in depth to facilitate assessment of the deeper aquifers (~50-120m) which have been intersected by the subject bores. Previous drilling investigations by *Hydroilex* in the region at Narrawa and Windermere Reserve intersected yields between 1.25 and 2.2L/s at depths from 23-48m.

It is noted that one (1) existing farm bore inspected during this assessment did not appear on the NOW groundwater database. *Hydroilex* understand the Stock and Domestic bore situated in Lot345 DP754111 (GDA 55E699430 N615483) may not be licensed. It is recommended that the owner be notified and the necessary documentation lodged with NOW.

		Table 2	Summary	of Nearb	y Register	ed Bores		
Bore ID	East/North GDA 55	Depth m	Purpose	Yield L/s	Salinity	Aquifer	Geology	Distance from B1
GW703450	699345 6158566	18.6	Stock & domestic	0.5	N.D.	N.D.	N.D.	2.4km
GW060994	-	48.1	Stock & domestic	0.13 0.33	Good Good	39-39.3 45.1-45.4	Shale Shale	-
GW054033	699368 6157565	54	Stock & domestic	0.3 0.15 0.16 0.69	Fair Fair Fair Fair	20-22 22-30 30-38 38-54	Slate Slate Slate Slate	3km
GW047202	700206 6155550	61.5	TWS Bore 2	0.1 1.89	N.D.	33-34 58-61	Siltstone Shale	4.4km
GW070051	-	42	Stock & domestic	0.8	Good Good	18-19 30-31	Slate Slate	-
GW700858	-	30	Stock & domestic	0.25 0.31	N.D.	15-16 22-24	Shale Shale	-
GW600151	-	50	Monitoring Bore	0.05	8808 uS/cm	34-40	Sand	-
GW702612	699595 6161312	21	Stock & domestic	0.67	Brackish	10-20	N.D.	2.2km
GW702614	-	50	Stock & domestic	N.D.	N.D.	N.D.	N.D.	-

	Table 2 Summary of Nearby Registered Bores										
Bore ID	East/North GDA 55	Depth m	Purpose	Yield L/s	Salinity	Aquifer	Geology	Distance from B1			
GW015985	?	23.5	TWS	1.26	N.D.	21-21	Shale	-			
GW047175	-	50	Public municipal	0.1		29-36	Shale siltstone	-			
GW047174	700126 6155721	40	TWS (Bore 1)	1.5	salty	20-30	shale	4.3km			
No record	699430 6154835	n/a	n/a	n/a	n/a	n/a	n/a	5.3km			

5.0 BORE CONSTRUCTION

The subject bores were drilled and constructed by *Bungendore Water Bores* in December 2011 and January 2012. *Hydroilex* understand the bores were constructed in accordance with the guidelines set out by the Land and Water Biodiversity Committee in the *Minimum Construction Requirements for Water Bores in Australia - 2nd Edition* (2003). Detailed bore construction records are documented in the 'Form A' reports contained in **Appendix A**. A summary of the construction data and aquifer intercepts is provided in **Table 3**.

Table 3 Bore Construction

Bore ID	Dalton Power Station - Bore 1	Dalton Power Station - Bore 2
Completion Date	22 / 12 / 2011	5/1/2012
Test Bore License	70BL233651	70BL233652
Lot/DP	306 / DP754111	307 / DP754111
Easting MGA 55	701426	701574
Northing MGA	6159761	6159409
Depth Drilled (m)	114	120
Casing	0 - 6m (200 mm steel) 0 - 114m (150mm PVC casing)	0-120 class 9 PVC
Water Entry (m)	54-114m (150mm slotted PVC casing)	18-90m (150mm slotted PVC casing)
Gravel Pack	0-114m 3.5 tonne (~1.4m3) 6-7mm graded	0-90m 4 tonne (~1.5m3) 6-7mm graded
Static Water Level (mbgl)	26.84	13.88
Aquifers m-m~L/s (driller)	40-42 seepage 49-51 ~0.3L/s 64-66 ~0.3L/s 89-91 ~0.5L/s 103-105 ~2L/s	15m ~seepage 22-24 ~0.2 39-41 ~0.3 65-66 ~possible aquifer 76-78 ~0.1 87-90 ~0.1
Yield (drillers airlift after construction)	4L/s	0.7L/s
Geology	0-17 Clay and wthrd shale, orange/brown 17-19 Shale, wthrd, clayey, light grey 19-48 Shale, light grey 48-72 Shale, medium grey	0-1 Clay, yellow/brown 1-6 Shale, slatey, weathered, yellow/brown 6-12 a/a, light brown

Bore ID	Dalton Power Station - Bore 1	Dalton Power Station - Bore 2
	72-114 Shale, slatey, dark grey, carbonaceous, occasional silty interbeds	12-25 slate, light grey 25-120 slate, medium grey, occasional quartz veining, highly carbonaceous below 72m

6.0 AQUIFER TESTING

6.1 PUMP TEST METHODOLOGY

The bores were subjected to two (2) rounds of 24 hour drawdown and recovery pump testing conducted between in December 2011 and February 2012. Pumping test design and methodology was developed and conducted in accordance with the Australian Standard for Test Pumping of Water Wells (AS 2368-1990). The pumping rate, duration and depth setting was selected following detailed review of the hydrogeological conditions including depth of target aquifers, aquifer type, available drawdown, and bore construction. Testing was conducted using a submersible *Grundfos* pump. Water level data was collected both manually and automatically with a submersible *minitroll* water level data logger programmed to record water levels at 10 minute intervals.

6.2 PUMP TEST RESULTS

A summary of the drawdown and recovery test results is provided in **Appendix B** (Round 1) and **Appendix C** (Round 2). Drawdown and recovery data was tabulated and plotted to produce aquifer response curves. The drawdown and recovery curves demonstrate high quality aquifer response data to support graphical analysis of aquifer properties.

Table 4 Summary of Drawdown and Recovery Test Results

Bore ID	Bore 1 Test 1	Bore 1 Test 2	Bore 2 Test 2	Bore 2 Test 2	
Test Date Start	22/12/2011	16/2/2012	10/1/2012	14 2/2012	
Drawdown Test Duration (hrs)	1 Day (24 Hours)	1 Day (24 Hours)	1 Day (24 Hours)	1 Day (24 Hours)	
Recovery Test Duration (hrs)	>1 Day	>1 Day	>1 Day	>1 Day	
Flow Rate (Litres per second)	3 L/s	3 L/s	0.6L/s	0.6L/s	
Static Water Level (SWL mbgl)	26.84	26.71	13.88	13.88	
Available Drawdown (ADD)	76mbSWL (10 primary aquife	•	76mbSWL to base of aquifers observed during drilling & pump testing at 90mbgl)		
Final Drawdown during testing (m below SWL)	72.9mbgl after 24hrs	66.24mbgl after 24hrs	90.35mbgl after 24 hours	81.82mbgl after 24 hours	
Transmissivity (m²/day)	8.6		0.5		
Storativity	0.008	`	0.4		

Bore ID	Bore 1 Test 1	Bore 1 Test 2	Bore 2 Test 2	Bore 2 Test 2
Recommended discharge rate (L/s)	Up to 3.0L/s		Up to 0.5L/s	
Recommended pump setting (mbgl)	103m		90m	
Capable Annual Yield (ML) pumping at 50% duty (12hrs/day 365 days / year)	50ML		10ML	

6.3 AQUIFER PARAMETERS

Water level observation data from the pumping tests was analysed with Aqtesolv Prov 4.0 software to estimate aquifer properties. Pump test analysis is generally more rigorous supported by water level drawdown data in monitoring bores. Monitoring was conducted in both production bores and six (6) existing bores. The production bores are approximately 383m apart. However, no significant drawdown was observed in any monitoring bores during pumping. Hence the aquifer test analysis was conducted using only the observation data from within the pumping bores. Straight line methods for confined aquifers were applied including Cooper Jacob (1946), and Theis (1935). Results are summarised in **Table 5**. It is recommended that any further application of aquifer test results incorporate sensitivity analysis using the range of values presented in this assessment.

Transmissivity

Transmissivity is a measure of how easily an aquifer layer transmits water or the hydraulic conductivity (K) over the thickness of a given layer. **Bore 1** reports T values between $6.35\text{m}^2/\text{day}$ and $10.35\text{m}^2/\text{day}$. It is recommended the late time recovery data be applied with a T value of **8.6m²/day**. T values in Bore 1 are greater than Bore 2 which has a range between $0.316\text{m}^2/\text{day}$ and $3.99\text{m}^2/\text{day}$. The yield in **Bore 2** is significantly less than Bore 1 hence a lower T value of **0.5m²/day** should be adopted.

Storativity

Storativity (S) is a dimensionless parameter that integrates storage over the height of the aquifer (volume/area/length). S is defined as the volume of water an aquifer releases from or takes into storage per unit surface area of the aquifer per unit change in head. It is equal to the product of specific storage and aquifer thickness (Fetter 2001).

S values derived from pump testing presents a range of values, it is recommended that a value of **0.008** be adopted in **Bore 1**. Results in **Bore 2** indicate an S value of **0.4** may be suitable based on late drawdown data. Aquifter test results for Storativity in Bore 2 report a large range in values as low as 2.8E-31. More detailed analysis of S values in Bore 2 would require an additional monitoring bore which is beyond the scope of work for this assessment and is not considered necessary given the relatively low required yield at the Site.

			Cooper Jacob Drawdown	Cooper Jacob Recovery	Theis Drawdown	Theis Recovery
	st 1	T m ² /day	8.096	8.682	8.147	8.621
e 1	Test	S	1.748E-5	8.099E-6	1.404E-5	-
Bore	Test 2	T m ² /day	6.35	10.35	10.04	9.358
	Tes	S	0.008247	1.404E-5	1.404E-5	-
	st 1	T m ² /day	0.5088	3.828	0.508	-
.e 2	Test	S	0.4414	2.8E-31	0.4408	-
Bore	Test 2	T m ² /day	0.357	3.67	0.316	0.9007
	Tes	S	0.2782	1.821E-24	0.441	-

Table 5 Transmissivity and Storativity Values

6.4 CAPABLE YIELD

Initial water level recovery at completion of pumping is noted to be rapid becoming gradual. Groundwater yields are supported by the intersection of multiple fractured rock aquifers and an extensive recharge zone. The aquifer test results indicate Bore 1 is capable of sustaining discharge rates up to 4L/s with suitable recovery between pumping cycles to ensure the long term sustainability of the bore structure and groundwater resources. In general it is recommended to operate the bore at 50 percent duty pumping at 3L/s this is equivalent to an annual yield of approximately 50ML per year.

• Bore 1 - 3.0L/s; 12hr Pumping; 12hrs Recovery; 50ML per year at 50% duty.

Whilst the yield in Bore 2 is less, consistent pumping at a low rate may be conducted to maintain storage at the site. In general it is recommended to operate the bore at 50 percent duty pumping at 0.5L/s this is equivalent to an annual yield of approximately 10ML per year.

• Bore 2 - 0.5L/s; 12hr Pumping; 12hrs Recovery; 10ML per year at 50% duty.

The combined capable yield of the bores is approximately 60ML per year. This is noted to be greater than the proposed site requirements. The pumping regime recommendations are based on a 24 hour pumping cycle. Further drawdown modelling may be required to predict water levels under long term pumping. It should be noted that extrapolation beyond one (1) week is not reliable given the relatively short duration of the pump tests and no supporting records from monitoring bores. Should more accuracy be required for long term predictions a minimum 7 day pump test should be considered, and supported by water level measurements from one or more monitoring bores.

It should be noted that the indicated groundwater extraction regime is based on the aquifer response during a limited period of testing and simulation stress. Groundwater extraction should be supported by appropriate groundwater management practices including regular water level monitoring. Bore performance may alter as a result of structural and chemical changes within the bore or due to variations in aquifer recharge, namely as rainfall.

7.0 WATER QUALITY

Water samples were collected at the end of test pumping and submitted for formal analysis at a NATA accredited laboratory. A summary of the chemical analysis results is outlined in **Table 6** with the relevant water quality guidelines. Laboratory certificates of analysis are provided in **Appendix D**. Based on the laboratory results the water quality is considered appropriate for construction purposes including dust suppression. It is recommended that the laboratory results be compared against specific project requirements to determine

Table 6 Groundwater Quality Results

7.1 Summary of Water Quality Guidelines										
		ANZECC 2000	ADW	G 1996						
Analytes	Units	Trigger values for Freshwater Level of protection (95% species)	Health	Aesthetic	B1	B2				
Diss Calcium	mg/L	ID	ID	ID	170	210				
Diss Potassium	mg/L	ID	ID	ID	3.8	3.8				
T. Sodium	mg/L	ID	ID	180	240	360				
Diss Magnesium	mg/L	ID	ID	ID	140	270				
Carbonate	mg/L	ID	ID	ID	< 0.1	< 0.1				
Bicarbonate	mg/L	ID	ID	ID	587	544				
Sulphate	mg/L	ID	500	250	270	110				
Chloride	mg/L	ID	ID	250	460	1200				
Nitrate (as N)	mg/L N	700	50	50	< 0.05	0.17				
Nitrite (as N)	mg/L	ID	3	3	< 0.01	< 0.01				
T.Iron	mg/L	ID	ID	0.3	3.4	3.2				
рН	pH units	ID	ID	6.5-8.5	7.1	7.0				
Electrical Conductivity	uS/cm	ID	ID	ID	2700	4600				
T.Hardness	mg/L	ID	ID	200	1000	1600				
T Diss Solids (c) - TDS	mg/L	ID	ID	500	1800	3000				
Copper-Dissolved	mg/L	0.0014	2	1	0.0014	0.0028				
Barium-Dissolved	mg/L	ID	0.7	ID	0.051	0.110				
Cadmium-Dissolved	mg/L	0.0002	0.002	ID	< 0.0005	0.0005				
Chromium-Dissolved	mg/L	0.001	0.05	ID	< 0.002	< 0.002				
Manganese-Dissolved	mg/L	1.9	0.5	0.1	0.23	0.34				
Zinc-Dissolved	mg/L	0.008	ID	3	0.016	0.036				
Lead-Dissolved	mg/L	0.0034	0.01	ID	< 0.00005	< 0.00005				
Antimony-Dissolved	mg/L	ID	0.003	ID	< 0.003	< 0.003				
Arsenic-Dissolved	mg/L	0.024	0.007	ID	0.001	0.003				
Mercury-Dissolved	mg/L	0.0006	0.001	ID	< 0.001	0.001				
Selenium-Dissolved	mg/L	0.011	0.01	ID	< 0.003	< 0.002				
Silver-Dissolved	mg/L	0.00005	0.1	ID	< 0.001	< 0.001				

^{1:} Australian and New Zealand Water Quality (ANZECC) Guidelines for fresh and marine waters, 2000

^{2:} Australian Drinking Water Guidelines (ADWG) 1996

8.0 IMPACT ASSESSMENT

8.1 DISTANCE DRAWDOWN

The nearest registered bore (GW702612) is situated approximately 2.2km to the northwest and is not expected to be in strong hydraulic connection with the subject bores. production bores (Bore 1 and Bore 2) were monitoring during pumping to assess potential drawdown. The bores are positioned approximately 385m apart. It should be noted that no drawdown during pumping was recorded in Bore 2 whilst pumping Bore 1 and similarly no drawdown was recorded in Bore 1 whilst pumping Bore 2. Water level loggers were installed in six (6) existing bores during the second round of pump testing, hydrographs are reported in Appendix C. The hydrographs show no drawdown was recorded in monitoring bores associated with pump testing in the production bores. Distinct drawdown responses are noted in several bores associated with pump operation in those bores during the test period. Hydroilex understand two (2) landowners have expressed concern regarding potential impacts from pumping. The monitoring data clearly demonstrates no drawdown impacts beyond ~380m from the production bores. The production bores have intersected deep fractured rock aquifers associated with large scale aquifers. Hence, given the distance of existing bores and no record of drawdown during pumping in monitoring bores the proposed pumping schedule is not expected to impact on existing users.

