AGL Upstream Investments Pty Ltd

Camden Gas Project

2012-2013 Annual Groundwater Monitoring Status Report

25 October 2013

Document information

Client: AGL Upstream Investments Pty Ltd Title: Camden Gas Project Subtitle: 2012-2013 Annual Groundwater Monitoring Status Report Document No: 2114759B-WAT-RPT-7568 RevC Date: 25 October 2013

Rev	Date	Details
А	04/10/2013	First draft
В	10/10/2013	Second draft
С	25/10/2013	Final

Author, Reviewer and Approver details				
Prepared by:	Carolina Sardella	Date: 25/10/2013	Signature:	ble
Reviewed by:	Stuart Brown	Date: 25/10/2013	Signature:	STALo
Approved by:	James Duggleby	Date: 25/10/2013	Signature:	-848-

Distribution

AGL Upstream Investments Pty Ltd, Parsons Brinckerhoff file, Parsons Brinckerhoff Library

©Parsons Brinckerhoff Australia Pty Limited 2013

Copyright in the drawings, information and data recorded in this document (the information) is the property of Parsons Brinckerhoff. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by Parsons Brinckerhoff. Parsons Brinckerhoff makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information.

Document owner

Parsons Brinckerhoff Australia Pty Limited

ABN 80 078 004 798

Level 27 Ernst & Young Centre 680 George Street, Sydney NSW 2000 GPO Box 5394 Sydney NSW 2001 Australia Tel: +61 2 9272 5100 Fax: +61 2 9272 5101 Email: sydney@pb.com.au www.pbworld.com

Certified to ISO 9001, ISO 14001, AS/NZS 4801 A GRI Rating: Sustainability Report 2011

Contents

Glos	sary		iii
Abbr	reviatio	ns	viii
1.	Introd	uction	1
	1.1 1 2	Camden Gas Project (CGP) Objectives	1
	1.3	Report structure	1
2.	Physi	cal setting	4
	2.1 2.2	Regional geology Regional hydrogeology	4
3.	Monit	oring network	9
	3.1 3.2	Monitoring network Water level monitoring	9 10 10
4.	Grour	ndwater monitoring	13
	4.1 4.2	Groundwater levels Groundwater quality	13 16
5.	Concl	usions and recommendations	21
	5.1 5.2	Conclusions Recommendations	21 22
6.	Stater	ment of limitations	23
	6.16.26.36.46.5	Scope of services Reliance on data Environmental conclusions Report for benefit of client Other limitations	23 23 23 23 23 24
7.	Refer	ences	25

List of tables

Table 2.1	Summary of regional Permo-Triassic geological stratigraphy	5
Table 2.2	Hydrogeological properties for stratigraphic units where available ¹	8
Table 3.1	Groundwater monitoring bore construction details	9
Table 3.2	Monitoring bore coordinates and elevations	9
Table 3.3	Analytical suite	11
Table 3.4	Sample bottles	12
Table 4.1	Manual groundwater measurements	13
Table 4.2	Groundwater quality May 2013	18

List of figures

Page number

Figure 1.1	Groundwater monitoring network	3
Figure 4.1	Groundwater levels at Denham Court site compared to rainfall	14
Figure 4.2	Groundwater levels and rainfall RMB01	15
Figure 4.3	Groundwater levels and rainfall RMB02	15
Figure 4.4	Groundwater levels and rainfall RMB03	16
Figure 4.5	Piper plot displaying May 2013 water quality results	20

List of appendices

Appendix A	Groundwater	quality	data
------------	-------------	---------	------

Appendix B ALS laboratory results

Glossary

Alluvium	Unconsolidated sediments (clays, sands, gravels and other materials) deposited by flowing water. Deposits can be made by streams on river beds, floodplains, and alluvial fans.
Alluvial aquifer	Permeable zones that store and produce groundwater from unconsolidated alluvial sediments. Shallow alluvial aquifers are generally unconfined aquifers.
Anthropogenic	Occurring because of, or influenced by, human activity.
Aquifer	Rock or sediment in a formation, group of formations, or part of a formation that is saturated and sufficiently permeable to transmit economic quantities of water.
Aquifer properties	The characteristics of an aquifer that determine its hydraulic behaviour and its response to abstraction.
Aquifer, confined	An aquifer that is overlain by low permeability strata. The hydraulic conductivity of the confining bed is significantly lower than that of the aquifer.
Aquifer, semi-confined	An aquifer overlain by a low-permeability layer that permits water to slowly flow through it. During pumping, recharge to the aquifer can occur across the leaky confining layer – also known as a leaky artesian or leaky confined aquifer.
Aquifer, unconfined	Also known as a water table aquifer. An aquifer in which there are no confining beds between the zone of saturation and the surface. The water table is the upper boundary of an unconfined aquifer.
Aquitard	A low permeability unit that can store groundwater and also transmit it slowly from one formation to another. Aquitards retard but do not prevent the movement of water to or from adjacent aquifers.
Artesian water	Groundwater that is under pressure when tapped by a bore and is able to rise above the level at which it is first encountered. It may or may not flow at ground level. The pressure in such an aquifer commonly is called artesian pressure, and the formation containing artesian water is a confined aquifer.
Australian Height Datum (AHD)	The reference point (very close to mean sea level) for all elevation measurements, and used for correlating depths of aquifers and water levels in bores.
Baseline sampling	A period of regular water quality and water level measurements that are carried out over a period long enough to determine the natural variability in groundwater conditions.
Bore	A structure drilled below the surface to obtain water from an aquifer or series of aquifers.
Coal	A sedimentary rock derived from the compaction and consolidation of vegetation or swamp deposits to form a fossilised carbonaceous rock.
Coal seam	A layer of coal within a sedimentary rock sequence.

Coal seam gas is a form of natural gas (predominantly methane) that is

Coal seam gas (CSG)

	extracted from coal seams.
Concentration	The amount or mass of a substance present in a given volume or mass of sample, usually expressed as microgram per litre (water sample) or micrograms per kilogram (sediment sample).
Conceptual model	A simplified and idealised representation (usually graphical) of the physical hydrogeologic setting and the hydrogeological understanding of the essential flow processes of the system. This includes the identification and description of the geologic and hydrologic framework, media type, hydraulic properties, sources and sinks, and important aquifer flow and surface-groundwater interaction processes.
Confining layer	Low permeability strata that may be saturated but will not allow water to move through it under natural hydraulic gradients.
Datalogger	A digital recording instrument that is inserted in monitoring and pumping bores to record pressure measurements and water level variations.
Discharge	The volume of water flowing in a stream or through an aquifer past a specific point in a given period of time.
Discharge area	An area in which there are upward or lateral components of flow in an aquifer.
Drawdown	A lowering of the water table in an unconfined aquifer or the pressure surface of a confined aquifer caused by pumping of groundwater from bores and wells.
Electrical Conductivity (EC)	A measure of a fluid's ability to conduct an electrical current and is an estimation of the total ions dissolved. It is often used as a measure of water salinity.
Fracture	Breakage in a rock or mineral along a direction or directions that are not cleavage or fissility directions.
Fractured rock aquifer	These occur in sedimentary, igneous and metamorphosed rocks which have been subjected to disturbance, deformation, or weathering, and which allow water to move through joints, bedding planes, fractures and faults. Although fractured rock aquifers are found over a wide area, they generally contain much less groundwater than alluvial and porous sedimentary rock aquifers.
Groundwater	The water contained in interconnected pores or fractures located below the water table in the saturated zone.
Groundwater flow	The movement of water through openings in sediment and rock within the zone of saturation.
Groundwater system	A system that is hydrogeologically more similar than different in regard to geological province, hydraulic characteristics and water quality, and may consist of one or more geological formations.

- Hydraulic conductivity The rate at which water of a specified density and kinematic viscosity can move through a permeable medium (notionally equivalent to the permeability of an aquifer to fresh water).
- Hydrogeology The study of the interrelationships of geologic materials and processes with

	water, especially groundwater.
Hydrology	The study of the occurrence, distribution, and chemistry of all surface waters.
Infiltration	The flow of water downward from the land surface into and through the upper soil layers.
Lithology	The study of rocks and their depositional or formational environment on a large specimen or outcrop scale.
MicroSiemens per centimetre (µS/cm)	A measure of water salinity commonly referred to as EC (see also Electrical Conductivity). Most commonly measured in the field with calibrated field meters.
Monitoring bore	A non-pumping bore, is generally of small diameter that is used to measure the elevation of the water table and/or water quality. Bores generally have a short well screen against a single aquifer through which water can enter.
Permeability	The property or capacity of a porous rock, sediment, clay or soil to transmit a fluid. It is a measure of the relative ease of fluid flow under unequal pressure. The hydraulic conductivity is the permeability of a material for water at the prevailing temperature.
Permian	The last period of the Palaeozoic era that finished approximately 252 million years before present.
Piezometer	See monitoring bore.
Precipitation	(1) in meteorology and hydrology, rain, snow and other forms of water falling from the sky (2) the formation of a suspension of an insoluble compound by mixing two solutions. Positive values of saturation index (SI) indicate supersaturation and the tendency of the water to precipitate that mineral.
Purging	The removal of groundwater from monitoring wells (typically three well volumes) prior to sampling to ensure that representative groundwater samples are collected for analysis.
Quaternary	The most recent geological period extending from approximately 2.6 million years ago to the present day.
Recharge	The process which replenishes groundwater, usually by rainfall infiltrating from the ground surface to the water table and by river water reaching the water table or exposed aquifers. The addition of water to an aquifer.
Recharge area	A geographic area that directly receives infiltrated water from surface and in which there are downward components of hydraulic head in the aquifer. Recharge generally moves downward from the water table into the deeper parts of an aquifer then moves laterally and vertically to recharge other parts of the aquifer or deeper aquifer zones.
Recovery	The difference between the observed water level during the recovery period after cessation of pumping and the water level measured immediately before pumping stopped.
Salinity	The concentration of dissolved salts in water, usually expressed in EC units or milligrams of total dissolved solids per litre (mg/L TDS).

Salinity classification	Fresh water quality – water with a salinity <800 μ S/cm.
	Marginal water quality – water that is more saline than freshwater and generally waters between 800 and 1,600 μ S/cm.
	Brackish quality – water that is more saline than freshwater and generally waters between 1,600 and 4,800 $\mu\text{S/cm}.$
	Slightly saline quality – water that is more saline than brackish water and generally waters with a salinity between 4,800 and 10,000 μ S/cm.
	Moderately saline quality – water that is more saline than brackish water and generally waters between 10,000 and 20,000 μ S/cm.
	Saline quality – water that is almost as saline as seawater and generally waters with a salinity greater than 20,000 $\mu\text{S/cm}.$
	Seawater quality – water that is generally around 55,000 μ S/cm.
Screen	A type of bore lining or casing of special construction, with apertures designed to permit the flow of water into a bore while preventing the entry of aquifer or filter pack material.
Sandstone	Sandstone is a sedimentary rock composed mainly of sand-sized minerals or rock grains (predominantly quartz).
Sedimentary rock aquifer	These occur in consolidated sediments such as porous sandstones and conglomerates, in which water is stored in the intergranular pores, and limestone, in which water is stored in solution cavities and joints. These aquifers are generally located in sedimentary basins that are continuous over large areas and may be tens or hundreds of metres thick. In terms of quantity, they contain the largest volumes of groundwater.
Shale	A laminated sedimentary rock in which the constituent particles are predominantly of clay size.
Siltstone	A fine-grained rock of sedimentary origin composed mainly of silt-sized particles (0.004 to 0.06 mm).
Standing water level (SWL)	The height to which groundwater rises in a bore after it is drilled and completed, and after a period of pumping when levels return to natural atmospheric or confined pressure levels.
Stratigraphy	The depositional order of sedimentary rocks in layers.
Surface water- groundwater interaction	This occurs in two ways: (1) streams gain water from groundwater through the streambed when the elevation of the water table adjacent to the streambed is greater than the water level in the stream; and (2) streams lose water to groundwater through streambeds when the elevation of the water table is lower than the water level in the stream.
Tertiary	Geologic time at the beginning of the Cainozoic era, 65 to 2.5 million years ago, after the Cretaceous and before the Quaternary.
Total Dissolved Solids (TDS)	A measure of the salinity of water, usually expressed in milligrams per litre (mg/L). See also EC.
Triassic	The first period of the Mesozoic era, occurring between 252 million years and 201 million years ago.

Water quality	Term used to describe the chemical, physical, and biological characteristics of water, usually in respect to its suitability for a particular purpose.
Water quality data	Chemical, biological, and physical measurements or observations of the characteristics of surface and ground waters, atmospheric deposition, potable water, treated effluents, and waste water and of the immediate environment in which the water exists.
Water table	The top of an unconfined aquifer. It is at atmospheric pressure and indicates the level below which soil and rock are saturated with water.
Well	Pertaining to a gas exploration well or gas production well.
Siltstone	A fine-grained rock of sedimentary origin composed mainly of silt-sized particles (0.004 to 0.06 mm).

Abbreviations

L/m	Litres per meter
m	Metres
mAHD	Metres Australian height datum
mbgl	Metres below ground level
mbtoc	Metres below top of casing
m/day	Metres per day
m²/day	Square metres per day
m/sec	Meters per second
m/year	Metres per year
µS/cm	Microsiemens per centimetre
mg/L	Milligrams per litre
AGL	AGL Upstream Investments Pty Ltd
ВоМ	Bureau of Meteorology
CGP	Camden Gas Project
CSG	Coal seam gas
EC	Electrical Conductivity
LOR	Laboratory Limit of Reporting
PEL	Petroleum Exploration Licence
PPL	Petroleum Production Lease

1. Introduction

1.1 Camden Gas Project (CGP)

AGL Upstream Investments Pty Ltd (AGL) owns and operates the Camden Gas Project (CGP) located in the Macarthur region, 65 km southwest of Sydney, NSW. The CGP has been producing natural gas from coal seams for the Sydney region since 2001 and currently consists of 144 gas wells (of which, 97 were operational at 30 June 2013). The target coal seams are the Bulli and Balgownie coal seams within the Illawarra Coal Measures at depths of approximately 600 - 700 m below ground level (mbgl). Parsons Brinckerhoff was engaged to investigate the hydrogeological environment to characterise the groundwater systems within the region, to assess the degree of connectivity (if any) between the shallow beneficial aquifers and the Permian coal seams, and to monitor trends within the shallow groundwater systems and with respect to the operating gas project.

