BAYSWATER MONTHLY DATA SUMMARY FEBRUARY 2015

LICENCE NO	779
LICENCE HOLDER	AGL Macquarie
REPORTING PERIOD	FEBRUARY 2015

A1 Licence Holder

Licence Number 779

Licence Holder AGL Macquarie

Trading Name (if applicable)

ABN 18 402 904 344

A2 Premises to which Licence Applies (if applicable)

Common Name (if any) BAYSWATER POWER STATION

Premises NEW ENGLAND HIGHWAY MUSWELLBROOK NSW 2333

A3 Activities to which Licence Applies

Electricity Generation

A4 Other Activities (if applicable) Crushing, Grinding or Separating Works Aircraft (helicopter) facilities

Crushing, Grinding or Separating Works

Sewage Treatment Systems

Chemical Storage Facilities

Aircraft (helicopter) facilities

A5 Fee-Based Activity Classifications

Note that the fee based activity classification is used t	o calculate the administrative fee.	
Fee-based activity	Activity scale	Unit of measure
Generation of electrical power from coal	> 4,000.00	Gwh generated
Chemical Storage	> 100	Tonnes Generated or Stored
Coal Works	> 5000000	Tonnes handled

Discharge & Monitoring Point 1

Discharge to waters

Effluent quality and volume monitoring, Discharge from main station oil separator hoBWing basin and Treated Process Water Pond to Tinkers Creek, shown as "EPA ID No. 1" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Samples collected and analysed	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
FEBRUARY 2015	14/03/2016	Oil and Grease	milligrams per litre	Fortnightly	4	<5	2.5	< 5	10 mg/L
FEBRUARY 2015	14/03/2016	Total suspended solids	milligrams per litre	Fortnightly	4	1.0	4.3	7.0	20 mg/L
FEBRUARY 2015	14/03/2016	Volume discharge	kilolitres per week	Weekly during discharge	4	0	11,619	16,265	36,400 kL
Comments:									

Discharge & Monitoring Point 7

Discharge to waters

Effluent quality and volume monitoring, Discharge from cooling towers to Tinkers Creek, shown as "EPA ID No. 7" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Samples collected and analysed	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
FEBRUARY 2015	14/03/2016	Conductivity	uS/cm	Weekly	4	2720.0	3492.5	3790.0	4500 uS/cm
FEBRUARY 2015	14/03/2016	рН	pH Units	Weekly	4	8.2	8.3	8.4	6.5 - 8.5
FEBRUARY 2015	14/03/2016	Volume discharge	Megalitres per month	Weekly during discharge	23		350.8		840 ML
Comments:									

Discharge & Monitoring Point 8

Discharge to waters

Discharge & monitoring point under the Hunter River Salinity Trading Scheme, Discharge pipe from Lake Liddel dam wall, shown as "EPA ID No. 8" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Samples collected and analysed	Lowest sample value	Mean of samples	Highest sample value	EPL Limit		
FEBRUARY 2015	14/03/2016	Conductivity	uS/cm	Continuous during disharge	1	2270.0	2270.0	2270.0	•		
FEBRUARY 2015	14/03/2016	рН	pH Units	Daily during discharge	1	7.9	7.9	7.9	6.5 - 8.5		
FEBRUARY 2015	14/03/2016	Total suspended solids	milligrams per litre	Monthly	1	√5	2.5	< 5	30 mg/L		
FEBRUARY 2015	14/03/2016	Volume discharge	Megalitres per day	Daily during discharge	-				700 ML		
Comments:	No HRSTS dischare	STS discharge occurred from EPL point 8 during February 2016. Results are from standard monthly sampling									

Discharge & Monitoring Point 17

Discharge to waters

Ravensworth void. Inlet point located on the Void 4 pontoon pump system

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Samples collected and analysed	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
FEBRUARY 2015	14/03/2016	Conductivity	uS/cm	Continuous during disharge	1	6260.0	6260.0	6260.0	-
FEBRUARY 2015	14/03/2016	рН	pH Units	Daily during discharge	1	8.6	8.6	8.6	6.5 - 9.5
FEBRUARY 2015	14/03/2016	Total suspended solids	milligrams per litre	Monthly	1	13.0	13.0	13.0	30 mg/L
FEBRUARY 2015	14/03/2016	Boron	milligrams per litre	Weekly duirng discharge	1	2.6	2.6	2.6	0.81
FEBRUARY 2015	14/03/2016	Cadmium	milligrams per litre	Weekly duirng discharge	1	<0.0001	0.0	<0.0001	0.0003
FEBRUARY 2015	14/03/2016	Copper	milligrams per litre	Weekly duirng discharge	1	0.001	0.001	0.001	0.001
FEBRUARY 2015	14/03/2016	Iron	milligrams per litre	Weekly duirng discharge	1	<0.01	0.0	<0.01	0.27
FEBRUARY 2015	14/03/2016	Molybdenum	milligrams per litre	Weekly duirng discharge	1	0.4	0.4	0.4	0.29
FEBRUARY 2015	14/03/2016	Nickel	milligrams per litre	Weekly duirng discharge	1	0.0	0.0	0.0	0.19
FEBRUARY 2015	14/03/2016	Silver	milligrams per litre	Weekly duirng discharge	1	<0.0001	0.0	<0.0001	0.0005
FEBRUARY 2015	14/03/2016	Volume discharge	Megalitres per day	Daily during discharge	-				20 ML
Comments:	No HRSTS dischar	ge occurred from EPL poi	nt 17 during February 20	16. Results are from standa	rd monthly sampling				