8.2 GROUNDWATER DEPENDENT ECOSYSTEMS

Review of the property and surrounding land uses indicates that the site does not contain or form part of any critical habitats. Site inspections did not identify any significant areas of groundwater discharge or Groundwater Dependent Ecosystems (GDE's) in vicinity of the site. GDE's were considered to comprise hanging swamps or vegetation communities dependent on groundwater discharge. No shallow aquifers were identified during drilling, hence the constructed bores are not assessed to be in strong hydraulic connection with any GDE's or existing nearby bores. In summary the aquifer testing and hydrogeological assessment demonstrates that under the recommended extraction regime the subject bores are unlikely to result in any significant measurable impact on environmental conditions.

9.0 GROUNDWATER MANAGEMENT

9.1 TRIGGER LEVELS

The practical purpose for creating trigger levels for groundwater abstraction thresholds is in consequence of the following:

- The need to manage the resource in a sustainable manner;
- To provide protection for other users in the region, where increased drawdown due to pumping may cause other users to be disadvantaged;

- To reduce any impact of severe drawdown on the environment e.g. baseflow declines, depletion of groundwater storage, impacts on distal GDE's; and
- To provide a level of confidence and protection to the designated authority (*NOW*) for the issue of the appropriate license.

Groundwater management requirements on the site will be outlined in the licence provided by *NOW*. The importance of limiting drawdown by excessive pumping will be important to maintain water quality consistency and pumping efficiency. A number of factors that have been considered important in the development of trigger levels are:

- Consideration of the aquifer boundaries, aquifer heterogeneity, and shape of the drawdown cone. A high level of confidence has however been gained by the regional knowledge, stratigraphic control, test data, and drawdown levels recorded during testing operations;
- Climatic changes which may impact on groundwater levels and recharge rates;
- 'Low risk' that stakeholders will be impacted;
- Impacts from any abstraction from future new bores on adjoining properties, especially if not controlled by an allocation or metered discharge rates (e.g. excessive abstraction from 'stock & domestic' licensed bores);
- The need to establish levels which certify the preservation of the environment, which are acceptable to the community. Recognition of groundwater abstraction attitudes, and perceptions of abstraction abuse which may or may not be tangible;
- The likely need to review trigger levels upon license renewal, or as required, in the event that conditions change;
- The setting of sensible trigger levels which are equitable for both the viability of the operation, other users and the environment;
- The need to review trigger levels in the event that new bores are constructed in the immediate area; and
- Recognition that the aquifer is relatively 'deep'.

It is proposed that three (3) trigger levels, or 'alarms' be created, having different levels of reporting requirements. The Trigger Levels and actions to be taken if threshold levels are reached or exceeded, including reporting to regulatory authority, cease-to-pump conditions are detailed in **Table 7**.

Table 7 Pumping Trigger Levels

Level	Bore 1 - Trigger	Bore 2 - Trigger	Recommended Action
2	Monitored water level in the production bore during any production pumping period falls to a level of 80m below ground level Monitored water level in the production bore during any production pumping period falls to a level of 90m below ground level	Monitored water level in the production bore during any production pumping period falls to a level of 80m below ground level Monitored water level in the production bore during any production pumping period falls to a level of 85m below ground level	Record date of impact in water level database. Notify the hydrogeological consultant by email or phone within 7 days. This trigger level (if reached) should not constitute a formal notification. Provide relevant data to the hydrogeological consultant for assessment. Record date of impact in water level database. Notify the Senior Hydrogeologist, NOW and the hydrogeological consultant by email or letter within 7 days. Provide all relevant data to the hydrogeological consultant for assessment. Consider adjusting the extraction rate of the production bore to a flow where the trigger water level is not exceeded, OR Consider adjusting the pumping period where the trigger water level is not exceeded, OR Consider adjusting both the extraction rate and the pumping period where the trigger water level is not exceeded.
3	Monitored water level in the production bore during <i>any</i> production pumping period falls to a level of 100m below ground level	Monitored water level in the production bore during <i>any</i> production pumping period falls to a level of 90m below ground level	STOP PUMPING Record date of impact in water level database. Notify the Senior Hydrogeologist, NOW and the hydrogeological consultant by email or letter within 5 days. Assess all monitoring and production data. Make conclusions and provide recommendations. Meet with the Senior Hydrogeologist, NOW to discuss results, cause/s of the declining water level and a contingency plan to go forward.

9.2 MONITORING

A long-term program of water level monitoring in the production bore should be implemented. Water level monitoring will provide important baseline water level data and facilitate the long-term sustainable management of the groundwater resource. Monitoring at the site should include the following:

 Measure and record water levels in the production bore by either manual water level readings, or installation of an automated water level data logger;

- Record the water level weekly if manual or daily if logger is installed;
- The water level logger should be maintained and downloaded regularly by a qualified groundwater consultant, or the site manager should be fully trained in the operation of the water level data logger; and
- Install a suitable on-line flow meter on the discharge of the production bore. Record discharge volumes on a regular basis for the production bore.

9.3 REPORTING

A proposed protocol for reporting is described as follows:

- All water level data and any water quality monitoring results should be reported inhouse on an annual basis and reviewed by the consulting hydrogeologist. The aim is to assess any medium to long-term changes in water levels and identify reasons for the changes if they occur. The monitoring schedule should be reviewed at least annually and changed if deemed appropriate by the consultant.
- A complete set of results of the production and monitoring program should be formally reported to the *Senior Hydrogeologist*, *NOW* on an annual basis.
- The annual report should provide the extraction records, pumping times and water level measurements from monitoring in the production bore. The report should include raw water level logger data, a figure showing the locations of the production bore and a set of hydrographs for the monitoring data.
- A copy of the annual report should be sent in hard copy to the *Senior Hydrogeologist*, *NOW*. The raw water level data can be appended to the report in electronic form. The complete report should also be submitted in electronic format to *NOW* and to the Owner.

9.4 CONSTRAINTS

Based on the information reviewed during this assessment no constraints have been identified that may impact the groundwater licence application and proposed use of groundwater. Potential constraints are considered to include any consent conditions imposed by council or other regulatory authority that would prevent the requested entitlement being realised in full for the purpose for which the licence is being sought.

It is noted that the area is subject to a Water Sharing Plan. Final licensing of the bores for production will require purchasing an existing allocation from a licence holder within the same groundwater source.

10.0 CONCLUSIONS AND RECOMMENDATIONS

10.1 CONCLUSIONS

Based on the findings obtained during the scope of work the following conclusions may be made:

- The proposal is to license Bore 1 and Bore 2 for irrigation, commercial and industrial purposes to support the construction and long-term operation of the Dalton power station;
- The site is situated on the southern side of the Lachlan River approximately five (5) kilometres north of Dalton in an area underlain by the Ordovician Adaminaby Group which comprises inter-bedded sandstone, phyllite and siltstone sequences;
- Bore 1 was drilled in December 2011 to 114m and constructed with 150mm Class 9 PVC slotted from 54-114m. The drillers airlift reported a cumulative yield of 4.0L/s;
- Bore 2 was drilled in January 2012 to 120m and constructed with 150mm Class 9 PVC slotted from 18-90m. The drillers airlift reported a cumulative yield of 0.7L/s;
- The bores were subjected to two (2) rounds of 24 hour drawdown and recovery pumping tests conducted between December 2011 and February 2012. The aquifer test results indicate the bores are capable of sustaining the following long term pumping regime:
 - ➤ Bore 1 3.0L/s; 12hr Pumping; 12hrs Recovery; 50ML per year at 50% duty;
 - ➤ Bore 2 0.5L/s; 12hr Pumping; 12hrs Recovery; 10ML per year at 50% duty.
- Water level loggers were installed in six (6) existing bores during the second round of pump testing. The hydrographs show no drawdown was recorded in monitoring bores associated with pump testing in the production bores;
- Review of registered bores and pumping test results indicates that under the proposed extraction regime the subject bores are not expected to result in any significant measurable impact on the environment and adjoining groundwater users; and
- This hydrogeological assessment incorporating two (2) rounds of 24 hour pump testing concludes the bores are capable of sustaining a combined annual groundwater allocation of 60ML, supported by a significant level of available drawdown, and multiple aquifers with an extensive recharge zone.

10.2 RECOMMENDATIONS

Based on the findings and conclusions outlined in this report the following recommendations are provided:

• A long-term program of water level monitoring in the production bores should be considered. Water level monitoring will provide important baseline water level data and facilitate the long-term sustainable management of the groundwater resource;

- Install a suitable on-line flow meter on the discharge of the proposed production bore. Record discharge volumes on a regular basis for the production bore. The *NSW Office* of *Water (NOW)* may require this as a condition of the bore licensing;
- Measure and record water levels in the production weekly if manual or daily with automated logger. The NOW may require this schedule as a condition of the bore licensing. Hydroilex can advise on the method and can review the water level data on an annual basis;
- Consider collecting groundwater discharge samples on a regular basis (summer and winter) and submit to a NATA registered laboratory for water quality testing; and
- Proceed with the licensing of the production bores for the intended purpose of Irrigation, commercial and industrial, and apply to transfer an annual allocation of:
 - ➤ Bore 1 50ML supported by 24 hour pumping test; and
 - ➤ Bore 2 10ML.

11.0 REFERENCES

Agriculture and Resource Management Council of Australia and New Zealand, 2003. Minimum Construction Requirements for Water Bores in Australia. Edition 2, Sept. 2003.

ANZECC (2001) Australian New Zealand Guidelines For Fresh And Marine Water Quality. National Water Quality Management Strategy. Australian And New Zealand Environment Conservation Council.

Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ), 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume 3, Primary Industries - Rationale and Background Information (Chapter 9).

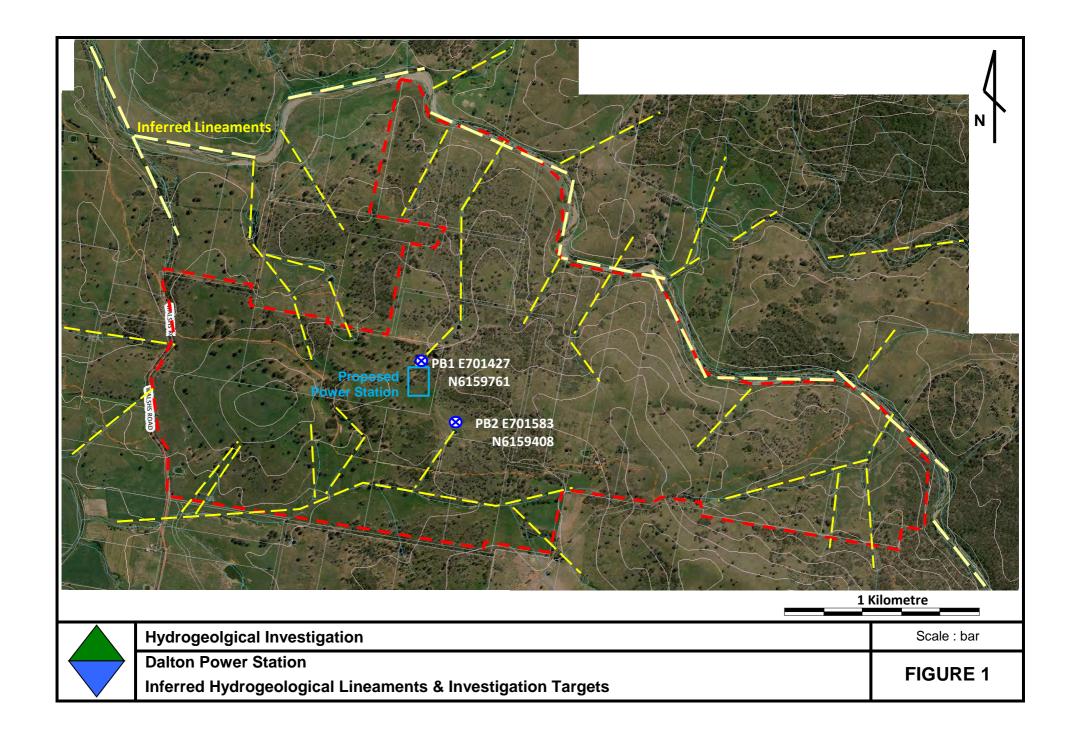
Australian Standard AS 2368--1990 Test Pumping of Water Wells

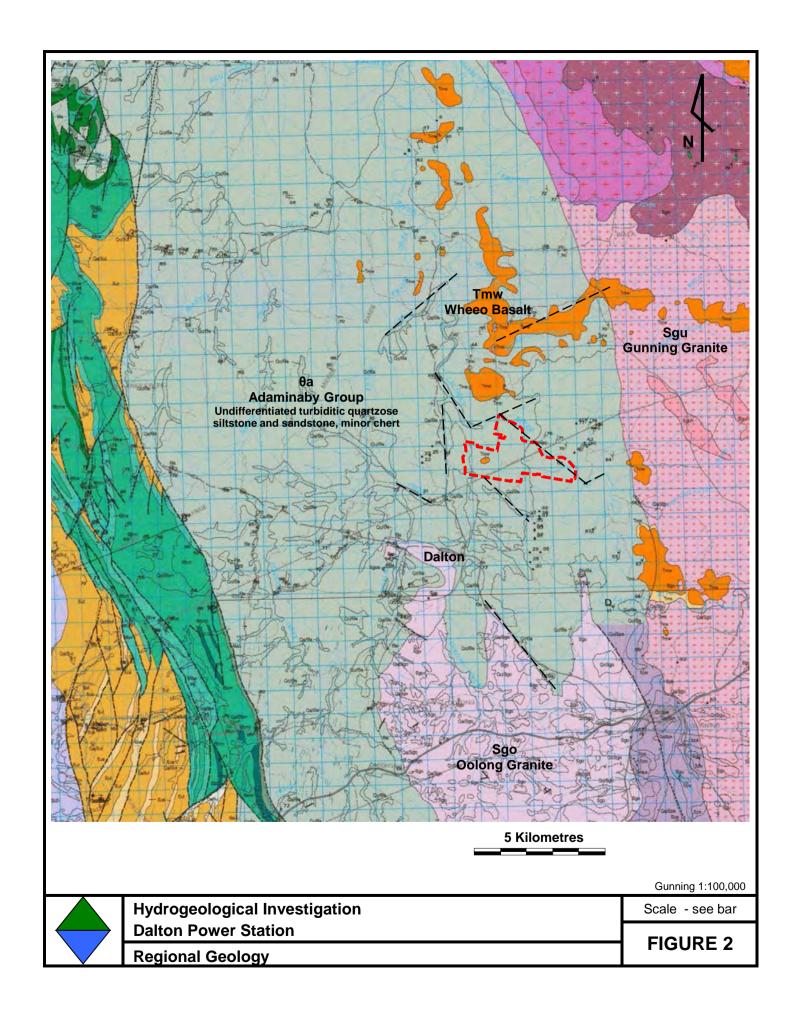
Cooper H.H. and Jacob C.E. 1946. A Generalised Graphical Method for Evaluating Constants and Summarising Field History. Trans. Amer. Geophys. Union. Vol. 27, pp.526

Domenico P.A. and Schwartz F.W. 1997. Physical and Chemical Hydrogeology. Second Ed. John Wiley & Sons, Inc. pp. 145

Fetter 2001. Applied Hydrogeology. Fourth Edition.