1.2 Objectives

Parsons Brinckerhoff completed drilling, hydraulic conductivity testing and datalogger installation at three groundwater monitoring bores at the end of 2011 (Parsons Brinckerhoff, 2011a). Between May and June 2013 five additional groundwater monitoring bores were constructed within the CGP area; dataloggers were installed and hydraulic conductivity testing was also carried out at these locations. These bores are described in the *Drilling completion report* (Parsons Brinckerhoff, 2013 (in preparation)) and monitoring data collected from these are included in the 2013-14 annual groundwater monitoring report.

The main objective of this work presented in this report was to collect baseline groundwater level and quality data from three groundwater monitoring bores drilled at the AGL's Denham Court site to various depths across the site (Figure 1.1). The Denham Court site is located approximately 12 km northeast of the CGP. As a result, this monitoring site provides information on the natural groundwater systems within the area, away from coal seam gas development. Monitoring is being undertaken to:

- Characterise the local hydrogeology.
- Define the groundwater regime and water quality of the aquifer systems.
- Collect baseline data on groundwater level and groundwater quality fluctuations.
- Assess the degree of interconnection, if any, between the aquifers.

The purpose of this annual report is to:

- present and interpret groundwater level data collected quarterly since November 2011
- present and interpret groundwater quality data collected in May 2013.

1.3 Report structure

This report provides the first annual review of the monitoring network detailing groundwater level trends since monitoring begun, with focus on the July 2012 to June 2013 data, and groundwater quality analysis for the May 2013 sampling event.

The structure of the report is as follows:

- Chapter 2: provides an overview of the geological and hydrological setting of the southern Sydney Basin.
- Chapter 3: provides an overview of the monitoring network.
- Chapter 4: discusses the groundwater monitoring results for the monitoring period.
- Chapter 5: presents the conclusions and recommendations for future monitoring.
- Chapter 6: outlines limitations relating to analysis and reporting of data.
- Chapter 7: comprises the references used in this report.

Figure 1.1 Groundwater monitoring network

2. Physical setting

2.1 Regional geology

The CGP is part of the Southern Coalfields of the Sydney Geological Basin. The Basin is primarily a Permo-Triassic sedimentary rock sequence (Parkin 2002) and is underlain by undifferentiated sediments of carboniferous and Devonian age. The stratigraphy of the CGP in the Camden-Campbelltown area is summarised in Table 2.1.

The Illawarra Coal Measures is the economic sequence of interest for CSG development in the area, and consists of interbedded sandstone, shale and coal seams, with a thickness of approximately 300 m. The upper sections of the Permian Illawarra Coal Measures (Sydney Subgroup) contain the major coal seams: Bulli Seam, Balgownie Seam, Wongawilli Seam, and Tongarra Seam. The primary seams targeted for coal seam gas production are the Bulli and Balgownie seams, both of which are approximately 2-5 m thick within the CGP.

The Illawarra Coal Measures is overlain by the Triassic sandstones, siltstones and claystones of the Narrabeen Group and the Hawkesbury Sandstone. Overlying the Hawkesbury Sandstone is the Triassic Wianamatta Group which comprises the majority of the surficial geology (where thin alluvial deposits are not present).

Structurally, the CGP area and surrounds are dominated by the north-northeast plunging Camden Syncline, which is a broad and gentle warp structure (Alder *et al.* 1991; Bray *et al.* 2010). The Camden Syncline is bounded in the west and truncated in the southwest by the north-south trending Nepean Structural Zone, part of the Lapstone Structural Complex.

The CGP is relatively unaffected by major faulting apart from a set of NW-NNW trending faults associated with the Lapstone Monocline Structure (Alder *et al.* 1991; Blevin *et al.* 2007). These faults have been identified from exploration and 2D seismic studies and they have been identified as high-angle, low to moderate displacement normal faults (Blevin *et al.* 2007). Many of these features intersect coal seams but very few, if any, affect the entire stratigraphic sequence displaying no expression at surface.

Table 2.1 Summary of regional Permo-Triassic geological stratig	raphy
---	-------

Period	Group	Sub- group	Formation	Description	Ave thickness (m)*	
Quaternary		Alluvium		Quartz and lithic 'fluvial' sand, silt and clay	<20	
Tertiary	Alluvium			High level alluvium.		
	natta up		Bringelly Shale	Shale, carbonaceous claystone, laminate, lithic sandstone, rare coal.	80 (top	
	Grou		Minchinbury Shale	Fine to medium-grained lithic sandstone.	eroded)	
	8		Ashfield Shale	Black to light grey shale and laminate (Bembrick et al. 1987).		
			Mittagong Formation	Dark grey to grey alternating beds of shale laminate, siltstone and quartzose sandstone (Alder <i>et al.</i> 1991).	11	
			Hawkesbury Sandstone	Massive or thickly bedded quartzose sandstone with siltstone, claystone and grey shale lenses up to several metres thick (Bowman, 1974; Moffitt, 2000).	173	
Triassic en Group		lb-group	Newport Formation	Fine-grained sandstone (less than 3 m thick) interbedded with light to dark grey, fine-grained sandstones, siltstones and minor claystones (Bowman, 1974).	35	
	Narrabeen Group	Gosford Su	Garie Formation	Cream, massive, kaolinite-rich pelletal claystone, which grades upwards to grey, slightly carbonaceous claystone containing plant fossils at the base of the Newport Formation (Moffitt, 2000).	8	
		een Group		Bald Hill Claystone	Massive chocolate coloured and cream pelletal claystones and mudstones, and occasional fine-grained channel sand units (Moffitt, 2000).	34
		group	Bulgo Sandstone	Thickly bedded sandstone with intercalated siltstone and claystone bands up to 3 m thick (Moffitt, 2000).	251	
			ton Sub	Stanwell Park Claystone	Red-green-grey shale and quartz sandstone (Moffitt, 1999).	36
			Clif	Scarborough Sandstone	Quartz-lithic sandstone, pebbly in part (Moffitt, 1999).	20
			Wombarra Claystone	Grey shale and minor quartz-lithic sandstone (Moffitt, 1999).	32	
	Illawarra Coal Measures	م	Bulli Coal		4	
		ogrou	Loddon Sandstone		12	
ian		ney Sut	9 Balmain Coal Coal interbedded with shale, quartz-lithic sandsto 0 Member conglomerate, chert, torbante seams and occasio	Coal interbedded with shale, quartz-lithic sandstone, conglomerate, chert, torbante seams and occasionally	24	
Perm		Syd	Balgownie Coal		2	
			(Remaining Sydney Subgroup)		?	
		Cumber	and Subgroup			
	Shoalhave	en Group		Sandstone, siltstone, shale, polymictic conglomerate, claystone; rare tuff, carbonate, evaporate.	_	
Palaeozic	Lachlan F	old Belt		Intensely folded and faulted slates, phyllites, quartzite sandstones and minor limestones of Ordovician to Silurian age (Moffitt 2000)	_	

a) *Average thickness from available information on all wells within CGP (AGL, 2013)

2.2 Regional hydrogeology

The Southern Coalfields are located within the Sydney Basin sedimentary rock groundwater system. The recognised aquifers/water bearing zones within the CGP are:

- Unconfined Quaternary and Tertiary alluvium/sediment aquifers
- Late Triassic Wianamatta Group rocks (minor aquifers or aquitards)
- Middle Triassic Hawkesbury Sandstone aquifers
- Lower Triassic Narrabeen Group sandstone aquifers
- Permian water bearing zones (Illawarra Coal Measures).

A summary of the hydrogeological properties for stratigraphic units (where known) is provided in Table 3.2.

Alluvium occurs along the floodplain of the Nepean River and its tributaries. The alluvium deposits are generally shallow, discontinuous (except along the Nepean River) and relatively permeable. The unconfined aquifers within the alluvium are responsive to rainfall and stream flow and form a minor beneficial aquifer.

The Wianamatta Group Shales (which outcrop across the majority of the CGP) are generally considered as aquitards due to low permeability and yields; however small aquifer zones are sometimes present. Water is typically brackish to saline, especially in low relief areas of western Sydney (due to the marine depositional environment of the shales) (Old, 1942). Locally, the Wianamatta Group is low yielding, with average yields of 1.3 litres per second (L/s).

The Hawkesbury Sandstone and Narrabeen Group form part of an extensive confined to partially confined, regional aquifer system within the Sydney Basin sequence. The Hawkesbury Sandstone is more widely exploited for groundwater than the overlying and underlying formations, being of generally higher yield, better water quality and either outcropping or buried to shallow depths over the basin. Groundwater flow within the Hawkesbury Sandstone and Narrabeen Group aquifers at a regional scale has a major horizontal component due to the alternation of sheet and massive facies, with some vertical leakage. Both units are characterised by dual porosity, whereby the primary porosity is imparted by connected void space between sand grains and the secondary porosity is due to the interconnected rock defects such as joints, fractures, faults and bedding planes. Superior bore yield in the sandstone aquifers is often associated with major fractures or a high fracture zone density, and yields of >40 L/s have been recorded in bores intercepting these zones within deformed areas of the Sydney Basin (McLean and Ross, 2009). Typically within the CGP area bore yields rarely exceed 2 L/s.

Within the CGP, the aquifers within the Hawkesbury Sandstone are mostly primary permeability aquifers due to the lack of major fracturing and fault systems. Yields are highest and salinities freshest south of the Nepean River because of the proximity to recharge areas, however, north of the Nepean River, the salinities increase and become moderately saline in all aquifers within the sandstone. Groundwater is used for irrigation and domestic use south of the Nepean River and immediately to the north; however, further north of the river, groundwater quality is typically only suitable for stock (AGL, 2012).

Within the Narrabeen Group, both regionally and locally, aquifers are lower yielding and have poorer water quality than the overlying Hawkesbury Sandstone (Parsons Brinckerhoff, 2012).

All aquifer systems within the CGP are separated by low permeability aquitards which act as confining layers and limit vertical flow between aquifers. The main aquitards within the CGP include the Bald Hill Claystone, Stanwell Park Claystone and the Wombarra Claystone.

The coal seams present in the Illawarra Coal Measures are both regionally and locally minor water bearing zones. Due to the greater depth of burial of the coal measures and fine-grained nature of the sedimentary rocks, the permeability is generally lower than the overlying sandstone aquifers. Recharge to the Permian water bearing zones is likely to occur where the formations are outcropping, which is remote (and to the south) from the CGP. Salinity of the water bearing zones is typically brackish to moderately saline.

Within the CGP, there is limited rainfall recharge to the Wianamatta Group shales with most rainfall generating runoff and overland flow. There is expected to be some leakage through the Wianamatta Group into the Hawkesbury Sandstone where there is adequate fracture spacing, however, it is anticipated that most recharge to the sandstone aquifers occurs via lateral groundwater through-flow from upgradient and updip areas to the south. Outside of the CGP, the dominant recharge mechanism is likely to be infiltration of rainfall and runoff through alluvial deposits in valleys, particularly where they are incised into weathered Hawkesbury Sandstone (Parsons Brinkerhoff, 2011b). There is insufficient data within the CGP to define local flow paths and natural discharge zones; however, regionally groundwater flow is predominantly towards the north or northeast, eventually discharging via the Georges, Parramatta or Hawkesbury River systems, and ultimately offshore to the east. Locally, there may be a small base flow or interflow discharge component to local stream headwaters during wet periods; however groundwater-surface water interactions are not well defined within the area (Parsons Brinckerhoff, 2011b)

Age	Stratigraphic unit	Type of hydrogeological unit	Hydraulic conductivity – horizontal (m/day)	Hydraulic conductivity – vertical (m/day)	Transmissivity (m2/day)	Permeability (m/s)*	TDS (mg/L)
Quaternary /Tertiary	Alluvial deposits	Unconfined aquifer	1 -10		>20		
Triassic	Wianamatta group	Aquitard or unconfined/ perched	0.01	0.05	<1 (Ashfield Shale)		>3,000
	Hawkesbury sandstone	Unconfined/semi- confined aquifer	0.1	0.05 – 6 x10 ⁻⁴	1 – 5	3 x 10⁻ ⁸	<500 - 10,000
	Bald Hill claystone	Aquitard	1 x10 ⁻⁵	5 – 10		5 x 10 ⁻⁹	
	Bulgo sandstone	Minor confined aquifer	5 x10⁴	1 x10-4	0.1 – 0.5	6 x 10 ⁻⁸	1,500- 5,000
	Stanwell Park claystone	Aquitard	3 x10 ⁻⁵	6 x10-6		3 x 10 ⁻⁹	
	Scarborough sandstone	Minor confined aquifer	0.01	5 x10-3	0.1 – 0.5	2 x 10 ⁻⁷	
	Wombarra claystone	Aquitard	3 x10 ⁻⁵	6x10-6		1 x 10 ⁻⁹	
Permian	Illawarra Coal measures	Confined water bearing zones	5 x10 ⁻² (Bulli)	2.5x10-2 (Bulli)	0.005 – 0.1	1 x 10 ^{-₅} (Bulli)	>2,000

Table 2.2 Hydrogeological properties for stratigraphic units where available¹

Table summarises data from a number of investigations including SCA (2005); GHD (2007); Broadstock (2011); Parsons Brinkerhoff (2011b); AGL (2013)

3. Monitoring network

3.1 Monitoring network

Table 3.1 provides construction details for the 3 monitoring bores at the Denham Court site (Figure 1.1).

