BAYSWATER MONTHLY DATA SUMMARY MARCH 2019

LICENCE NO	779
LICENCE HOLDER	AGL Macquarie
REPORTING PERIOD	MARCH 2019

A1 Licence Holder

Licence Number 779

Licence Holder AGL Macquarie

Trading Name (if applicable)

ABN 18 402 904 344

A2 Premises to which Licence Applies (if applicable)

Common Name (if any) BAYSWATER POWER STATION

Premises NEW ENGLAND HIGHWAY MUSWELLBROOK NSW 2333

A3 Activities to which Licence Applies

Electricity Generation

A4 Other Activities (if applicable) Crushing, Grinding or Separating Works Aircraft (helicopter) facilities

Crushing, Grinding or Separating Works

Sewage Treatment Systems

Chemical Storage Facilities

Aircraft (helicopter) facilities

A5 Fee-Based Activity Classifications

Note that the fee based activity classification is used to	o calculate the administrative fee.	
Fee-based activity	Activity scale	Unit of measure
Generation of electrical power from coal	> 4,000.00	Gwh generated
Chemical Storage	> 100	Tonnes Generated or Stored
Coal Works	> 5000000	Tonnes handled

Discharge & Monitoring Point 1

Discharge to waters

Effluent quality and volume monitoring, Discharge from main station oil separator hoBWing basin and Treated Process Water Pond to Tinkers Creek, shown as "EPA ID No. 1" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Samples collected and analysed	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
MARCH 2019	10/10/2018	Oil and Grease	milligrams per litre	Fortnightly	4	\ 5	2.5	< 5	10 mg/L
MARCH 2019	10/10/2018	Total suspended solids	milligrams per litre	Fortnightly	4	1.0	3.0	6.0	20 mg/L
MARCH 2019	10/10/2018	Volume discharge	kilolitres per week	Weekly during discharge	4	0	13,993	25,468	36,400 kL
Comments:									

Discharge & Monitoring Point 7

Discharge to waters

Effluent quality and volume monitoring, Discharge from cooling towers to Tinkers Creek, shown as "EPA ID No. 7" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Samples collected and analysed	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
MARCH 2019	10/10/2018	Conductivity	uS/cm	Continuous	0.993	36.3	3459.9	4195.0	4500 uS/cm
MARCH 2019	10/10/2018	рН	pH Units	Continuous	0.993	7.1	8.0	8.3	6.5 - 8.5
MARCH 2019	10/10/2018	Volume discharge	Megalitres per month	Weekly during discharge	14		485.9		840 ML
Comments:									

Discharge & Monitoring Point 8

Discharge to waters

Discharge & monitoring point under the Hunter River Salinity Trading Scheme, Discharge pipe from Lake Liddel dam wall, shown as "EPA ID No. 8" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Samples collected and analysed	Lowest sample value	Mean of samples	Highest sample value	EPL Limit		
MARCH 2019	10/10/2018	Conductivity	uS/cm	Continuous during disharge	1	2600.0	2600.0	2600.0	-		
MARCH 2019	10/10/2018	рН	pH Units	Daily during discharge	1	8.5	8.5	8.5	6.5 - 8.5		
MARCH 2019	10/10/2018	Total suspended solids	milligrams per litre	Monthly	1	5.0	5.0	5.0	30 mg/L		
MARCH 2019	10/10/2018 Volume discharge Megalitres per day Daily during discharge							-	700 ML		
Comments:	RSTS discharge did not occur during March 2019. Results obtained from regular monthly sampling										