Freeze R.A. and Cherry J.A. 1997. Groundwater. Prentice-Hall, Inc.


Hydroilex Report HG10.7.1.LA. Groundwater Resource Review, Dalton Power Station.


FIGURES

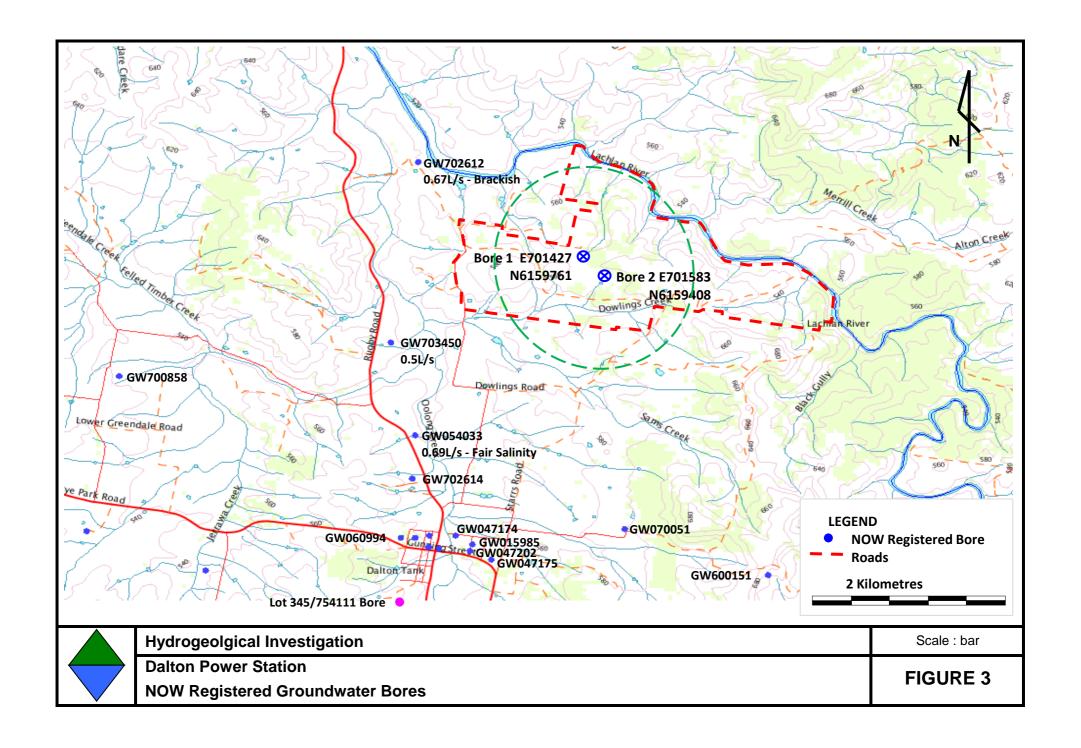

Figure 1 Location Map

Figure 2 Regional Geology

Figure 3 Registered Groundwater Bores

Appendix A Form A Bore Construction Report

Page 1 Hydroilex - Bore 2														
NSW D	DEPART	MENT OF	WATER	& ENE	RGY					FOR	M A			
Natural	l Resou	rce Produc	ts				PA	RTICU	ILARS	OF	COMPL	ETED '	WORK	
Driller's	Licence	No: 16 2	23			1	Work Li	cence N	lo:	70	B L	2336	52	2
Class of	Licence	: 4					Name o	f Licens	ee: A	GL Po	wer Ger	neration	n Pty Ltd	
Driller's	Name:	Dai	nny Hill				Intended Use: Irrigation, Commercial & Industrial					rial		
Assistan	nt Driller:	-					Completion Date: 22/12/2011							
Contract	tor:	Bunge	ndore	Water	Bores		DRILLI	DRILLING DETAILS				3		
							From	1	То		Hole		Drilling	
New bor	·e	X	Replace	Replacement bore					ı	Diameter		Method		
Deepen	ed		Enlarge	d			(m)		(m)		(mm)		Code	
Recondi	tioned		Other (s	pecify)			0		114		200		9	
Final De	epth	120.0 m					114		120		150		9	
WATE	R BEAR	ING ZONES	3											4
_	_			Esti	mated Y	ïeld	Test	DD		Dura	ation		Salinity	
From (m)	To (m)	Thickness (m)	SWL (m)	Individ	(L/s)	mulative	method	at end of (m)		Hrs	min	(Condu	ctivity or TI TDS	OS)
(111)	(111)	(111)	(111)	Aquif		mulative	Code	(111)		1115	111111	(µS/cm)	(mg/L))
15	15	0	26.84	seepa			1					((1119/2)	,
22	24	2		0.2	!		1							
39	41	2		0.3			1							
65 76	66 78	1 2		mind 0.1			1							
87	90	3		0.1		0.7	1					4600	3000)
CASIN	G / LINE	R DETAILS												5
Material	OD	Wall	From	То	Method	С	asing su	oport m	ethod		Cod	le	2	Ī
		Thickness			Fixing									
Code	(mm)	(mm)	(m)	(m)	Code	T	ype of ca	asing bo	ottom	1 1	Cod	le	2	Щ
5	150		0	90		1	llisers insta	lled	No	Yes[(indicate	e on sketc	h)
						Sump	installed	No	X Ye	s	From	m	То	m
						1	ire cement				From	_ m	То	m
						Casin	g Protecto	or camar	nted in r	olace	No	Yes	lvl	
WATE	R ENTR	Y DESIGN												6
WATER ENTRY DESIGN							ıı	or cerner	I					LO
N	0.5		General	T .		: I	S	creen		Ţ	Slot D	etails		
Material	OD	Wall	General From	То	Open	-	S		Len	Ţ		etails	Alignment	
		Wall Thickness	From		type	Э	S ixing Ap	creen perture	Len	gth	Slot D Width	etails	Alignment	
Material Code 5	OD (mm) 150	Wall		To (m) 90		Э	S ixing Ap	creen		gth	Slot D	etails		
Code	(mm)	Wall Thickness	From (m)	(m)	type	Э	S ixing Ap	creen perture (mm)	Len	gth	Slot D Width	etails	Alignment	
Code	(mm)	Wall Thickness	From (m)	(m)	type	Э	S ixing Ap	creen perture (mm)	Len	gth	Slot D Width	etails	Alignment	
Code 5	(mm) 150	Wall Thickness (mm)	From (m)	(m)	type	Э	S ixing Ap	creen perture (mm)	Len	gth	Slot D Width	etails	Alignment	
Code 5	(mm) 150 EL PAC	Wall Thickness (mm)	(m) 18	(m)	type	e C	Sixing Ap	creen perture (mm)	Len	gth m)	Slot D Width	Details	Alignment Code	
Code 5	(mm) 150	Wall Thickness (mm)	From (m)	(m)	type	Э	Sixing Ap	creen perture (mm)	Len	gth m)	Slot D Width	Details	Alignment	
Code 5	(mm) 150 EL PAC	Wall Thickness (mm)	(m) 18	(m)	type	Grain si	Sixing Ap	creen perture (mm)	Len (mr	gth m)	Slot E Width (mm)	Details	Alignment Code antity	
Code 5	(mm) 150 EL PAC Type	Wall Thickness (mm)	(m) 18	(m)	type	Grain si	Sixing Ap	creen perture (mm) 2	Len (mr	gth m)	Slot E Width (mm)	Details Qua	Alignment Code antity	
Code 5	(mm) 150 EL PAC Type	Wall Thickness (mm)	(m) 18 Grade	(m) 90	type	Grain si	ixing Ap	creen perture (mm) 2	Len (mr	gth m) h	Slot E Width (mm)	Details Qua	Alignment Code antity r m ³	
Code 5	(mm) 150 EL PAC Type	Wall Thickness (mm) K Graded Ungrade	(m) 18 Grade	(m) 90	type Cod	Grain si (mm)	Sixing Ap	creen perture (mm) 2	Len (mr	gth m) h	Slot E Width (mm)	Details Qua	Alignment Code antity r m ³	
Code 5 GRAVI Rounded Crushed Bentonit	(mm) 150 EL PAC Type d X	Wall Thickness (mm) K Graded Ungrade	(m) 18 Grade	(m) 90	type Cod	Grain si (mm)	ixing Ap	creen perture (mm) 2	Len (mr	gth m) h	Slot E Width (mm)	Details Qua	Alignment Code antity r m ³	

Page 2 NSW DEPARTMENT OF WATER & ENERGY

Natural Resource Products

				BOI	RE DEVEL	OPMENT				8
Chemical ι	used for brea	aking down d	drilling mu	ıd No	X	Yes	Name:			
Method	Bailing/Surg	jing 🔲 Je	etting	Airlift	ing X	Backwashing	Pu	ımping 🛚 🛚 🗴	Other:	
Duration		hrs	hrs	3	~2 hrs		hrs	2 4 hrs	3	hrs
			D	ISINFEC	TION ON	COMPLETIO	N			9
	Chemic	al/s used		Qı	uantity app	lied (litres)		Method of	application	
PUMPING TESTS ON COMPLETION 10										
			Pump	Initial		Water Level			Recovery	
٦	Гest	Date	intake	Water	Pumping	at end of	Duration		recovery	
t	ype		depth	Level	rate	pumping	of Test	Water	Time	taken
				(SWL)		(DDL)		level		
	6		(m)	(m)	(L/s)	(m)	(hrs)	(m)	(hrs)	(mins)
Multi stage	Stage 1 Stage 2									
(stepped	Stage 2			<u> </u>	Refer to I	Hydroilex Re	eport			
drawdown)							.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Single stag	je									
(constant r	ate)									
Height of n	neasuring po	oint above gr	ound leve	el	m	Test Method	Code		See Code	Table 4
		٧	VORK P	ARTLY	BACKFILL	ED OR ABA	NDONED			11
Original depth of work: metres Is work partly backfilled: No Yes										
ls work ab	andoned: 1	No Yes	Me	ethod of	abandonme	ent: Backfille	ed	Plugged	Сарр	ed
Has any ca	asing been le	eft in the wor	k No		Yes	From	m	То	m	
Sealing	/ fill type	From dep	oth	To de	pth	Sealing / fill ty	rpe F	rom depth	To depth	
Co	ode	(m)		(m))	Code		(m)	((m)
Site chosen	by: Hydrog	eologist X	Geolo	gist	Driller	Diviner	Clien	t Ot	her	12
Lot No	307	DP N	No	7541	11					13
	ation Co ord		Easting	7	01574	Northing	61 594	09	Zone	55
GPS:	No	Yes	X	>> AN	//////////////////////////////////////	or	MGA/GDA	х	(See expla	nation)
										ŕ
Please i	mark the wo	rk site with "	"X" on th	e DWE (CLID map.					
Indicate	also the dis	tances in me	etres from	two (2)	adjacent b	oundaries, and	d attach the	map to this	s Form A pa	ackage.
O'amatumas.										
					Signatu	res.				
						//	//,			
Driller:	(the	(on beh	nalf of drill	er)	Licens	see: //	af	(on behal	f of applican	<u>) </u>
Date:	20	/1/2012			Date:		20/1/20	11		

NSW DEPARTMENT OF WATER & ENERGY

Natural Resource Products

FORM A PARTICULARS OF COMPLETED WORK

DR	ILLER'S	HOLOGY)		15			
Dep	oth					WORK COM	NSTRUCTION
From	То			Description		SKI	ETCH
(m)	(m)						
0	1	Clay, yell	ow/brown				
1	6	Shale, sla	atey, weathe	ered, yellow/brov	vn		
6	12	a/a, light	brown				
12	25	slate, ligh	nt grey				
25	120			, occasional qւ	ıartz veining,		
		highly ca	arbonaceou	us below 72m			
						1	Hydroilex
						Report	
		V	VORK NOT	CONSTRUCTED	BY DRILLING RIG		16
Method of exc		Hand dug	Back ho		Dozer	Other	
Depth	Length	Width	Diameter	Lining	Dimentions of	From Depth	To Depth
(m)	(m)	(m)	(m)	material	liner (m)	(m)	(m)
		PI	ease attach	copies of the fo	llowing if available		17
Geologist log	No	Yes X	Laboratory analys	sis of water Sample	No Yes X Pump	ing test(s) N	o Yes X
Geophysical log	y No X	Yes	Sieve analysis of	aquifer material	No X Yes Install	ed Pump details N	o X Yes

					Pag	e 1	Ну	droilex	- Bo	ore 1					
NSW [DEPART	TMENT OF	FORM A												
Natural Resource Products								PARTICULARS OF COMPLETED WORK							
Driller's	Licence	No: 16	23	Work Licence No: 70 B L 233651 2							2				
Class of	Licence	e: 4		Name	of Licens	see:	AGL P	ower G	ener	atio	n Pty Lt	td			
Driller's	Da	Intend	ed Use:		Irrigation		mme	rcial	& Indu	strial					
Assistar	nt Driller:		Compl	etion Dat	te:	22/12/	2011								
Contractor: Bungendore Water Bores								ING DE	TAIL	S					3
				Fro	m	То		Hole			Drilling	J			
New bor	re	X	Replace	ement bo	re	_					Diamet	er		Method	Ł
Deepen	ed		Enlarge	d			(m)	(m)		(mm)			Code	
Recondi	itioned		Other (s	specify)			0		114	l e	200			9	
Final De	epth	114.0 m													
WATE	R BEAF	RING ZONE	S												4
				Esti	mated Yi	eld	Test	DD	L	Dur	ation			Salinity	
From	To	Thickness	SWL		(L/s)		method			<u> </u>				ctivity or	
(m)	(m)	(m)	(m)	Individ Aquif		nulative	Code	(m))	Hrs	min		ond.	TD (ma	
40	42	2	26.84	seepa			1					(μ3	i/ Cili)	(mg/	<u>'L)</u>
49	51	2		0.3			1								
64	66	2		0.3			1								
89 103	91 105	2	 	0.5 2		4	1					2.	700	180	10
		<u> </u>												100	
		R DETAILS	1	<u> </u>	II	<u> </u>				_		_			5
Material	OD	Wall Thickness	From	То	Method		asing si	upport m	etho	d	С	ode		2	
Code	(mm)	(mm)	(m)	(m)	Fixing Code										
9	200	(*****)	0	6			lisers ins		No	Yes			dicate	on ske	tch)
5	150		0	114			installed			Yes	From			То	m
							ıre cemer				From		m	То	m
								tor ceme			No		Yes		
WATE	R ENTR	Y DESIGN								·					6
			General				Screen Slot Details								
Material	OD	Wall	From	То	Openi	ng F		perture	L	ength.	Wic			Alignme	nt
_	,	Thickness		_	type									_	
Code 5	(mm) 150	(mm)	(m) 54	(m) 114	Code	e C	ode	(mm) 2	1	(mm)	(mr	m)		Code	
3	130		34	114											
	EL PAC	K									ı				7
	Туре		Grade		G	rain si (mm)	ze			epth m)			Qu	antity	
L	From To From To Litres or m ³														
Rounde	Rounded X Graded X 6									114	1			1.4	4
Crushed	d _	Ungrad	led												
Bentonit	te/Grout	seal No		Yes	x										
Method	of place	ment of Gra	vel Pack		С	ode	1								
For D	WEu	se only:			G	W									