Monitoring bore	Location	Total depth (m)	Screened interval (mbgl)	Lithology	Casing material	Formation
RMB01	Denham court site	84	69 – 81 (12 m)	Siltstone	50 mm, class 18 u PVC, screwed casing	Wianamatta Group, Ashfield shale
RMB02	Denham court site	150	135 – 147 (12 m)	Sandstone	50 mm, class 18 u PVC, screwed casing	Upper Hawkesbury sandstone
RMB03	Denham court site	300	290 – 299 (9 m)	Sandstone	50 mm, galvanised/stainle ss steel, screwed casing	Lower Hawkesbury sandstone

Table 3.1 Groundwater monitoring bore construction details

The groundwater monitoring bores were drilled through the following Triassic formations within the Sydney Basin: Ashfield Shale, Mittagong Formation and Hawkesbury Sandstone. Some shale lenses, up to seven metres thick, were observed in the Hawkesbury Sandstone.

Minor seeps were only encountered in the Ashfield Shale at depth. Groundwater was encountered in the Hawkesbury Sandstone (starting at approximately 108 – 114 mbgl) and minimal flows were recorded throughout (a maximum value of 0.9 litres per second when airlifting). No fractures were encountered during drilling and therefore groundwater flow is assumed to be via primary permeability. There are no major fault zones in this area.

The groundwater monitoring bore locations were surveyed by registered surveys (SMEC Pty Ltd) to MGA, a grid coordinate system based on the Geocentric Datum of Australia 1994. The bores were also surveyed for surface elevation to Australian Height Datum (AHD). The survey results are detailed in Table 3.2.

Table 3.2	Monitoring bore coordinates and elevations
-----------	--

Monitoring bore	Easting	Northing	Ground level (mAHD)	Top of casing (mAHD)
RMB01	300465.86	6237305.08	72.42	72.94
RMB02	300474.93	6237308.70	72.80	73.34
RMB03	300481.29	6237310.92	73.00	73.54

3.2 Water level monitoring

Groundwater level monitoring commenced in November 2011 as part of the Camden Phase 2 Groundwater program, as described in Parsons Brinckerhoff (2011a).

Dataloggers are installed in each of the groundwater monitoring bores to monitor groundwater levels every six hours. To calibrate the level recorded by the dataloggers, manual groundwater level measurements are recorded every three months using an electronic dip meter.

A barometric datalogger installed above the water table at RMB01 records changes in atmospheric pressure. Data from this logger are used to correct for the effects of changing barometric pressure and barometric efficiency on groundwater levels.

Measured water levels in bores can be influenced by atmospheric pressure fluctuations in two main ways. Firstly, automated dataloggers measure absolute pressure including the atmospheric pressure that acts on the water column in the bore. Logger data are therefore corrected for this effect (manual water measurements do not need this correction). Secondly, in confined or semi-confined aquifers, changes in atmospheric pressure can cause water in the bore to be forced into (during a pressure increase), or drawn from (pressure decrease) elastic aquifer storage, thereby affecting the measured water level. Groundwater level data presented in this report have also been corrected to remove these responses so that any anthropogenic groundwater influences (such as pumping) can be more easily identified.

Atmospheric pressure fluctuates over daily to weekly periods as weather systems pass over the site.

In general, the mean atmospheric pressure is slightly higher, and the amplitude of pressure fluctuation (between high and low pressure systems) larger in the winter than in the summer months. The amplitude of pressure fluctuation can be 20 mbar in the summer months and up to 30 mbar during the winter months.

Given that 1 mbar is equivalent to 1.02 cm of water depth, atmospheric pressure fluctuations can result in observed bore level fluctuations of up to 20 to 30 cm, depending on the barometric efficiency of the bore.

As noted above, this effect has been removed from the monitoring data presented here.

3.3 Water quality monitoring

The monitoring bores were sampled in November 2011 (Parsons Brinkerhoff, 2012) and in May 2013. No sample was collected from RMB01 during both occasions, as there was insufficient groundwater in the bore to obtain a representative sample.

A micro-purge[™] low flow sampling system was deployed allowing a representative groundwater sample to be drawn into the pump intake directly from the screened portion of the aquifer, eliminating the need to purge relatively large volumes of groundwater. Water levels and water quality parameters were monitored with a calibrated YSI water quality meter during the micro-purge[™] pumping to ensure that a representative groundwater sample was collected.

Table 3.3 details the analytical suite for the May 2013 groundwater quality sampling event.

Table 3.3 Analytical suite

Category	Parameters				
Field parameters	EC	Redox potential			
	Temperature	рН			
	Dissolved oxygen				
General parameters	EC	Total dissolved solids (TDS)			
	Total suspended solids				
Major ions	Calcium	Chloride			
	Magnesium	Bicarbonate			
	Sodium	Sulphate			
	Potassium	Dissolved silica			
Metals and minor/trace elements	Aluminium	Cyanide			
	Antimony	Iron			
	Arsenic	Manganese			
	Barium	Molybdenum			
	Beryllium	Nickel			
	Boron	Lead			
	Bromine	Selenium			
	Cadmium	Strontium			
	Chromium	Uranium			
	Cobalt	Vanadium			
	Copper	Zinc			
Nutrients	Total nitrogen	Nitrate			
	Ammonia	Nitrite			
	Phosphorus (reactive)	Total organic carbon (TOC)			
Hydrocarbons	Phenol compounds	Total petroleum hydrocarbons (TPH)			
	Polycyclic aromatic hydrocarbons	(TRH)			
		Benzene, toluene, ethyl benzene and xylenes (BTEX)			
Dissolved gases	Methane	Propane			
	Ethene	Butene			
	Ethane	Butane			
	Propene				

Water quality samples were collected in the sample bottles provided by the laboratory, with the appropriate preservation when required. Table 3.4 details the sample bottles used. Samples undergoing dissolved metal analysis were filtered through 0.45 μ m filters in the field prior to collection.

Table 3.4Sample bottles

Category	Sample bottle
Major cations/anions	1 x 1 L plastic, unpreserved
Dissolved metals	1 x 60 mL plastic, preserved
Nutrients	1 x 125 mL plastic, preserved
тос	1 x 40 mL amber glass, preserved
Phenols/PAH/TPH (C10-C36)	1 x 500 mL amber glass, unpreserved
ТРН (С6-С9)/ВТЕХ	2 x 40 ml amber glass, preserved
Methane	2 x 40 ml amber glass, preserved

Samples were sent to the Australian Laboratory Service (ALS) Environmental Pty Ltd, Smithfield, Sydney, a NATA certified laboratory, under appropriate chain-of-custody protocols.

In addition isotope sampling was undertaken in November 2011 to enhance the hydrogeological conceptual model (Parsons Brinckerhoff, 2012).

4. Groundwater monitoring

4.1 Groundwater levels

Groundwater levels monitored over the medium to long term (over several years) allow for seasonal and long term trends to be established. Groundwater levels are discussed generally, and identification and analysis of seasonal or longer term trends is only briefly considered in this report due to the relatively short period (19 months) of monitoring data.

Groundwater level hydrographs for each monitoring bore are plotted with daily rainfall recorded by the Bureau of Meteorology for the Ingleburn rain gauge located near to the CGP (BoM site: 066190) (Figures 4.1–4.3).

To calibrate the level recorded by the dataloggers, manual groundwater level measurements are recorded every three months using an electronic dip meter. Manual groundwater measurements used to verify the logger data are presented in Table 4.1. The groundwater levels were observed to be deeper in the Ashfield Shale (~80 mbgl) then in the upper and lower Hawkesbury Sandstone (~40 mbgl) (Figure 4.1).

Date	RM	B01	RMB02		RMB03	
	mbtoc	mAHD	mbtoc	mAHD	mbtoc	mAHD
01/11/2011	81.23	-8.29	41.33	32.01	41.25	32.29
30/11/2011	83.50	-10.56	41.00	32.34	41.74	31.81
06/03/2012	81.44	-8.50	40.87	32.47	41.01	32.53
09/03/2012	81.39	-8.45	40.75	32.59	40.97	32.57
29/05/2012	80.87	-7.93	40.87	32.48	40.96	32.58
09/09/2012	na	na	40.60	32.75	40.73	32.81
06/12/2012	79.62	-6.68	40.80	32.54	40.74	32.80
13/03/2013	78.96	-6.03	40.70	32.64	40.83	32.71
05/06/2013	83.28	-10.34	40.78	32.56	41.44	32.11

Table 4.1 Manual groundwater measurements

na = no dip available

4.1.1 Ashfield Shale

The hydrograph for RMB01 screened in the Wianamatta Group of the Ashfield Shale is shown in Figure 4.2.

Groundwater levels in the Ashfield Shale ranged from -10.35 mAHD to -5.60 mAHD since monitoring began. A gradual increase in the groundwater level of ~4.75 m can be observed between November 2011 and May 2013, after which a sudden fall in the groundwater level (~4.45 m) is visible. This sudden fall in groundwater level is the result of purging during the sampling event at the end of May 2013. The slow recovery from purging (~0.01 m in 15 days) suggests that the area of the Ashfield Shale being monitored (at the depth of the screened section of the bore) has very low permeability.

No response to rainfall events is visible, indicating that no direct rainfall recharge is taking place in this part of the Ashfield shale.

4.1.2 Upper Hawkesbury Sandstone

The hydrograph for RMB02 screened in the upper Hawkesbury Sandstone is shown in Figure 4.3Figure 4.3.

The groundwater level in the upper Hawkesbury Sandstone ranged from 32.37 mAHD to 32.74 mAHD since monitoring began. The water level remained fairly constant, with fluctuations of less than ~0.5 m throughout the monitoring period. There were no responses to individual rainfall events, indicating that no direct rainfall recharge is taking place in the upper Hawkesbury Sandstone.

4.1.3 Lower Hawkesbury sandstone

The hydrograph for RMB03 screened in the lower Hawkesbury Sandstone is shown in Figure 4.4

The groundwater level in the lower Hawkesbury Sandstone ranged from 28.56 mAHD to 32.79 mAHD since monitoring began. An increase of ~0.9 m was observed between November 2011 and March 2012. This increase is likely to reflect the recharge occurring after the November 2011 sampling event. Between March 2012 and May 2013 the groundwater level slowly increased by approximately 0.5 m. A sudden fall in the groundwater level (~4.14 m) and subsequent partial recovery is visible at the end May 2013, as a result of purging during water quality sampling. The relatively slow recovery from purging suggests that the screened section of the lower Hawkesbury Sandstone has low permeability.

As in the upper Hawkesbury Sandstone, no response to individual rainfall events is visible in the lower Hawkesbury Sandstone.

Figure 4.1 Groundwater levels at Denham Court site compared to rainfall

Figure 4.2 Groundwater levels and rainfall RMB01

Figure 4.3 Groundwater levels and rainfall RMB02

Figure 4.4 Groundwater levels and rainfall RMB03

4.2 Groundwater quality

Water quality results for the May 2013 sampling event are presented and compared to the ANZECC (2000) guidelines for freshwater ecosystems (south-east Australia – lowland rivers) in Table 4.2. A full set of chemical results for the November 2011 and May 2013 sampling events is provided in Appendix A.

All results have been compared against the ANZECC (2000) guidelines for freshwater ecosystems (southeast Australia – lowland rivers) because the rivers are the ultimate receiving waters for both surface water runoff and groundwater discharge. However, these water guidelines are often naturally exceeded in catchments with rocks deposited in marine environments, hence they are only guidelines and not strict criteria that should be used to evaluate individual water quality results.

A piper diagram is a graphical representation of the chemistry of a water sample and can be used to graphically show the relative concentrations of major ions (Ca^{2+} , Mg^{2+} , Na^{2+} , K^+ , Cl^- , HCO_3^- , and SO_4^{-2}). Major ion chemistry for the groundwater samples is shown on the piper diagram in Figure 4.5.

Field parameters

The groundwater within the Hawkesbury Sandstone is characterised as moderately saline (<10,800 μ S/cm), with sodium and chloride the dominant ions (Figure 4.5). The pH at RMB02 was moderately acidic and the pH at RMB03 was basic, both bores exceeded the ANZECC (2000) guideline values. Reducing redox conditions were encountered in both bores.

Dissolved metals

The major findings of dissolved metal analysis are as follows:

- Manganese concentrations were detected at both monitoring bores, and were below the ANZECC (2000) guideline value (1.9 mg/L).
- Zinc concentrations were detected at RMB02 (0.002 mg/L) and RMB03 (0.602 mg/L) and exceeded the ANZECC (2000) guideline value (0.008 mg/L) at RMB03 only.
- Barium, strontium, iron and bromide concentrations were detected at both bores.
- Arsenic, molybdenum, lead and boron concentrations were detected at RMB03 only, and were below the ANZECC (2000) guideline values.
- Nickel concentrations were detected at RMB02 and were below the ANZECC (2000) guideline value (0.002 mg/L).
- Aluminium, beryllium, cadmium, cobalt, copper, selenium, uranium and vanadium concentrations were all below the laboratory LOR.

The dissolved metal concentrations are considered natural and not unusual for these types of sedimentary rock.

Nutrients

Ammonia concentrations were elevated at RMB02 (4.50 mg/L) and RMB03 (3.82 mg/L), and exceed the ANZECC (2000) guideline value (0.02 mg/L) at both locations. Nitrite and nitrate were below the laboratory LOR at both locations.

