

AGL Energy Limited ABN: 74 115 061 375 Level 24, 200 George St Sydney NSW 2000 Locked Bag 1837 St Leonards NSW 2065 t: 02 9921 2999 f: 02 9921 2552

agl.com.au

House of Representatives Standing Committee on Infrastructure, Transport and Cities Parliament of Australia PO Box 6021 Parliament House Canberra ACT 2600 Submitted by email: itc.reps@aph.gov.au

2 August 2017

Dear Committee Members

AGL Energy (**AGL**) welcomes the opportunity to respond to the House of Representatives Standing Committee on Infrastructure, Transport and Cities' Inquiry into the Australian Government's role in the development of cities (**Inquiry**).

AGL is one of Australia's leading integrated energy companies and the largest ASX listed owner, operator and developer of renewable generation. Our diverse power generation portfolio includes base, peaking and intermediate generation plants, spread across traditional thermal generation as well as renewable sources. AGL is also a significant retailer of energy, providing energy solutions to over 3.7 million customers throughout eastern Australia.

In addition, AGL is continually innovating our suite of distributed energy services and solutions for customers of all sizes (residential, business and networks). These 'beyond the meter' energy solutions involve new and emerging technologies such as energy storage, electric vehicles, solar PV systems, digital meters, and home energy management services delivered through digital applications.

The diversity of AGL's portfolio has allowed us to develop a detailed understanding of the risks and opportunities presented by energy and climate policy. AGL economists have published a range of peer reviewed research on impacts associated with energy and climate policy.

The relationship between climate and energy policy and the sustainable development of cities

The long-term sustainability of Australia's existing and new cities should be a key policy concern for the Commonwealth, consistent with Australia's obligations under the Paris Agreement¹ and broader commitment to sustainable development, as articulated in the adoption of the global Sustainable Development Goals.²

AGL believes that the sustainable development of Australia's cities into the future is inextricably linked to the effective design of Australia's energy and climate policies. AGL considers that two imperatives will drive the future of energy generation in Australia: decarbonisation and the centricity of customers' unique preferences

¹ Paris Agreement (adopted 12 December 2015, entered into force 4 November 2016).

² Transforming Our World: The 2030 Agenda for Sustainable Development (UNGA Resolution A/RES/70/1, 25 September 2015).

and expectations. Having regard to these two imperatives, we consider that carefully designed energy and climate policy would enable the development of more sustainable cities into the future, whilst also creating substantial growth and job opportunities for the Australian economy.

Decarbonisation

We note that cities present particular risks and opportunities for action to address climate change and effect the transition towards a more sustainable mode of urban form. Indeed, as UN-Habitat observes, "cities consume 78 per cent of the world's energy and produce more than 60% of all carbon dioxide and significant amounts of other greenhouse gas emissions, mainly through energy generation, vehicles, industry, and biomass use".³ Many cities and towns are also vulnerable to the effects of climate change.

All sectors of the Australian economy have an important role to play in meeting Australia's emission reduction targets and its long-term commitments under the Paris Agreement.

AGL accepts the IPCC's conclusion that the risks associated with climate change are reduced substantially if warming is limited to less than 2 degrees Celsius above pre-industrial levels. Achieving this outcome would require complete decarbonisation of the world economy by 2100 and emission reductions of up to 70 percent by 2050.

We refer to AGL's Greenhouse Gas Policy⁴, which sets out AGL's commitment to developing a shared understanding of the best ways for Australia to reduce its greenhouse gas emissions. AGL has committed to a range of measures that will drive the decarbonisation of the energy sector, including the closure of all of our existing coal-fired power stations by 2050 and continued investment in new renewable and near-zero emissions technologies.

As our Greenhouse Gas Policy elaborates, it is important that governments set both binding and aspirational medium and long-term emission reduction targets. AGL supports the use of both regulatory and market-based policy mechanisms to deliver the required emission reductions. Importantly, a range of policies are likely to be needed.

We also believe that the costs of decarbonisation should be shared equitably across the Australian economy. Whilst Australia has a range of current climate policies in place, which address the electricity sector, there is currently a complete absence of policy to address emissions from the transport sector. Transport emissions have shown the greatest growth in percentage terms since the 1990 baseline, underlining the urgent need for policy reform.