Discharge & Monitoring Point 10

Discharge to air

Air emission monitoring, Boiler 1 stack emissions, shown as "EPA ID No. 10" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Averaging period	Data capture %	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
FEBRUARY 2015	14/03/2016		parts per million				110.8	287.8	484.5	700 ppm
FEBRUARY 2015	14/03/2016	Nitrogen Oxides	milligrams per cubic metre	Continuous	One hour	100.0%	227.4	590.8	994.4	1500 mg/m ³
FEBRUARY 2015	14/03/2016	Sulphur dioxide	parts per million	Continuous	One hour	100.0%	267.3	339.1	467.0	600 ppm
FEBRUARY 2015	14/03/2016	Sulphur dioxide	milligrams per cubic metre	Continuous	One nour	100.0%	763.9	969.1	1334.8	-
FEBRUARY 2015	14/03/2016	Opacity -Undifferentiated particles	Percent	Continuous	One hour	100.0%	0.9%	5.7%	17.6%	20%
Comments:										

Annual monitoring of discharges to air

Air emission monitoring, Boiler 1 stack emissions, shown as "EPA ID No. 13" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	No. of samples required by licence	Samples collected and analysed	Sample value	EPL Limit mg/m ³		
Oct-15	30/11/2015	Cadmium	milligrams per cubic metre	1	1	0.0000	1.0		
Oct-15	30/11/2015	Carbon monoxide	ppm	1	1	23			
Oct-15	30/11/2015	Chlorine	milligrams per cubic metre	1	1	0.01	200		
Oct-15	30/11/2015	Copper	milligrams per cubic metre	1	1	0.0005			
Oct-15	30/11/2015	Hazardous substances (Metals)	milligrams per cubic metre	1	1	0.01	5		
Oct-15	30/11/2015	Hydrogen chloride	milligrams per cubic metre	1	1	16.0	100		
Oct-15	30/11/2015	Mercury	milligrams per cubic metre	1	1	0.00160	1.0		
Oct-15	30/11/2015	Nitrogen oxides	milligrams per cubic metre	1	1	830	1500		
Oct-15	30/11/2015	Solid particles	milligrams per cubic metre	1	1	9.5	100		
Oct-15	30/11/2015	Sulfuric acid mist and sulfur trioxide	milligrams per cubic metre	1	1	8.90	100		
Oct-15	30/11/2015	Sulphur dioxide	milligrams per cubic metre	1	1	1100			
Oct-15	30/11/2015	Total fluoride	milligrams per cubic metre	1	1	9.3	50		
omments:	Monitoring of emission from each of the 4 boilers for the substances in this table is required annually. In most years one boiler is tested each quarter. This table contains the latest results from Boiler 1.								

Discharge & Monitoring Point 11

Discharge to air

Air emission monitoring, Boiler 2 stack emissions, shown as "EPA ID No. 11" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Averaging period	Data capture %	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
FEBRUARY 2015	14/03/2016	Opacity -Undifferentiated particles	Percent	Continuous	One hour	99.7%	1.1%	4.4%	11.0%	20%
Comments:										

Annual monitoring of discharges to air
Air emission monitoring, Boiler 2 stack emissions, shown as "EPA ID No. 13" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	No. of samples required by licence	Samples collected and analysed	Sample value	EPL Limit mg/m ³		
Jul-15	17/08/2015	Cadmium	milligrams per cubic metre	1	1	0.0001	1.0		
Jul-15	17/08/2015	Carbon monoxide	ppm	1	1	27			
Jul-15	17/08/2015	Chlorine	milligrams per cubic metre	1	1	0.01	200		
Jul-15	17/08/2015	Copper	milligrams per cubic metre	1	1	0.0011			
Jul-15	17/08/2015	Hazardous substances (Metals)	milligrams per cubic metre	1	1	0.04	5		
Jul-15	17/08/2015	Hydrogen chloride	milligrams per cubic metre	1	1	16.0	100		
Jul-15	17/08/2015	Mercury	milligrams per cubic metre	1	1	0.00140	1.0		
Jul-15	17/08/2015	Nitrogen oxides	milligrams per cubic metre	1	1	670	1500		
Jul-15	17/08/2015	Solid particles	milligrams per cubic metre	1	1	8.2	100		
Jul-15	17/08/2015	Sulfuric acid mist and sulfur trioxide	milligrams per cubic metre	1	1	55.00	100		
Jul-15	17/08/2015	Sulphur dioxide	milligrams per cubic metre	1	1	810			
Jul-15	17/08/2015	Total fluoride	milligrams per cubic metre	1	1	6.7	50		
Comments:	Monitoring of emission from each of the 4 boilers for the substances in this table is required annually. In most years one boiler is tested each quarter. This table is:								