Total phosphorus was detected at RMB02 (0.13 mg/L) and RMB03 (0.02 mg/L), and only exceeded the ANZECC (2000) guideline value (0.05 mg/L) at RMB02. Reactive phosphorus was also detected at both bores, with RMB02 (0.10 mg/L) exceeding the ANZECC (2000) guideline value (0.02 mg/L).

Total organic carbon concentrations were variable with 3 mg/L at RMB02 and 18 mg/L at RMB03.

Hydrocarbons

Total petroleum hydrocarbons (TPH) were detected at RMB02 (C_{15} - C_{28} fraction was 210 µg/L) and at RMB03 (C_{10} - C_{14} fraction was 100 µg/L, C_{15} - C_{28} fraction was 410 µg/L and C_{29} - C_{36} fraction was 150 µg/L).

Polycyclic aromatic hydrocarbons were not detected in the two monitoring bores. Phenolic compounds were not detected, except at RMB03, where 3- and 4-Methylphenol concentrations were 2.9 μ g/L. BTEX concentrations were below the laboratory LOR, except at RMB03 where Toluene concentrations were 8 μ g/L.

Dissolved gases

Dissolve methane was detected at RMB02 (7650 μ g/L) and at RMB03 (13100 μ g/L).

Table 4.2 Groundwater quality May 2013

Parameters	Units	ANZECC (2000) guidelines ^a	RMB02	RMB03
General parameters				
рН	pH units	6.5 – 8.0 ^b	6.35	9.50
Conductivity	µS/cm	125-2200 ^b	10003	7794
Temperature	0C	_	21.72	18.86
Dissolved oxygen	% sat	80-110 ^b	10.6	5.6
Total Dissolved Solids	mg/L	_	6515	5070
Suspended Solids	mg/L	_	18	80
Redox	mg/L	-	-175	-127
Water type ^c			NaCl	NaCl
Laboratory analytes				
Calcium	mg/L	_	307	7
Magnesium	mg/L	-	83	18
Sodium	mg/L	_	1820	1810
Potassium	mg/L	_	35	21
Chloride	mg/L	-	2800	2280
Sulphate	mg/L	_	<10	10
Total alkalinity as CaCO3	mg/L	_	836	488
Silica	mg/L	_	10.6	6.85
Total cyanide	mg/L	0.007	<0.004	<0.004
Fluoride	mg/L	_	0.2	0.3
Dissolved metals				
Aluminium	mg/L	0.055	<0.01	<0.01
Antimony	mg/L	-	<0.001	<0.001
Arsenic	mg/L	0.013	<0.001	0.002
Beryllium	mg/L	ID	<0.001	<0.001
Barium	mg/L	-	35.1	6.35
Cadmium	mg/L	0.37	<0.0001	<0.0001
Cobalt	mg/L	ID	<0.001	<0.001
Copper	mg/L	0.0014	<0.001	<0.001
Lead	mg/L	0.0034	<0.001	0.001
Manganese	mg/L	1.9	0.052	0.002
Molybdenum	mg/L	ID	<0.001	0.006
Nickel	mg/L	0.011	0.004	<0.001

Parameters	Units	ANZECC	RMB02	RMB03
		(2000) guidelines ^a		
Selenium	mg/L	0.011	<0.01	<0.01
Strontium	mg/L	-	8.00	1.82
Uranium	mg/L	ID	<0.001	<0.001
Vanadium	mg/L	ID	<0.01	<0.01
Zinc	mg/L	0.008	0.020	0.602
Boron	mg/L	0.37	<0.05	0.16
Iron	mg/L	ID	5.89	<0.05
Bromine	mg/L	ID	7.3	5.9
Nutrients				
Ammonia as N	mg/L	0.02 ^b	4.50	3.82
Nitrite as N	mg/L	0.02 ^b	<0.01	<0.01
Nitrate as N	mg/L	0.7	<0.01	<0.01
Total Phosphorus	mg/L	0.05 ^b	0.13	0.02
Reactive phosphorus	mg/L	0.02 ^b	0.10	0.02
Total Organic Carbon	mg/L	-	3	18
Gases				
Methane	µg/L	_	7650	13100
Phenolic compounds				
3-&4-Methylphenol	µg/L	-	<2.0	2.9
Polycyclic aromatic compounds	µg/L		<lors< td=""><td><lors< td=""></lors<></td></lors<>	<lors< td=""></lors<>
BTEX compounds				
Toluene	µg/L	-	<2	8
Total petroleum hydrocarbons				
C ₆ -C ₉	µg/L	-	<20	<20
C ₁₀ -C ₁₄	µg/L	-	<50	100
C ₁₅ -C ₂₈	µg/L	-	<100	400
C ₂₉ -C ₃₆	µg/L	_	<50	150

a) ANZECC (2000) guidelines for the protection of freshwater aquatic ecosystems: 95% protection levels (trigger values).

b) ANZECC (2000) guidelines for the protection of freshwater aquatic ecosystems: trigger values for lowland rivers in south-east Australia.

c) Calculated using AQUACHEM

Bold indicates exceedance of guideline value.

Figure 4.5 Piper plot displaying May 2013 water quality results

5. Conclusions and recommendations

5.1 Conclusions

This report presents the groundwater level and quality data for the July 2012 to June 2013 monitoring period. The following conclusions are made:

Groundwater monitoring

- The groundwater level monitoring network, consisting of three groundwater monitoring bores located 12 km northeast of the CGP, was fully operational and returned consistent results.
- Dataloggers recorded groundwater levels in the three monitoring bores at six hourly intervals.

Groundwater levels

- The groundwater levels in all aquifers are deep (at least 40 m below ground level) and there does not appear to be interaction with the surface environment.
- The groundwater level in the Ashfield Shale showed a gradual increasing trend throughout the monitoring period. The water level was strongly affected by purging during water quality sampling, suggesting that the monitored section of the Ashfield Shale has a very low permeability.
- The groundwater level in the upper Hawkesbury Sandstone has remained fairly constant throughout the monitoring period.
- The groundwater level in the lower Hawkesbury Sandstone increased between November 2011 and March 2012, after which water levels continued to increase, but at a more gradual rate. The water level in this section of the lower Hawkesbury Sandstone is affected by purging during water quality sampling, suggesting that the screened section of this aquifer has a low permeability.

Groundwater quality

- Groundwater in the upper and lower Hawkesbury Sandstone is brackish, with sodium and chloride the dominant ions. The upper sandstone aquifer has slightly acidic conditions, while slightly alkaline conditions were encountered in the lower sandstone aquifer.
- Groundwater in the upper and lower Hawkesbury Sandstone has low concentrations of dissolved metals and only zinc was detected above ANZECC (2000) guideline values at RMB03. Concentrations of dissolved metals above the freshwater ANZECC (2000) guidelines are common in natural brackish to saline groundwater within the Sydney Basin.
- Ammonia, total phosphorus and reactive phosphorous concentrations were higher in the upper Hawkesbury Sandstone and exceeded the ANZECC (2000) guideline values.
- Minor detections of naturally occurring TPH and toluene occurred at the two monitoring sites. Dissolved methane concentrations were detected in both the upper and lower Hawkesbury Sandstone.

5.2 Recommendations

The following recommendations are made regarding the ongoing CGP groundwater monitoring:

- Groundwater level monitoring should continue at the current six hourly intervals to continue to provide a baseline characterisation of the natural groundwater systems at the site.
- Groundwater quality monitoring should be undertaken at quarterly intervals for the 2013-2014 monitoring period to provide a more definitive baseline characterisation of the natural groundwater systems at the site.
- New monitoring bores constructed and operational in early 2013-14 be incorporated into next year's annual monitoring report.

6. Statement of limitations

6.1 Scope of services

This report has been prepared in accordance with the scope of services set out in the contract, or as otherwise agreed, between the client and Parsons Brinckerhoff (scope of services). In some circumstances the scope of services may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

6.2 Reliance on data

In preparing the report, Parsons Brinckerhoff has relied upon data, surveys, plans and other information provided by the client and other individuals and organisations, most of which are referred to in the report (the data). Except as otherwise stated in the report, Parsons Brinckerhoff has not verified the accuracy or completeness of the data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in the report (conclusions) are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. Parsons Brinckerhoff will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to Parsons Brinckerhoff.

6.3 Environmental conclusions

In accordance with the scope of services, Parsons Brinckerhoff has relied upon the data and has conducted environmental field monitoring and/or testing in the preparation of the report. The nature and extent of monitoring and/or testing conducted is described in the report.

On all sites, varying degrees of non-uniformity of the vertical and horizontal soil or groundwater conditions are encountered. Hence no monitoring, common testing or sampling technique can eliminate the possibility that monitoring or testing results/samples are not totally representative of soil and/or groundwater conditions encountered. The conclusions are based upon the data and the environmental field monitoring and/or testing and are therefore merely indicative of the environmental condition of the site at the time of preparing the report, including the presence or otherwise of contaminants or emissions.

Within the limitations imposed by the scope of services, the monitoring, testing, sampling and preparation of this report have been undertaken and performed in a professional manner, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. No other warranty, expressed or implied, is made.

6.4 Report for benefit of client

The report has been prepared for the benefit of the client (and no other party). Parsons Brinckerhoff assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of Parsons Brinckerhoff or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Parties other than the client should not rely upon the report or the accuracy or completeness of any conclusions and should make their own enquiries and obtain independent advice in relation to such matters.

6.5 Other limitations

Parsons Brinckerhoff will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

The scope of services did not include any assessment of the title to or ownership of the properties, buildings and structures referred to in the report nor the application or interpretation of laws in the jurisdiction in which those properties, buildings and structures are located.

7. References

- AGL Upstream Investments Pty Ltd (2013) Hydrogeological Summary of the Camden Gas Project area.
- AGL Upstream Investments Pty Ltd (2012) Groundwater Management Plan for the Camden Gas Project.
- Alder D., Byrnes J., Cozens S., Hill M. and Armstrong M.(1991) Programme Completion Report -Camden Drilling Programme, Coal and Petroleum Geology Branch, Department of Mineral Resources, Sydney.
- ANZECC (2000) Chapter 3 Aquatic Ecosystems, in Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand.
- Beckett J. (1988) The Hunter Coalfield: Notes to accompany the 1:100,000 Geological Map. New South Wales Department of Mineral Resources, Geological Survey report GC1988/051.
- Blevin et al. (2007) Sydney Basin Reservoir Prediction Study and GIS, Project MR705, Confidential Report to NSW DPI and Macquarie Energy by FrOG Tech Pty Ltd.
- Bray A., Hatherly P. and Fergusson C.L. (2010) Seismic reflection evidence for the evolution of the Camden Syncline and Lapstone Structural Complex, central Sydney Basin, Australia. Australian Journal of Earth Sciences 57, 993–1004.
- Broadstock B. (2011) Impact of groundwater pumping on stacked water resources, NSW Office of Water, Sydney.
- GHD (2007) Dendrobium Area 3 predicted hydrogeologic performance, Report for BHP Billiton, Illawarra Coal.
- McLean W. and Ross J.B. (2009) Hydrochemistry of the Hawkesbury Sandstone Aquifers in Western Sydney and the Upper Nepean Catchment. IAH NSW, Groundwater in the Sydney Basin Symposium, Sydney, NSW, Australia, 4-5 Aug. 2009.
- Old A.N. (1942) The Wianamatta Shale Waters of the Sydney District. Agricultural Gazette of N.S.W., Misc. pub. No. 3225.
- Parkin T.J (2002) Disrupted flow in a localised area of the Georges River above longwall mining operations in Appin, NSW. A geophysical investigation based on earth resistivity techniques, Macquarie University, Honours Thesis, Department of Earth and Planetary Sciences.
- Parsons Brinckerhoff (2012) Update on the Camden North Phase 2 Groundwater Program Denham Court Road, dated August 2012, LT_5637.
- Parsons Brinkerhoff (2011a) Update on the Phase 2 Groundwater Program Denham Court Road, Denham Court, dated 24 November 2011, PR_5637.
- Parsons Brinckerhoff (2011b) Phase 1 Groundwater Assessment and Conceptual Hydrogeological Model Northern Expansion of Camden Gas Project, dated 25 February 2011, PR_5375.
- Sydney Catchment Authority (SCA) (2005) Metropolitan Water Plan Priority Groundwater Investigations for Drought Relief Area 3: Upper Canal (Appin). Dept. of Commerce report to SCA dated August 2005.