Evolving customer preferences regarding energy

The sustainability of cities into the future will also be driven by customers' changing energy preferences. Customers are playing an important role in the energy market transformation, driving a shift away from the traditional linear electricity supply chain, to a more decentralised and bi-directional market. In addition to the one-in-four households across Australia with solar PV installations, a proliferation of more advanced distributed energy resources (**DER**) (digital metering, smart inverters, energy storage, energy management systems, household appliance with smart controls etc.) are now entering the consumer market. These

³ UN-Habitat, *Climate Change*, Available at <u>https://unhabitat.org/urban-themes/climate-change/</u>.

⁴ AGL, Greenhouse Gas Policy, Available at

https://www.agl.com.au/~/media/AGL/About%20AGL/Documents/Media%20Center/Corporate%20Governance%20Policies%20Charter/Corporate/Corporate%20Governance%20Policies%20Charter/Corporate/Corporate%20Governance%20Policies%20Charter/Corporate/Corporate%20Governance%20Policies%20Charter/Corporate/Corporate%20Governance%20Policies%20Charter/Corporate/Corporate%20Governance%20Policies%20Charter/Corporate/Corporate%20Governance%20Policies%20Charter/Corporate/Corporate/Corporate%20Governance%20Policies%20Charter/Corporate/Corp

distributed technologies offer new opportunities for customers to actively manage their energy use and to share in value beyond the home, whether by 'sharing' energy with peers or participating in programs which support the operation of the network or the wholesale market.

These developments are affecting grid utilisation and fundamentally changing the way in which consumers interact with the electricity grid. Thus, attention must be paid to reforms that will ensure: consumer investment in DER is efficient; ongoing network tariffs are sustainable; and that regulatory and market frameworks facilitate (rather than inhibit) the emergence of new products and service markets that build on new distributed technology capabilities in ways that respond to customer preferences.

We note that the Inquiry is concerned with ways in which to grow new and transition existing sustainable regional cities and towns. AGL believes that DER could play an important role in promoting the development of regional centres including through significant private investment. AGL is also supportive of enabling customers to transition to stand-alone power systems in circumstances where customers stand to benefit from cost efficiencies. Nevertheless, we are firmly of the view that any regulatory framework governing stand-alone power systems must ensure free and informed customer choice and competitive mechanisms to maintain price and service discipline.

Priority energy sector policy reform

AGL considers that carefully designed energy and climate policy would enable the development of more sustainable cities into the future whilst also creating growth and job opportunities for the Australian economy. In particular, public policy should focus on the following core elements:

- Establishing investment certainty in a carbon constrained future
- Market design that supports low-emissions generation and related ancillary services
- Grid Modernisation
- Customer choice and preferences
- Governance

We elaborate on each of these core elements in the attachment to this submission.

Should you have any questions in relation to this submission, please contact Kurt Winter, Policy Advisor, on 03 8633 7204 or myself on 03 8633 6836.

Yours sincerely,

Stephanie Bashir Senior Director, Public Policy

ATTACHMENT

Policy framework required in shaping a sustainable energy future for Australia

AGL has given considerable thought to the future of energy generation in Australia and believes that two fundamental imperatives will drive the future of energy generation in Australia: decarbonisation and the centricity of customers' unique preferences and expectations.

The electricity sector has an important role to play in meeting Australia's emission reduction targets and its long-term commitments under the Paris Agreement. Whilst electricity generation currently accounts for approximately one third of Australia's greenhouse gas emissions inventory and represents the single largest source of domestic emissions, technological substitutes to fossil fuels are available and increasingly cost effective. Electricity generation also has the potential to facilitate emission reduction in other sectors, notably transport with electrification powered by renewable energy.

A nationally coordinated and consistent approach to climate and energy policy is needed to ensure the smooth decarbonisation and modernisation of the electricity sector. The energy sector's transition will span several decades and a long-term vision is required to support that transition. The piecemeal introduction of carbon reduction and renewables policies has produced unintended consequences for wholesale energy markets. It is critical that policy makers discuss how to better integrate wholesale market design with climate change policy to ensure that ageing 'firm' power plants are replaced with new, low-emissions generation and complementary infrastructure.

Customers are also playing an important role in the energy market transformation, driving a shift away from the traditional linear electricity supply chain, to a more decentralised and bi-directional market. In addition to one in four households across Australia with installed solar PV, a proliferation of more advanced distributed energy resources (**DER**) (digital metering, smart inverters, energy storage, energy management systems, household appliance with smart controls etc.) are now entering the consumer market. These distributed technologies offer new opportunities for customers to actively manage their energy use and to share in value beyond the home – whether by 'sharing' energy with peers or participating in programs which support the operation of the network or the wholesale market.