Page 2 NSW DEPARTMENT OF WATER & ENERGY

Natural Resource Products

BORE DEVELOPMENT 8												8			
Chemical used for breaking down drilling mud No X Yes Name:															
Method	Bailing/Surg	ing 🔲 ļ	Jetting	А	Airlifting	g X	Backwash	ing		Pui	mping	X	Other:		
Duration		hrs	ŀ	nrs	~2	2 hrs			hrs		2 4	hrs		ŀ	nrs
DISINFECTION ON COMPLETION 9															
	Chemical/s used Quantity applied (litres) Method of application														
PUMPING TESTS ON COMPLETION 10															
Pump Initial Water Level Recovery															
٦	est	Date	intak	e Wa	ater F	Pumping	at end o	f	Duratio	on					
t	ype		depth			rate	pumping	9	of Tes	st	Water Time		taken		
				(SV			(DDL)				level				
	0		(m)	(n	n)	(L/s)	(m)		(hrs)		(m)		(hrs)	(min	ıs)
Multi stage	Stage 1 Stage 2							-							
(stepped	Stage 2 Stage 3]	 R	efer to	l Hydroilex	Re	port						
drawdown)	Stage 4				T	0,0, 10	ly an oniox		 						
Single stag															
(constant r	ate)														
Height of measuring point above ground level m Test Method Code See Code Table 4															
WORK PARTLY BACKFILLED OR ABANDONED 11															
Original depth of work: metres Is work partly backfilled: No Yes															
ls work aba	andoned: N	lo Ye	s 🔲 I	Method	d of at	oandonm	ent: Back	fille	d]	– Plugged	<u> </u>	Сарр	ed	
Has any ca	sing been le	ft in the wo	ork I	No [Y	es 🗌	From			m	То		m		
Sealing	fill type	From de	epth	To	o dept	:h	Sealing / fi	ill ty	ре	Fr	om dep	th	То	depth	
Co	de	(m)			(m) Code)	(m) (m)				(m)		
Site chosen	by: Hydrog	eologist	X Geo	ologist		Driller	Divin	ner [CI	lient		Othe	r <u></u>	[12
Lot No	306	DP	No No	7	5411°	1									13
	ation Co ord	linates	Eastin	g	70 ⁻	1426	Northin	g	61 5	976	31	Zo	ne	55	
GPS: No Yes X >> AMG/AGD or MGA/GDA X (See explanation)															
			٠٠٠									(-		,	<i>'</i>
Please i	nark the wor	k site with	"X" on	the DV	VE CL	JD map.									
Indicate also the distances in metres from two (2) adjacent boundaries, and attach the map to this Form A package.															
Signatures:															
		,						/	2.						
Driller:	1 hs	(on b	ehalf of d	riller)		Licen	see: _/	X	last		(on be	half o	f applicar	it)	
Dotor	20	/1/2012	_			Doto	-0	_ _	20/4	/20-		-	_		
Date:	20/	1/ 2012				Date:			20/1,	, ZU:	I.I.				

NSW DEPARTMENT OF WATER & ENERGY

Natural Resource Products

FORM A PARTICULARS OF COMPLETED WORK

DR					15						
Der From (m)	WORK	CON		JCTIC	N						
0	(m) 17	Clay and	wthrd shale	e, orange/brown							
17	19		hrd, clayey,								
19	48	Shale, lig		ng g. cy							
48	72		edium grey								
72	114		latey, dark	grey,							
				asional silty in	terbeds						
						Ref	er to	Hydı	oilex	(
						Rep	ort				
									-		
		V	VORK NOT	CONSTRUCTED	BY DRILLING RIG					16	
Method of exc	cavation:	Hand dug	Back ho	e Dragline [Dozer	Other					
Depth	Length	Width	Diameter	Lining	Dimentions of	From De	epth	To	o Dep	oth	
(m)	(m)	(m)	(m)	material	liner (m)	(m)	-		(m)		
							_				
		P	lease attach	copies of the fo	llowing if available					17	
Geologist log	No			sis of water Sample		ing test(s)	No		Yes	X	
Geophysical log											

Appendix B

Pumping Test Results (Round 1)

TABLE 1

DRAWDOWN ANALYSIS DATA SINGLE RATE PUMP TEST

Test date : 22/12/2011 Start time : 3:15 PM

Pump Off: 23/12/2011 3:15 PM

Casing I.D.: Pump type/mod: -Pump O.D.:

3:15 AM

3:15 PM

720

840

960

1080

1200

1440

44.34

44.78

45.17

45.48

45.57

46.06

12

14

16

18

20

24

HYDROILEX

PROJECT: Dalton AGL

CLIENT: Aurecon **BORE No#** Bore 1 Tested by: J.Lee Av.Pump Rate (L/sec): 2.94 SWL (mbtoc): 27.84

Ref. Point (m): 1.00

Pump Intake m: Depth to water Discharge Time Drawdown Time metres below Rate to fill Comments / Real time Hours minutes metres ground level L/sec 200L **Observations** T S1 mbgl Q Secs 3:15 PM 0 0.00 26.84 2.94 = SWL 10 36.81 63.65 20 36.51 63.35 Note: Data recorded at 30 37.86 64.70 10 minute intervals 40 65.45 38.61 on Minitrol 50 39.07 65.91 66.22 4:15 PM 1 60 39.38 70 39.55 66.39 80 39.87 66.71 90 40.06 66.90 5:15 PM 2 120 40.63 67.47 -150 40.97 67.81 --6:15 PM 180 3 41.33 68.17 -_ 210 41.65 68.49 --7:15 PM 4 240 41.93 68.77 270 42.12 68.96 5 42.36 8:15 PM 300 69.20 _ 330 42.46 69.30 9:15 PM 360 42.67 69.51 6 _ 7 420 42.94 69.78 8 480 43.35 70.19 12:15 AM 9 540 43.66 70.50 10 600 43.91 70.75 11 660 44.10 70.94 670 11 44.12 70.96

71.18

71.62

72.01

72.32

72.41

72.90

_

2.94

_

-

Dalton_AGL_B1_PT 1

TABLE 2

RECOVERY ANALYSIS DATA SINGLE RATE PUMP TEST

Test date : 22/12/2011 Start time : 3:15 PM

 Start time :
 3:15 PM
 Tested by:

 Pump Off:
 23/12/2011
 3:15 PM
 Av.Pump Rate (L/sec):

 Casing I.D.:
 SWL (mbtoc):

 Pump type/mod:
 Ref. Point (m):

Pump O.D.: -Pump Intake m: -

Minutes Time since Depth to water Residual Comments / Real time metres below **Observations** since pump pump stopped Drawdown Started Minutes ground level Ratio metres Hrs mbgl t/t' S' t ť 3:15 PM 1440 0.1 14401 46.06 = depth to water at 73.90 1450 145 12.55 instant pump stopped 10 40.39 1460 20 37.57 73 9.73 1470 30 36.68 49.0 8.84 1480 40 35.01 37.0 7.16 1490 50 35.68 29.8 7.83 4:15 PM 1500 1 60 35.43 25.0 7.59 1510 70 35.20 21.6 7.36 1520 80 35.00 19.0 7.16 1530 90 34.83 17.0 6.99 5:15 PM 2 1560 120 34.39 13.0 6.55 150 1590 10.6 6.20 34.04 6:15 PM 1620 3 180 9.0 6.01 33.85 1650 7.9 210 5.69 33.53 7:15 PM 1680 4 7.0 240 33.34 5.50 1710 270 33.15 6.3 5.31 8:15 PM 1740 5 300 5.15 32.99 5.8 1770 330 32.84 5.4 5.00 9:15 PM 1800 6 360 32.70 5.0 4.86 1860 7 420 4.4 4.60 32.44 11:15 PM 1920 8 480 32.23 4.0 4.39 1980 9 540 3.7 4.20 32.04 1:15 AM 2040 10 600 31.86 3.4 4.02 2100 11 660 31.70 3.2 3.86 3:15 AM 2160 12 720 31.56 3.0 3.72 2280 14 840 31.33 2.7 3.49 2400 16 960 -2520 18 1080 ---20 2640 1200 ---3:15 PM 24 2880 1440

HYDROILEX

PROJECT:

BORE No#

CLIENT:

Dalton AGL

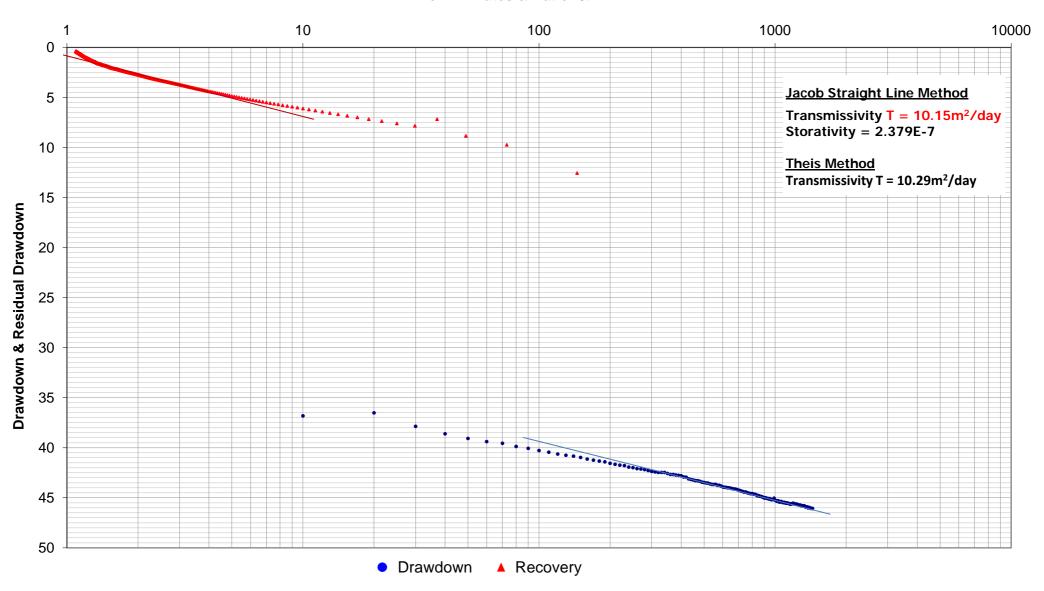
Aurecon

Bore 1

J.Lee

27.84

1.00


2.94

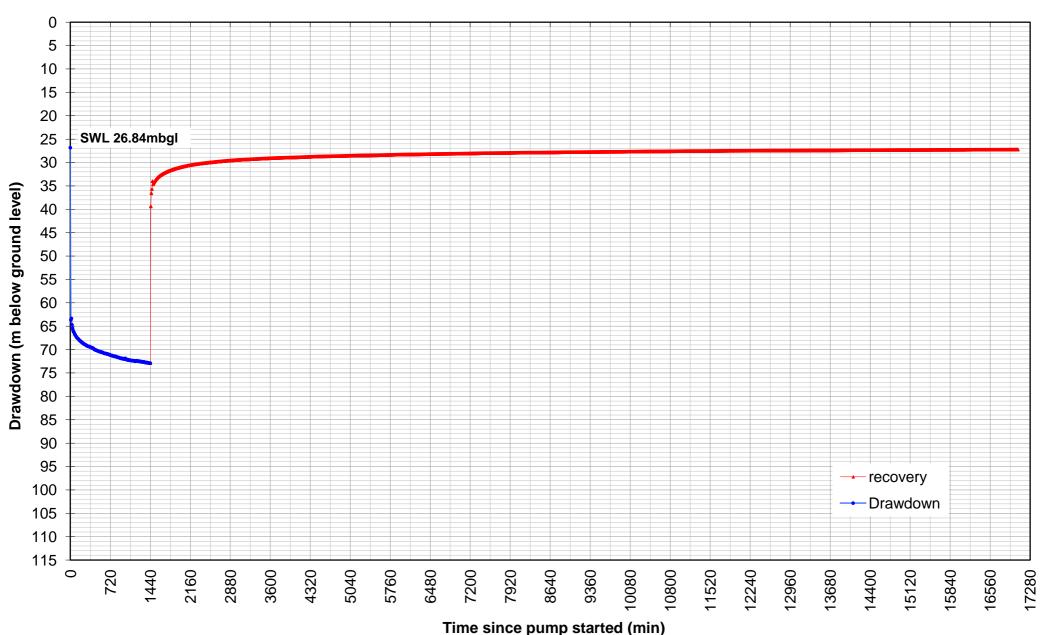

Dalton AGL B1_PT 1

Chart 1: Drawdown & Recovery Curves - 'Dalton-AGL' Bore 1 Pumping at 2.94 L/sec for 24 Hours

Time in Minutes & Ratio T/t'

TABLE 1

HYDROILEX

DRAWDOWN ANALYSIS DATA PROJECT: Dalton AGL SINGLE RATE PUMP TEST **CLIENT:** Aurecon

Test date : 10/01/2012 **BORE No#** Bore 2 Tested by: J.Lee & D Schmich

Pump Off: 11/01/2012 4:00 PM Av.Pump Rate (L/sec): 0.55 Casing I.D.: SWL (mbtoc): 14.88 Ref. Point (m): 1.00

Pump type/mod: -Pump O.D.:

3:30 PM

Start time :

Pump Intake m: -Depth to water Discharge Time

rump make m				Deptil to water	_	Tille			
		Time	Drawdown	metres below	Rate	to fill	Comments /		
Real time Hours		minutes	metres	ground level	L/sec	200L	Observations		
		T	S1	mbgl	Q	Secs			
3:30 PM		0	0.00	13.88	0.60	-	= SWL		
		10	6.16	20.04	-	-			
		20	8.74	22.62	-	-	Note: Data recorded at		
		30	11.50	25.38	-	-	10 minute intervals		
		40	14.75	28.63	-	-	on Minitrol		
		50	17.14	31.02	-	-			
4:30 PM	1	60	18.81	32.69	-	-			
		70	20.22	34.10	-	-			
		80	21.42	35.30	-	-			
		90	22.49	36.37	-	-			
5:30 PM	2	120	24.91	38.79	-	-			
		150	26.69	40.57	-	-			
6:30 PM	3	180	28.44	42.32	-	-			
		210	29.89	43.77	-	-			
7:30 PM	4	240	31.00	44.88	-	-			
		270	32.06	45.94	-	-			
8:30 PM	5	300	32.93	46.81	-	-			
		330	33.65	47.53	-	-			
9:30 PM	6	360	34.36	48.24	-	-			
	7	420	35.51	49.39	-	-			
	8	480	36.38	50.26	-	-			
12:30 AM	9	540	37.18	51.06	-	-			
	10	600	37.91	51.79	-	-			
	11	660	38.69	52.57	-	-			
	11	670	38.80	52.68	-	-			
3:30 AM	12	720	39.31	53.19	-	-			
	14	840	40.62	54.50	-	-			
	16	960	41.86	55.74	0.60	-			
	16	1030	42.53	56.41	0.55	-			
	18	1080	41.29	55.17	-	-			
	20	1200	43.14	57.02	-	-			
3:30 PM	24	1440	76.47	90.35	0.55	-			
	24	1440	76.44	90.32		-			

Dalton_AGL_B2_PT 1

TABLE 2

RECOVERY ANALYSIS DATA PROJECT: Dalton AGL
SINGLE RATE PUMP TEST CLIENT: Aurecon
Test date: 10/01/2012 BORE No # Bore 2

