• draft meeting minutes of the last Community Consultative Committee Meeting, September 26

Water quality investigation report Camden Gas Project

Summary of Parsons Brinckerhoff report (2013)

Presented by Dr Wendy McLean, Principal Hydrogeochemist, EMM

Dr Wendy McLean

CKERHOFF

- PhD, Hydrogeochemistry and hydrogeology (2003)
- 12 years experience water quality, tracers & isotopes
- Member of International Association of Hydrogeologists
- Registered Professional Geoscientist (RPGeo 10,077)
- Australian Research Council Linkage Grant (2009-2012)
- Australian Research Council Fellow (2009)
- AWA Water Research Merit Award (2008)
- Appointed Panel Member, Thirlmere Lakes Inquiry (OEH 2011-2013)
- Coal seam gas experience (2004 ongoing)
- Coal seam gas experience:
 - Site investigations including drilling, aquifer testing and sampling
 - Water quality studies
 - Isotope studies and age dating
 - Isotopic fingerprinting
 - Geochemical modelling
 - Produced water quality
 - Risk assessment

Parsons Brinckerhoff's role

- Parsons Brinckerhoff was engaged by AGL to investigate the lower salinity of produced water coming from some gas wells and to provide reasons why this was happening
- Multiple tools used for study hydrochemistry, age dating and isotopic fingerprinting
- This investigation was completed July 2013
- The investigation was based on an extensive literature review of:
 - local and regional geology
 - groundwater chemistry, and
 - local and international CSG and shale gas operations

Methodology

Data analysis and reporting

Hypotheses

Testing program

Background on tritium

Background on stable isotopes of water

Atoms of same element with differing masses; # of protons same, # neutrons different

Background on stable isotopes of water

- In water, heavy isotope (²H) compared to light isotope (¹H) (¹⁸O/¹⁶O)
- As water changes phase (i.e. evaporation and rainfall), the ratios change between heavy and light (i.e. ¹⁸O/¹⁶O)
- Can provide unique fingerprint

Results

Analyte/ parameter	Atypical water – the water in question	Surface water	Shallow groundwater	Potable water (frac fluid)	Dilution by condensate
Salinity	Fresh (<250 µS/cm)	Fresh (~150 µS/cm)	Fresh (~650 µS/cm)	Fresh (~230 µS/cm)	Fresh (<250 µS/cm)
Water type	Na-HCO ₃	Na-CI-HCO ₃	Ca-Na-I/Ig- FICO ₃	Ca-Na-CI-HCO ₃	Na-HCO ₃
рН	Acidic	Neutral	Neutral	Alkaline	Acidic
Barium and strontium	Low	Low	Elevated	Low	Low
Manganese and iron	High	Low	Low	Low	High
Fluoride	Low	Low	Low	High	Low
Ammonia	Low to high	Low	Low	Low	Low to high
Tritium	No	Yes	No	Yes	No
Stable isotopes	Left of GMWL	On GMWL	On GMWL	On GMWL	Left of GMWL

Explanation of low salinity water

Why is low salinity water unique to Camden?

- High volume wells physical processes (e.g. evaporation and condensation) do not occur so water chemistry does not change (remains the same as in coal seams)
- Low volumes physical processes occur and water chemistry changes (forms low salinity water)
- Produced water volumes are a function of:
 - > Geology (rock type and permeability)
 - Proximity to shallow aquifers and recharge areas
 - > Degree of confirement/isolation
- Produced water volumes are small at Camden (<4.7 ML per year) (<2 Olympic swimming pools)

Total Field Produced

Water Volumes

se cioucester canden

180

160

140

120

100

80

60

40

20

0

Galilee

ML per year

Hunter

Summary