These developments are affecting grid utilisation and fundamentally changing the way in which consumers interact with the electricity grid. Thus, attention must be paid to reforms that will ensure: consumer investment in DER is efficient; ongoing network tariffs are sustainable; and that regulatory and market frameworks facilitate (rather than inhibit) the emergence of new products and service markets that build on new distributed technology capabilities in ways that respond to customer preferences.

Guiding policy principles

AGL believes that policy should be guided by the following principles to ensure the sector's smooth transition and ongoing delivery of secure, affordable and sustainable energy into the future:

- where feasible, using competitive markets to deliver and value energy services;
- establishing policy, regulatory and market frameworks that are technology neutral;
- establishing **appropriate technology standards** that do not contradict broader policy objectives and are based, where possible, on international standards that encourage investments, ensures Australia keeps up with improving efficiencies and global best practices, promote customer choice, support competition and encourage economies of scale;

- utilising price signals to encourage efficient investment and operational decisions;
- allocating risks to parties that are best able to manage them;
- introducing **regulation only where necessary** to address a market failure, including to ensure system safety, security and reliability.
- Ensuring an **equal playing field** where different providers of products and services, in markets, must compete openly on their merits.
- A customer protections framework that ensures all customers have the **basic right to access** energy.
- Ensure a framework that is **inclusive of all customers** including vulnerable customers the opportunity to participate and benefit from the energy market transformation.

Keeping these principles as a guidepost improves the predictability of modifications to existing regulatory and market frameworks when it becomes evident they are required. Open competitive markets and technology neutrality provide firms the impetus and latitude to pursue technology and service delivery innovations that meet system needs at efficient cost. We are already seeing evidence that holding to these principles promotes opportunities for addressing system impacts emerging from one set of technology innovations with technology innovations occurring elsewhere.

Core elements of effective public policy reform

Having regard to the guiding principles, AGL believes that public policy should deliver on the following core elements.

1. Establishing investment certainty in a carbon constrained future

More than 80% of electricity generated in Australia is sourced from the combustion of fossil fuels, the majority of which is provided by coal-fired generation. The transition to a decarbonised and modernised generation sector requires large scale investment, much of which will be less than half way through its asset life at the end of the current RET scheme and Government current 26-28% target under the Paris Agreement.

Investment will be best supported by emissions reduction policy that provides macro level certainty as to the timeframe and operating life of incumbent plant and reduced levels of uncertainty as to the market environment within which current investments will operate in post 2030. Greater certainty in these areas will support a more efficient transition, guiding decisions on new investments, management of existing capital stock, policy development, community transition and energy market development.

Integrated policies are required to ensure that these objectives can be jointly pursued over time. As the decarbonisation and modernisation of the electricity sector will span several decades, a long-term vision and trajectory for this transition is essential to provide investors with confidence to develop the long-lived and often capital intensive projects that will enable Australia to reduce its emissions efficiently over time, and at least cost.

AGL supports the recommendations by the Independent Review into the Future Security of the National Electricity Market (**Finkel Review**) to introduce a Clean Energy Target to incentivise new low emissions

generation into the market in a technology neutral fashion.⁵ AGL also notes the Finkel Review's recommendation for a three year notice of closure requirement for all large generators to support orderly transition.⁶ We encourage governments to implement these important policy reforms in a timely and coordinated manner.

2. Market design that supports low-emissions generation and related ancillary services

The NEM was framed on the basis of thermal capacity investments and in most cases, assumes that demand is relatively inelastic and that dispatchable thermal generation is able to meet demand. The optimal generation mix therefore becomes the balance between the load duration curve and price duration curves. The shift to renewable energy is showing the limitations of the NEM's thermal-centric design in that both the load duration and price duration curves are shifting, diminishing the economic viability of incumbent large scale synchronous generation capacity.

As the generation mix changes to incorporate a growing amount of renewable energy, demand for energy services such as Frequency Control Ancillary Services (FCAS), reactive power, and inertia will increase as the traditional suppliers of these services exit the market.