Discharge & Monitoring Point 17

Discharge to waters

Ravensworth void. Inlet point located on the Void 4 pontoon pump system

Naveliswoil	i void. Illiet	Joint located on t	int located on the void 4 pontoon pump system											
Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Samples collected and analysed	Lowest sample value	Mean of samples	Highest sample value	EPL Limit					
MARCH 2019	10/10/2018	Conductivity	uS/cm	Continuous during disharge	1	8010.0	8010.0	8010.0	-					
MARCH 2019	10/10/2018	рН	pH Units	Daily during discharge	1	8.8	8.8	8.8	6.5 - 9.5					
MARCH 2019	10/10/2018	Total suspended solids	milligrams per litre	Monthly	1	<5	2.5	<5	30 mg/L					
MARCH 2019	10/10/2018	Boron	milligrams per litre	Weekly duirng discharge	1	3.6	3.6	3.6	0.81					
MARCH 2019	10/10/2018	Cadmium	milligrams per litre	Weekly duirng discharge	1	<0.0001	0.0	<0.0001	0.0003					
MARCH 2019	10/10/2018	Copper	milligrams per litre	Weekly duirng discharge	1	0.0	0.0	0.0	0.001					
MARCH 2019	10/10/2018	Iron	milligrams per litre	Weekly duirng discharge	1	<0.05	0.0	<0.05	0.27					
MARCH 2019	10/10/2018	Molybdenum	milligrams per litre	Weekly duirng discharge	1	0.4	0.4	0.4	0.29					
MARCH 2019	10/10/2018	Nickel	milligrams per litre	Weekly duirng discharge	1	0.0	0.0	0.0	0.19					
MARCH 2019	10/10/2018	Silver	milligrams per litre	Weekly duirng discharge	1	<0.0001	0.0	<0.0001	0.0005					
MARCH 2019	10/10/2018	Volume discharge	Megalitres per day	Daily during discharge	-	-	-	-	20 ML					
Comments: HRSTS discharge did not occur during March 2019. Results obtained from regular monthly sampling														

Discharge & Monitoring Point 18

Discharge to waters

Discharge from Bayswater Ash Dam unlined flood pillway located near left abutment

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Samples collected and analysed	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
MARCH 2019	10/10/2018	Conductivity	uS/cm	Weekly duirng discharge	0				-
MARCH 2019	10/10/2018	рН	pH Units	Weekly duirng discharge	0				6.5 - 9.5
MARCH 2019	10/10/2018	Total suspended solids	milligrams per litre	Weekly duirng discharge	0				30 mg/L
MARCH 2019	10/10/2018	Boron	milligrams per litre	Weekly duirng discharge	0				0.81
MARCH 2019	10/10/2018	Cadmium	milligrams per litre	Weekly duirng discharge	0				0.0003
MARCH 2019	10/10/2018	Copper	milligrams per litre	Weekly duirng discharge	0				0.001

MARCH 2019	10/10/2018	Iron	milligrams per litre	Weekly duirng discharge	0				0.27	
MARCH 2019	10/10/2018	Molybdenum	milligrams per litre	Weekly duirng discharge	0				0.29	
MARCH 2019	10/10/2018	Nickel	milligrams per litre	Weekly duirng discharge	0				0.19	
MARCH 2019	10/10/2018	Silver	milligrams per litre	Weekly duirng discharge	0				0.0005	
Comments:	nts: Discharge did not occur during March 2019									

Licence 779

Discharge & Monitoring Point 10

Discharge to air

Air emission monitoring, Boiler 1 stack emissions, shown as "EPA ID No. 10" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Averaging period	Data capture %	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
MARCH 2019	10/10/2018	Nitrogen Oxides	parts per million	Continuous	One hour	100.0%	102.2	199.5	303.2	
MARCH 2019	10/10/2018	Milogen Oxides	milligrams per cubic metre	Continuous	One flour	100.076	209.8	409.5	622.2	1500 mg/m ³
MARCH 2019	10/10/2018		parts per million				129.6	159.2	203.0	600 ppm
MARCH 2019	10/10/2018	Sulphur dioxide	milligrams per cubic metre	Continuous	One hour	100.0%	370.5	455.1	580.2	•
MARCH 2019	10/10/2018	Opacity -Undifferentiated particles	Percent	Continuous	One hour	100.0%	1.5%	3.2%	6.6%	
Comments:										

Annual monitoring of discharges to air

Air emission monitoring, Boiler 1 stack emissions, shown as "EPA ID No. 13" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	No. of samples required by licence	Samples collected and analysed	Sample value	EPL Limit mg/m ³
Oct-18	26/11/2018	Cadmium	milligrams per cubic metre	1	1	<0.0002	1.0
Oct-18	26/11/2018	Carbon monoxide	ppm	1	1	4	
Oct-18	26/11/2018	Chlorine	milligrams per cubic metre	1	1	0.0	200
Oct-18	26/11/2018	Copper	milligrams per cubic metre	1	1	0.0013	
Oct-18	26/11/2018	Hazardous substances (Metals)	milligrams per cubic metre	1	1	≤0.016	5
Oct-18	26/11/2018	Hydrogen chloride	milligrams per cubic metre	1	1	11.0	100
Oct-18	26/11/2018	Mercury	milligrams per cubic metre	1	1	0.00100	1.0
Oct-18	26/11/2018	Nitrogen oxides	milligrams per cubic metre	1	1	860	1500
Oct-18	26/11/2018	Solid particles	milligrams per cubic metre	1	1	15.0	100
Oct-18	26/11/2018	Sulfuric acid mist and sulfur trioxide	milligrams per cubic metre	1	1	3.10	100
Oct-18	26/11/2018	Sulphur dioxide	milligrams per cubic metre	1	1	930	
Oct-18	26/11/2018	Total fluoride	milligrams per cubic metre	1	1	8.5	50
omments:		sion from each of the 4 boi	lers for the substances in	n this table is required annu	ually. In most years on	e boiler is tested each	quarter. This table