Appendix A

Groundwater quality data

Summary Table A.1 - Water quality data November 2011

Analyte	Units	LOR	ANZECC 2000 Guidelines	Denham Court Monitori	t Groundwater ng Bores	
Monitoring bore				RMB02	RMB03	
Sample date				3/11/2011 Upper	7/11/2011 Lower	
Formation				Hawkesbury Sandstone	hawkesbury Sandstone	
Aquifer				Fractured	Fractured	
				rock	rock	
General Parameters pH	pH units	0.01	6.5 - 8.0*	6.52	7.42	
Conductivity	µS/cm	1	125 - 2200*	9517	5713	
Dissolved oxygen	% sat	0.01	- 80 - 110%*	5.8	- 5.6	
Total Dissolved Solids	mg/L	1	-	6.188	3.759	
Water type #		-	-	NaCl	-136 NaCl	
Laboratory Analytes	ma/l	1		-1	-1	
Carbonate Alkalinity as CaCO3	mg/L	1	-	<1	<1	
Bicarbonate Alkalinity as CaCO3	mg/L mg/L	1	-	743 743	606 606	
Sulfate as SO4 2-	mg/L	1	-	86	39	
Chloride Calcium	mg/L ma/L	1	-	3980 385	2350 121	
Magnesium	mg/L	1	-	95	40	
Potassium	mg/L mg/L	1	-	2090 35	1580 25	
Silica	mg/L	0.1	-	15.6	10	
Ions Total Anions	meq/L	0.01	-	129	79.2	
Total Cations	meq/L	0.01	-	119	79.5	
Dissolved Metals	70	0.01	-	4.14	0.16	
Aluminium	mg/L	0.01	0.055	<0.01	<0.01	
Beryllium	mg/L	0.001	ID	<0.009	<0.000	
Barium Cadmium	mg/L mg/l	0.001	0.0002	1.18 <0.001	5.44	
Cobalt	mg/L	0.001	ID	0.004	0.006	
Copper Lead	mg/L ma/L	0.001	0.0014 0.0034	0.003	0.005	
Manganese	mg/L	0.001	1.9	0.116	0.085	
Molybdenum Nickel	mg/L mg/L	0.001	ID 0.011	0.001 0.009	0.014	
Selenium	mg/L	0.01	0.011 (total)	< 0.01	<0.01	
Strontium Uranium	mg/L mg/L	0.001	- ID	0.016	5.78 <0.001	
Vanadium	mg/L	0.01	ID 0.008	< 0.01	<0.01	
Boron	mg/L	0.005	0.008	0.06	0.08	
Iron Bromino	mg/L	0.05	ID ID	0.029	0.62	
Nutrients	iiig/L	0.1	ID	1.9	4.9	
Ammonia as N Nitrite as N	mg/L	0.01	0.02*	4.51	2.77	
Nitrate as N	mg/L	0.01	0.7	<0.01	0.02	
Total Phosphorous Reactive Phosphorous	mg/L mg/L	0.01	0.05*	<0.01 <0.01	<0.01 <0.01	
Total Organic Carbon	mg/L	1	-	9	17	
Dissolved Gases Methane	µg/L	10	-	10100	18200	
Phenolic compounds	110/	1	220	-1.0	11	
2-Chlorophenol	μg/L	1	490	<1.0	<1.0	
2-Methylphenol 3-&4-Methylphenol	µg/L	1	-	<1.0	<1.0	
2-Nitrophenol	µg/L	1	ID	<1.0	<1.0	
2.4-Dimethylphenol 2.4-Dichlorophenol	µg/L µg/L	1	ID 160	<1.0	<1.0	
2.6-Dichlorophenol	µg/L	1	ID	<1.0	<1.0	
4-Chloro-3-Methylphenol 2.4.6-Trichlorophenol	µg/L µg/L	1	- 20	<1.0 <1.0	<1.0 <1.0	
2.4.5-Trichlorophenol	µg/L	1	ID	<1.0	<1.0	
Pentachlorophenol Polycyclic aromatic hydrocarbons	µg/L	2	ID	<2.0	<2.0	
Naphthalene	µg/L	1	16	<1.0	<1.0	
Acenaphthene	μg/L μg/L	1		<1.0	<1.0	
Fluorene	µg/L	1	-	<1.0	<1.0	
Anthracene	μg/L μg/L	1	ID	<1.0	<1.0	
Fluoranthene	µg/L	1	ID -	<1.0	<1.0	
Benz(a)anthracene	µg/L	1	-	<1.0	<1.0	
Chrysene Benzo(b)fluoranthene	µg/L µa/L	1		<1.0 <1.0	<1.0 <1.0	
Benzo(k)fluoranthene	µg/L	1	-	<1.0	<1.0	
Benzo(a)pyrene Indeno(1.2.3.cd)pyrene	μg/L μg/L	0.5 1	ID -	<0.5 <1.0	<0.5 <1.0	
Dibenz(a.h)anthracene	µg/L	1	-	<1.0	<1.0	
Benzo(g.n.i)perylene Sum of PAHs	μg/L μg/L	1 0.5	-	<1.0	<1.0 <0.5	
Total petroleum hydrocarbons		~~	5			
C10-C14 Fraction	μg/L μg/L	20 50	ID	<20 <50	<20	
C15-C28 Fraction	µg/L	100	ID U	460	210	
C10-C36 Fraction (sum)	μg/L μg/L	50	- -	<00	<0U	
Total recoverable hydrocarbons C6-C10 Fraction	un/l	20		<20	<20	
C6-C10 Fraction minus BTEX (F1)	µg/L	20		<20	<20	
>C10-C16 Fraction >C16-C34 Fraction	µg/L µa/L	100 100		<100 420	<100 220	
>C34-C40 Fraction	µg/L	100		<100	<100	
>C10-C40 Fraction (sum) Aromatic Hydrocarbons	µg/L	100		420	220	
Benzene	µg/L	1	950	<1	<1	
Ethyl Benzene	μg/L μg/L	2	ID ID	<2 <2	<2 <2	
m&p-Xylenes	μg/L	2	ID 250	<2	<2	
Total xlyenes	μg/L μg/L	∠ 2	- 350	<2	<2	
Sum of BTEX	µg/L	1	-	<1	<1	
Isotopes	µу/∟	5		~0	~0	
Oxygen-18	%	0.01	-	-6.06	-6.03 -36.4	
Carbon-13	%	0.1	-	5.4	8.4	
Radiocarbon Radiocarbon Age (uncorrected)	pMC vrs BP	0.1	-	1.18±0.05 35620+370	1.87±0.06 31900+240	
	ים טיק				+U	

 exceeds guideline limits
 ID - Insufficient data
 na - not analysed

 Guideline values
 Bold - significant result

 ANZECC 2000 - Water Quality Guidelines: 95% protection levels (trigger values) for the protection of freshwater aquatic ecosystems.

 * ANZECC 2000 - Water Quality Guidelines: 95% protection levels (trigger values) for the protection of freshwater aquatic ecosystems.

 * ANZECC 2000 - Water Quality Guidelines: 95% protection levels (trigger values) for the protection of freshwater aquatic ecosystems.