Maintaining system security will therefore require complementary measures that accommodate a NEM in transition. Accommodating greater levels of variable renewable generation in the NEM requires correcting for the unintended consequences of climate change policy on the operation of energy markets. In AGL's view, key mechanisms for doing so include:

1. The introduction of incentives to ensure that intermittent generation sources become 'firm' and dispatchable

To ensure additional renewable generation beyond the current RET does not impact system security, policy makers may consider adding a requirement for dispatchability to new intermittent generation. Within an energy-only market, the total cost of renewables subsidies will be greater if they are constructed with no reference to their impact on system security. A system whereby renewable generators partner, through direct or indirect means, with complementary 'firm' capacity (such as open-cycle gas turbines, pumped hydro or advanced batteries) has the potential to address such concerns.

2. The use of existing and new supplementary markets to improve security, reliability and system resilience

The introduction of new ancillary services markets will ensure that users appropriately value services to support system security and reliability, such as inertia, that had previously been available for free and in surplus. South Australia in particular is moving away from thermal fuel sources of generation capacity and has experienced significant increase in the proportion of its energy being supplied by renewable, intermittent, generation sources. Contracting services, such as inertia, in such an environment would significantly help to address concerns with regards to security and reliability of electricity supply as the sectoral transformation continues.

⁵ Dr Alan Finkel AO, Chief Scientist, Chair of the Expert Panel, Independent Review into the Future Security of the National Electricity Market: Blueprint for the Future' (June 2017), Available at http://www.environment.gov.au/system/files/resources/1d6b0464-6162-4223-ac08-3395a6b1c7fa/files/electricity-market-review-final-report.pdf, page 23. ⁶ Ibid.

AGL anticipates that the needs of the wholesale energy market will increasingly be supplied through a proliferation of distributed energy resources (**DER**), and the extent of the uptake and utilisation of DER may affect the role of large scale assets within future markets. Accordingly, the wholesale market will increasingly need to accommodate a diverse portfolio of decentralised low-emissions generation assets, which may affect both the development of industry scale investments as well as the accessibility of supportive ancillary services.

We anticipate that the role of traditional generation will increasingly be met by flexible DER and a range of low-emissions generation. However, the proliferation of DER within a broader generation mix will require a commensurate ability to co-ordinate those assets in order to maximise the benefit to the primary and ancillary wholesale markets. AGL's virtual power plant (**VPP**) is an example of how DER can deliver those services within a competitive market if it is orchestrated effectively.

AGL considers that future industry scale investments will increasingly need to conform to the following design principles to effectively complement decentralised low-emissions generation:

- be modular and adaptable, capable of combining with multiple medium and large scale fuel sources;
- utilise conversion technologies to deliver high efficiency and low emissions outputs;
- be *scalable* or *grid-scalable*, making it applicable to the grid as well as the distribution market (with its capacity to facility energy back flows); and
- be adaptable to the increased penetration of DER behind the meter.

3. Grid Modernisation

AGL believes that the future of the grid will be as a gateway to multiple competitive platforms that enable a range of markets for customers.

The distribution network will increasingly become the platform across which customers expect to be able to connect and transact. Competing energy service providers are beginning to trial and offer innovative products and services that leverage the grid to provide customers with access to other markets and value streams.

Rather than simply enabling the consumption of electricity delivered from centralised plant, the grid will have increasingly important role facilitating a range of other service markets. These include markets for grid stability services (frequency and voltage), markets for services which support the network in constraint conditions, markets for wholesale demand response at times of tight supply, and 'peer-to-peer' energy trading.

There will not be a single business or delivery model to enable these mixed interactions and respond to the broad spectrum of customer needs and preferences. Reflective of the heterogeneity of customer needs and preferences, AGL expects product and service offerings from a broad mix of energy service providers to be similarly heterogeneous. The grid should provide a two-way energy platform upon which competing energy service providers can build their product and service offerings. The distributed energy ecosystem of the future may involve multiple distributed markets and service platforms co-existing and interacting. Energy service providers will invest, test, learn and innovate their offerings, and bear the risks and rewards associated with these endeavours.

The need for an optimisation function therefore is needed and should be carried out by a party that is independent and exposed to financial incentives. By modifying the overall volume and shape of demand,

DER can be deployed and operated to avoid or delay more expensive augmentations to the network. Further, smart inverters and local sensing devices can enable the provision of voltage and frequency services back to the distribution network and is an associated benefit of DER.