 Test date :
 10/01/2012
 BORE No #
 Bore 2

 Start time :
 3:30 PM
 Tested by:
 J.Lee & D Schmich

 Pump Off:
 11/01/2012
 4:00 PM
 Av.Pump Rate (L/sec):
 0.55

 Casing I.D.:
 SWL (mbtoc):
 14.88

 Pump type/mod:
 Ref. Point (m):
 1.00

Pump O.D.: Pump Intake m: -

Real time	Minutes since pump Started	Time since pump stopped Hrs Minutes		Depth to water metres below ground level	Ratio	Residual Drawdown metres	Comments / Observations
	t		ť'	mbgl	t/t'	S'	
4:00 PM	1470		0.1	91.32	14701	76.44	= depth to water at
	1480		10	78.07	148	63.19	instant pump stopped
	1490		20	54.95	75	40.07	
	1500		30	38.71	50.0	23.83	
	1510		40	27.60	37.8	12.72	
	1520		50	23.15	30.4	8.27	
5:00 PM	1530	1	60	21.26	25.5	6.38	
	1540		70	19.59	22.0	4.71	
	1550		80	18.80	19.4	3.92	
	1560		90	18.40	17.3	3.52	
6:00 PM	1590	2	120	17.63	13.3	2.75	
	1620		150	17.35	10.8	2.47	
7:00 PM	1650	3	180	17.25	9.2	2.37	
	1680		210	17.03	8.0	2.15	
8:00 PM	1710	4	240	16.90	7.1	2.02	
	1740		270	16.82	6.4	1.94	
9:00 PM	1770	5	300	16.74	5.9	1.86	
	1800		330	16.68	5.5	1.80	
10:00 PM	1830	6	360	16.62	5.1	1.74	
	1890	7	420	16.52	4.5	1.64	
12:00 AM	1950	8	480	16.43	4.1	1.55	
	2010	9	540	16.36	3.7	1.48	
2:00 AM	2070	10	600	16.30	3.5	1.42	
	2130	11	660	16.24	3.2	1.36	
4:00 AM	2190	12	720	16.18	3.0	1.30	
	2310	14	840	16.09	2.8	1.21	
	2430	16	960	-	-	-	
	2550	18	1080	-	-	-	
	2670	20	1200	-	-	-	
4:00 PM	2910	24	1440	-	-	-	

HYDROILEX

Dalton_AGL_B2_PT 1

Chart 1: Drawdown & Recovery Curves - 'Dalton-AGL' Bore 2 Pumping at 0.55 L/sec for 24 Hours

SWL 13.88mbgl

Time in Minutes & Ratio T/t'

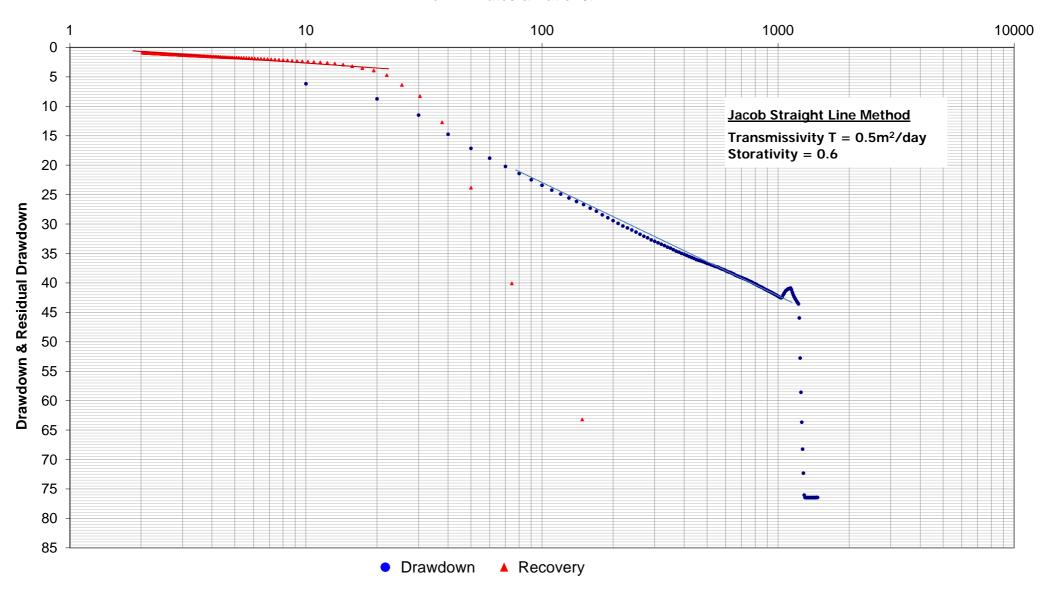
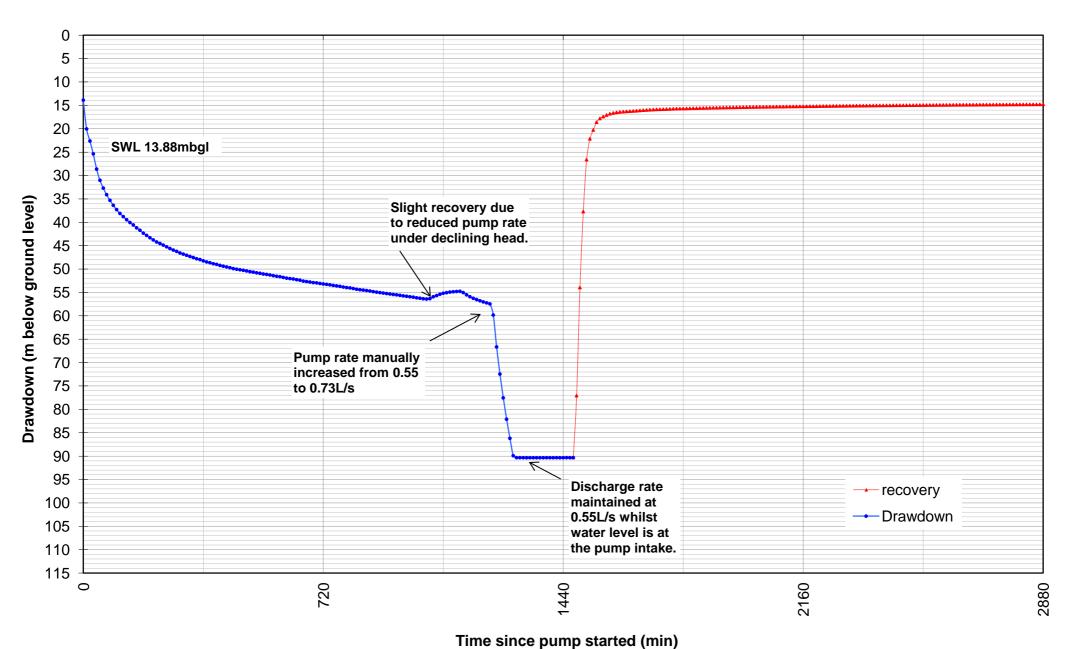



Chart 2: Time-Drawdown & Recovery - 'Dalton - AGL' Bore 2 Pumping at 0.55 L/sec for 24 Hours

Appendix C

Pumping Test Results (Round 2)

TABLE 1

DRAWDOWN ANALYSIS DATA SINGLE RATE PUMP TEST

Test date : 16/02/2012 **Start time :** 8:00 AM

Pump Off: 17/02/20°
Casing I.D.: Pump type/mod: Pump O.D.: -

.

Depth to water Discharge Time

Dalton AGL

Aurecon

Bore 1

J.Lee

2.94

27.41

0.70

HYDROILEX

CLIENT:

PROJECT:

BORE No#

Ref. Point (m):

Pump Intake m:	80			Depth to water	Discharge	Time	
		Time	Drawdown	metres below	Rate	to fill	Comments /
Real time	Hours	minutes	metres	ground level	L/sec	200L	Observations
		T	S1	mbgl	Q	Secs	
8:00 AM		0	0.00	26.71	3.00	66.0	= SWL
		10	22.88	49.59	-	-	
		20	29.42	56.13	-	-	Note: Data recorded at
		30	30.92	57.63	-	-	10 minute intervals
		40	31.65	58.36	-	-	on Minitrol
		50	32.10	58.81	-	-	
9:00 AM	1	60	32.45	59.16	-	-	
		70	32.69	59.40	-	-	
		80	32.92	59.63	-	-	
		90	33.05	59.76	-	-	
10:00 AM	2	120	33.43	60.14	-	-	
		150	33.73	60.44	-	-	
11:00 AM	3	180	34.03	60.74	-	-	
		210	34.29	61.00	-	-	
12:00 PM	4	240	34.43	61.14	-	-	
		270	34.58	61.29	-	-	
1:00 PM	5	300	34.71	61.42	-	-	
		330	34.86	61.57	-	-	
2:00 PM	6	360	35.04	61.75	-	-	
	7	420	35.37	62.08	-	-	
	8	480	35.68	62.39	-	-	
5:00 PM	9	540	35.98	62.69	-	-	
	10	600	36.24	62.95	-	-	
	11	660	36.51	63.22	-	-	
	11	670	36.62	63.33	-	-	
8:00 PM	12	720	36.84	63.55	-	-	
	14	840	37.41	64.12	-	-	
	16	960	37.96	64.67	-	-	
	18	1080	38.52	65.23	-	-	
	20	1200	39.03	65.74		-	
8:00 AM	24	1440	39.53	66.24	2.80	72.0	

Dalton_AGL_B1_PT2

TABLE 2

RECOVERY ANALYSIS DATA SINGLE RATE PUMP TEST

Test date: 16/02/2012 Start time: 8:00 AM Pump Off: 17/02/2012 8:00 AM

Casing I.D.: Pump type/mod: Pump O.D.: Pump Intake m: 80

PROJECT: Dalton AGL

HYDROILEX

 CLIENT:
 Aurecon

 BORE No #
 Bore 1

 Tested by:
 J.Lee

 Av.Pump Rate (L/sec):
 2.94

 SWL (mbtoc):
 27.41

 Ref. Point (m):
 0.70

Real time	Minutes since pump Started t	Time s pump s Hrs		Depth to water metres below ground level mbgl	Ratio t/t'	Residual Drawdown metres S'	Comments / Observations	
8:00 AM	1440		0.1	66.94	14401	39.53	= depth to water at	
	1450		10	44.38	145	16.97	instant pump stopped	
	1460		20	37.67	73	10.26		
	1470		30	36.61	49.0	9.20		
	1480		40	36.05	37.0	8.64		
	1490		50	35.66	29.8	8.25		
9:00 AM	1500	1	60	35.35	25.0	7.94	80% recovery	
	1510		70	35.11	21.6	7.70	•	
	1520		80	34.89	19.0	7.48		
	1530		90	34.72	17.0	7.31		
10:00 AM	1560	2	120	34.28	13.0	6.87		
	1590		150	33.94	10.6	6.53		
11:00 AM	1620	3	180	33.74	9.0	6.33		
	1650		210	33.31	7.9	5.90		
12:00 PM	1680	4	240	33.12	7.0	5.71		
	1710		270	32.94	6.3	5.53		
1:00 PM	1740	5	300	32.78	5.8	5.37		
	1770		330	32.63	5.4	5.22		
2:00 PM	1800	6	360	32.49	5.0	5.08		
	1860	7	420	32.24	4.4	4.83		
4:00 PM	1920	8	480	32.03	4.0	4.62		
	1980	9	540	31.86	3.7	4.45		
6:00 PM	2040	10	600	31.70	3.4	4.29		
	2100	11	660	31.55	3.2	4.14	90% recovery	
8:00 PM	2160	12	720	31.40	3.0	3.99		
	2280	14	840	31.19	2.7	3.78		
	2400	16	960	31.00	2.5	3.59		
<u> </u>	2520	18	1080	30.83	2.3	3.42		
	2640	20	1200	30.70	2.2	3.29		
8:00 AM	2880	24	1440	30.49	2.0	3.08		

Dalton_AGL_B1_PT2

Chart 1: Drawdown & Recovery Curves - 'Dalton-AGL' Bore 1 Pumping at 3.0 L/sec for 24 Hours (TEST 2)

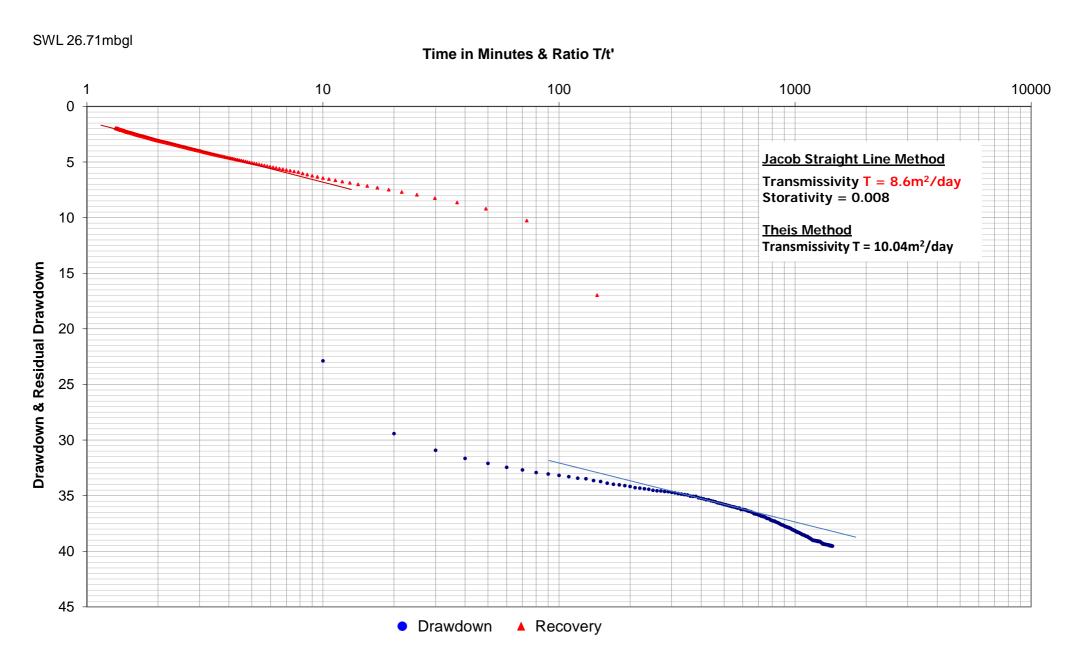
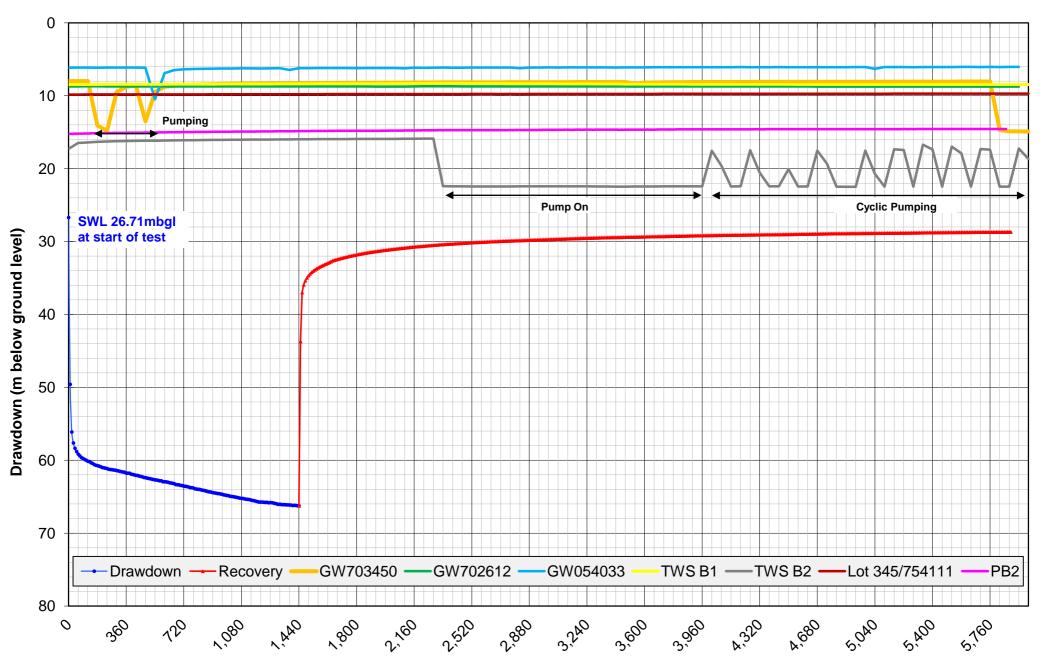