 # Calculated using Aquachem

PARSONS BRINCKERHOFF

Summary Table A.2 - Water quality data May 2013

Г

< <tbody>NormalNormalNormalNormalNormalNormalNormalNormalAppleNormal<</tbody>	Analyte	Units	LOR	Guidelines	Denham Cour Monitor	rt Groundwater ing Bores
andandandandandandandandBrandIII	Monitoring bore				RMB02	RMB03
FormationImageNot beacher of the sectorNotationNotationNotationAppleImage <td< th=""><th>Sample date</th><th></th><th></th><th></th><th>21/05/2013 Upper</th><th>21/05/2013 Lower</th></td<>	Sample date				21/05/2013 Upper	21/05/2013 Lower
ApplieProceedings <th>Formation</th> <th></th> <th></th> <th></th> <th>Hawkesbury Sandstone</th> <th>Hawkesbury Sandstone</th>	Formation				Hawkesbury Sandstone	Hawkesbury Sandstone
Densembanpic <th>Aquifer</th> <th></th> <th></th> <th></th> <th>Fractured rock</th> <th>Fractured rock</th>	Aquifer				Fractured rock	Fractured rock
plplplpl0.0.0.0.0.0.0.0.0.00.0.00.0.0000.	General Parameters					
TemperationPCNO	pH Conductivity	pH units	0.01	6.5 - 8.0* 125 - 2200*	6.35	9.50
Drawney of symper sy	Temperature	0C	0.01	-	21.72	18.86
SegmentPrig <t< td=""><td>Dissolved oxygen Total Dissolved Solids</td><td>% sat</td><td>0.01</td><td>80 - 110%*</td><td>10.6</td><td>5.6 5070</td></t<>	Dissolved oxygen Total Dissolved Solids	% sat	0.01	80 - 110%*	10.6	5.6 5070
Reducmpl, i1000000000000000000000000000000000000	Suspended Solids	mg/L	1	-	18	80
LandscapeIndexProtectProtectLandscape Algoing CoCOmpl1-4141Catous Algoing SCOOmpl1-460288Total Algoing SCOOmpl1-460288Statum SCOOmpl1-460100Statum SCOOmpl1-460100Statum SCOOmpl1-460100Statum SCOOmpl1-460100Statum SCOOmpl1-160400Statum SCOOmpl0.01-10.040.00Statum SCOOmpl0.01-10.040.00Statummpl0.01-10.040.00Statummpl0.01-10.040.01Statummpl0.010.001-40.01Statummpl0.010.001-40.01Statummpl0.010.001-40.01Statummpl0.010.001-40.01Statummpl0.010.001-40.01Statummpl0.010.001-40.01Statummpl0.010.021-40.01Statummpl0.010.021-40.01Statummpl0.010.021-40.01Statummpl0.010.021-40.01Statummpl0	Redox Water type #	mg/L	-	-	-175 NaCl	-127
mpdoub. Analmain of a CaCO of a part of a sector of analma of a caCO of a part of a sector of a part	Laboratory Analytes	-	-	-	INACI	Naci
bandbarding as CaCGOmgl1-10238Dard Alanity as CACGOmgl1-1010State as SOL 2-mgl1-1010Cacionmgl1-3077Manity as CACGOmgl1-1010Cacionmgl1-1010Cacionmgl1-1010Magesianmgl1-1010Datamgl0.1-10.210Tag Caronamgl0.1-10.210Tag Caronamgl0.01-10.210Tag Alaninmgl0.01-10.210Tag Alaninmgl0.01-10.210Tag Alaninmgl0.01-10.210Tag Alaninmgl0.01-0.01-Alaninmgl0.010.001-0.01Alaninmgl0.010.001-0.01Alaninmgl0.010.001-0.01Alaninmgl0.010.001-0.01Alaninmgl0.010.001-0.01Alaninmgl0.010.001-0.01Alaninmgl0.010.001-0.01Alaninmgl0.010.001-0.01Alaninmgl0.010.01-0.01	Hydroxide Alkalinity as CaCO3	mg/L	1	-	<1	<1
Totak Asimby ac ACONmpdI-ABBABBDiakoda NonmpdI-20002020ChandampdI-20002020ChandampdI-8007StarmpdI-8007StarmpdI-8007Starmpd0.010.02140004000Starmpd0.010.0210.0210.021Starmpd0.010.0210.0210.0211011Tard Andonmpd0.010.0210.0210.0210.021Tard Andonmpd0.010.0210.0210.0210.021Tard Andonmpd0.010.0210.0210.0210.021Tard Markampd0.0210.0210.0210.0210.021Tard Markampd0.0210.0210.0210.0210.021Tard Markampd0.0210.0210.0210.0210.021Tard Markampd0.0210.0210.0210.0210.021Tard Markampd0.0210.0210.0210.0210.021Tard Markampd0.0210.0210.0210.0210.021Tard Markampd0.0210.0210.0210.0210.021Tard Markampd0.0210.0210.0210.0210.021Tard Markampd0.0210.021<	Bicarbonate Alkalinity as CaCO3	mg/L	1	-	836	228
JanualJanu	Total Alkalinity as CaCO3	mg/L	1	-	836	488
Calebarmp31-MMM<	Chloride	mg/L	1	-	2800	2280
magnationmpmpnmp	Calcium	mg/L	1	-	307	7
Panasanmgl,13.62.1Silicamgl,0.0040.007-0.004-0.004Fouldyondomgl,0.010.0-0.004-0.004Indiantomgl,0.010.00.0014.0Indiantomgl,0.010.001-0.001-0.001Indiantomgl,0.010.001-0.001-0.001Attentomgl,0.0010.001-0.001-0.001Attentomgl,0.0010.001-0.001-0.001Attentomgl,0.0010.001-0.001-0.001Attentomgl,0.0010.001-0.001-0.001Attentomgl,0.0010.001-0.001-0.001Containmgl,0.0010.001-0.001-0.001Containmgl,0.0010.0010.002-0.001Containmgl,0.0010.0010.001-0.001Containmgl,0.0010.0010.001-0.001Containmgl,0.0010.0010.001-0.001Containmgl,0.0010.0010.001-0.001Containmgl,0.0010.0010.001-0.001Containmgl,0.0010.0010.001-0.001Containmgl,0.0010.0010.001-0.001Containmgl,0.0010.0010.001-0.001Containmgl,	Sodium	mg/L	1	-	1820	18
mail 	Potassium	mg/L	1	-	35	21
Fundsmpl.0.10.20.3Bonmeql.0.010.2281.1Total Anonameql.0.010.234.30Total Anonamgl.0.010.234.30Total Anonamgl.0.010.055Disobard Mathmgl.0.0010.0154.001Auminamgl.0.0010.0164.001Auminamgl.0.0010.0014.001Baranmgl.0.0010.0010.0014.001<	Silica Total Cyanide	mg/L mg/L	0.1	- 0.007	<0.004	<0.004
Ionemeq.IoneHorHorToral Calorsmeq.0.0110.241.3Toral Calorsmeq.0.010.0240.1Descore handmg.0.010.0240.01AmmunmgL0.010.0140.01AmmunmgL0.010.0140.01ArmenymgL0.0010.0140.01ArmenymgL0.0010.0140.01ArmenymgL0.0010.00240.001ArmenymgL0.0010.00240.001CalainmgL0.0010.00140.01ColainmgL0.0010.01440.01ColainmgL0.0010.01440.01ColainmgL0.0010.01440.01AdoptonummgL0.0010.01440.01AdoptonummgL0.0010.01440.01AdoptonummgL0.0010.01440.01AdoptonummgL0.0010.01140.01ZestanmgL0.0010.01140.01ZestanmgL0.0010.01140.01ZestanmgL0.0010.02140.01ZestanmgL0.010.02140.01ZestanmgL0.010.02140.01ZestanmgL0.010.02140.01ZestanmgL0.010.02140.01ZestanmgL0.010.02140.01<	Fluoride	mg/L	0.1	-	0.2	0.3
Total classingmongl.0.011020.11Disolved MathaDisolved Matha0.055.0.01AnimiummgL0.0010.056.0.010.01ArtinorymgL0.0010.0010.001MarinemgL0.0010.0010.001BalunmgL0.0010.0010.001CombinmgL0.0010.001DombinmgL0.0010.001CogermgL0.0010.001	lons Total Anions	mea/L	0.01	-	95.7	74.3
Inters barner 9, 0.01 3.23 4.38 Dissove Marce mpL 0.01 0.055 4.01 Auminum mpL 0.01 0.055 4.01 4.01 Auminum mpL 0.001 0.035 4.01 4.01 Matteria mpL 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.011 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	Total Cations	meq/L	0.01	-	102	81.1
AurningummmgL0.010.0280.0110.0010.001AraminmgL0.0010.0110.0010.002AraminmgL0.0010.0010.0010.001BarunmgL0.0010.0010.0010.001BarunmgL0.0010.0010.0010.001CobailmgL0.0010.0010.0010.001CobailmgL0.0010.0010.0010.001CobailmgL0.0010.0110.0010.001CobailmgL0.0010.0110.0010.001MegnesemgL0.0010.0110.0010.001MedodenmgL0.0010.0110.0010.001BarunmgL0.0010.0110.0010.001BarunmgL0.0010.0110.0010.001BarunmgL0.0010.0010.0010.001BarunmgL0.0010.0010.0010.001BarunmgL0.0010.0010.0010.001BarunmgL0.010.010.0010.001BarunmgL0.010.010.010.01BarunmgL0.010.0214.0010.01BarunmgL0.010.0214.0010.01BarunmgL0.010.0214.0010.01BarunmgL0.010.0214.0010.01Barun	Ionic Balance Dissolved Metals	%	0.01	-	3.29	4.36
ActinorympL0.0010.0010.0010.0010.0010.0010.0010.0010.002BerniammpL0.0010.0010.0010.0010.0020.0020.0020.0010.00	Aluminium	mg/L	0.01	0.055	<0.01	<0.01
baylam rgL 0.001 0.001 0.001 Bawan mgL 0.001 0.002 0.001 0.001 Cadmum mgL 0.001 0.001 0.001 0.001 0.001 Cobain mgL 0.001 0.001 0.001 0.001 0.001 Cobain mgL 0.001 0.001 0.001 0.001 0.001 Lead mgL 0.001 0.001 0.001 0.001 0.001 Magnese mgL 0.001 0.011 0.004 0.001 0.001 Stenium mgL 0.011	Antimony Arsenic	mg/L mg/L	0.001	- 0.013 (As V)	<0.001	<0.001
Barum mpl. 0.001 35.1 0.30 Cardnum mpl. 0.001 0.0001 0.0001 0.0001 0.0001 Chronium mpl. 0.001 0.001 0.0001 0.0001 0.0001 Constant mpl. 0.001 0.001 0.001 0.001 0.001 Marganese mpl. 0.001 0.001 0.001 0.001 0.001 Modycherum mpl. 0.001 0.001 0.001 0.001 0.001 0.001 Strontum mpl. 0.001 0.01 0.001 <td>Beryllium</td> <td>mg/L</td> <td>0.001</td> <td>ID</td> <td><0.001</td> <td><0.001</td>	Beryllium	mg/L	0.001	ID	<0.001	<0.001
Chamman appl. 0.007 0.007 0.007 0.007 Copabi appl. 0.001 0.001 0.001 0.001 Copabi appl. 0.001 0.001 4.0011 0.001 Copabi appl. 0.001 0.004 4.0011 0.001 Marganesia mgl. 0.001 0.001 0.004 4.001 Sensium mgl. 0.001 0.011 0.004 4.001 Strantum mgl. 0.001 0.011 4.001 4.001 Variatum mgl. 0.001 0.001 4.001 4.001 Variatum mgl. 0.010 0.020 0.0802 0.0802 Born mgl. 0.01 0.22 4.001 1.01 7.3 5.9 Autions mgl. 0.11 0.10 7.3 5.9 3.82 Bornine mgl. 0.11 0.02 0.01 0.02 0.02 Autions mgl. <td< td=""><td>Barium Cadmium</td><td>mg/L ma/l</td><td>0.001</td><td>- 0.0002</td><td>35.1 <0.0001</td><td>6.35 <0.0001</td></td<>	Barium Cadmium	mg/L ma/l	0.001	- 0.0002	35.1 <0.0001	6.35 <0.0001
Cobait mpl. 0.001 0.001 0.0034 0.001 0.001 Lead mpl. 0.001 0.001 0.001 0.001 0.001 Mingunese mpl. 0.001 1.0 0.002 0.001 Mingunese mpl. 0.001 0.01 0.004 0.001 Seleniam mpl. 0.001 0.01 0.004 4.001 Seleniam mpl. 0.001 1.D <0.001	Chromium	mg/L	0.001	0.001	<0.001	<0.001
Lad 0.001 1.0024 001 1.0024 Marganese mgL 0.001 1.0 0.002 0.001 Marganese mgL 0.001 0.011 0.004 -0.001 Marganese mgL 0.001 0.011 0.004 -0.001 Stension mgL 0.001 0.011 0.004 -0.001 Stension mgL 0.001 0.00 -0.001 -0.001 Vanadam mgL 0.00 0.00 0.000 0.002 0.002 Data mgL 0.001 0.027 -0.00 0.002 0.002 Data mgL 0.01 0.027 -0.01 -0.02 -0.01 Marganese mgL 0.01 0.022 -0.01 -0.02 -0.01 Total Total marganese mgL 0.01 0.022 -0.01 -0.01 Total Total marganese mgL 0.01 -0.72 -0.01 -0.01 Total Total marganese m	Cobalt Copper	mg/L ma/L	0.001	ID 0.0014	<0.001 <0.001	<0.001 <0.001
Manganesempl.0.00110.00.00010.000Nickelmpl.0.0010.00110.004-0.001Nickelmpl.0.0010.0110.001-0.001-0.001Strontummpl.0.0010.011-0.001-0.001-0.001Vanadummpl.0.0050.0000.000-0.001-0.001Vanadummpl.0.0050.0000.0000.0000.0000.000Brontmpl.0.050.0000.0000.0000.0000.000Brontmpl.0.010.027-0.01-0.01-0.01Natinetasmpl.0.010.024.00-0.01-0.01Annonia as Nmpl.0.010.024.00-0.01Nitrate as Nmpl.0.010.020.00-0.02Radice Phosphorousmpl.0.010.020.02-0.01Total Phosphorousmpl.0.010.020.02-0.01Total Objecticotommpl.0.010.020.02-0.01Phoneupl.1.1Phoneupl.1.1Phoneupl.1.1Phoneupl.1.1Phoneupl.1.1Phoneupl.1.1Phoneupl.1.1	Lead	mg/L	0.001	0.0034	<0.001	0.001
Nation Note Note Note Note Note Sidenium mgL 0.001 0.011 0.004 -0.001 Sidenium mgL 0.001 1.0 -0.001 -0.001 Sidenium mgL 0.001 1.0 -0.001 -0.001 -0.001 Viraidum mgL 0.005 0.000 0.002 0.0001 -0.001 Zine mgL 0.005 0.000 0.002 0.0001 -0.001 Zine mgL 0.001 0.002 -0.001 -0.001 -0.001 Simmine mgL 0.011 0.01 -0.7 -0.011 -0.011 Natrients mgL 0.011 0.02 0.021 -0.011 -0.011 Natrients mgL 0.011 0.7 -0.011 -0.011 Tool Opticit Carbon mgL 1 - -0.011 -0.011 Tool Opticit Carbon mgL 1 - - -0.02 -0.01<	Manganese	mg/L mg/l	0.001	1.9 ID	0.052 <0.001	0.002
Shenkum mpL 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.0011 0.002 0.0011 0.002 0.013 0.002 0.010 0.002 0.010 0.002 0.010 0.002 0.010 0.012 0.011 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 0.010 0.010 0.010	Nickel	mg/L	0.001	0.011	0.004	<0.001
Distantion mg/L 0.001 ID 4.001 4.001 Vanaduum mg/L 0.005 0.009 0.000 0.002 Bron mg/L 0.005 0.009 0.000 0.002 Bron mg/L 0.056 0.009 0.000 0.002 Bron mg/L 0.056 0.0 5.89 0.005 0.009 0.005 0.008 0.000 0.000 0.000 0.001 -0.0 -0.01 <td< td=""><td>Selenium</td><td>mg/L</td><td>0.01</td><td>0.011 (total)</td><td><0.01</td><td><0.01</td></td<>	Selenium	mg/L	0.01	0.011 (total)	<0.01	<0.01
Vanadum mpL 0.01 D 0.01 cont Zinc mpL 0.056 0.080 0.020 0.082 Bron mpL 0.056 1D 5.88 -0.05 Bronine mpL 0.01 5.88 -0.05 Mirate an mpL 0.01 - - - Ammonia an N mpL 0.01 0.02* - - - Nirate an N mpL 0.01 0.02* 0.01 0.02 - 0.01 0.02* - 0.01 0.02* - <	Uranium	mg/L	0.001	ID	<0.001	<0.001
mg/L 0.00 0.07 0.08 0.07 tron mg/L 0.05 0.07 0.06 0.08 tron mg/L 0.05 0.07 0.06 0.08 tron mg/L 0.01 0.0 7.3 5.9 Nutriens mg/L 0.01 0.02 4.50 3.82 Nutries as N mg/L 0.01 0.7 -0.01 -0.01 Total Prophorous mg/L 0.01 0.02 0.00 0.02 Total Spontocus mg/L 0.01 0.02 0.01 0.02 Total Spontocus mg/L 1 - 3 18 Discolved Gase - - - - - Propane µg/L 11 - <10	Vanadium Zinc	mg/L	0.01	ID 0.008	<0.01	<0.01
Ion mpL 0.05 ID 5.89 <0.05 Nutriens mpL 0.01 0.27 5.9 Nutries mpL 0.01 0.27 4.50 3.82 Nitris as N mpL 0.01 0.02 4.50 3.82 Nitris as N mpL 0.01 0.02* 0.01 0.02 Total Phosphorous mpL 0.01 0.02* 0.01 0.02 Total Organic Caton mpL 0.01 0.02* 0.01 0.02 Total Organic Caton mpL 1.1 - 3 18 Disaobred Gases mpL 1.1 - 4.10 4.10 Rithme µgL 1.3 - 4.10 4.10 Program µgL 1.1 2.2 - 4.10 4.10 State µgL 1.1 2.2 - 4.10 4.10 4.10 State µgL 1.1 2.2 - 4.10 <t< td=""><td>Boron</td><td>mg/L</td><td>0.05</td><td>0.37</td><td><0.05</td><td>0.16</td></t<>	Boron	mg/L	0.05	0.37	<0.05	0.16
Deckming The The The The The Armmonia as N mg/L 0.01 0.02° 4.50 3.82 Marine as N mg/L 0.01 0.7 <0.01	Iron Bromine	mg/L	0.05	ID ID	5.89 7.3	< 0.05
Armonia as N mg/L 0.01 0.02* 4.50 3.82 Nirita as N mg/L 0.01 0.7 <0.01	Nutrients	ilig/L	0.1	10	7.5	5.5
Name mg/L 0.01 0.7 <0.01 <0.01 Total Phosphorous mg/L 0.01 0.02 0.10 0.02 Total Orophorous mg/L 0.01 0.02 0.10 0.02 Total Organic Cathon mg/L 1 - 3 18 Dissolved Gases - - - - Methane µg/L 11 - 4.10 <10	Ammonia as N	mg/L	0.01	0.02*	4.50	3.82
Total Prosphorous mgL 0.01 0.05" 0.13 0.02 Total Organic Cabon mgL 1 3 18 Dissolved Gases - - - - Wahne µgL 10 7650 13100 Ethene µgL 11 - <10	Nitrate as N	mg/L	0.01	0.7	<0.01	<0.01
Name Imple Out Out <thout< <="" td=""><td>Total Phosphorous</td><td>mg/L</td><td>0.01</td><td>0.05*</td><td>0.13</td><td>0.02</td></thout<>	Total Phosphorous	mg/L	0.01	0.05*	0.13	0.02
Dissolved Gases pg/L 10 . 77650 13100 Ethane µg/L 11 . <10	Total Organic Carbon	mg/L	1	-	3	18
Mathanion µg/L 10 - rosu 13100 Ethane µg/L 11 - <10	Dissolved Gases		40		7050	10100
Ehane μgL 12 - <10 <10 Propane μgL 13 - <10	Ethene	μg/L μg/L	10	-	<10	<10
Propense μgL 13 -	Ethane	µg/L	12	-	<10	<10
Butene μpL 15 -	Propene Propane	μg/L μg/L	13	-	<10	<10
butane μpL 16 - <10 <10 Phenol compounds Phenol μpL 1 320 <1.0 <10 2-Marghanol μpL 1 490 <1.0 <1.0 <1.0 2-Marghanol μpL 1 490 <1.0 <1.0 <1.0 2-Marghanol μpL 1 D <1.0 <1.0 <1.0 3-8-4-Marghyphenol μpL 1 D <1.0 <1.0 <1.0 2-A-Dintorphenol μpL 1 D <1.0 <1.0 <1.0 2-Dintorphenol μpL 1 D <1.0 <1.0 2-Dintorphenol μpL 1 0 2-Dintorphenol μpL 1 0 2-Dintorphene μpL 2-D 2-Dintorphene μpL 2-D 2-Dintorphene μpL 2-D 2-Dintorphene μpL 2-D 2-Dintorphene μpL 2-D 2-Dintorphene μpL 2-D 2-Dintorphene μpL 2-D 2-Dintorphe	Butene	µg/L	15	-	<10	<10
Phenol μpL 1 320	Butane Phenolic compounds	µg/L	16	-	<10	<10
24-Directrophenol μg0, 1 490 <1.0	Phenol	µg/L	1	320	<1.0	<1.0
3:44Methylphenol µg/L 2 - <2.0	2-Chlorophenol 2-Methylphenol	μg/L μg/L	1	490	<1.0	<1.0
2-Nitrophenol μgL 1 ID <td< td=""><td>3-&4-Methylphenol</td><td>µg/L</td><td>2</td><td>-</td><td><2.0</td><td>2.9</td></td<>	3-&4-Methylphenol	µg/L	2	-	<2.0	2.9
2.4-Dichlorophenol µgL 1 160	2-Nitrophenol 2.4-Dimethylphenol	μg/L μg/L	1	ID ID	<1.0 <1.0	<1.0
2.4-Dichicrophenol μg/L 1 ID <1.0	2.4-Dichlorophenol	μg/L	1	160	<1.0	<1.0
2.4.6-Trichlorophenol μgL 1 20 <1.0	2.6-Dichlorophenol 4-Chloro-3-Methylphenol	µg/L µg/L	1	ID -	<1.0	<1.0
z.4.5- Interiorophenol μgL 1 ID <1.0 <1.0 Pentachlorophenol μgL 2 ID <2.0	2.4.6-Trichlorophenol	μg/L	1	20	<1.0	<1.0
Naphthalene $\mu g/L$ 1 16 <1.0 Naphthalene $\mu g/L$ 1 16 <1.0	2.4.5-Trichlorophenol Pentachlorophenol	μg/L μg/L	1	ID ID	<1.0 <2.0	<1.0 <2.0
Naphthalene $\mu g/L$ 1 16 <1.0 <1.0 Acenaphthylene $\mu g/L$ 1 - <1.0	Polycyclic aromatic hydrocarbons	-9-	-			
Acenaphthylene $\mu g/L$ 1 -	Naphthalene	μg/L	1	16	<1.0	<1.0
μg/L 1 - <1.0 <1.0 <1.0 Fluorene μg/L 1 - <1.0	Acenaphthylene	μg/L	1	-	<1.0	<1.0
Phenanthrene $\mu g/L$ 1 ID <1.0 <1.0 <1.0 Anthracene $\mu g/L$ 1 ID <1.0	Fluorene	μg/L μg/L	1	-	<1.0	<1.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Phenanthrene	μg/L	1	ID	<1.0	<1.0
Pyrene $\mu g/L$ 1 - < <1.0 < <1.0 Benz(a)anthracene $\mu g/L$ 1 - <1.0	Fluoranthene	μg/L μg/L	1	ID	<1.0	<1.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pyrene Renz (a) anthronom	μg/L	1	-	<1.0	<1.0
Benzo(b)fluoranthene $\mu g/L$ 1 - <1.0 <1.0 Benzo(k)fluoranthene $\mu g/L$ 1 - <1.0	Benz(a)anthracene Chrysene	μg/L μg/L	1	-	<1.0 <1.0	<1.0 <1.0
benzo(k)nuoranthene $\mu g/L$ 1 - <1.0 <1.0 Benzo(a)pyrene $\mu g/L$ 0.5 ID <0.5	Benzo(b)fluoranthene	μg/L	1	-	<1.0	<1.0
Indeno(1.2.3.cd)pyrene $\mu g/L$ 1 - <1.0	Benzo(k)fluoranthene Benzo(a)pyrene	μg/L μg/L	1 0.5	- ID	<1.0 <0.5	<1.0 <0.5
Divergezie, njanthracene µg/L 1 - <1.0 <1.0 Benzo(g.h.i)perylene µg/L 1 - <1.0	Indeno(1.2.3.cd)pyrene	µg/L	1	-	<1.0	<1.0
Sum of PAHs µg/L 0.5 - <0.5 <0.5 Total petroleum hydrocarbons	וטסוט Benzo(g.h.i)perylene	μg/L μg/L	1	-	<1.0 <1.0	<1.0 <1.0
I ota peroleum hydrocarbons $\mu g/L$ 20 ID <20 <20 C6-C9 Fraction $\mu g/L$ 50 ID <50	Sum of PAHs	μg/L	0.5	-	<0.5	<0.5
C10-C14 Fraction $\mu g/L$ 50 10 <50 100 C15-C28 Fraction $\mu g/L$ 50 ID <50	I otal petroleum hydrocarbons C6-C9 Fraction	µg/L	20	ID	<20	<20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C10-C14 Fraction	μg/L	50	ID	<50	100
Pg- 30 10 100 C10-C36 Fraction (sum) $\mu g/L$ 50 - <50	C15-C28 Fraction C29-C36 Fraction	μg/L μg/l	100 50	ID ID	210 <50	410 150
Total recoverable hydrocarbons μ g/L 20 - <20 <20 C6-C10 Fraction minus BTEX (F1) μ g/L 20 - <20	C10-C36 Fraction (sum)	μg/L	50	-	<50	660
Pg/L 20 - $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20 $<$ 20	Total recoverable hydrocarbons	<u>но/I</u>	20	-	<20	<20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C6-C10 Fraction minus BTEX (F1)	μg/L	20	-	<20	<20
pg/L 100 - 220 520 >C34-C40 Fraction µg/L 100 - <100	>C10-C16 Fraction	μg/L	100	-	<100	120
>c10-C40 Fraction (sum) µg/L 100 - 220 640 Aromatic Hydrocarbons </td <td>>C34-C40 Fraction</td> <td>μg/L</td> <td>100</td> <td>-</td> <td><100</td> <td><100</td>	>C34-C40 Fraction	μg/L	100	-	<100	<100
Benzene µg/L 1 950 <1 <1 Benzene µg/L 1 950 <1	>C10-C40 Fraction (sum)	µg/L	100	-	220	640
Toluene μg/L 2 ID <2 8 Ethyl Benzene μg/L 2 ID <2	Aromatic Hydrocarbons Benzene	µg/L	1	950	<1	<1
μg/L 2 ID <2 <2 m&p-Xylenes μg/L 2 ID <2	Toluene	µg/L	2	ID	<2	8
o-Xylenes μg/L 2 350 <2 <2 Total xlyenes μg/L 2 - <2	⊨tnyl Benzene m&p-Xylenes	μg/L μg/L	2	ID ID	<2 <2	<2 <2
I otal xiyenes μg/L 2 - <2 <2 Sum of BTEX μg/L 1 - <1	o-Xylenes	μg/L	2	350	<2	<2
rs- < </td <td>Total xlyenes Sum of BTEX</td> <td>µg/L µa/l</td> <td>2</td> <td>-</td> <td><2 <1</td> <td><2 8</td>	Total xlyenes Sum of BTEX	µg/L µa/l	2	-	<2 <1	<2 8
	Naphthalene	μg/L	5		<5	<5