However, a network support or grid stability service might only be required on a limited number of occasions per year, and this is similarly the case with demand response to meet a wholesale supply constraint. The remainder and majority of the time, customer-owned DER installed behind-the-meter (**BTM**) is likely to be employed directly for meeting the comfort and consumption needs of the customer. Accordingly, an efficient deployment and use of DER will enable co-optimisation across these multiple uses and value streams. It will also recognise that it is ultimately a customer's choice as to how their BTM resources are deployed and what compensation or reward they expect for participating in different service markets (including providing network support).

AGL sees competition and innovation in technology and business models as the primary means for meeting this co-optimisation challenge and aligning the interests of energy service providers with those of the customers they serve. To enable efficient 'value stacking' requires the need for (location, size) of grid support services and their value to the network to be made explicit, so that products and services can be designed by competing energy service providers to address these and build those values into the commercial model.

This will directly benefit customers investing in DER by ensuring the least cost deployment and highest value use of those assets are made, and by promoting the availability of a range of retail offers and bundled products to meet distinct customer preferences. Importantly, it will indirectly benefit all customers by ensuring investment in assets or services which support reliable network operation are efficient, thereby ensuring the efficiency of overall network costs.

Network businesses should be required to test the competitive market for the provision of demand response and other non-network solutions before developing their own programs or directly investing in distributed energy technologies and including such expenditure in the regulated asset base. Further, Network businesses must demonstrate greater value to customers prior to proceeding with network based solutions. To facilitate the development of viable competitive products which address network needs, network businesses should also make available sufficient and useful data about the characteristics and location of those network needs and the costs of alternative network investments.

Rapid technological advancements, increased availability and declining costs associated with DER may mean that, over time, non-network solutions increasingly become more suitable investments than further network investments. Indeed, the market inception of DER-related services and solutions will make future patterns of network demand uncertain. Assumptions that non-network solutions will not be suited to particular applications may, in time, be challenged by these developments.

Networks operate monopoly infrastructure and are the monopoly purchasers of demand response and other non-network solutions. Therefore, it will be critical to maintain a clear focus on the role of distribution businesses through the grid modernisation process. In AGL's view, network businesses should be required to test the competitive market for the provision of demand response and other non-network solutions before developing their own programs or directly investing in distributed energy technologies and including such expenditure in the regulated asset base.

There is a natural requirement on businesses operating in the competitive market to maintain a definite customer focus in the products and services they develop, and to innovate and extract efficiencies and

additional values where possible, so that the product delivered to the end-customer addresses their needs and preferences while being price competitive. Without this competitive discipline and with a singular focus on network benefits, programs delivered directly by distribution businesses are unlikely to result in the most efficient deployment of distributed energy technologies.

However, the current regulatory framework does not require network businesses to draw on competitive markets to deliver network support and demand management solutions. Instead network monopolies can (and are sometimes encouraged to) directly invest in technologies installed behind-the-meter provided this is ostensibly to assist in the management of the network. This creates a barrier to the development of well-functioning markets in products and services enabled by distributed energy technologies, including demand management programs. Without effective competition in the delivery of such services, the efficiency of network spending, customer choice and innovation will all be negatively impacted.

Further, care in the design of network cost-recovery and pricing frameworks is key to driving efficient network utilisation, efficient adoption of distributed energy technologies and mitigating potential equity issues that arise where those without the ability to adopt distributed generation technologies are left to bear a disproportionate share of remaining network costs. Distribution businesses are currently introducing more cost reflective network tariffs to support the achievement of these outcomes. However, with overall declining grid utilisation and spare capacity in many networks, there is a question as to whether the policy intent behind the introduction of cost-reflective pricing can be achieved without a clear policy on the treatment of the existing regulated asset base.

4. Customer choice and preferences

Customer preferences are continuously evolving. The availability of distributed renewable generation and other digital technologies is enabling customers to exert greater control over their energy usage and demand improved services and a wider range of products from energy service providers. Although energy remains an essential service, customers now have far greater choice as to how that service is delivered.

A decade ago, the choice for customers was simply 'who' sold them energy. Now the choice is who and 'how' (and increasingly 'when') – how they will be supported by online services and flexible payment options, how they will combine grid supplied and distributed energy sources, how they expect to be able to monitor and control usage, and increasingly how they will share energy and share in value streams available beyond the home (e.g. network and wholesale values).