Chart 2: Time-Drawdown & Recovery - 'Dalton - AGL' Bore 1 Pumping at 3 L/sec for 24 Hours (TEST 2)

TABLE 1

HYDROILEX DRAWDOWN ANALYSIS DATA PROJECT: Dalton AGL SINGLE RATE PUMP TEST **CLIENT:** Aurecon

BORE No# Test date : 14/02/2012 Bore 2 Start time : 9:45 AM Tested by: J.Lee & D Schmich

Pump Off: 15/02/2012 9:45 AM Av.Pump Rate (L/sec): 0.60 Casing I.D.: SWL (mbtoc): 16.30 Ref. Point (m): 1.00

Pump type/mod: -Pump O.D.: Pump Intake m: 85

Depth to water Discharge Time metres below to fill

· amp mane m				Dopul to trate.			
		Time	Drawdown	metres below	Rate	to fill	Comments /
Real time	Hours	minutes	metres	ground level	L/sec	100L	Observations
		T	S1	mbgl	Q	Secs	
9:45 AM		0	0.00	15.30	0.67	150.0	= SWL
		10	4.09	19.39	-	-	
		20	11.08	26.38	-	-	Note: Data recorded at
		30	15.54	30.84	-	-	10 minute intervals
		40	19.07	34.37	-	-	on Minitrol
		50	22.01	37.31	-	-	
10:45 AM	1	60	24.38	39.68	-	-	
		70	26.65	41.95	-	-	
		80	28.91	44.21	-	-	
		90	30.91	46.21	-	-	
11:45 AM	2	120	35.75	51.05	-	-	
		150	39.18	54.48	-	-	
12:45 PM	3	180	41.59	56.89	-	-	
		210	43.65	58.95	-	-	
1:45 PM	4	240	45.30	60.60	-	-	
		270	46.70	62.00	-	-	
2:45 PM	5	300	47.83	63.13	-	-	
		330	48.84	64.14	-	-	
3:45 PM	6	360	49.54	64.84	-	-	
	7	420	50.87	66.17	-	-	
	8	480	52.10	67.40	0.63	158.0	
6:45 PM	9	540	53.29	68.59	-	-	
	10	600	54.30	69.60	-	-	
	11	660	55.33	70.63	-	-	
	11	670	55.58	70.88	-	-	
9:45 PM	12	720	56.55	71.85	-	-	
	14	840	58.26	73.56	-	-	
	16	960	59.71	75.01	-	-	
	18	1080	61.17	76.47	-	-	
	20	1200	63.20	78.50	-	-	
9:45 AM	24	1440	66.52	81.82	0.58	171.0	

Dalton_AGL_B2_PT2

TABLE 2

RECOVERY ANALYSIS DATA PROJECT :
SINGLE RATE PUMP TEST CLIENT :

 Test date :
 14/02/2012
 BORE No #
 Bore 2

 Start time :
 9:45 AM
 Tested by:
 J.Lee & D Schmich

 Pump Off:
 15/02/2012
 9:45 AM
 Av.Pump Rate (L/sec):
 0.60

 Casing I.D.:
 SWL (mbtoc):
 16.3

 Pump type/mod:
 Ref. Point (m):
 1.00

Pump O.D.: Pump Intake m: 85

Real time	Started Hrs Minutes ground level Ratio t t' mbgl t/t'		Ratio t/t'	Residual Drawdown metres S'			
9:45 AM	1440		0.1	82.82	14401	66.52	= depth to water at
	1450		10	79.93	145	63.63	instant pump stopped
	1460		20	53.14	73	36.84	
	1470		30	36.35	49.0	20.05	
	1480		40	26.19	37.0	9.89	
	1490		50	22.55	29.8	6.25	
10:45 AM	1500	1	60	20.95	25.0	4.65	
	1510		70	19.41	21.6	3.11	
	1520		80	18.70	19.0	2.40	
	1530		90	18.28	17.0	1.97	
11:45 AM	1560	2	120	17.37	13.0	1.07	
	1590		150	17.04	10.6	0.74	
12:45 PM	1620	3	180	16.92	9.0	0.62	
	1650		210	16.76	7.9	0.46	
1:45 PM	1680	4	240	16.49	7.0	0.19	
	1710		270	16.16	6.3	-0.14	
2:45 PM	1740	5	300	15.82	5.8	-0.48	
	1770		330	15.72	5.4	-0.58	
3:45 PM	1800	6	360	15.63	5.0	-0.67	
	1860	7	420	15.47	4.4	-0.83	
5:45 PM	1920	8	480	15.36	4.0	-0.94	
	1980	9	540	15.28	3.7	-1.02	
7:45 PM	2040	10	600	15.20	3.4	-1.10	
	2100	11	660	15.12	3.2	-1.18	
9:45 PM	2160	12	720	15.06	3.0	-1.24	
	2280	14	840	14.96	2.7	-1.34	
	2400	16	960	-	-	-	
	2520	18	1080	-	-	-	
	2640	20	1200	-	-	-	
9:45 AM	2880	24	1440	-	-	-	

HYDROILEX

Dalton AGL

Aurecon

Dalton_AGL_B2_PT2

Chart 1: Drawdown & Recovery Curves - 'Dalton-AGL' Bore 2 Pumping at 0.6 L/sec for 24 Hours (TEST 2)

Time in Minutes & Ratio T/t'

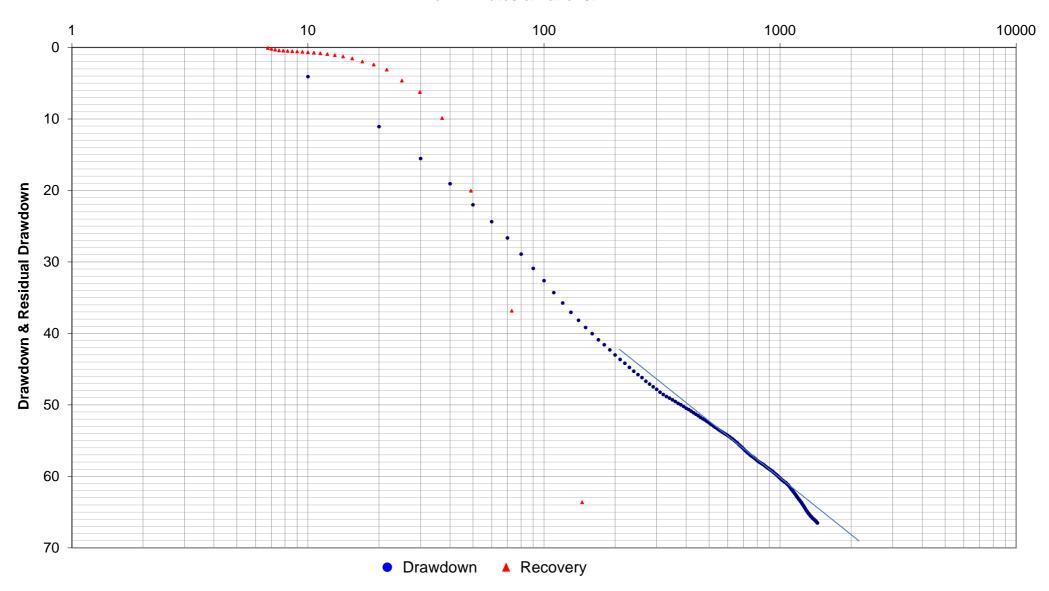
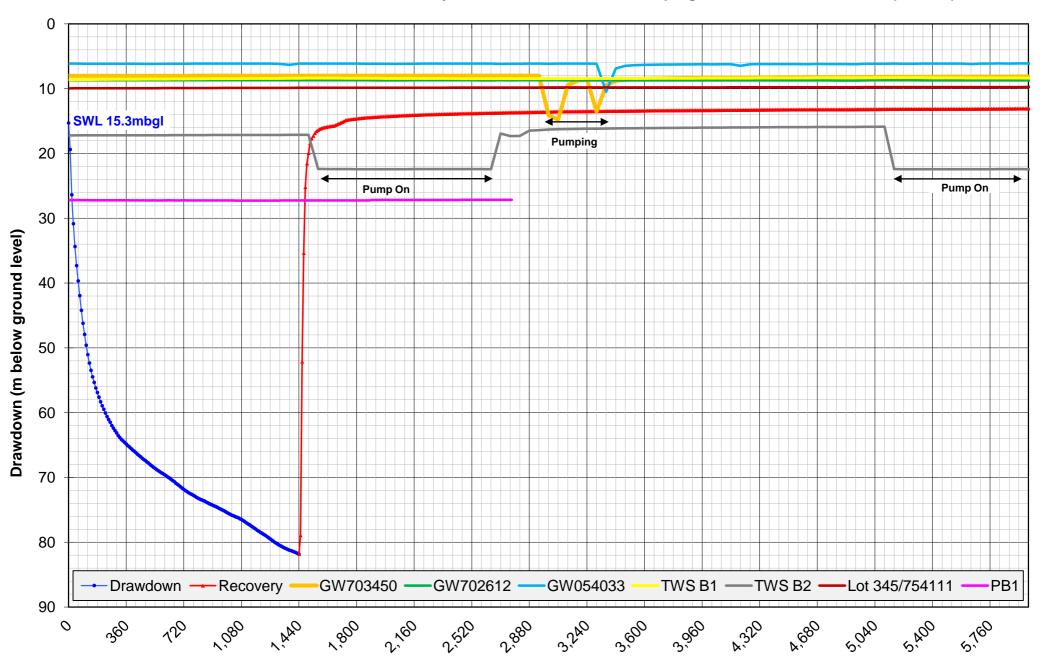



Chart 2: Time-Drawdown & Recovery - 'Dalton - AGL' Bore 2 Pumping at 0.6 L/sec for 24 Hours (TEST 2)

Appendix D

Laboratory Certificates of Analysis

04-Jan-2012

Environmental Division (Water Resources Group)

Certificate of Analysis

Batch No: XHYDROILEX_21584 Page Page 1 of 3

Final Report: XHYDROILEX_21584_LALK6 Laboratory Canberra Laboratory

Address PO Box 1834, Fyshwick, Canberra. ACT 2609.

Date Sampled:

 Client:
 Hydroilex
 Phone
 02 6202 5401

 Contact:
 Rohan Last
 Fax
 02 6202 5452

 Address:
 38 Gibbs Street
 Contact:
 Shane Reynolds

Miranda NSW 2228 Supervisor Chemistry

shane.reynolds@alsglobal.com

04-Jan-2012

snane.reynolos@aisglobai.com

Date Issued: 12-Jan-2012 Date Testing Commenced: 04-Jan-2012

Date Samples Received:

Client PO: Dalton Power Stn

Dalton PS Bore 1

Client Ref:

	The sample(s) referred to in this report were analysed by the following method(s): # - NATA accreditation does not cover the performance of this service										
Analysis	Method	Laboratory	NATA No.	Analysis	Method	Laboratory	NATA No.	Analysis	Method	Laboratory	NATA No.
Chloride	35	CANBERRA	992	Sulphate	35	CANBERRA	992	Alkal.(CaCO3)	10	CANBERRA	992
Conductivity	65	CANBERRA	992	Sulphide	273	CANBERRA	992	T.Diss Solids	260	CANBERRA	992
рН	210	CANBERRA	992	Diss. Calcium	120	CANBERRA	992	Diss. Magnesium	120	CANBERRA	992
Diss. Mercury	122	CANBERRA	992	Diss. Metals	121	CANBERRA	992	Total Calcium	120	CANBERRA	992
Total Hardness	105	CANBERRA	992	Total Iron	120	CANBERRA	992	Total Magnesium	120	CANBERRA	992
Total Potassium	120	CANBERRA	992	Total Sodium	120	CANBERRA	992	Nitrate (asN)	150 152	CANBERRA	992
Nitrite (asN)	150	CANBERRA	992	T.Oxid Nit(asN)	150	CANBERRA	992				

Temperature on receipt at Lab: 14.7

Signatorie:

These results have been electronically signed by the authorised signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11

Name	Title	Name	Title
Geetha Ramasundera	Chemistry	Shane Reynolds	Supervisor Chemistry
Terry Obrien	Supervisor Nutrients	Titus Vimalasiri	Supervisor Metals