Discharge & Monitoring Point 11

Discharge to air

Air emission monitoring, Boiler 2 stack emissions, shown as "EPA ID No. 11" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Averaging period	Data capture %	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
MARCH 2019	10/10/2018	Nitrogen Oxides	parts per million	Continuous	One hour	96.5%	100.2	210.3	298.0	-
MARCH 2019	10/10/2018	Nillogen Oxides	milligrams per cubic metre	Continuous	One noul	90.5%	205.6	431.7	611.7	1500 mg/m³
MARCH 2019	10/10/2018		parts per million	0.1	One hour	400.004	118.8	186.7	232.0	600 ppm
MARCH 2019	10/10/2018	Sulphur dioxide	milligrams per cubic metre	Continuous	One nour	100.0%	339.4	533.7	663.1	-
MARCH 2019	10/10/2018	Opacity -Undifferentiated particles	Percent	Continuous	One hour	100.0%	2.5%	4.9%	10.8%	-
Comments:										

Annual monitoring of discharges to air

Air emission monitoring, Boiler 2 stack emissions, shown as "EPA ID No. 13" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	No. of samples required by licence	Samples collected and analysed	Sample value	EPL Limit mg/m³			
Oct-18	26/11/2018	Cadmium	milligrams per cubic metre	1	1	<0.0002	1.0			
Oct-18	26/11/2018	Carbon monoxide	ppm	1	1	<2				
Oct-18	26/11/2018	Chlorine	milligrams per cubic metre	1	1	0.0	200			
Oct-18	26/11/2018	Copper	milligrams per cubic metre	1	1	0.0008				
Oct-18	26/11/2018	Hazardous substances (Metals)	milligrams per cubic metre	1	1	≤0.038	5			
Oct-18	26/11/2018	Hydrogen chloride	milligrams per cubic metre	1	1	8.5	100			
Oct-18	26/11/2018	Mercury	milligrams per cubic metre	1	1	0.00160	1.0			
Oct-18	26/11/2018	Nitrogen oxides	milligrams per cubic metre	1	1	760	1500			
Oct-18	26/11/2018	Solid particles	milligrams per cubic metre	1	1	17.0	100			
Oct-18	26/11/2018	Sulfuric acid mist and sulfur trioxide	milligrams per cubic metre	1	1	3.10	100			
Oct-18	26/11/2018	Sulphur dioxide	milligrams per cubic metre	1	1	760				
Oct-18	26/11/2018	Total fluoride	milligrams per cubic metre	1	1	5.9	50			
Monitoring of emission from each of the 4 boilers for the substances in this table is required annually. In most years one boiler is tested each quarter. This table contains the latest results from Boiler 2.										

Discharge & Monitoring Point 12

Discharge to air

Air emission monitoring, Boiler 3 stack emissions, shown as "EPA ID No. 12" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Averaging period	Data capture %	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
MARCH 2019	10/10/2018	Nitrogen Oxides	parts per million	Continuous	One hour	100.0%	128.8	288.1	387.4	-
MARCH 2019	10/10/2018		milligrams per cubic metre	Continuous			264.4	591.4	795.1	1500 mg/m³
MARCH 2019	10/10/2018	- Sulphur dioxide -	parts per million	Continuous	One hour	100.0%	158.9	291.6	347.6	600 ppm
MARCH 2019	10/10/2018		milligrams per cubic metre				454.1	833.3	993.5	-
MARCH 2019	10/10/2018	Opacity -Undifferentiated particles	Percent	Continuous	One hour	100.0%	1.9%	4.7%	9.0%	-
Comments:										