Australia leads the world with small-scale solar PV installations. Across the country, approximately 17% of households have a solar PV system installed. This number exceeds 25% in some jurisdictions. Installations are expected to continue to grow, and will increasingly be accompanied by the installation of a battery energy storage system. Although currently the domain of so-called 'early adopters', expected cost declines and associated reductions in the length of pay-back periods for battery energy storage technology are anticipated to see an acceleration in take up. Bloomberg New Energy Finance predicts that by 2040, 24% of residential buildings will have a storage system installed. 7

The continued growth in distributed energy resources has implications for price dispersion. Distributed energy technologies which very substantially lower grid-drawn energy supply, will amplify the heterogeneity of customer needs and preferences, and is thus likely to increase the extent of price dispersion. It may also

⁷ Bloomberg New Energy Finance, Annabel Wilton, Australia Behind-the-Meter PV and Storage Forecast, 22 February 2017.

lessen the relevance of analyses which look only to unit price to determine value being delivered to customers by retail energy service providers. Some customers may begin to more heavily weight 'value-added' services over unit prices alone. These services might include an enhanced feed-in tariff, the ability to participate in peer-to-peer electricity trades, the availability of demand response products or the opportunity to be rewarded for provision of network and wholesale support services back to the system.

These changing market dynamics necessitate public policy reform to ensure fit-for purpose consumer protection and robust participation in a competitive market. It is also important that the retail regulatory and market framework does not seek to impose rigid price-setting frameworks that have the unintended consequences of limiting the ability of both old and new market players to innovate their offerings in response to new technology developments and changing consumer preferences

The consumer protection regulatory framework should also be reviewed to ensure it remains fit-for-purpose. The consumer protection framework should recognise that consumers are not homogenous but rather have their own distinct and unique preferences. The framework should be flexible enough to accommodate innovation in product and service provision (including the business or delivery model), and not constrain informed customer choice and participation. Importantly, it should promote competitive neutrality and allow existing and emerging business models to compete on their merits, enabling consumers to choose products and services that suit their circumstances.

AGL notes that the Council of Australian Government's Energy Council (**COAG EC**) and the Australian Energy Market Commission (**AEMC**) have recently implemented several market reforms in response to changing customer sentiment and interactions in the NEM. These changes, largely through the AEMC's Power of Choice reforms, place greater emphasis on increasing competition, customer choice, innovation and demand-side participation. We support these principles and their embodiment in the national energy rules.

The regulatory framework should facilitate digital engagement and service providers in their efforts to expeditiously bring to market new products and services and through channels that consumers' value. It should promote competitive neutrality and allow existing and emerging business models to compete on their merits, enabling consumers to choose products and services that suit their circumstances. The price, product and service benefits that flow to customers from competitive markets are predicated on the ability of customers to participate effectively in those markets. Thus attention should be paid to policy reforms that remove barriers to participation, including reviewing the impact of home tenure on access to products and services, tenancy law reform and improving community outreach to vulnerable parts of the community.

In an environment where customer heterogeneity is expanding, it is positive that the retail regulatory and market framework is allowing new entrants with novel business models to enter the market and offer newly designed services to customers. By 'disrupting' the retail energy services market, new entrants drive enhanced competition amongst all market players. It will be important that governments reviewing retail electricity prices keep sight of the fast-evolving consumer energy landscape and do not, in an attempt to protect consumers, propose a return to more rigid price-setting framework. Reducing price dispersion is likely to reduce competition and have a detrimental impact on low-income customers. AGL research shows that price dispersion provides significant benefits to the family formation household demographic where vulnerability is highest due to low income per person and higher than average energy consumption It is highly likely that price dispersion will become more pronounced as electricity markets decarbonise. As more costs become sunk, uniform pricing set to marginal cost will become even more problematic as large capital costs

would not be recovered. As such, it is important that policy makers continue the push towards deregulated retail electricity markets to facilitate, rather than obstruct, the goals of efficient pricing and decarbonisation.

5. Governance

Finally, appropriate energy market governance is critical in delivering on these objectives and actions. AGL is keen to ensure that governance and regulatory frameworks continue to be positioned to deliver benefits to energy users into the future, within the context of evolving technology and community expectations. AGL believes that the COAG Energy Council has a primary role in driving energy policy in Australia. There are opportunities to improve the Council's strategic focus and prioritisation of issues, and to build a common purpose amongst the different jurisdictions. Further, empowering different jurisdictions to take the lead on driving national reform through the Council on different issues may help to improve the implementation of agreed national reforms across all jurisdictions, and would reduce the duplication of work between States and ensure national consistency.