Discharge & Monitoring Point 12

Discharge to air

Air emission monitoring, Boiler 3 stack emissions, shown as "EPA ID No. 12" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Averaging period	Data capture %	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
FEBRUARY 2015	14/03/2016	Opacity -Undifferentiated particles	Percent	Continuous	One hour	100.0%	4.7%	8.2%	15.4%	20%
Comments:										

Annual monitoring of discharges to air

Air emission monitoring, Boiler 3 stack emissions, shown as "EPA ID No. 13" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	No. of samples required by licence	Samples collected and analysed	Sample value	EPL Limit mg/m ³
Jul-15	17/08/2015	Cadmium	milligrams per cubic metre	1	1	0.0000	1.0
Jul-15	17/08/2015	Carbon monoxide	ppm	1	1	5	
Jul-15	17/08/2015	Chlorine	milligrams per cubic metre	1	1	0.0	200
Jul-15	17/08/2015	Copper	milligrams per cubic metre	1	1	0.0011	
Jul-15	17/08/2015	Hazardous substances (Metals)	milligrams per cubic metre	1	1	0.01	5
Jul-15	17/08/2015	Hydrogen chloride	milligrams per cubic metre	1	1	12.0	100
Jul-15	17/08/2015	Mercury	milligrams per cubic metre	1	1	0.00170	1.0
Jul-15	17/08/2015	Nitrogen oxides	milligrams per cubic metre	1	1	780	1500
Jul-15	17/08/2015	Solid particles	milligrams per cubic metre	1	1	20.0	100
Jul-15	17/08/2015	Sulfuric acid mist and sulfur trioxide	milligrams per cubic metre	1	1	37.00	100
Jul-15	17/08/2015	Sulphur dioxide	milligrams per cubic metre	1	1	960	
Jul-15	17/08/2015	Total fluoride	milligrams per cubic metre	1	1	13.0	50
Comments:	Monitoring of em	ission from each of the 4 b		s in this table is required an s the latest results from Bo		one boiler is tested ea	ch quarter. This table

Discharge & Monitoring Point 13

Discharge to air

Air emission monitoring, Boiler 4 stack emissions, shown as "EPA ID No. 12" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	Sampling / measurment frequency	Averaging period	Data capture %	Lowest sample value	Mean of samples	Highest sample value	EPL Limit
FEBRUARY 2015	14/03/2016	Opacity -Undifferentiated particles	Percent	Continuous	One hour	100.0%	0.6%	3.4%	18.4%	20%
Comments:										

Annual monitoring of discharges to air

Air emission monitoring, Boiler 4 stack emissions, shown as "EPA ID No. 13" on plan titled "Bayswater Power Station Unit 1-4, Open Space, Easments, Site Survey" dated 24/12/2004.

Month	Date of Publication	Pollutant	Unit of measure	No. of samples required by licence	Samples collected and analysed	Sample value	EPL Limit mg/m ³
May-15	7/07/2015	Cadmium	milligrams per cubic metre	1	1	0.0000	1.0
May-15	7/07/2015	Carbon monoxide	ppm	1	1	<0.0029	
May-15	7/07/2015	Chlorine	milligrams per cubic metre	1	1	0.02	200
May-15	7/07/2015	Copper	milligrams per cubic metre	1	1	0.0018	
May-15	7/07/2015	Hazardous substances (Metals)	milligrams per cubic metre	1	1	0.01	5
May-15	7/07/2015	Hydrogen chloride	milligrams per cubic metre	1	1	22.0	100
May-15	7/07/2015	Mercury	milligrams per cubic metre	1	1	0.00110	1.0
May-15	7/07/2015	Nitrogen oxides	milligrams per cubic metre	1	1	940	1500
May-15	7/07/2015	Solid particles	milligrams per cubic metre	1	1	17.0	100
May-15	7/07/2015	Sulfuric acid mist and sulfur trioxide	milligrams per cubic metre	1	1	9.30	100
May-15	7/07/2015	Sulphur dioxide	milligrams per cubic metre	1	1	930	
May-15	7/07/2015	Total fluoride	milligrams per cubic metre	1	1	22.0	50
Comments:	Monitoring of em	ission from each of the 4 b		s in this table is required an s the latest results from Bo		one boiler is tested ea	ch quarter. This table

Licence 779

Details of Non-Compliance with Licence Conditions	
cence condition number not complied with	
/A	
ummary of particulars of the non-compliance (NO MORE THAN 50 WORDS)	
required, further details on particulars of non-compliance	
ate(s) when the non-compliance occurred, if applicable	
relevant, precise location where the non-compliance occurred (attach a map or diagram)	
applicable, registration numbers of any vehicles or the chassis number of any mobile plant involved in the non-compliance	
approach, regeneration that the control of the cont	
ause of non-compliance	
ction taken or that will be taken to mitigate any adverse effects of the non-compliance	
ction taken or that will be taken to prevent a recurrence of the non-compliance	
audit daven di mat will de tanen to prevent à reculteffice di tite non-compliance	