Page: Page 2 of 3

Batch No: XHYDROILEX_21584

Report Number: XHYDROILEX_21584_LALK6

Client: Hydroilex

Client Ref: Dalton PS Bore 1

Client Sample ID. Dailton PS Bore 1			g	Sample No.	869180
Client Sample ID. Sample Point. Sample Point. Sample Date. GRNDWATER 04-Jan-2012 10:30:00AM				ample No.	
Sample Point. Sample Date. GRNDWATER 04-Jan-2012 10:30:00AM			Client	Samnla ID	
Analysis			Ollent	oumple ib.	
Analysis			San	nple Point.	GRNDWATER
Analysis				•	04-Jan-2012
Alkal.(CaCO3) Bicarb				mpre Bute.	10:30:00AM
Carb					
Hydrox	Alkal.(CaCO3)	Bicarb		mg/L	587
Total		Carb	<0.1	mg/L	<0.1
Chloride		•	-	mg/L	<0.1
Conductivity SpC <2		Total	<2	mg/L	587
Diss. Calcium Diss_Ca <0.05 mg/L 170	Chloride	Chloride	<0.1	•	460
Diss. Magnesium Diss_Mg <0.05 mg/L 140	Conductivity	SpC	<2	uS/cm	2700
Diss. Mercury Diss_Hg <0.1 ug/L <0.1	Diss. Calcium	Diss_Ca	<0.05	mg/L	170
Diss. Metals Silver	Diss. Magnesium	Diss_Mg	<0.05	mg/L	140
Aluminium	Diss. Mercury	Diss_Hg	<0.1	ug/L	<0.1
Arsenic N/A ug/L 1	Diss. Metals	Silver	<1	ug/L	<1
Barium		Aluminium	N/A	ug/L	<5
Beryllium		Arsenic	N/A	ug/L	1
Cadmium N/A ug/L <0.05		Barium	N/A	ug/L	51
Cobalt		Beryllium	<0.1	ug/L	<0.1
Chromium		Cadmium	N/A	ug/L	<0.05
Copper		Cobalt	N/A	ug/L	0.8
Manganese N/A ug/L 230 N/A ug/L <0.5 Nickel N/A ug/L 7		Chromium	N/A	ug/L	<2
Molybdenum		Copper	N/A	ug/L	1.4
Nickel N/A ug/L 7		Manganese	N/A	ug/L	230
Lead N/A ug/L <0.05 Antimony <3 ug/L <3 Selenium N/A ug/L <2 Zinc N/A ug/L 16 Nitrate (asN) Nitrate <0.01 mg/L N <0.05 Nitrite (asN) Nitrite <0.01 mg/L N <0.01 pH pH <0.1 pH units 7.1 Sulphate Sulphate <0.04 mg/L SO4 270 Sulphide Sulphide <0.02 mg/L S <0.02 T.Diss Solids TDS <20 mg/L 1800 T.Oxid Nit(asN) Oxidised_N <0.05		Molybdenum	N/A	ug/L	<0.5
Antimony		Nickel	N/A	ug/L	7
Selenium N/A ug/L <2 Zinc N/A ug/L 16 Nitrate (asN) Nitrate <0.01		Lead	N/A	ug/L	<0.05
Zinc N/A ug/L 16 Nitrate (asN) Nitrate <0.01		Antimony	<3	ug/L	<3
Nitrate (asN) Nitrate <0.01 mg/L N <0.05 Nitrite (asN) Nitrite <0.01 mg/L N		Selenium	N/A	ug/L	<2
Nitrite (asN) Nitrite <0.01 mg/L N <0.01 pH pH <0.1		Zinc	N/A	ug/L	16
pH pH <0.1 pH units 7.1 Sulphate <0.4	Nitrate (asN)	Nitrate	<0.01	mg/L N	<0.05
Sulphate Sulphate <0.4 mg/L SO4 270 Sulphide Sulphide <0.02	Nitrite (asN)	Nitrite	<0.01	mg/L N	<0.01
Sulphide Sulphide <0.02 mg/L S <0.02 T.Diss Solids TDS <20	pH	рН	<0.1	pH units	7.1
T.Diss Solids TDS <20 mg/L 1800 T.Oxid Nit(asN) Oxidised_N <0.05	Sulphate	Sulphate	<0.4	mg/L SO4	270
T.Oxid Nit(asN) Oxidised_N <0.05 mg/L N <0.05	Sulphide	Sulphide	<0.02	mg/L S	<0.02
	T.Diss Solids	TDS	<20	mg/L	1800
Total Calcium Total_Ca <0.1 mg/L 170	T.Oxid Nit(asN)	Oxidised_N	<0.05	mg/L N	<0.05
	Total Calcium	Total_Ca	<0.1	mg/L	170

Page: Page 3 of 3

Batch No: XHYDROILEX_21584

Report Number: XHYDROILEX_21584_LALK6

Client: Hydroilex

Client Ref: Dalton PS Bore 1

				869180
				Dalton
				PS Bore 1
				GRNDWATER
				04-Jan-2012
				10:30:00AM
Total Hardness	Total	<0.1	mg/L	1000
Total Iron	Total_Fe	<0.02	mg/L	3.4
Total Magnesium	Total_Mg	<0.05	mg/L	140
Total Potassium	Total_K	<0.1	mg/L	3.8
Total Sodium	Total_Na	<0.1	mg/L	240

These samples were analysed as received into the Laboratory.

Tests marked # are not NATA accredited.

A blank space indicates no test performed. A 'P' indicates results are pending authorisation

Soil results expressed in mg/kg dry weight unless specified otherwise

LOR = Limit of reporting. When a reported LOR is higher than the standard LOR, this may due to high moisture content, insufficient sample or matrix interference.

The analytical procedures in this report (including house methods) are developed from internationally recognised procedures such as those published by USEPA, APHA and NEPM

Results listed as Total Metals are actually Total Recoverable Metals

Environmental Division (Water Resources Group)

Certificate of Analysis

Page Page 1 of 3 Batch No: XHYDROILEX_21630

Laboratory Canberra Laboratory Final Report: XHYDROILEX_21630_LASK5

Address PO Box 1834, Fyshwick, Canberra. ACT 2609.

Client: Hydroilex Phone 02 6202 5401 Contact: Rohan Last Fax 02 6202 5452 Address: 38 Gibbs Street Contact: Shane Reynolds

> Miranda NSW 2228 Supervisor Chemistry

shane.reynolds@alsglobal.com

Date Sampled: 11-Jan-2012 Date Samples Received: 11-Jan-2012

Date Issued: 19-Jan-2012 Date Testing Commenced: 11-Jan-2012

Dalton Power Stn Client PO:

Dalton PS Bore 2

Client Ref:

	The sample(s) referred to in this report were analysed by the following method(s): # - NATA accreditation does not cover the performance of this service										
Analysis	Method	Laboratory	NATA No.	Analysis	Method	Laboratory	NATA No.	Analysis	Method	Laboratory	NATA No.
Chloride	35	CANBERRA	992	Sulphate	35	CANBERRA	992	Alkal.(CaCO3)	10	CANBERRA	992
Conductivity	65	CANBERRA	992	Sulphide	273	CANBERRA	992	T.Diss Solids	260	CANBERRA	992
pН	210	CANBERRA	992	Diss. Calcium	120	CANBERRA	992	Diss. Magnesium	120	CANBERRA	992
Diss. Mercury	122	CANBERRA	992	Diss. Metals	121	CANBERRA	992	Total Calcium	120	CANBERRA	992
Total Hardness	105	CANBERRA	992	Total Iron	120	CANBERRA	992	Total Magnesium	120	CANBERRA	992
Total Potassium	120	CANBERRA	992	Total Sodium	120	CANBERRA	992	Nitrate (asN)	150 152	CANBERRA	992
Nitrite (asN)	150	CANBERRA	992	T.Oxid Nit(asN)	150	CANBERRA	992				

Temperature on receipt at Lab: 21.4

These results have been electronically signed by the authorised signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11

Name	Title	Name	Title
Geetha Ramasundera	Chemistry	Shane Reynolds	Supervisor Chemistry
Terry Obrien	Supervisor Nutrients	Titus Vimalasiri	Supervisor Metals

Page: Page 2 of 3

Batch No: XHYDROILEX_21630

Report Number: XHYDROILEX_21630_LASK5

Client: Hydroilex

Client Ref: Dalton PS Bore 2

		S	Sample No.	870318
			•	Dalton
		Client	Sample ID.	PS Bore 2
		San	nple Point.	GRNDWATER
		Sa	mple Date.	11-Jan-2012 12:50:00PM
Analysis	Analyte	LOR L	Jnits	
Alkal.(CaCO3)	Bicarb	<2	mg/L	544
	Carb	<0.1	mg/L	<0.1
	Hydrox	<0.1	mg/L	<0.1
	Total	<2	mg/L	544
Chloride	Chloride	<0.1	mg/L	1200
Conductivity	SpC	<2	uS/cm	4600
Diss. Calcium	Diss_Ca	<0.05	mg/L	210
Diss. Magnesium	Diss_Mg	<0.05	mg/L	270
Diss. Mercury	Diss_Hg	<0.1	ug/L	0.1
Diss. Metals	Silver	<1	ug/L	<1
	Aluminium	N/A	ug/L	<5
	Arsenic	N/A	ug/L	3
	Barium	N/A	ug/L	110
	Beryllium	<0.1	ug/L	<0.1
	Cadmium	N/A	ug/L	0.05
	Cobalt	N/A	ug/L	2.7
	Chromium	N/A	ug/L	<2
	Copper	N/A	ug/L	2.8
	Manganese	N/A	ug/L	340
	Molybdenum	N/A	ug/L	<0.5
	Nickel	N/A	ug/L	10
	Lead	N/A	ug/L	<0.05
	Antimony	<3	ug/L	<3
	Selenium	N/A	ug/L	<2
	Zinc	N/A	ug/L	36
Nitrate (asN)	Nitrate	<0.01	mg/L N	0.17
Nitrite (asN)	Nitrite	<0.01	mg/L N	<0.01
pН	pH	<0.1	pH units	7.0
Sulphate	Sulphate	<0.4	mg/L SO4	110
Sulphide	Sulphide	<0.02	mg/L S	<0.02
T.Diss Solids	TDS	<20	mg/L	3000
T.Oxid Nit(asN)	Oxidised_N	<0.05	mg/L N	0.17
Total Calcium	Total_Ca	<0.1	mg/L	220

Page: Page 3 of 3

Batch No: XHYDROILEX_21630

Report Number: XHYDROILEX_21630_LASK5

Client: Hydroilex

Client Ref: Dalton PS Bore 2

				870318
				Dalton
				PS Bore 2
				GRNDWATER
				11-Jan-2012
				12:50:00PM
Total Hardness	Total	<0.1	mg/L	1600
Total Iron	Total_Fe	<0.02	mg/L	3.2
Total Magnesium	Total_Mg	<0.05	mg/L	290
Total Potassium	Total_K	<0.1	mg/L	3.8
Total Sodium	Total_Na	<0.1	mg/L	360

These samples were analysed as received into the Laboratory.

Tests marked # are not NATA accredited.

A blank space indicates no test performed. A 'P' indicates results are pending authorisation

Soil results expressed in mg/kg dry weight unless specified otherwise

LOR = Limit of reporting. When a reported LOR is higher than the standard LOR, this may due to high moisture content, insufficient sample or matrix interference.

The analytical procedures in this report (including house methods) are developed from internationally recognised procedures such as those published by USEPA, APHA and NEPM

Results listed as Total Metals are actually Total Recoverable Metals

Appendix E Registered Bore Records

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW703450

Works Details (top)

GROUNDWATER NUMBER GW703450 **LIC-NUM** 70BL228934

AUTHORISED-PURPOSES DOMESTIC STOCK **INTENDED-PURPOSES** DOMESTIC STOCK

WORK-TYPE Bore

WORK-STATUS Supply Obtained
CONSTRUCTION-METHOD (Unknown)
OWNER-TYPE Private

COMMENCE-DATE

COMPLETION-DATE 2003-01-20 **FINAL-DEPTH (metres)** 18.60

DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY DAWNDEN

GWMA GW-ZONE STANDING-WATER-LEVEL 4.20

SALINITY

YIELD 0.50

Site Details (top)

REGION 70 - LACHLAN

RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE

SCALE

ELEVATION

ELEVATION-SOURCE

NORTHING 6158595.00 EASTING 699301.00 LATITUDE 34 41' 43" LONGITUDE 149 10' 33"

GS-MAP

AMG-ZONE 55

COORD-SOURCE

REMARK

1 of 2 1/07/2010 4:20 PM

COUNTY KING
PARISH BUNTON
PORTION-LOT-DP 50//754106

Licensed (top)

COUNTY KING
PARISH BUNTON
PORTION-LOT-DP 50 754106

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO	PIPE-NO	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM	DEPTH-TO	OD	ID	INTERVAL DETAIL
						-	(111111)	
1	1	Casing	P.V.C.	0.00	0.00	100		

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

2 of 2 1/07/2010 4:20 PM

For information on the meaning of fields please see Glossary Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW702614

Works Details (top)

GROUNDWATER NUMBER GW702614 **LIC-NUM** 70BL228930

AUTHORISED-PURPOSES DOMESTIC STOCK INTENDED-PURPOSES DOMESTIC STOCK

WORK-TYPE Bore

WORK-STATUS Supply Obtained

CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE**Private

COMMENCE-DATE

COMPLETION-DATE 2003-03-31 **FINAL-DEPTH (metres)** 50.00

DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY ESHCOL

GWMA GW-ZONE STANDING-WATER-LEVEL 18.00

SALINITY YIELD

Site Details (top)

REGION 70 - LACHLAN

RIVER-BASIN 412 - LACHLAN RIVER

AREA-DISTRICT

CMA-MAP 8728-4S **GRID-ZONE** 55/3 **SCALE** 1:25,000

ELEVATION

ELEVATION-SOURCE

NORTHING 6156670.00
EASTING 699488.00
LATITUDE 34 42' 45"
LONGITUDE 149 10' 42"

GS-MAP

AMG-ZONE 55

COORD-SOURCE GIS - Geographic Information System

REMARK

1 of 2 1/07/2010 4:23 PM

COUNTY KING
PARISH DALTON
PORTION-LOT-DP 149//754111

Licensed (top)

COUNTY KING
PARISH DALTON
PORTION-LOT-DP 149 754111

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO PIPE-NO	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM (metres)	DEPTH-TO (metres)	OD (mm)	ID (mm)	INTERVAL	DETAIL
1	Hole	Hole	0.00	50.00	150			(Unknown)
1 1	Casing	P.V.C.	0.00	50.00	150			(Unknown); (Unknown); (Unknown)

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

2 of 2 1/07/2010 4:23 PM

For information on the meaning of fields please see Glossary Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW702612

Works Details (top)

GROUNDWATER NUMBER GW702612 **LIC-NUM** 70BL228833

AUTHORISED-PURPOSES DOMESTIC STOCK INTENDED-PURPOSES DOMESTIC STOCK

WORK-TYPE Bore

WORK-STATUS Supply Obtained

CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE**Private

COMMENCE-DATE

COMPLETION-DATE 2003-02-28 FINAL-DEPTH (metres) 21.00

DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY MT PLEASANT

GWMA GW-ZONE STANDING-WATER-LEVEL 9.50

STANDING-WATER-LLVLL 9.5

SALINITY

YIELD 0.67

Site Details (top)

REGION 70 - LACHLAN

RIVER-BASIN 412 - LACHLAN RIVER

AREA-DISTRICT

CMA-MAP 8728-4S **GRID-ZONE** 55/3 **SCALE** 1:25,000

ELEVATION

ELEVATION-SOURCE

 NORTHING
 6161135.00

 EASTING
 699648.00

 LATITUDE
 34 40' 20"

 LONGITUDE
 149 10' 45"

GS-MAP

AMG-ZONE 55

COORD-SOURCE GIS - Geographic Information System

REMARK

1 of 2 1/07/2010 4:21 PM

COUNTY KING
PARISH DALTON
PORTION-LOT-DP 6//754111

Licensed (top)

COUNTY KING
PARISH DALTON
PORTION-LOT-DP 6 754111

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO	PIPE-NO	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM (metres)	DEPTH-TO (metres)	OD ID (mm)	INTERVAL	DETAIL
1		Hole	Hole	0.00	21.00	150		(Unknown)
1	1	Casing	P.V.C.	0.00	20.00	150		(Unknown); (Unknown); (Unknown)
1	1	Opening	Slots	10.00	20.00	150		PVC; (Unknown); (Unknown)

Water Bearing Zones (top)

FROM-DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK-CAT-DESC	S-W-L D-D-L	YIELD	TEST-HOLE-DEPTH (metres)	DURATION SALINITY
10.00	20.00	10.00		9.50	0.67		S.Brackish

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

2 of 2 1/07/2010 4:21 PM

For information on the meaning of fields please see Glossary Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW700858

Works Details (top)

GROUNDWATER NUMBER GW700858 **LIC-NUM** 70BL227308

AUTHORISED-PURPOSES DOMESTIC STOCK **INTENDED-PURPOSES** DOMESTIC STOCK

WORK-TYPE Bore

WORK-STATUS Supply Obtained CONSTRUCTION-METHOD Down Hole Hammer

OWNER-TYPE Private

COMMENCE-DATE

COMPLETION-DATE 1999-01-09
FINAL-DEPTH (metres) 30.00

DRILLED-DEPTH (metres) 30.00

CONTRACTOR-NAME

DRILLER-NAME

PROPERTY KOOKABURRA RISE

GWMA GW-ZONE STANDING-WATER-LEVEL 9.00

SALINITY

YIELD 0.56

Site Details (top)