Couldeline units
 Could line values
 Could line value
 Could line value

Appendix B ALS laboratory results

Enui	ALS Ironmental	CHAIN OF CUSTODY ALS Leboratory please tick +	DADELAIDE Ph. 08 3562 DIRISDAN Ph. 07 3203 CIGLADSTO HE 07 7471 5	21 Burma I 800 E: add 32 Shand : 222 E: sim IE 40 Calle 600 E: glar THEA	Road Poeraka Iande@alsgkof Stroet Statford mondah Drive Istone@alsgle	SA 5006 alcom OLD 4053 galagabat com Clinton OLD 4680 bat com PEONIDEMEN	те.	[7] o	DMACKAY Ph. 07 4944 OMELBOU Ph. 03 8540 DMUDGEE Ph. 02 0372	78 Harbour Ro, 19177 E. matek RNE 2-4 Wosta 9 9600 E. sampt 27 Sydnay Roz 26735 E. naidge	ad Maokay G ny@al*glotial di Roari Sprin losumeBourn ni Mudgeo N soumail@alay	LD 4740 Loom ngyalo VIC 3171 nggalogiobal.com Jobal.com		יבי רא רא רא רא רא רא רא	NEWCASTLE 5 02 4966 9433 NOWRA 4/13 6 024423 2063 PERTH 10 Hed 08 9209 7655	i Rose Gum Road E. semplos.now isary Place North E. nowrargainels Way Malaga IW E. samplos.porth	d Warabrook N castlorg alsgtob Newra NSW 2 sbat.com A 6090 http://atspibbal.co	SW 2304 al.com 541 In	22 Magazine and 2 and	US Pir Offi Ph: OW Ph:	YONEY 277-286 02 8784 8655 B OWNSVRLE 14 07 8796 0000 E YOLLONGONG 02 4775 3125 E) Woodpark Ro earnplos syde 15 Desera: Car teenosville.cav 99 Koony Strea * partkemblag)	nd Snahlioid NSW 2104 de Rahajahatinan 196An QLD 4818 nemerina (Kahalina can Walangang ASW 2600 deglahaliwan
OFFICE:	Sydney		·	(Standa	rd TAT may	be longer for son	ne tests	L Stand	ard TAT (List	due date):					FOI		ORYUSE	DNLY (Circ	D)			darle de	the second second
PROJECT	: 214759B			e.g., Ul	tra Trace Or	ganics)		Non S	tandard or ur	gent TAT (Lls	st due dat	e):	<u> </u>		Cust	ody Seal Intac	17 	26.7					10 NA
ORDER N	UMBER:			~	20012 14	·	_					COC SEQ	UENCE NUM	BER (Circle)		lesv/nezonie	e bricks pres	ent upon recei	P?	1.20			NO INA
PROJECT	MANAGER: James Du	ggleby	CONTACT PH	: 9272 5	248				·			CC: 1 2	34	56	7 Ran	dom Sample ()	emperature c	in Receiptain					6 F 6
SAMPLER	: Sean Moran		SAMPLER MC	BILE: 0	422 395 0	59		RELINCU	SHED BY-				3 4	5 6	7 000	Comment and				经 本资料任		227.8	
COC emai	led to ALS? (YES /	NO)	EDD FORMAT	(or def	auiti:	<u> </u>		-	Q1120 Q1,			n in the second se	. 1		RELINGU	ISHED BY:							RECEIVED BY:
Email Rep	orts to jduggleby@pb.c	om.au						DATE/TIM	E:						DATEZTIN	(E.							
Email Invo	lice to accounts@pb.co:	m.au			-			-	_,			22/	s n	06	DATE H	164.							DATE/TIME:
COMMEN	TS/SPECIAL HANDLING	G/STORAGE OR DI	SPOSAL:									_ 231											
ALS		SAMPLE DE	TAILS			CONTAIN	ERINFO	RMATION					ANALYSIS F	REQUIRED Inc	luding SVIT	E\$ (NB. Suite	Codes must	be listed to al	tract suite pric				
							0n 2 - 2		a second			:	e Metals are n	equired, specif	y Total (unfil	tered bottle rec	quired) or Dis -	isolved (field	filtered bottle	required),			Additional Information
LAB ID	SAMPL	EID	DATE / TIME	MATRIX	TYPE 8	PRESERVATI to codes i	VE below)	(refer	TOTAL CONTAINERS	Conductivity, p.4, TDS	Cations - Ca,Mg,Na,K	Anlors - Ci, SO4, Alkalinity	Anions Minor - Nitrite as N, Nitrata as N, Auorida, Reactive Phosphorus	(C7/MS Discoved metals"41, 5¢ (antimory), A5, B4, B4, B, Er, Cd, Cr, Co, Cu, F4, P5, Ma, M6, NI, S4, Sr, U, V, Zh	Nitroĝen - Ammonia as N	Phospharus - Total ar P	W-24 TBH(CG-C40)/BTEXN /PAH/Phenois	Gates CL-Cd	Silicareactive	Suspended solids	Total Organic Carban	Cyanide	Comments on likely contaminant levels, dilutions, or samples requiring specific GC analysis etc.
	RMB02		21/05/2013 1230	w						x	×	' x	x	x	x	x	×	×	×	x	×	×	48h holding the
2	RMB03		21/05/2013 600	w		· · · ·				x	×	×	x	×	x	x	×	×	×	× .	×	×	expires 23/05/13
			<u> </u>	ļ				_				,											(3)1230
														- - - - - - - - - - - - - - - - - - -	Environ v ES	nmenta Sydne Vork O 131	al Divis ey rder 17 1	sion 19					
								·												 			
				L				TOTAL						н Т _і	elephor 1	ie:+61	-2-8784 1	8555					
Water Conts V = VOA Via Z = Zinc Ace	iner Codes: P = Unpresen HCI Preserved: VB = VOA tate Preserved Bottle; E = E	ved Plastic; N = Nitric Vlat Sodium Blautphat DTA Preserved Bottles	Preserved Plastic; ORC = Nitric e Preserved; VS = VOA Vial Sult ; ST = Sterile Bottle; ASS = Pla	Preserve uric Pres stic Bag f	ed ORC; S⊦ arved; AV = or Acid Sulp	i = Sedium Hydro: Airfreight Unprese hate Sojis: 8 = Ur	tide/Cd Pre arved Vial 5 preserved	eserved; S = S SG = Sulfuric Bag.	Sodium Hydro: Preserved An	xide Preserve nber Glass;	l d Plastic; A H = HCl pr	 AG = Amber Gi reserved Plastic	 lass Unpreserv ; HS = HCI pi	ved; AP - Airfre reserved Spec	ight Unprese ation bottle:	rved Plastic SP = Sulturic F	Preserved Pla	astic; F = For	naldehyde Pri	aserved Glass	s;	<u> </u>	

Environmental Division

	CERTIFICATE OF ANALYSIS											
Work Order	ES1311719	Page	: 1 of 8									
Client	: PARSONS BRINCKERHOFF AUST P/L	Laboratory	: Environmental Division Sydney									
Contact	: MR JAMES DUGGLEBY	Contact	: Loren Schiavon									
Address	: GPO BOX 5394	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164									
	SYDNEY NSW, AUSTRALIA 2001											
E-mail	: jduggleby@pb.com.au	E-mail	: loren.schiavon@alsglobal.com									
Telephone	: +61 02 9272 5100	Telephone	: +61 2 8784 8503									
Facsimile	: +61 02 9272 5101	Facsimile	: +61 2 8784 8500									
Project	: 214759B	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement									
Order number	:											
C-O-C number	:	Date Samples Received	: 23-MAY-2013									
Sampler	: SM	Issue Date	: 29-MAY-2013									
Site	:											
		No. of samples received	: 2									
Quote number	: EN/008/12	No. of samples analysed	: 2									

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

Accredited for compliance with

ISO/IEC 17025.