Annual monitoring of discharges to air

Air emission monitoring, Boiler 3 stack emissions, shown as "EPA ID No. 13" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	No. of samples required by licence	Samples collected and analysed	Sample value	EPL Limit mg/m³
Apr-18	18/05/2018	Cadmium	milligrams per cubic metre	1	1	<0.0002	1.0
Apr-18	18/05/2018	Carbon monoxide	ppm	1	1	61	
Apr-18	18/05/2018	Chlorine	milligrams per cubic metre	1	1	0.0	200
Apr-18	18/05/2018	Copper	milligrams per cubic metre	1	1	0.0009	
Apr-18	18/05/2018	Hazardous substances (Metals)	milligrams per cubic metre	1	1	≤0.015	5
Apr-18	18/05/2018	Hydrogen chloride	milligrams per cubic metre	1	1	14.0	100
Apr-18	18/05/2018	Mercury	milligrams per cubic metre	1	1	0.00140	1.0
Apr-18	18/05/2018	Nitrogen oxides	milligrams per cubic metre	1	1	610	1500
Apr-18	18/05/2018	Solid particles	milligrams per cubic metre	1	1	34.0	100
Apr-18	18/05/2018	Sulfuric acid mist and sulfur trioxide	milligrams per cubic metre	1	1	4.50	100
Apr-18	18/05/2018	Sulphur dioxide	milligrams per cubic metre	1	1	1100	
Apr-18	18/05/2018	Total fluoride	milligrams per cubic metre	1	1	12.0	50
Comments:		sion from each of the 4 boi results from Boiler 3.	ilers for the substances i	n this table is required annu	ually. In most years on	e boiler is tested each	quarter. This table

Discharge & Monitoring Point 13

Discharge to air

Air emission monitoring, Boiler 4 stack emissions, shown as "EPA ID No. 12" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Averaging period	Data capture %	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
MARCH 2019	10/10/2018	Nitrogen Oxides	parts per million	- Continuous	One hour	99.6%	110.4	260.3	385.8	
MARCH 2019	10/10/2018		milligrams per cubic metre				226.6	534.3	791.9	1500 mg/m³
MARCH 2019	10/10/2018	- Sulphur dioxide	parts per million	- Continuous	One hour	100.0%	200.1	247.3	311.2	600 ppm
MARCH 2019	10/10/2018		milligrams per cubic metre				572.0	706.7	889.4	-
MARCH 2019	10/10/2018	Opacity -Undifferentiated particles	Percent	Continuous	One hour	100.0%	1.5%	4.9%	10.3%	-
Comments:										

Annual monitoring of discharges to air

Air emission monitoring, Boiler 4 stack emissions, shown as "EPA ID No. 13" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	No. of samples required by licence	Samples collected and analysed	Sample value	EPL Limit mg/m³
Apr-18	10/08/2018	Cadmium	milligrams per cubic metre	1	1	<0.0002	1.0
Apr-18	10/08/2018	Carbon monoxide	ppm	1	1	2	
Apr-18	10/08/2018	Chlorine	milligrams per cubic metre	1	1	<0.006	200
Apr-18	10/08/2018	Copper	milligrams per cubic metre	1	1	0.0012	
Apr-18	10/08/2018	Hazardous substances (Metals)	milligrams per cubic metre	1	1	≤0.016	5
Apr-18	10/08/2018	Hydrogen chloride	milligrams per cubic metre	1	1	15.0	100
Apr-18	10/08/2018	Mercury	milligrams per cubic metre	1	1	0.00340	1.0
Apr-18	10/08/2018	Nitrogen oxides	milligrams per cubic metre	1	1	650	1500
Apr-18	10/08/2018	Solid particles	milligrams per cubic metre	1	1	31.0	100
Apr-18	10/08/2018	Sulfuric acid mist and sulfur trioxide	milligrams per cubic metre	1	1	2.20	100
Apr-18	10/08/2018	Sulphur dioxide	milligrams per cubic metre	1	1	1200	
Apr-18	10/08/2018	Total fluoride	milligrams per cubic metre	1	1	11.0	50
Comments:		sion from each of the 4 boi results from Boiler 4.	lers for the substances in	n this table is required annu	ually. In most years on	e boiler is tested each	quarter. This table

Details of Non-Compliance with Licence Conditions
Licence condition number not complied with
N/A
Summary of particulars of the non-compliance (NO MORE THAN 50 WORDS)
Managinal from the data the constitution of th
If required, further details on particulars of non-compliance
-
Date(s) when the non-compliance occurred, if applicable
If relevant, precise location where the non-compliance occurred (attach a map or diagram)
If applicable, registration numbers of any vehicles or the chassis number of any mobile plant involved in the non-compliance
Cause of non-compliance
Action taken or that will be taken to mitigate any adverse effects of the non-compliance
Action taken of that will be taken to miligate any adverse effects of the non-compliance
Action taken or that will be taken to prevent a recurrence of the non-compliance

Licence 779