REGION 70 - LACHLAN

RIVER-BASIN 412 - LACHLAN RIVER

AREA-DISTRICT

 CMA-MAP
 8728-N

 GRID-ZONE
 55/3

 SCALE
 1:50,000

ELEVATION

ELEVATION-SOURCE

 NORTHING
 6158184.00

 EASTING
 696388.00

 LATITUDE
 34 41' 58"

 LONGITUDE
 149 8' 39"

 GS-MAP
 74ab3

 AMG-ZONE
 55

COORD-SOURCE Map Interpretation

REMARK

1 of 2 1/07/2010 4:26 PM

COUNTY KING
PARISH BUNTON

PORTION-LOT-DP LOT 1 DP 854987

Licensed (top)

COUNTY KING
PARISH BUNTON
PORTION-LOT-DP 1 854987

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO	PIPE-NO	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM (metres)	DEPTH-TO (metres)		ID (mm)	INTERVAL	DETAIL
1		Hole	Hole	0.00	30.00	203			Down Hole Hammer
1	1	Casing	P.V.C.	-0.40	30.00	165	157		Screwed and Glued; Seated on Bottom
1	1	Opening	Slots - Vertical	12.00	24.00	165			PVC Class 9; Sawn; SL: 150mm; A: 2mm

Water Bearing Zones (top)

FROM-DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK-CAT-DESC	S-W-L	D-D-L	YIELD	TEST-HOLE-DEPTH (metres)	DURATION SALINITY
15.00	16.00	1.00		9.00		0.25	17.00	0.50
22.00	24.00	2.00		9.00		0.31	30.00	1.50

Drillers Log (top)

FROM TO	THICKNESS	DESC	GEO-MATERIAL COMMENT
0.00 6.0	00 6.00	Shale, fractured, yellow	
6.00 18	.00 12.00	Shale, soft, brown	
18.00 30	.00 12.00	Shale, grey-black	

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

2 of 2 1/07/2010 4:26 PM

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW600151

Works Details (top)

GROUNDWATER NUMBER GW600151

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES MONITORING BORE

WORK-TYPE Bore

WORK-STATUS Supply Obtained CONSTRUCTION-METHOD Auger - Solid Flight

OWNER-TYPE Private

COMMENCE-DATE

COMPLETION-DATE 2008-07-21
FINAL-DEPTH (metres) 50.00

DRILLED-DEPTH (metres) 52.30

CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

 STANDING-WATER-LEVEL
 7.00

 SALINITY
 14680.00

 YIELD
 0.05

Site Details (top)

REGION 60 - LOWER MURRAY / DARLING

RIVER-BASIN
AREA-DISTRICT
CMA-MAP
GRID-ZONE

SCALE

ELEVATION

ELEVATION-SOURCE

NORTHING 6155225.00 EASTING 703260.00 LATITUDE 34 43' 29" LONGITUDE 149 13' 12"

GS-MAP

AMG-ZONE 55

COORD-SOURCE

REMARK

1 of 2 1/07/2010 4:25 PM

COUNTY KING
PARISH DALTON
PORTION-LOT-DP 308//754111

Licensed (top)

no details

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO	PIPE-NO	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM (metres)	DEPTH-TO (metres)	OD (mm)	ID (mm)	INTERVAL	DETAIL
1		Hole	Hole	0.00	2.20	150			Auger - Solid Flight
1		Hole	Hole	2.20	52.30	122			Rotary - Coring
1	1	Casing	PVC Class 12	1.00	37.00	60.35	50.35		Glued; Cap
1	1	Opening	Slots - Horizontal	36.00	38.00	60.35			PVC Class 12; Mechanically Slotted; Glued
1		Annulus	Waterworn/Rounded	34.00	40.00	122	60.35		Graded; GS: 8-16mm

Water Bearing Zones (top)

FROM-DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK-CAT-DESC S-W-L D-D-L	YIELD TEST-HOLE-DEPTH (metres)	DURATION	SALINITY
34.00	40.00	6.00	7.00	0.05	1.50	8808.00

Drillers Log (top)

FROM	то	THICKNESS	DESC	GEO-MATERIAL COMMENT
0.00	4.80	4.80	Grey Grey Brown Clay	
4.80	6.80	2.00	Silty Sand	
6.80	10.30	3.50	Green Grey heavy Clay	
10.30	52.30	42.00	Sand	

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

2 of 2 1/07/2010 4:25 PM

For information on the meaning of fields please see Glossary Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW070051

Works Details (top)

GROUNDWATER NUMBER GW070051 **LIC-NUM** 70BL150254

AUTHORISED-PURPOSES DOMESTIC STOCK **INTENDED-PURPOSES** DOMESTIC STOCK

WORK-TYPE Bore

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD Rotary Air
OWNER-TYPE Private

COMMENCE-DATE

COMPLETION-DATE 1992-06-01 FINAL-DEPTH (metres) 42.00 DRILLED-DEPTH (metres) 42.00

CONTRACTOR-NAME

DRILLER-NAME

PROPERTY N/A
GWMA GW-ZONE -

STANDING-WATER-LEVEL

SALINITY

YIELD 0.80

Site Details (top)

REGION 70 - LACHLAN

RIVER-BASIN 412 - LACHLAN RIVER

AREA-DISTRICT

 CMA-MAP
 8728-4S

 GRID-ZONE
 55/3

 SCALE
 1:25,000

ELEVATION

ELEVATION-SOURCE

 NORTHING
 6155909.00

 EASTING
 701743.00

 LATITUDE
 34 43' 8"

 LONGITUDE
 149 12' 11"

 GS-MAP
 0074A4

 AMG-ZONE
 55

COORD-SOURCE

REMARK

1 of 2 1/07/2010 4:24 PM

COUNTY KING
PARISH DALTON
PORTION-LOT-DP 239

Licensed (top)

COUNTY KING
PARISH DALTON
PORTION-LOT-DP 235

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO	PIPE-NO	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM (metres)	DEPTH-TO (metres)	OD (mm)	ID (mm)	INTERVAL	DETAIL
1	1	Casing	P.V.C.	0.00	19.00	150			Driven into Hole
1	1	Opening	Slots - Horizontal	17.00	19.00	150		1	PVC; SL: 0mm; A: 3mm

Water Bearing Zones (top)

FROM-DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK-CAT-DESC	S-W-L D-D-L	YIELD	TEST-HOLE-DEPTH (metres)	DURATION SALIN	ITY
18.00	19.00	1.00	Unconsolidated	16.00	0.80		Good	
30.00	31.00	1.00	Fractured				Good	

Drillers Log (top)

FROM	1 ТО	THICKNESS	DESC	GEO-MATERIAL COMMENT
0.00	19.00	19.00	Topsoil and clay	
19.00	42.00	23.00	Slate	

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

2 of 2 1/07/2010 4:24 PM

For information on the meaning of fields please see Glossary Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW060994

Works Details (top)

GROUNDWATER NUMBER GW060994 **LIC-NUM** 70BL132634

AUTHORISED-PURPOSES DOMESTIC STOCK INTENDED-PURPOSES DOMESTIC STOCK WORK-TYPE Bore open thru rock

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD Rotary Air
OWNER-TYPE Private

COMMENCE-DATE

COMPLETION-DATE 1985-05-01 FINAL-DEPTH (metres) 48.10 DRILLED-DEPTH (metres) 48.10

CONTRACTOR-NAME

DRILLER-NAME

PROPERTY N/A
GWMA GW-ZONE -

STANDING-WATER-LEVEL

SALINITY YIELD

Site Details (top)

REGION 70 - LACHLAN

RIVER-BASIN 412 - LACHLAN RIVER

AREA-DISTRICT

CMA-MAP 8728-4S **GRID-ZONE** 55/3 **SCALE** 1:25,000

ELEVATION

 ELEVATION-SOURCE
 (Unknown)

 NORTHING
 6155838.00

 EASTING
 699349.00

 LATITUDE
 34 43' 12"

 LONGITUDE
 149 10' 37"

 GS-MAP
 0074A3

 AMG-ZONE
 55

COORD-SOURCE GD., ACC. MAP

REMARK

1 of 2 1/07/2010 4:46 PM

COUNTY KING
PARISH DALTON
PORTION-LOT-DP 348

Licensed (top)

COUNTY KING
PARISH DALTON
PORTION-LOT-DP 348

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO	PIPE-NO	COMPONENT-COD	E COMPONENT-TYPE	DEPTH-FROM (metres)	DEPTH-TO (metres)	OD ID (mm)) INTERVAL	DETAIL
1	1	Casing	Welded Steel	-0.30	6.70	165		Driven into Hole

Water Bearing Zones (top)

FROM-DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK-CAT-DESC	S-W-L D-D-L	YIELD	TEST-HOLE-DEPTH (metres)	DURATION S	SALINITY
39.00	39.30	0.30	Fractured		0.13		(Good
45.10	45.40	0.30	Fractured		0.33		(Good

Drillers Log (top)

FROM TO THIC	KNESS DESC	GEO-MATERIAL COMMENT
0.00 0.30 0.30	Topsoil	
0.30 6.70 6.40	Shale Broken	
6.70 48.10 41.40	Shale Water Supply	/

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

2 of 2 1/07/2010 4:46 PM

For information on the meaning of fields please see Glossary Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW054033

Works Details (top)

GROUNDWATER NUMBER GW054033 **LIC-NUM** 70BL111689

AUTHORISED-PURPOSES DOMESTIC STOCK INTENDED-PURPOSES DOMESTIC STOCK WORK-TYPE Bore open thru rock

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD Rotary Air
OWNER-TYPE Private

COMMENCE-DATE

COMPLETION-DATE 1982-02-01
FINAL-DEPTH (metres) 54.00
DRILLED-DEPTH (metres) 54.00

CONTRACTOR-NAME

DRILLER-NAME

PROPERTY KANIMBLA

GWMA GW-ZONE STANDING-WATER-LEVEL

SALINITY YIELD

Site Details (top)

REGION 70 - LACHLAN

RIVER-BASIN 412 - LACHLAN RIVER

AREA-DISTRICT

CMA-MAP 8728-4S **GRID-ZONE** 55/3 **SCALE** 1:25,000

ELEVATION

 ELEVATION-SOURCE
 (Unknown)

 NORTHING
 6157282.00

 EASTING
 699533.00

 LATITUDE
 34 42' 25"

 LONGITUDE
 149 10' 43"

 GS-MAP
 0074A3

 AMG-ZONE
 55

COORD-SOURCE GD., ACC. MAP

REMARK

1 of 2 1/07/2010 4:22 PM

COUNTY KING
PARISH DALTON
PORTION-LOT-DP 29

Licensed (top)

COUNTY KING
PARISH DALTON
PORTION-LOT-DP 29

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO	PIPE-NO	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM (metres)	DEPTH-TO (metres)	OD ID (mm)	INTERVAL	DETAIL
1	1	Casing	P.V.C.	0.00	12.00	150		Driven into Hole

Water Bearing Zones (top)

FROM-DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK-CAT-DESC S-W-L D-D-L	YIELD	TEST-HOLE-DEPTH (metres)	DURATION SALINITY
20.00	22.00	2.00	Fractured	0.30		Fair
22.00	30.00	8.00	Fractured	0.15		Fair
30.00	38.00	8.00	Fractured	0.16		Fair
38.00	54.00	16.00	Fractured	0.69		Fair

Drillers Log (top)

FROM	то	THICKNESS	DESC	GEO-MATERIAL COMMENT
0.00	0.60	0.60	Soil	
0.60	5.00	4.40	Clay	
5.00	9.00	4.00	Mudstone	
9.00	12.00	3.00	Mudstone Consolidated	
12.00	54.00	42.00	Slate Fine Water Supply	

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

2 of 2 1/07/2010 4:22 PM

For information on the meaning of fields please see Glossary Document Generated on Thursday, July 1, 2010

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW047202

Works Details (top)

GROUNDWATER NUMBER GW047202 **LIC-NUM** 70BL108944

AUTHORISED-PURPOSES TOWN WATER SUPPLY **INTENDED-PURPOSES** G/WATER XPLORE

WORK-TYPE Bore
WORK-STATUS (Unknown)
CONSTRUCTION-METHOD Cable Tool
OWNER-TYPE Local Govt

COMMENCE-DATE

COMPLETION-DATE 1978-08-01
FINAL-DEPTH (metres) 61.50
DRILLED-DEPTH (metres) 61.50

CONTRACTOR-NAME DRILLER-NAME

PROPERTY VILLAGE OF DALTON

GWMA GW-ZONE STANDING-WATER-LEVEL

SALINITY YIELD

Site Details (top)

REGION 70 - LACHLAN

RIVER-BASIN 412 - LACHLAN RIVER

AREA-DISTRICT

CMA-MAP 8728-4S **GRID-ZONE** 55/3 **SCALE** 1:25,000

ELEVATION

 ELEVATION-SOURCE
 (Unknown)

 NORTHING
 6155637.00

 EASTING
 700082.00

 LATITUDE
 34 43' 18"

 LONGITUDE
 149 11' 6"

 GS-MAP
 0074A3

 AMG-ZONE
 55

COORD-SOURCE GD., ACC. MAP

REMARK

Form-A (top)

1 of 2 1/07/2010 4:28 PM

COUNTY KING
PARISH DALTON
PORTION-LOT-DP SEC 11

Licensed (top)

COUNTY KING
PARISH DALTON
PORTION-LOT-DP 182 754111

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE-NO	PIPE-NO	COMPONENT-CODE	COMPONENT-TYPE	DEPTH-FROM (metres)	DEPTH-TO (metres)	OD (mm)	ID (mm)	INTERVAL	DETAIL
1	1	Casing	Threaded Steel	0.00	40.60	152			Suspended in Clamps
1	1	Casing	Threaded Steel	0.00	61.50	127			Seated on Bottom
1	1	Opening	Slots	13.90	40.60	152		1	Oxy-Acetylene Slotted; SL: 0mm; A: 0mm
1	1	Opening	Slots - Vertical	61.00	72.70	127		2	Oxy-Acetylene Slotted; SL: 0mm; A: 6mm

Water Bearing Zones (top)

FROM-DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK-CAT-DESC	S-W-L D-D-L		TEST-HOLE-DEPTH (metres)	DURATION SALINITY
33.00	34.00	1.00	(Unknown)	23.00	0.10		(Unknown)
58.00	61.00	3.00	(Unknown)	14.50	1.89		(Unknown)

Drillers Log (top)

FROM	то	THICKNESS	DESC	GEO-MATERIAL COMMENT
0.00	0.10	0.10	Topsoil	
0.10	16.00	15.90	Clay Yellow Grey Streaks	
16.00	28.00	12.00	Clay Grey Some Shale	
28.00	34.00	6.00	Siltstone Grey Green Clay	
34.00	35.00	1.00	Shale Grey Hard	
35.00	44.00	9.00	Shale Slightly Hard	
44.00	61.45	17.45	Shale Grey	
61.45	61.50	0.05	Shale Grey Hard	

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

2 of 2 1/07/2010 4:28 PM

URS

URS Australia Pty Ltd Level 4, 407 Pacific Highway Artarmon NSW 2064 Australia

T: 61 2 8925 5500 F: 61 2 8925 5555

www.ap.urscorp.com