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825 Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ashesh Patel	Inorganic Chemist	Sydney Inorganics
Hoa Nguyen	Senior Inorganic Chemist	Sydney Inorganics
Phalak Inthaksone	Laboratory Manager - Organics	Sydney Organics
Phalak Inthaksone	Laboratory Manager - Organics	Sydney Organics
Raymond Commodor	Instrument Chemist	Sydney Inorganics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

- ED041G:LOR raised for Sulfate analysis on sample ID(RMB02) due to sample matrix.
- EG020: Bromine quantification may be unreliable due to its low solubility in acid, leading to variable volatility during measurement by ICPMS.
- EK026SF: Spike failed for Total Cyanide analysis due to matrix interferences (confirmed via re-analysis).
- EK026SF: Unpreserved natural samples used for Total Cyanide analysis.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	RMB02	RMB03	 	
	Cl	lient samplii	ng date / time	21-MAY-2013 12:30	21-MAY-2013 16:00	 	
Compound	CAS Number	LOR	Unit	ES1311719-001	ES1311719-002	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	7.24	9.43	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	10700	8320	 	
EA015: Total Dissolved Solids							
Total Dissolved Solids @180°C		10	mg/L	5550	4200	 	
EA025: Suspended Solids							
Suspended Solids (SS)		5	mg/L	18	80	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	260	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	836	228	 	
Total Alkalinity as CaCO3		1	mg/L	836	488	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	10	 	
ED045G: Chloride Discrete analyser							
Chloride	16887-00-6	1	mg/L	2800	2280	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	307	7	 	
Magnesium	7439-95-4	1	mg/L	83	18	 	
Sodium	7440-23-5	1	mg/L	1820	1810	 	
Potassium	7440-09-7	1	mg/L	35	21	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	 	
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	 	
Arsenic	7440-38-2	0.001	mg/L	<0.001	0.002	 	
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	 	
Barium	7440-39-3	0.001	mg/L	35.1	6.35	 	
	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	 	
	7440-47-3	0.001	mg/L	<0.001	<0.001	 	
	7440-48-4	0.001	mg/L	<0.001	<0.001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	 	
Lead	7439-92-1	0.001	mg/L	<0.001	0.001	 	
Manganese	7439-96-5	0.001	mg/L	0.051	0.002	 	

Page: 4 of 8Work Order: ES1311719Client: PARSONS BRINCKERHOFF AUST P/LProject: 214759B

Sub-Matrix: WATER (Matrix: WATER)		Clier	nt sample ID	RMB02	RMB03	 	
	Clien	nt sampling	g date / time	21-MAY-2013 12:30	21-MAY-2013 16:00	 	
Compound	umber	LOR	Unit	ES1311719-001	ES1311719-002	 	
EG020F: Dissolved Metals by ICP-MS - Continued							
Molvbdenum 743	9-98-7 (0.001	mg/L	<0.001	0.006	 	
Nickel 744)-02-0 (0.001	mg/L	0.004	<0.001	 	
Selenium 778	2-49-2	0.01	mg/L	<0.01	<0.01	 	
Strontium 744)-24-6 (0.001	mg/L	8.00	1.82	 	
Uranium 744)-61-1 (0.001	mg/L	<0.001	<0.001	 	
Vanadium 744)-62-2	0.01	mg/L	<0.01	<0.01	 	
Zinc 744)-66-6 (0.005	mg/L	0.020	0.602	 	
Boron 744)-42-8	0.05	mg/L	<0.05	0.16	 	
Iron 743	9-89-6	0.05	mg/L	5.89	<0.05	 	
Bromine 772	6-95-6	0.1	mg/L	7.3	5.9	 	
EG052G: Silica by Discrete Analyser							
Reactive Silica		0.10	mg/L	10.6	6.85	 	
EK026SF: Total CN by Segmented Flow Analyser							
Total Cyanide 5	7-12-5 (0.004	mg/L	<0.004	<0.004	 	
EK040P: Fluoride by PC Titrator							
Fluoride 1698	1-48-8	0.1	mg/L	0.2	0.3	 	
EK055G: Ammonia as N by Discrete Analyser							
Ammonia as N 766	1-41-7	0.01	mg/L	4.50	3.82	 	
EK057G: Nitrite as N by Discrete Analyser							
Nitrite as N		0.01	mg/L	<0.01	<0.01	 	
EK058G: Nitrate as N by Discrete Analyser							
Nitrate as N 1479	7-55-8	0.01	mg/L	<0.01	<0.01	 	
EK059G: Nitrite plus Nitrate as N (NOx) by Discre	te Analys	ser					
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	 	
EK067G: Total Phosphorus as P by Discrete Analy	ser						
Total Phosphorus as P		0.01	mg/L	0.13	0.02	 	
EK071G: Reactive Phosphorus as P by discrete an	alyser						
Reactive Phosphorus as P 1426	5-44-2	0.01	mg/L	0.10	0.02	 	
EN055: Ionic Balance							
Total Anions		0.01	meq/L	95.7	74.3	 	
Total Cations		0.01	meq/L	102	81.1	 	
Ionic Balance		0.01	%	3.29	4.36	 	
EP005: Total Organic Carbon (TOC)							

Page : 5 of 8 Work Order : ES1311719 Client : PARSONS BRINCKERHOFF AUST P/L Project : 214759B

Sub-Matrix: WATER (Matrix: WATER)	Cl	ient sample ID	RMB02	RMB03	 	
	Client samp	ing date / time	21-MAY-2013 12:30	21-MAY-2013 16:00	 	
Compound CAS Num	er LOR	Unit	ES1311719-001	ES1311719-002	 	
EP005: Total Organic Carbon (TOC) - Continued						
Total Organic Carbon	1	mg/L	3	18	 	
EP033: C1 - C4 Hydrocarbon Gases						
Methane 74-8	-8 10	µg/L	7650	13100	 	
Ethene 74-8	i-1 10	µg/L	<10	<10	 	
Ethane 74-8	-0 10	µg/L	<10	<10	 	
Propene 115-0	'-1 10	µg/L	<10	<10	 	
Propane 74-9	-6 10	µg/L	<10	<10	 	
Butene 25167-6	-3 10	µg/L	<10	<10	 	
Butane 106-9	-8 10	µg/L	<10	<10	 	
EP075(SIM)A: Phenolic Compounds						
Phenol 108-9	-2 1.0	µg/L	<1.0	<1.0	 	
2-Chlorophenol 95-5	-8 1.0	µg/L	<1.0	<1.0	 	
2-Methylphenol 95-4	-7 1.0	µg/L	<1.0	<1.0	 	
3- & 4-Methylphenol 1319-7	-3 2.0	µg/L	<2.0	2.9	 	
2-Nitrophenol 88-7	-5 1.0	µg/L	<1.0	<1.0	 	
2.4-Dimethylphenol 105-6	-9 1.0	µg/L	<1.0	<1.0	 	
2.4-Dichlorophenol 120-8	-2 1.0	µg/L	<1.0	<1.0	 	
2.6-Dichlorophenol 87-6	-0 1.0	µg/L	<1.0	<1.0	 	
4-Chloro-3-Methylphenol 59-5	-7 1.0	µg/L	<1.0	<1.0	 	
2.4.6-Trichlorophenol 88-0	i-2 1.0	µg/L	<1.0	<1.0	 	
2.4.5-Trichlorophenol 95-9	i-4 1.0	µg/L	<1.0	<1.0	 	
Pentachlorophenol 87-8	-5 2.0	µg/L	<2.0	<2.0	 	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons						
Naphthalene 91-2	-3 1.0	µg/L	<1.0	<1.0	 	
Acenaphthylene 208-9	-8 1.0	µg/L	<1.0	<1.0	 	
Acenaphthene 83-3	-9 1.0	µg/L	<1.0	<1.0	 	
Fluorene 86-7	-7 1.0	µg/L	<1.0	<1.0	 	
Phenanthrene 85-0	-8 1.0	µg/L	<1.0	<1.0	 	
Anthracene 120-1	-7 1.0	µg/L	<1.0	<1.0	 	
Fluoranthene 206-4	-0 1.0	µg/L	<1.0	<1.0	 	
Pyrene 129-0	-0 1.0	µg/L	<1.0	<1.0	 	
Benz(a)anthracene 56-5	-3 1.0	µg/L	<1.0	<1.0	 	
Chrysene 218-0	-9 1.0	µg/L	<1.0	<1.0	 	

Page : 6 of 8 Work Order : ES1311719 Client : PARSONS BRINCKERHOFF AUST P/L Project : 214759B

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	RMB02	RMB03	 	
	Cli	ient sampli	na date / time	21-MAY-2013 12:30	21-MAY-2013 16:00	 	
2 mm and		LOP	Unit	ES1311719-001	ES1311719-002	 	
	CAS Number	LOR	Onn				
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Cont	inued	ug/l	<10	<1.0		
Benzo(k)fluoranthono	205-99-2	1.0	µg/L	<1.0	<1.0		
Bonzo(a)pyropo	207-06-9	0.5	µg/L	<0.5	<0.5		
Indeno(1.2.3.cd)nyrene	102 20 5	1.0	µg/L	<1.0	<1.0	 	
Dibenz(a b)anthracene	52 70 2	1.0	µg/L	<1.0	<1.0	 	
Benzo(a h i)pervlene	101 24 2	1.0	µg/L	<1.0	<1.0	 	
Sum of polycyclic aromatic hydrocarbons	191-24-2	0.5	µg/L	<0.5	<0.5	 	
Bonzo(2)pyropo TEO (WHO)		0.5	μg/L	<0.5	<0.5	 	
		0.0	P9/E				
C6 - C9 Eraction	ons	20	ug/l	<20	<20	 	
C10 - C14 Fraction		50	ua/L	<50	100	 	
C15 - C28 Fraction		100	ug/L	<100	410	 	
C29 - C36 Fraction		50	ug/L	<50	150	 	
[^] C10 - C36 Fraction (sum)		50	μg/L	<50	660	 	
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	0 Draft					
C6 - C10 Fraction		20	µg/L	<20	<20	 	
C6 - C10 Fraction minus BTEX (F1)		20	µg/L	<20	<20	 	
>C10 - C16 Fraction		100	µg/L	<100	120	 	
>C16 - C34 Fraction		100	µg/L	<100	520	 	
>C34 - C40 Fraction		100	µg/L	<100	<100	 	
>C10 - C40 Fraction (sum)		100	µg/L	<100	640	 	
EP080: BTEXN							
Benzene	71-43-2	1	µg/L	<1	<1	 	
Toluene	108-88-3	2	µg/L	<2	8	 	
Ethylbenzene	100-41-4	2	µg/L	<2	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	 	
ortho-Xylene	95-47-6	2	µg/L	<2	<2	 	
^ Total Xylenes	1330-20-7	2	µg/L	<2	<2	 	
Sum of BTEX		1	µg/L	<1	8	 	
Naphthalene	91-20-3	5	µg/L	<5	<5	 	
EP075(SIM)S: Phenolic Compound Sur	rogates						
Phenol-d6	13127-88-3	0.1	%	41.2	41.1	 	
2-Chlorophenol-D4	93951-73-6	0.1	%	92.7	94.3	 	

Sub-Matrix: WATER (Matrix: WATER) Client sample ID				RMB02	RMB03						
	Cl	ient sampli	ng date / time	21-MAY-2013 12:30	21-MAY-2013 16:00						
Compound	CAS Number	LOR	Unit	ES1311719-001	ES1311719-002						
EP075(SIM)S: Phenolic Compound Surrogates - Continued											
2.4.6-Tribromophenol	118-79-6	0.1	%	106	116						
EP075(SIM)T: PAH Surrogates	EP075(SIM)T: PAH Surrogates										
2-Fluorobiphenyl	321-60-8	0.1	%	75.7	84.6						
Anthracene-d10	1719-06-8	0.1	%	105	107						
4-Terphenyl-d14	1718-51-0	0.1	%	106	104						
EP080S: TPH(V)/BTEX Surrogates											
1.2-Dichloroethane-D4	17060-07-0	0.1	%	84.2	77.9						
Toluene-D8	2037-26-5	0.1	%	111	104						
4-Bromofluorobenzene	460-00-4	0.1	%	98.8	96.6						

Surrogate Control Limits

Sub-Matrix: WATER		Recovery Limits (%)			
Compound	CAS Number	Low	High		
EP075(SIM)S: Phenolic Compound Surrogate	s				
Phenol-d6	13127-88-3	10.0	44		
2-Chlorophenol-D4	93951-73-6	15.9	102		
2.4.6-Tribromophenol	118-79-6	17	125		
EP075(SIM)T: PAH Surrogates					
2-Fluorobiphenyl	321-60-8	20.4	112		
Anthracene-d10	1719-06-8	29.6	118		
4-Terphenyl-d14	1718-51-0	21.5	126		
EP080S: TPH(V)/BTEX Surrogates					
1.2-Dichloroethane-D4	17060-07-0	71	137		
Toluene-D8	2037-26-5	79	131		
4-Bromofluorobenzene	460-00-4	70	128		